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DIAGONAL STATES ON Ch

JOHN S. SPIELBERG

In this paper we investigate certain states on the Cuntz algebra
Gι, and the von Neumann algebras obtained from their GNS repre-
sentations.

Introduction. In this paper we investigate certain states on the Cuntz
algebra Oι, and the von Neumann algebras obtained from their GNS
representations. The problem we begin with is that of finding different
types of factor states on Q which extend the trace on Choi's algebra,
viewed as a subalgebra of Oι - The existence in general of such factor
state extensions was established independently by Longo and Popa
(see [1]).

The construction of specific examples, and classifying them as to
type, has been done by several mathematicians. These examples arise
by composing the expectation of Q onto the CAR algebra with a fac-
tor state on the CAR algebra. Work of Evans and Lance showed that
by starting with the trace on the CAR algebra, a type III 1/2 factor state
extension is obtained (see [1]). In [9], pure state extensions are con-
structed by a combinatorial argument. In [2], it is shown that uncount-
ably many inequivalent pure state extensions are so obtained, and that
they arise from certain pure states on the CAR algebra. Moreover, it is
shown that if the Powers IΠ^ states on the CAR algebra are extended
to O2, they result in factor states of type III^ if λn+ι +λn = 1, some n
in Z+ , or IΠi > if logΛ and log(/l+ 1) are algebraically independent.
In [11], a different collection of product states on the CAR algebra
is shown to give rise to factor state extensions of type IΠ^ for all
0<λ< 1.

The techniques in [2] and [11] rely on the quasi-invariance, under
the shift automorphism of [6], of an appropriate state or weight on
the stabilized CAR algebra. In § 1 of the present paper it is shown
that arbitrary (infinite) Krieger factors can be obtained from factor
state extensions on O2 The technique is the opposite of the above:
namely, we use weights all of whose translates by powers of the shift
are disjoint.
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The remainder of the paper is a more detailed study of the states on
02 which factor through product states on the diagonal of the CAR
algebra. In §2 we use results of [11] to give a characterization of quasi-
equivalence of product states on the CAR algebra somewhat different
from that of [10] and [3]. We use these results in §3 to classify the
corresponding states on Oι up to quasi-equivalence. In §4 we apply
these results to give a purely dynamical proof of the result of [2] on
the existence of pure state extensions. In §5 we briefly indicate how
the results of [11], computing invariants for the factors obtained from
certain diagonal product states on Oι, can be generalized to all such
states.

Finally, we wish to thank Masamichi Takesaki for making the cru-
cial suggestion which led to the results of §1.

Preliminaries. We recall some definitions and results from [11]. For

n > 0, let An = <S>%-n

 M2] > w h e r e MΨ = Mi^) > f ° r all j . Let

in: An -> An+\ be defined by in(x) = e[^n~^ ® x, where for b e M2

we write b^ for the same element viewed as an element of Afj

Let A = \Jn An . For k <l, and b^, b^γ, . . . , bι e M2(C), we write

<S>lj=k ^ j 7 ) f° r ^e element

( k-\ \ ( i

J=k

in An for suitably large n. Let Bn = ®" = _ π Mψ, B = \Jn Bn.
Define α e Aut(A) by letting α ( 0 7 xj ; )) = (g)7 x^\ , for x = (g^jX^

in B, and extending to A by linearity and continuity. Let en = l (~w ).
Then as in [6], we have A xa Z = X ® O2, and eo(A xa Z)e0 = O2.
Note also that Ao is the CAR algebra, and A = X ® ̂ 0 We will use
the notation

