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VECTOR SINGULAR INTEGRAL
OPERATORS ON A LOCAL FIELD

SERGIO A. TOZONI

A theory of vector singular integral operators in the context of the
local fields, is established. Applications to maximal functions, a diag-
onal multiplier theorem of Mihlin-Hormander type and applications
to Besov and Hardy-Sobolev spaces are given.

Introduction. The theory of the vector singular operators with oper-
ator valued kernels on Euclidean space was treated systematically by
Rubio de Francia, Ruiz and Torrea [6] (see also Garcia-Cuerva and
Rubio de Francia [3]). On the other hand, the classical singular in-
tegral operators of the Calder6n-Zygmund type on finite product of
local fields were considered by Phillips and Taibleson [5].

The goal of the present paper is to give a version for local fields of
some results of Francia-Ruiz-Torrea [6] that generalize from several
perspectives the quoted paper by Phillips-Taibleson.

The contents of the paper is as follows. We begin in §1 some basic
notations, definitions and results that we can find in [9]. In §2 we state
an inequality of Fefferman-Stein type and, we apply it to obtain an in-
terpolation theorem of Marcinkiewicz-Riviere type. The main results
are in §3 where we state the version of the integral singular operator
theorem given in [6], for local fields, giving also sequential extensions.
Next in §4 we obtain maximal inequalities of F. Z6 and Fefferman-
Stein type. A diagonal multiplier theorem of Mihlin-Hérmander type
(for the Euclidean case see Triebel [11]) that generalize the scalar mul-
tiplier theorem of Taibleson [8] is given in §5. Finally, in §6 we give ap-
plications of some results obtained in the foregoing sections to Besov
and Hardy-Sobolev spaces in local fields.

The extension of all results in this paper for a finite product of
local fields will be an immediate consequence of a M. H. Taibleson’s
theorem (see [10], pp. 548-549) which states that, if K is a local
field and 4 is an integer greater than 1, then K%¢, the d-dimensional
vector space over K, has a field structure, as a local field, which is
compatible with the usual vector space norm of K< .

1. Preliminaries. A local field is any locally compact, non-discrete
and totally disconnected field. Let K be a fixed local field and dx a
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Haar measure of the additive group K* of K. The measure of the
measurable set 4 of K with respect to dx we denote for |4|. Let m
be the modular function for K*, that is, M (1)|4| = |A4]| for 1 € K
and A measurable. We also let |x| = m(x). The sets

D={xeK:|x|<1} and B={xeK:|x| <1}

are the ring of integers of K and the unique maximal ideal of D,
respectively. Let ¢ = p° (p prime) be the order of the finite field D/B
and 7 a fixed element of maximum absolute value of B. The Haar
measure dx is normalized such that |D| = 1 and thus |z| = |B| = ¢~ !.
We observe that dx/|x| is a Haar measure on the multiplicative group
K* of K. We let

B*={xeK:|x|<q ¥}, keuz

If B and R are two balls of K such that BN R # &, then B C R or
R C B, For each k € Z, there is only one sequence (B;) ey of balls
with radius g* that is a partition of K. We fix a character ¥ on K*
that is trivial on D but is non-trivial on B™! = {x € K: |x| < ¢g}. If
we take x,(x) = x(x-y), then the mapping y — y, is a topological
isomorphism of K onto the group of characters of K*. The Fourier
transform of a function f € L!(K) is defined by

(1) flx) = / FOT ) dy,

and the inverse Fourier transform of a function f € L2(K) is defined
by

) ) = / F0)x () dy.

We denote by S(K) the space of all finite linear combinations of
characteristic functions of balls of K. The space S(K) is an algebra
of continuous functions with compact support that is dense in L?(K),
1 < p < oco. We observe that the Fourier transform is a homeomor-
phism of S(K) onto S(K). The space S'(K) of continuous linear
functionals on S(K) is called the space of distributions. We will con-
sider S’(K) with the weak topology.

