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A SHORT PROOF OF ISBELL’S ZIGZAG THEOREM

PETER M. HIGGINS

Isbell’s Zigzag Theorem, which characterizes semigroup domin-
ions (defined below) by means of equations, has several proofs. We
give a short proof of the theorem from first principles.

The original proof Isbell [4] and that of Philip [6] are topological in
flavour. The algebraic proofs of Howie [2] and Storrer [8] are based
on work by Stenstrom [7] on tensor products of monoids. Yet another
proof, using the geometric approach of regular diagrams, is due to
David Jackson [5]. This latter approach also employs HNN extensions
of semigroups to solve the problem. In this note we follow Jackson’s
lead in using what is essentially a HNN extension for our embedding
(instead of the more intractable free product with amalgamation) to
derive a short and direct proof of the Zigzag Theorem.

Following Howie and Isbell [3] we say that a subsemigroup U of
a semigroup S dominates an element d € S if for every semigroup
T and all morphisms ¢: S — T, ¢,: S — T, ¢;|U = ¢|U implies
that d¢; = d¢,. The set of all elements in S dominated by U is
called the dominion of U in S; it is obviously a subsemigroup of
S containing U, and we denote it by Dom(U, S). Dominions are
connected with epimorphisms (pre-cancellable morphisms) by the fact
that a morphism a: S — T is epi iff Dom(Sa, T) =T .

ISBELL’S ZIGZAG THEOREM. Let U be a subsemigroup of S. Then
d € Dom(U, S) if and only if d € U or there exists a sequence of
factorizations of d as follows:

d = upy = X1U1Y1 = X1UY2 = XoU3Y2 = -+ = XpUam—1Ym = XmUom »

where

u,eU, X, yi€S, uy=Xx1uUy, Uy_1¥i=WiYis1,
Xigi = Xip2ip1 (1<i<m—1) and uym_1Yym = topm.

Such equations are known as a zigzag in S over U with value
d, length m, and spine the list ug, 4y, ..., Uy, . For a survey on
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epimorphisms and semigroup amalgams featuring applications of the
Zigzag Theorem see Higgins [1].

We give a new proof of the forward implication in the theorem; the
reverse implication follows by a straightforward manipulation of the
zigzag.

Suppose that d € Dom(U, S)\U . Form a semigroup H by adjoin-
ing a new element ¢ to S subject to the relations > = 1, tu = ut,
tut = u for all u € U. Define the morphisms ¢, ¢,: S — H by
s¢; =s and s¢, = tst (indeed ¢; and ¢, are embeddings). Clearly
#1|U = ¢>|U so that tdt = d, or what is the same, td = dt in H.
We prove that this latter equation implies that d is the value of some
zigzag in S over U.

Since td = dt there is a sequence of transitions of minimal length
I:td — --- — dt where each transition pwq — pw'q (p,w,w',q€
H) is either a t-transition, i.e., involves a relation in which ¢ occurs,
or is a refactorization, i.e., w = w' in S. We claim that no transition
in I involves any of the relations > = 1 or tut = u (u € U).
Suppose to the contrary that I has a transition a: pq — pt’q (p,q €
H). Clearly a is not the final transition of I, so consider the next
transition f: pt’q — . Suppose that the right-hand side of f# has one
of the forms

() pg; (i) p'tPq; (iii) priq'.

In the first case the two transitions cancel, while in cases (ii) and (iii)
a and B can be performed in the opposite order without changing the
net effect. If f does not have one of these forms then either (iv) the
product p has the form p = p’u or p'tu (u € U) and the right side
has the form p’tutq or p'utq or (v) a similar remark applies to ¢g. In
this case the pair of transitions a, S could be replaced by the single
transition p'uq — p'tutq or p'tuq — p'utq (with a similar remark
applying to case (v)). Therefore cases (i), (iv) and (v) contradict our
minimum length assumption, whence it follows that all transitions of
I of the form pgq — pt?q can be taken to appear at the end of I, and
thus there are none.

Next suppose that o has the form pug — ptutq, and once again
consider the following transition #. If p has the form p’v or p'tv
(v € U) then f could have the form p’vtutq — p’tvutq or p'tvtutq —
p'vutq ; but in that case the pair a, B could be replaced by the single
transition p'vuq — p'tvutq or p'tvuq — p'vutq. A similar remark
applies if g has the form vq’ or vtq'. If p has the form p’t then
B could have the form p'ttutq — p’utq; but again it would then
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be possible to shorten I by replacing our pair o, f with the single
transition p’tuq — p'utq; and again a similar remark applies to ¢.
Another possibility for g is ptutq — put’*q or ptutq — pt*uq, but
here again o and S could be replaced by just one transition. The
remaining possibilities for f (f cancels «, or f involves only the
product p or only the product g ) are disposed of as in the previous
paragraph, thus establishing the claim.

Call a ¢-transition of the form putq — ptug [ptuq — putq] a left
[right] transition, so that our sequence I consists entirely of refac-
torizations and left and right transitions with exactly one occurrence
of the symbol ¢ in each word of I. Suppose that ptg is a prod-
uct occurring in 7, and that the next ¢-transition in the sequence is
a left transition. We claim that we may assume that this left tran-
sition occurs immediately, or is preceded by just one refactorization
of the form ptq — p'utq, for it is clear that any refactorization of
p can be performed in one step, while any refactorization of ¢ can
be delayed until after the left transition. Next suppose that I con-
tains two left transitions with no intervening right transition, which
we may assume have the form putq — ptug — p'vtug — p'tvuq
(u, v € U), or simply the form p'vutq — p'vtug — p'tvuqg. In the
latter case the pair of transitions can be replaced by a single left transi-
tion, while the three transitions of the first case can be replaced by two:
putq — p'vutq — p’tvuq. Coupling all this with similar arguments
for right transitions allows us to conclude that I consists of alternate
left and right transitions, separated by single refactorizations; further-
more the first z-transition is right and the final #-transition is right.
The sequence I therefore implies equalities in H of the form:

td = tugy, = upty = X1u ty; = X1tu1y; = X1ty = X(Usty;
= XoUstuy = -+ = X1 Udm—-2Ym = XmUom—1tYm
= XmlUom—1Ym = Xmllym = XmUamt = dt,
forsome m>1, u,eU (1<i<2m) x;,y;€S!, and ug = xu;,
Upi—1Vi = Ui¥iy1 Xill2i = Xip1U2iy1, (1<i<m—1) and
Uom—1Ym = Uam-
In fact x;, y; €S forif x; =1 then in S we have
d =upyr = Xy y1 = X1U2y2 = = UpiYis1 = = XmUom';
and so I could be shortened by beginning with td — tu,;y;, 1, with a

similar remark applying if some y; = 1. Hence d is the value of a
zigzag in S over U, thus completing the proof.
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