for the element ® £ = 0 e, ̂ 7 in ^o By a weight sequence we mean a

sequence {0}y>/0 in [0, 1]. Given {tj}j>jo, define Λ7 e M2(C) for
jezby ° °

diag (ί 7, 1 - tj) , j > JQ ,

Define fn e {An)\ by Mfyxf) = Π;>-rtTr(A^) for 0 ^ ^ in
AnΓ\ B, where Tr is the non-normalized trace on Af2(C). We de-
fine a weight / on A by /(x) = supfn(enxen), x G i + , (The fact
that / is additive on A+ follows from [11], Lemma 1.4.) Then /
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is densely defined and lower semi-continuous. If ίy € (0, 1) for each
j , then / is faithful. Let / be the canonical extension of / to a
weight on A xa Z, and fo = f\(eo(A xa %)eo). Then the restriction of
fo to Choi's algebra within <92 is tracial, and hence is a multiple of
the unique tracial state on Choi's algebra. The functionals on Oι so
constructed all factor through the conditional expectation FQ : Oι —•
AQ of [6]. In fact, as noted in [2], these functionals factor fur-
ther, through the conditional expectation EQ of AQ onto its diagonal
(= span{07x^p e B ΠAQ: Xj = β\\ or 2̂2 for each j}). It is shown
in [2] that any state on O2 which factors through the diagonal of AQ
extends the trace on Choi's algebra. We will make use of this fact.
We remark that it also follows from our results mentioned above, as
the pure states on the diagonal arise from weight sequences for which
tj = 0 or 1 for each j . We will refer to weights on a C* -algebra as
disjoint, quasi-equivalent, or unitarily equivalent, if their GNS repre-
sentations are so related. Given a weight / on a C*-algebra A, we
will let πf denote the representation of A given by the GNS con-
struction applied to / , we will let Hf denote the Hubert space of
this representation, and r\f\ A—> Hf the canonical map of A onto a
dense subspace of Hf. If X is a topological space we will let C(X)
denote the space of continuous complex-valued functions on X. If A
is another topological space, we will let C(X, A) denote the space of
continuous functions from X into A. We will let CC(X9 A) denote
the space of functions in C(X9 A) having compact support. If T is a
closed linear operator on a Hubert space, we will let polar(Γ) denote
the partial isometry in the polar decomposition of T having the same
kernel as T: T = polar(Γ) \T\.

1. Krieger factor states on O2

LEMMA 1.1. Let M be an infinite Krieger factor. Then there is a
state fo on AQ such that πf(Ao)" is isomorphic to M, and such that,
letting f = Tr®^ on A, we have that foak is disjoint from f for
allkφO.

Proof. Choose a sequence of integers 0 = HQ < n\ < n^ < , with
/I*) = 00. Let

h = { n i k ' - k = 0, 1 , 2 , •••} ,

h= {*2*-i : fc=l,2,3, }
72 = N\(/0U/i).
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For j e 11 U h let μ7 be the measure on {1,2} given by

*2, jel2.

By the diagonal of M2 we mean span{eπ ,^22}- This is isomorphic
to the space of continuous functions on the two-point space {1,2},
where we may let en represent the characteristic function of the
clopen set {/}, for / = 1, 2. Let μf be a measure on Πj€l {1, 2}W

such that πμ>oE (® 7 e / M^)" is isomorphic to M ([12]), where we
let measures on a space X also denote functionals on C(X). Let μ
be the measure on ΓT/loO > 2}(^ given by μ = (Yljei u/ ^7) x ^ L e t

f0 = μoEQ. Then π^(^0)" is isomorphic to M, since the portions
of μ over Iχ and /2 yield type I factors, and M is an infinite factor.
Let / = Tr (8)̂/0 Then B is contained in the definition domain of / .
For j e 11 let Xj = (®£l!_; l

(/7)) ®e[{]. Let y e B. Then for all large
enough j , xy commutes with y. We have then, for all large enough
j ,

= f(y*y)f((χj-ι)2eo)=o.

Since f//(2?) is dense in Hf, it follows that π/{Xj) tends σ-strongly
to the identity. Now let k Φ 0. Then /1 + k has only finitely many
elements outside of h . Thus for all large enough j ,

\\πf o α* (Xj) ηf (y)f = \\ηf (y)f f (ak (Xj) e0) = 0.

Thus πfoak(Xj) tends σ-strongly to zero. It follows that πy and
π r ak are disjoint [7, 5.2.4]. D

LEMMA 1.2. Let A be a C*-algebra, let a e Aut(Λ), and let f
be a lower semi-continuous weight on A such that f and foak are
disjoint for k Φ 0. Let f be the canonical extension of f to AxaZ.
Then πf(A xa Z)/; is unitarily equivalent to πf(A)" <g>L(/2(Z)), acting
on Hf®l2(Z).