Let E be a Banach space. The space [°(E) is the set of all sequences
(¢j)jez of elements of E, such that the sequence of its norms is in
IS, The space of the quasi-null sequences of elements of E, i.e. of
the sequences (c;) such that ¢; = 0 for |j| > N, for some N >0,
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will be denoted by /[§°(E). We denote by S(K, /§°) the space of the
quasi-null sequences of functions of S(K). The space S(K, [§°) is
dense in the space L?(K, /5) for 1 <p,s<oo.

The space /[(E), for 1 <r < oo and s € R, will be the set of all
sequences (X;);>o of elements of E, such that

1)) 2005y = (@111 201l < oo

The Hardy-Littlewood maximal function of f € L. (K, E) is de-
fined by

3) M) =supg [ flsdy.
kez ly—x|<q
The function M f(x) is measurable,
_ 1 k
4) 11l = Jim g [ W0l dy,
and
(5) 1F)e < MA(x),

for almost all x € K. Moreover, M f is of the weak type (1, 1) and
of the strong type (p,p), 1 <p <oo.
For the details see [9].

2. The BMO(E) space.

2.1. DEFNITION. Let f € Ll (K, E). The sharp maximal func-
tion M*f is defined by

M =suwat [ 110) - )l dy,
[y—x|<q

kez
where

i) =d [ sy
ly—x|<q
2.2. DerFINITION. The space BMO(E) of the functions of bounded
mean oscillation is the set of the functions f € L! (K, E) such that

loc
(1) 111 = 1M* flloo < 0o

2.3. REMARKS. (a) The application f — | f|« is a seminorm on
BMO(E) and ||f|l« = O if and only if f is constant. We consider
the space BMO(FE) like a quotient space with respect to constant
functions. (b) We can prove that BMO(E) is a Banach space analo-
gously to the real case (see [4]). (c) We have L*(K, E) C BMO(E),
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L>®(K, E) # BMO(E) because the function f(x) = log|x| if x € K*
and f(0) =0 isin BMO(FE) but is not in L*(K, E).

A classical inequality of Fefferman-Stein also holds in the local field
setting.

2.4. THEOREM. Let f € Ll (K, E) such that Mf € L'(K) for
some r with 0 <r < oco. Then for every p with r < p < oo, there is
a constant C, depending only on p, such that

(1) 1M 11y < CollM* £l

The proof of this theorem is an adaptation of the Euclidean case
(see [3], Chapter 2, Theorem 3.6). To obtain this adaptation we must
remember that the balls of K have the same properties of the dyadic
cubes. We do not need to take dilations of balls, the number 2 that
appears in the proof of [3] is the prime number ¢ here, and the func-
tions a(t) and A(t) that are considered in [3] are equal in this case.

2.5. REMARK. The inequality 2.4(1) is not true when p = oo (see
2.3(c)).

As a consequence of the Fefferman-Stein inequality we obtain an
interpolation theorem of Marcinkiewicz-Riviere type, which will be
fundamental in the study of the singular integrals.

2.6. THEOREM. Let E and F be Banach spaces and let T be a
linear operator from L*°(K, E) into LK, F) such that, T has a
bounded extension from L' (K, E) into L"(K, F), for some r with
1<r<oo, and

(1) ITAle < Cllfll=),  f€LE(K, E).

Then T has a bounded extension from LP(K, E) into LP(K, F), for
all p with r <p < .

3. Singular integral operators.

3.1. DerINITION. Let £ and F be Banach spaces. A linear opera-
tor T defined on L (K, E), the space of the E-valued L*°-functions
with compact support, with values in L%(K, F), the space of all F-
valued strongly measurable functions, is a singular integral operator
with an operator valued kernel, if the following two conditions are
fulfilled:

SIO 1. T has a bounded extension from L'(K, E) into L'(K, F),
for some r with 1 <r<oo.
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SIO 2. There is an operator valued kernel K, locally integrable
from K x K\A into L(E, F), such that

(1) Tf(x) = / K(x, y)f(0)dy,

for all f€ L®(K, E) and fora.e. x ¢ supp f.

3.2. DEerFINITION. Let T be a singular integral operator with a
kernel K. We say that K satisfies (H;) if

W[ K =Kl ndx S C
x=y'[>ly=y'|
for all y #)', and we say that K satisfies (Hy) if
_ ) v =]
(2) IK(x, ) K(X,J’)||L(E,F)SClx_y,I2

for |x —y'| > |y —y'|. Moreover, we say that K satisfies (H}), for
r=1orr=o00,if K'(x,y)=K(y, x) satisfies (H,).