Proof. Let H = Hf®l2{ΊL) s /2(Z, Hf), let π: A -> L(//) be given
by π(x) = Σ)w E Z^/°«~w(^)8)^ ? and let U = 1 ® C/o > where t/o is the
(rightward) shift on /2(Z). Then (π, t/) is a covariant representation
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of (A, a, Z). We claim first that for x e CC(Z, A) c Axa%> the map
πΛx) »-• Σ r t 7Γ(Λ;(W))Ϊ7Λ is unitarily implemented. To see this we will
need to identify a suitable dense subspace of Hj . Let

Lf= {xeA: f(x*x) < 00} ,

Lj = |JC G ̂ 4 x α Z: f(x*x) < 00} .

Let is: Λl x α Z —• Λ be the canonical conditional expectation, so that
f = fo E. If {άJ/G[0,2π) is the dual action, then E is given by:

For x G ^ x α Z , the elements

belong to CC(Z, 4 ) , and z7 (Λ:) = δj^Xj, where the last equation de-
fines the elements {Xj} in A. The {JC7-} uniquely determine x. By
Lemma 2.2, Chapter 1, of [8],

1 /
x = lim — / ά/ (x) fcΛ (ί) rfί,

where {kn(ή} is any summability kernel. Choosing {kn} tobeFejer's
kernel,

and letting

M*) = i f*άt(x)kn(t)dt,

a short computation yields σΛ(x) E Q(Z, ^4), and

f
I D , \j\>n.

Another short computation yields

0<E((x-σn(x)r(x-σn(x)))
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( ( ϊ Γ T ϊ ) ) ( J j > 1 = 0 , 1 , 2 , . . . .

It follows that x G L ? => %/ G a~J(Lf) for all 7 . From the above and
the lower semi-continuity of / , it follows that

Hence letting

[x e Cc (z,L o = [

it follows that ηf(L0) is dense in /
Now define WQ: η?(Lo) —• H by

Γ

One easily verifies that WQ is isometric, and that

Woπf (x) ηf (y) = Π Γ π (x ( i)) C/M

for x € CC(Z, ^4), y G L o . Thus MPQ extends by continuity to a
unitary operator implementing the desired equivalence.

Now we note that by the disjointness hypothesized for the {πy o
ak: k G Z}, it follows (see [7, 5.3]) that

Hence
(π (Λ) U {C/})/r = πf{A)" ® L (/2 (z)) . D

THEOREM 1.3. For every infinite Krieger factor M, there is a state
p on #2, with np{θ2)n isomorphic to M, and such that p extends
the (unique) tracial state on Choi's algebra. D

Proof. Let M be an infinite Krieger factor. Choose a state fo on
4̂o as in Lemma 1.1. Since M is infinite, 7tf(A)ff is isomorphic

to M , where / is as in the statement of Lemma 1.1. Since / is
lower semi-continuous, and M infinite, Lemma 1.2 implies that
Kf(A xa Z)" is isomorphic to M. Let p = f0 = f\Oιy as in the



DIAGONAL STATES ON O2 367

section on preliminaries. Let P be the projection onto v\j(Oi),
and let Q = n^(eo). Then π/?(O2)

// is unitarily equivalent to
PQπAA xa Z)"QP. The latter is a factor and is infinite since O2
is infinite. Therefore TtpifiH1 is isomorphic to M. As noted in the
section on preliminaries, the restriction of p to Choi's algebra is tra-
cial. Since fo is a state, so is p. Thus /? extends the tracial state on
Choi's algebra. D

2. Equivalence of states on the CAR algebra. We will now con-
sider unitary equivalence and quasi-equivalence of the states of O2
obtained from different weight sequences. First we need to study the
corresponding weights on A . We use the results of [11] to get a slightly
different characterization than that of [10] and [3].

Let {tj}j>jQ and {rj}j>jχ be weight sequences in (0, 1), and let /
and g be the corresponding weights on A. In [11] it was shown that
Σ°°(0 - rj)2tjι(l - tj)~ι < 00 implies the unitary equivalence of Uf
and πg . We wish to reformulate this convergence condition so as to
obtain an equivalence relation.

DEFINITIONS. Let {tj}j>Jo and {r7}./>;, be weight sequences in
(0, 1), and let / and g be the corresponding weights.

1. We write {tj}&{rj}9 or equivalently f&g, if

2. We write {tj} ~ {r7-}, or equivalently / ~ g, if there is a
partition {I\, I2 , h} of N (unrelated to the partition constructed in
Lemma 1.1) such that

(i) Σ/, tj < °° > a n d Σ/, 0 < °°'

(iϋ) Σ/](0 ~ 0) V d ~ 0)"1 < °°' a n d

The fact that ~ is an equivalence relation on the weight sequences
in (0, 1) follows from Theorem 2.4 below. We remark here that ~
is clearly reflexive and symmetric.

LEMMA 2.1. Let {tj} and {r7} be weight sequences in (0, 1) with
{tj}&{rj}. Then {tj} ~ {η}.

Proof. Choose p > 1. Let
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and

/ 3 = N\(/iU/2).

(i):

Hence Σi h < °° Bu t t n e n Σ/ 0 <P~lΣr h <
(ii): Similar to (i).

(iii):

2 ̂  1= Σ (0 - o)2 ̂

LEMMA 2.2. Le/ {ίj} and {rj} be weight sequences in (0, 1) with
{tj} ~ {ry}. Then there is a weight sequence {SJ} in (0,1) such that

Sj} and {rj

Proof. Let

{ min (η , tj) , j e h ,

max (r,, tj) , j eh,

Then

, KSJ - h) ιj' V- 1J) + Z ^ KSJ ~ ιj)2 h l (ι - tj)

" < oo, and
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A h

h

<oo.

THEOREM 2.3. i>£ {tj)j>j0

 and {rj}j>j\ be weight sequences in
(0, 1), and let f and g be the corresponding weights on A. Let
T: η/(x) G η/(B) »-• ηg(x) € Hg. The following are equivalent:

(1) {iy}^{0-},
(2) ηg(B)cD(T*) (and hence T ispreclosed),
(3) ^ ( 5 ) c Z>(Γ*), Γ*Γ has dense range, and polar(Γ) is a

unitary operator (intertwining πf and πg).

Proof. (1) => (3): This implication is contained in the proof of
Lemma 3.8 of [11].

(3) =» (2): Immediate.
(2) => (1): The computation in the proof of Lemma 3.8(i) of [11]

shows that if x is in B, then ηg(x) e D(T*) implies that

exists for ξ e η/(B), and defines a bounded linear function of ξ.
(The elements hn e B are given by

hn= <g)(ΩjAjψ\
j=-n

where {Ω7} are obtained from {ry} in the same way that {Λy} are
obtained from {tj}.) It follows by the Banach-Steinhaus theorem that
{η/(xhn): n EN} is a bounded set. A computation similar to the first
computation in the proof of Lemma 3.3 of [11] shows that if x is in

\\ηf(xhn)\\2 = f(hkx*xhk) fl [i + (tj - rj)2 tj1 (1 - tj

Hence the infinite product ΠΠ H- (ίy — r/ )
2ίj"1(l — ί/)"1] converges.

Equivalently, {tj}^{η}. Π
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THEOREM 2.4. Let {tj}j>Jo and {rj}j>jλ be weight sequences in
(0, 1), and let f and g be the corresponding weights on A, Let
T: η/(x) € f]f{B) *-+ ηg(x) € Hg. The following are equivalent:

(1) Uf and πg are unitarily equivalent,
(2) {tj}~{rj},
(3) T is preclosed,
(4) T is preclosed, and ρolar(T) is a unitary operator (intertwining

πf and πg).

Proof. (2) => (4) : By Lemma 2.2 there is a weight sequence in
(0, 1) with corresponding weight γ such that f&y and g3%y. Let

Sf\ ηf (x) E r\f (B) *-> ηγ (x) , and

Sg: ηg(x)eηg(B)^ηγ(x).

Note that T = S ^ S / . By Theorem 2.3, ηγ(B) c D{S*f)nD(S*g). Let
x, y e B. Then

) , Tηf (y)) = (S*gηγ (x) ,

= (S}ηγ(x),ηf(y)).