3.3. REeMARK. The condition (Hy) implies the condition (H).
In fact, if |[y —)'| = ¢! and |x —)'| > |y — |, then

dz
/ ”K(X,y)—K(xa.V,)”L(E,F)dX=qu/ >
lx—y'|>ly—y'| |z|>¢"™! |z|
o 0]
dz _ _ =
=08 3 [ g = CT a0
k=I+1 =

Analogously, (H},) implies (H]).
Now we are ready to state the main theorem.

3.4. THEOREM. Let T be a singular integral operator with kernel
K, which has a bounded extension from L'(K, F), for some r with
g <r<oo. The following hold:

(i) if K satisfies (H,), then T is of weak type (1, 1) and of strong
type (p, p) for p with q <p <r;

(ii) if K satisfies (Hj), then T is of strong type (L*°, BMO)
and of strong type (p, p), for p with r <p < c©.

The proof of the above theorem is obtained like the Euclidean case
(see [3] or [6]). The crucial part uses a decomposition of the Calderon-
Zygmund type (see [9], Chapter 3, results 7.6 and 7.9). Thanks to
the decomposition it follows that 7 is of weak type (1, 1). The
Marcinkiewicz interpolation theorem then shows that 7 is of
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strong type (p,p), 1 < p <r. The proof that T is of strong type
(L°°, BMO) is similar to the Euclidean case. Finally, to conclude
that T is of strong type (p, p) for r < p < oo, we need the Marcin-
kiewicz-Riviere interpolation Theorem 2.6.

3.5. THEOREM. Let (T;),cz be a sequence of singular integral op-
erators uniformly bounded from L'(K, E) into L"(K, F), for some
r with 1 < r < oo. Suppose further that the sequence of associated
kernels (K;)jcz satisfies

() / . sup|[K;(x, ») = K;(x, V). rdx < C,
=y |>ly=y'| J
y#y,
and
(2) / , sup||K;(x, ») = K;(x', Yy, rdy < C,
y=x'|<|x=x"] J
x #x'.

Then, given p and s with 1 < p < oo and 1 < s < oo, there is a
constant A, s depending only on p, s, C and r, such that

(3) {x: Z “TJfJ(x)“SF > ’15} < Al,sl_1[|(ﬁ)1||L‘(1Y(E))
J

and

4 Tl ey < Ap sWUD il ey » 1 <p<oo,

Jorall >0 and f=(f;); € L*(K, I(E)). Moreover, the inequality
(4) can be extended for all f = (f;); € LP(K, I'(E)).

Proof. For each positive integer m, let T,, be the operator from
L¥(K, I*(E)) into L9(K, [*(F)) defined by
() Tul5);=Timejcms  (f))j € LYK, F(E)),

and let K,, be the kernel from K x K\A into L(/S(E), I*(F)) defined
by

(6) Km(x,¥)(e)); = (K;(x, )a;)-mej<m (aj); € F(E).

We observe that the operators 7, are uniformly bounded from
IP(K, E) into LP(K, F) for all p, 1 < p < oco. Now, we fix
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s, 1 < s < oo. The operators T,, are uniformly bounded from
L3(K, I*(E)) into LS(K, [*(F)) and it is clear that

Tu5),0) = [ Knlx, 9)(f500);d
for all (f;); € L®(K, I*(E)) and a.a. x ¢ supp(f;);. Since

1K (X, W) ey 1y < Is'llip WK (x, vlle, Fy »
Jism

then it follows by (1) and (2) that the kernel K, verifies (H;) and
(Hj). Therefore, by Theorem 3.4, for each p with 1 < p < oo, there
is a constant 4, s depending only on p, s, C and r, such that

{ > ITif(x I|F>is}

ljI<m

(7) < Ay ANy

and

(8) NI Nilerw iy < Ap NEFD) il e » l<p<oo,

forall A >0 and f = (fj); € L¥(K, I°(E)). Moreover, the inequality
(8) can be extended for all f = (f)); € LP(K, I°(E)). Then, letting
m — oo on both sides of the inequalities (7) and (8) we obtain (3)
and (4).

3.6. CoOROLLARY. Let T be a singular integral operator with kernel
K satisfying (H,) and (H]). Then, given p and s with 1 < p < 0o
and 1 < s < oo, there is a constant Ay s depending only on p, s, C
and r, such that

(1) { ZIITfJ allye >is} < A AN e

and

2) T illeea ey < Ap, sl il @y » l<p<oo,

forall A>0 and [ =(f;); € L®(K, I'(E)). Moreover, the inequality
(2) can be extended for all f = (f;); € LP(K*(E)).

3.7. REMARK. In our applications we shall consider singular in-
tegral operators of convolution type, that is, with kernels of the type
K(x,y)=K'(x—y) where K’ is locally integrable from K\{0} into
L(E,F).
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4. Applications to maximal functions.

4.1. DEFINITION. Let ¢ € L'(K) and for each ¢ € K*, let ¢,(x) =
|f| '@ (~'x). The maximal operator M? is defined by

M? f(x) =§:gl(¢z*f)(X)l, f € LE(K).

The Euclidean version of the following theorem is due to F. Z6 (see
[6] or [12]).

4.2. THEOREM. Let ¢ € C.(K) such that

(1) / sup|pu(x —¥) — ()| dx < C,  y#0.
|x{>]y| t#0

Then, given p and s with 1 < p < oo and 1 <5 < 00, there is a
constant A, s depending only on p, s, C and |¢||;, such that

(2) {X1 > IMY fi(x)l > is} < Ay AN
J

and

(3) W(M? fi)illr sy < Ap s ()il ey s l1<p<oo,

Jorall >0 and f=(f;); € L®(K, I°). Moreover, the inequality (3)
can be extended for all f = (f;); € L(K, I¥).

Proof. Step 1. Owing to continuity of the function ¢ — (¢; * f)(x),
it is enough to calculate the supremum, in the definition of M?, on
a countable dense subset {7;};cy of K*, that is,

M? f(x) = mjl,pl((m, * f)(x)].

Consider the operators M;, defined by
My f(x)= sup |(p: * f)(x)|.
I1<j<m

We have that M}, f(x) 1 M? f(x) for all x € K. Therefore, obtaining
estimates for M7 f that do not depend on m, we shall be obtaining
also estimates for M? f.

Step 2. For each positive integer m, let T,, be the linear operator
from L®(K) into LO(K, /*) defined by

(4) Tnf = (¢t/ * flicj<m f€eLX(K),
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and let K,, be the kernel (of convolution type) from K into L(C, [*®)
defined by

(5) Km(x)2 = (9, ()D1<j<m»  AEC.

Since ||¢:||; = ||ll; for all ¢ # 0, we have

(6) I TnfllL=q=) = esssup sup |(p, */)(x)

I1<j<m

<esssup sup || flleolloe i = ll@llill Moo
x€K 1<j<m

i.e., the operator T}, is bounded from L*(K) into L*(/*°). On the
other hand, we have

[ 1En@luic,mydx = [ sup o, (x)ldx

1I<j<m
< / l9: (%)l dx = mllgl; < oo,
1<j<m’K

and

Tuf0) = ([ oo e-ns0)dy)
K <Jj<m
= [0 =D0Misjemdy = [ Knlx=0)f()dy.

for all f € L(K) and for a.e. x ¢ suppf. Consequently 7},
i1s a singular integral operator of convolution type with kernel K, .
Moreover, the kernel K, satisfies, for all y # 0,

Y [ Ml = 9) = Kn()laic,) dx
IxI>1yl

=/] sup |g; (x —y) — ¢: (x)|dx

x|<|y| 1sjsm

<[ suplp(x-») - pux)dx < C.
|x|>|y| 1#0
Step 3. The inequalities (6) and (7) show that the operators 7,
and its kernels K, satisfy uniformly the hypothesis of the Corollary
3.6. Therefore, given p and s with 1 < p < oo and 1 <5 < 00,
there is a constant A4, ;, dependingonlyon p, s, C and |¢||;, such
that

(8) < Ay AU

{x: Y N T f5 ()l > /Is}
J
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and

9 W Tnfdiller@a=y < 4o, sl illr ey s 1<p<oo,

forall A >0, me N and f = (fj); € L¥(K, I). Moreover, the
inequality (9) can be extended for all f = (f;); € L”(K, [*). Since

1T S5 = = M fi(x)

then, letting m — oo on both sides of (8) and (9), we obtain (2) and

(3).