This implies that S*ηγ(B) c D(Γ*). By Theorem 2.3, again, S*ηγ(B)
= R(S*Sg) is dense in //g. Thus T is preclosed. Since ~ is symmet-
ric, T~ι is also preclosed. This implies that 7 is one-to-one. Since
7 has dense range, it follows that polar(7) is unitary.

(4) => (3): Immediate.
(3) => (l) : Since 7 has dense range, W = polar(7) is a co-

isometry. From Tπf(x)\ηf(B) = πg(x)T, it follows routinely that
7Γ/| PΓ* WHf is unitarily equivalent to πg . Since πy and πg are fac-
tor representations, %f and π^ are quasi-equivalent. Since / and g
are faithful and of product type, %f and πg are unitarily equivalent.

(1) =» (2): It is shown in [3] that π/ is unitarily equivalent to πg

if and only if

(In [3] it is actually shown that this condition is equivalent to quasi-
equivalence. Since we are working here with faithful product weights*
this is the same as unitary equivalence.)
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By rationalizing the numerator one obtains

\-{ab)χl2-[{\-a){\-b)γl2

= C~ι (a + b -lab -2[ab{\ - a) (I - 6)]1/2) ,

where 1 < C < 2 for 0 < a, b < 1. Rationalizing again, one obtains

\-{abγl2-[{\-a){\-b)]χl2

= C-1 {a - b)2 ((a - b)2 + [(a - a2)1'2 + (b- 1

Let

We have

oo >

Equivalently,

Similarly,

κ2

Clearly,

Finally,

(l-2<;)2

00 > Σ

* 4
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Hence, Σ * ((/ - 1/2)2 < oo, Σκ(η - 1/2)2 < oo, and so

It is now clear from Lemma 2.1 that {ί7-} ~ {r7}. D

REMARKS. The relation ~ makes sense for arbitrary weight se-
quences, where we impose the following additional restriction on ~
in Definition 2: tj = 0 or r}- = 0 => j' φ. 1$. In this generality,
the condition of [3] used in (1) => (2) above is equivalent to quasi-
equivalence of the weights. It is easy to see that our proof of the
equivalence of ~ and the condition of [3] holds for arbitrary weight
sequences.

COROLLARY 2.5. Let {tj} and {ry} be arbitrary weight sequences,
and let f and g be the corresponding weights. The following are
equivalent:

(1) 7tf and πg are quasi-equivalent,
(2) {tj}~{rj}. Π

3. Equivalence of states on O2.

DEFINITION. Let {tj}j>j and {rj}j>j be weight sequences. We
say that {tj} and {ηj have equivalent tails if there is an integer n
such that {tj}j>jo - {rj-n}j>jx+n

LEMMA 3.1. Let {rj}j>jι be a weight sequence. Let g and h be
the weights corresponding to {rj}j>j{ and {^j-n}j>j^nf respectively.
Then h = goan.

Proof. Let / > \j\\ + \n\. For x e (5/)+, and k > I + \n\, a
straightforward calculation shows that

h {ekxek) = gk (eka
n (x) ek).

Since hk and gk are bounded for each k, it follows that for x e

= gk(eka
n(x)ek).

Now let x e A+ . We have for / > \j\ \ + \n\ and k > I + \n\ :

k { ι ι = supgk {eka
n {eιxe{)ek)

k k

= supgk {ekeι_na
n (x) eι_nek)

k

= g(eι_na
n(x)eι_n)<goan(x).
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It follows that h{x) < goan(x). An analogous calculation shows that
goan(x) <h(x). D

REMARKS. Let / = CC(Z, B) c A xa Z. Let / be a weight on
A arising from a weight sequence. Since rjf(B) is dense in Hf, and
η/(B) c Lf, it follows from the proof of Lemma 1.2 that ηj-(J) is
dense in Hj. The map Wf: Hf-> /2(Z, ///) defined by

= ηf o a~k (x (k)) , X G / ,

extends to a unitary operator, and

Wfπf{x)W*f=Σπ{x{k))Uk

k

(see the proof of Lemma 1.2). We will let a also denote the automor-
phism of A xa Z defined by (a(x))(k) = a(x(k)), for x e J.