From 4.2 we obtain the maximal theorem of Fefferman-Stein (see
[2] or [6]) in the context of the local fields.

4.3. THEOREM. Given p and s with 1 <p <oo and 1 <s < oo,
there is a constant A, s depending only on p and s, such that
{x: ST IMf(x)lf > ,13}
J

(1) < Ay AN

and
(2) WM )il asy < Ap s illraey s l1<p<oo,

forall A>0 and f = (f;); € L®(K, I°). Moreover, the inequality (2)
can be extended for all f = (f;); € L(K, I¥).

Proof. Let ¢ be the characteristic function of the ball B?. If |x| >
ly|, then |t~ !(x —y)| = |t7'x| and hence ¢(t"!(x —y)) = o(t"!x).
Therefore

l9(x —») = o) = 1| ot (x = »)) — 0(t7'x)| = 0
and consequently

(3) / sup |p«(x — ¥) — g.(x)| dx = 0.
[x]>|y| 0

On the other hand, we have

(If1 % po)(x) = / 1/(x =)o) dy
K
= 1! [ £(x =)o y)dy
= ¢! — d
1 /Msmmx »)|dy
= |7t d
Ly



SINGULAR INTEGRAL ON LOCAL FIELDS 171

and hence
(4) M?|fl(x) = jl;g(lfl * 91)(X)

= sup |7 / If)|dy
1#0 ly—x|<lt|

kez

= supg* /ly MOy =M1,
-x|<q

From (3) it follows that the maximal operator M? satisfies the in-
equalities 4.2(2) and 4.2(3). Then, by (4) we obtain the inequalities
(1) and (2) for the Hardy-Littlewood maximal operator.

5. A multiplier theorem on L?(K, /*)-spaces.

5.1. LeMMA. Let g € L*(K) and o > 0. Then, there is a constant
A, depending only on «, such that

M 0 [ llEe)Pdx
<o [ 1gGe+9) - gL dxdy.
KXK

Proof. See [9], page 220.

5.2. LemMA. Let (gj)jez be a sequence of elements of L*(K) and
suppose that there are B >0 and & > 0, such that

+00
W[ Y gty - goPyI 0 dxdy < B
KXK ;
J

=—00

Then, there is a constant A, depending only on &, such that, for all
kez,

(2) / sup |gj(x)|dx < Ang‘ke/z.
|x|>q*

Proof. 1t follows from Holder’s Inequality that

[ suplgix)ldx
[x|>¢" J

1/2 1/2
<[ [ mswlgpax) ([ e dx
K J |x|2q"

1/2 —1N 172
. 1-g7! _
= ( / | (1+2) su;plg,-(x)lzdx) (1 _3) g,
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Now, setting a = 1 + & and applying Lemma 5.1, we obtain

0 / 1|2 sup |2 (x) | dx
K J

+00
<4, / S Igi(x+y) - (P~ dx dy < 4,
KxK ;=

j=—00
and consequently
1— —1y 1/2
[ swlgldx < (4B 2 (125 ) gk
Ixl>¢* J 1—g~¢
= A, Bq~*/%,

5.3. THEOREM. Let (mj)jez € L®(K, [?) and suppose that there
are B> 0 and ¢ > 0, such that, for all j €z,

/ Z Imi(x +y) — mi(x)P|y|"**? dx dy < B>q™%
l<q’ Jixl=¢’ ; =~

Then, for all (9;); € S(K, [§°) and 1 <p,s < oo, we have

(2) N((m;@))illrasy < CN(@)iller ey »

where C is independent of (¢;); .

Proof Step 1. Let ¢, be the characteristic function of the ball
k and m =m;¢r, k € Z. Since (9;); € S(K, I§°) has compact

support we see that ((m )V)j = ((mj@;)V); for k small enough.
Hence, if we wish to show (2), we only need to show that, for all
(pj); €SK, [§°), kez and 1 <p,s < oo, we have

(3) I((m5 )il iy < Cl@N @y
where the constant C is independent of k and (¢;);.

Step 2. Foreach k, j€Z, let T}‘ be the linear operator defined by
(4) Tfp = (mf9)Y = (mf)" x9, 9 € S(K).
Forall k, j€Z and ¢ € S(K) we have

(5) ITfoll2 = l1(mf9)"ll2 = llm} 92
= “mflloo“mlz <N(mj)jll ) @]l
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Therefore (Tjk) jez 1s a sequence of singular integral operators of con-

volution type uniformly bounded from L?(K) into L2(K), with se-
quence of associated kernels ((m%)Y);cz.

/

Step 3. Let mj; = m;' —m}~' for j, [ € z. It follows from (1)

that
+00
(6) / ST imale+y) = mu(x)Ply|"%+ dx dy
yl<q' Jixl=q" ;27

+00
B /lyl<q’ v/lx[—q[ Z |m;(x + ) = m;(x)Py|~*** dx dy
i

=—00

S qu—z‘.‘[.

We have also

+00
(7) /,|> ’/I Z Imji(x +y) — m(x)ly|" ) dx dy
v1>q' Jix

1
|=q j=—o00

+00
5/ ,/ 23 (Imyu(x + 9P+ [my(x)P)ly|~**9 dx dy
vI1zq' Jix|=q

j=—00

2 —iy2 a7 e
S4||(mj)j”Loo(,z)(1—q )°q T—g- (0 =Cig™";

+00
yi=q J|x

|<ql j=—o0
+00
=q‘(2+5)1/ ,/ Y Imi(x+y)Pdxdy
=g JIxI<q' ;-

< Nmp) oy (L =a Va7 a7 = Crg™

+00
®) // Y Imj(x 4+ ) = my(x)Ply| 72 dx dy
|x|=|}"|>qj

=—00

+00
< / / S Im(x+ v)Plyl=?+ dx dy
I !

xjl=lyl>q j=—00

<N m)jll g2y (1 — a7 )2a (g5 /1 - q7¢) = C3g™.



174 SERGIO A. TOZONI

Therefore from (6), (7), (8) and (9) we obtain

+00
(10) [ 3 mue+v) = mue) Pyl dxdy < Cq7e,
KxK ;270
for all / € Z, where the constant C depends only on ||(m;);||, )
B and ¢. Then, it follows by Lemma 5.2 that, for all k € Z,
an [ swplmp¥eoldx= [ sup|imp)~(0)ldx
Ix|>q Ix|2¢" J

J
< 4,Cq+h12,

Since mj;¢_y = mj;, the (m;;)V(x +y) = (m;)¥(x) forall x,yeK
with |y| < q~! (see [9], page 126). Therefore, for all ¢, j, k € Z and
x,y €K with |y| < g', we have

o0

[(m5)Y(x +y) = (m§)V(x) < 30 |(my)" (x + ) = (mp)V(x)].

=—t+1
Hence we obtain by (11) that, forall ¢,k €z,
(12) /I Sl +7) = () (o) dx
x|>q

L
<2 Z / sup|(m;;)" (x)|dx
I=—ry1 7 XI>a"

< ZASC(q—e/Z/l _ q—e/Z) — Cl,

and consequently for all kK € Z, we have

sup / sup |(m*) (x — y) — (m¥)" (x)| dx

y#£0 Jix|>ly| J

= sup sup / sup l(mf)v(x +y)— (mf)v(x)l dx < C'.
1€2 |y|<q' JIx|>q" J
Therefore, the sequences of kernels of convolution type ( (mf)v) jez
satisfy uniformly 3.5(1) and 3.5(2). Consequently we obtain (3),
which proves the theorem.

6. Applications to Besov and Hardy-Sobolev spaces. In this section
we will give some applications of some foregoing results to Besov and
Hardy-Sobolev spaces and to spaces of Bessel potentials.