LEMMA 3.2. 2>/ {/; } ^ ^ {r7} be weight sequences in (0, 1), and
let f and g be the corresponding weights. Let T: ηj-{y) G ηj-{J) ^
ηg(an(y)). Suppose that {tj} and {rj} have equivalent tails. Then T
is preclosed and polar(T) is a unitary operator (intertwining πj- and

)

Proof. Let To: ηf(b) e η/(B) ̂  ηg(an(b)). By Lemma 3.1 and
Theorem 2.4, TQ is preclosed and ρolar(Γ0) is unitary. Let ξ e
CC(Z, D(Tζ)) and let y e J. Then

= Σ(ξ(k),TQηfoa-k(y(k)))
k
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where we let TQ <g> 1 have domain

CC(Z, D(Tξ)) C / 2 (Z, Hg) = Hg

Hence W£Q(Z, Z)(Γ0*)) c D(T*), and

Since polar(7o) is unitary, we know that T$ has dense domain and
dense range. Thus T is preclosed and T is one-to-one. Since T
already has dense range, it follows that polar(Γ) is unitary. D

THEOREM 3.3. Let {tj}j>jQ and {rj}j>jχ be weight sequences in

(0, 1), let f and g be the corresponding weights on A, and let fo

and go be the restrictions of f and g, respectively, to e$(A xa Z)eo.

(1) If {tj} and {r;} have equivalent tails, then fo and go are
quasi-equivalent.

(2) If {tj} and {ry } do not have equivalent tails, then fo and go
are disjoint.

Proof. (1): Let {tj}j>jo - {rj-n}j>jι+n - By symmetry we may as-
sume that n > 0. By altering {r/} up to ~ , we may assume that
7Ί = 0 . By Lemma 3.2 we have that T: ηfiy) e ηj (J) »-> ηg(an(y))
is preclosed, and that polar(T) is unitary. Let T — V\T\ be the polar
decomposition of T , and let D = eo(A x α Z)^ 0 . Note that a(D) c D,
and that H? = ηΛD), and Hgo = r/g(D). It now follows that
Vπ?(x) = π\ (an(x))V\H> , x e°D. Let Vo = V\Hf : H~f -+ H* .
Then ^ is an isometry. We then have

Note that

Hence UgQ{S\)nVo is an isometry. It follows that π^ is unitarily

equivalent to the subrepresentation of π^o obtained by restricting to

range (π^ ((if)") Fo) = ̂  {p (5f)") = π^ (D) ̂  ((5f)").
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We claim that the central support of this subrepresentation is 1. To
see this we will show that

In order to demonstrate this we will need certain elements of
πg (£>)'. Let Gn be the set of words of length n in the elements
Si ° and S2 . Note that

(*) ww* = 1.

For w , z eGn let

Tw,2: ηga (x) € ηSo (D) >-* ηko (xwz*).

Let x = Spo---SPkS*qι---S*%. T h e n x*x = (q0, q0) ® ••• ® (qlt qt).

Then

zz* ® (ήfn+1, qn+ι) ® ® (ft , ft) ,

if / > n and M; = Sqo Sqn,

zz*, if I <n and w = Sqo-- SqSiι+ι • • • Sin,

0, otherwise.

Hence

£o ((tfo. 0o) ® • ® (ft > ft))

I o,

•go(x*x),

go (x*x) ,

where the three lines in the bracket correspond to the three cases de-
fined in the previous bracket. Note that for I <n,

go , <7o) , Qι)) > Π m i n

w=0

def

Thus
ô (zw*x*xwz*) < g0 (zz*) (Cn)~ι g0 (x*x).

Let y also be a product in the elements S\, S2, Sj , ^ . If x Φ y,
a simple calculation shows that go(y*x) = 0. (This relies heavily on
the fact that g factors through the diagonal of AQ.) It now follows
easily that

£0 (zw*x*xwz*) < go (zz*) (Cn)~x go (x*x) ,
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for x in the *-algebra generated by S\ and £2, and hence by conti-
nuity, for all x in D. This implies that Tw > z extends to a bounded
linear operator (also denoted TWiZ) in πgo(D)'.

By (*), we have that

weGn

Since ηgo(l) is cyclic for πgo(D), the claim follows.
This implies that π ? and πgo are quasi-equivalent.