6.1 Let A/ =B/ —B/*! = {x € K: |x| = ¢/} for j €z. We will
consider the sequence (®;);>o of elements of S(K), where ®; is the
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characteristic function of 4=/ for j > 1, and ®, is the characteristic
function of D.

For each distribution f € §'(K) and j > 0 we have that ®; x f is
a function (see [9], p. 126). We can easily see that the function ®;
satisfies:

(1) ®;+®,=®; and @, +®, =0 fori#j;
(2) ®(x +y) = ®;(x) for |x| > |y|;
(3) D; =

j=0

6.2. DEFINITIONS. Let s€eR and 1 < p < o0. For 1 <r < o0,
the distribution f € §'(K) is in B; (]K) if

1Al 5, = II(@
For 1 < r < oo, the distribution fe S’( ) isin Fj.(K) if

I/l = I1(D; * ) jzollrry < 0.

(L )<OO.

6.3. REMARK. The sequence (®;);>o used in Definition 6.2 and
given as in 6.1 is unique. In fact, if (y;);>0 is a sequence of elements
of S(K) such that sup ; C A~/ for j > 1, suppyp CD and ), ¥, =
1, then y; is the characteristic function of 4=/ for j > 1, and ¥
is the characteristic function of D, thatis, y; = ®; for j > 0.

6.4. REMARK. As in the Euclidean case, there is another way to
define the spaces B;,(K) and Fj,(K) (see [11]). We can say that the
distribution f isin B;,.(K) (F;,(K), respectively) if there is a sequence
(aj)j>0 of elements of S'(K) such that 3} a; converges in S'(K) to
S, suppa; c A~/ for j>1, suppay C D and

I(@;)jzollrrry <00 (l(aj)j>ollrry < o0, respectively).

But this definition is trivial because there is only one sequence (a;); >0
for each f, namely, the sequence (®; * f);>0. In fact,

o0
@+ /)" =0,/ =B, > & = Z @4 =a;,
k=0 k=0
and hence a; =®; « f for j > 0.

If se€R and f € S'(K), the Bessel potential of order s of f is
defined by

(J* )™ = (max{1, |x|})°f.
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For a, B € R, the map f — J%f is a homeomorphism from S’(K)
onto S'(K), (J*)"!=J~® and Jo*Pf = Jo(jA f) for f € S'(K) (see
[91, p. 137).

The next theorem shows that J* is an isometry on F;, and B, .

6.5. THEOREM. Let s,t€R and 1 <p <oo. Then

(1) I f g =W e > fEF,K), 1<r<oo;
@ NSl = Ay fEBLE), 1<r<co.
Proof. We can easily verify that J°®; = ¢*/®; for j > 0. Then,
for j >0, seR and f €S (K) we have
3) JH@j * f) = (J°@)) + [ = ¢ (D * f).
For f e F/,(K) and 1 <r < oo, it follows from (3) that
”JSf“Fp';f = ||(g"{®; * Izl
= “(qtj{q’j * f})jZOHL”(l’)
=1/ llg: -
Now, for f € B,,(K) and 1 <r < oo, it also follows from (3) that
17 Fll = = 1@ 45 * fD)jolly_zr)
= [[(¢”{®; * [})j>0llr 1)
= Iflls:.

Now, we will give a theorem of the Littlewood-Paley type. It is a
variant of Taibleson’s theorem (see [9], pp. 200 and 202), but our
proof makes use of vector singular integral operators.

6.6. THEOREM. For each 1 < p < oo, there are constants A, and
B, , depending only on p, such that, for all f € L?(K) we have
(1) Apll fllp < 1(D@j * f) >0l o2y < Bpll flp-

Proof (Sketch). Let us consider the operator 7' from L¥(K) into
LK, [?) defined by
(2) Tf = (®* f)j>o0,
and S from L®(K, [?) into L°(K) defined by

(3) S(ej)jz0=Y_ @ *a;.
j=0
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We can show that
1Ay = 1512
and
1S(aj)jzoll2 < [l(ej) jzoll 22

Therefore we can conclude that 7" has a bounded extension from
L%(K) into L%(K, /%) and S has a bounded extension from L?(K, /?)
into L2(K).

Let K; and K, be the kernels defined by

4) Ki(x)A = (®j(x)4)>0, x€K, A€C;

5)  Ka(x)(Aj)jzo=D_ @i(x)4;, x€EK, (4j)z0€l’
Jj=0

We have that

K209 2, ) S MK e, 12y = (D (X)) jz0ll2 5

therefore, showing that x — ||(®;(x));>oll2 is locally integrable we
can conclude that K; and K, -are locally integrable. Since

|Ki(x —y) - Kl(x)”L(c,[z) = [|Ka(x = y) - K2(x)||L(12,c) =0

for |x| > |y|, we have that K; and K, satisfy the conditions (H;)
and (H]) of Theorem 3.4. We can easily verify that

Tf(x) = / Ki(x - ) () dy

and
Sa(x) = / K>(x - y)a(y)dy,

forall x €K, fe€ L®(K) and a € L®(K, [?). Then, it follows from
3.4 that T and S are singular integral operators of the strong type
(p,p) for 1 < p < oo, and consequently we have the inequalities
6.6(1).

In Taibleson [9] the space of Bessel potentials L?(K) is defined for
s€R and 1 < p < o0, as the set of all distributions f € S'(K) such
that

Az = 177 fllp < oo

The next theorem is a consequence of Theorem 6.6.
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6.7. THEOREM. If s € R and 1 < p < oo, then the spaces L% (K)
and FJ,(K) are isomorphic.

Proof. If f € S'(K), it follows from 6.6(1) and 6.5(1) that
e = W2 Allp ~ 0T fllgs, = WS 1Ly, -

6.8. To close this section we will show that B;,(K) (F;,(K), re-
spectively) is a retract of [J(L”(K)) (LP(K, l!), respectively). Let us
consider mappings . and & given as follows. The mapping .# is
defined on the elements of S’'(K) by

(1) Ff = (D * f)j>o0-

The mapping % is defined for sequences o = (a;);>0 of elements of
S'(K) by

o0
(2) Pa=)y ®jxaj,
j=0

where the convergence is considered in S’(K). We are not saying that
& is defined on all sequences o = (a;) >0 of elements of S'(K), but
only on those sequences for which the series defining %#a converge
in S'(K). It follows from the property 6.1(1) that #7f = f for all
f € B3(K) U Fj,(K).

6.9. THEOREM. The space Bj (K) is a retract of I;(LP(K)) and
F;,(K) is a retract of LP(K, ), for s€ER and 1<p, r <oo.

Proof. First we note that
I/ lg:, = I iy and (I fll 2 = IZF e ry-

Since &>j(x+y) = &)j(x) for |x| > |y|, it follows that {§>j: j>0}isa
family of scalar multipliers uniformly bounded on LP(K), 1 < p < o0
(see [9], p. 218). Thus, using properties of the functions ®; we obtain
for a = (aj)jZO S S(K, 180) R
”9?’0”3;, = [[(®j * ZLa);>ollr 1

= (®j * @) jzollr )

= [(g¥1|®; * ajlip)j>0llr

< Cll(g™llejllp) jzollr = Cllalyzr)-
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On the other hand, since Cﬁj(x +y)= Cﬁj(x) for |x| > |y|, it follows
from 5.3 that (&)j)jz() is a multiplier on LP(K,["), 1 <p,r < oco.
Consequently, by the properties of the function ®; we have for a =
(a))j>0 € S(K, [§°),

[Zallp: = (@) * Pa) ol
= (D * o)) j>oll o1y
= (@, * {g”e;});0ll )
< Cl@¥ej)jsollrwy = Cllellr o)

Hence, .# is bounded from B;,(K) into L{(L”(K)) and from Fj,(K)
into L(K, [J), and & is bounded from [{(L?(K)) into By (K) and
from LP(K, [J) into Fj;,(K), for s€R and 1 <p,r<oo.

6.10. REMARK. Due to Theorem 6.9 it is possible to obtain inter-
polation theorems for the spaces L{(K), B,,(K) and Fpr'(K) as in
the Euclidean case. For instance, we have (see [1], p. 153) that

(Lg (K), LE (K)o, = By, (K),

where s = (1-0)s9+0; , 0< 0 <1, 5 #5,1<p<oo, 1 <r<oo.
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