(2): Suppose that {tj} and {η} do not have equivalent tails. Then
/ Φ g o an for all integers n. It follows from Theorem 2.3, and the
fact that these are faithful factor weights on A, that / is disjoint
from g o an for all n . We now need two lemmas.

LEMMA 3.4. Let A be a C*-algebra, let a e Aut(A), let f', g
be lower semi-continuous weights on A xaz, and let f, g be the
canonical extensions of f, g to weights on AxaZ. The following are
equivalent:

(a) / is disjoint from g,
(b) / is disjoint from goan for all integers n.

Proof, (a) =>• (b): If (b) is false then there is an integer n, and a non-
zero operator T in L(Hf> Hg), such that Tπf(x) = πg(an{x))T for
x e A. We will use the notations and results of the proof of Lemma
1.2. Let T =T® [/-" on Hf <g> /2(Z). Then for x e A,

fπf (x) = f

πgoa»~k (x) T® δk_nUQ" = fig (x) f.

kez

It is clear that T commutes with U = 1 <g> UQ . Therefore Γ inter-
twines πy and πg.

rn(b) => (a): If (b) holds, then ftf = φn πfoa~n and π^ = φn πg°o
are disjoint. Then there is a bounded sequence {Xj} in 4̂ such that
ftf(Xj) tends strongly to 1, and ng(Xj) tends strongly to 0. Since



DIAGONAL STATES ON O2 377

(ftf, U) is unitarily equivalent to π* (by Lemma 1.2), and similarly

for g, it follows that τtj{Xj) tends strongly to 1, and Kg(Xj) tends

strongly to 0. Hence / and g are disjoint. D

LEMMA 3.5. Let C be a C*-algebra, let e € C be a projection, and
let D = eCe. Let π and p be representations of C, and let πo and
po be the restrictions of π and p to D, acting on eHπ and eHp,
respectively. If π and p are disjoint, then πo and po are disjoint.

Proof. There is a bounded sequence {Xj} in C such that π(Xj)
tends strongly to 1, and p(xj) tends strongly to 0. Then {exje} is
a bounded sequence in Z>, and πo(exje) tends strongly to 1, and
po(exje) tends strongly to 0. α

End of proof of Theorem 3.3. By Lemma 3.4, / and g are disjoint.
Then by Lemma 3.5, fo and go are disjoint. D

THEOREM 3.6. Let {tj}j>o and {rj}j>o be weight sequences in
[0, 1]. Let f and g be the corresponding weights on A, and let fo
and go be the restrictions of f and gt respectively, to eo(A xa Z)e0.

(1) If {tj} and {rj} have equivalent tails, then fo and go are
quasi-equivalent.

(2) If {tj} and {η} do not have equivalent tails, then fo and go
are disjoint.

Proof. (1) By Corollary 2.5, we may modify {tj} and {rj} up to
equivalence so as to obtain weight sequences in (0 ,1) . In doing so
we modify / and g up to quasi-equivalence. It is easily seen that
/ , g and fo, go are all modified up to quasi-equivalence. Part (1)
now follows from Theorem 3.3(1).

(2) By Corollary 2.5, / and goan are disjoint for all n. Part (2)
now follows from Lemmas 3.4 and 3.5. D

4. Pure states on <92: a theorem of Archbold, Lazar, Tsui, and
Wright. We now apply the results of the previous sections to give an
alternative proof of a result of Archbold, Lazar, Tsui, and Wright ([2],
Proposition 2.10). We will consider weight sequences {tj}j>j with
tj = 0 or 1 for all j . It is clear that two such weight sequences are
equivalent under — if and only if they are eventually equal, and have
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equivalent tails if and only if they have equal tails. (We say that {tj}
and {rj} have equal tails if tj = ry-_n for some n and all sufficiently
large j.) Given such a weight sequence {tj}, with corresponding
weight / , we construct a pure state on A, denoted f, as follows.
Let

en, j<j0.
We construct a positive functional on (J ̂  by means of {Λ̂  } instead
of {Aj}. Then the resulting functional is continuous. We let f
denote its extension to A, which is always a pure state. We remark
that since

and

/ ' \e0 (A xa Z) e0 = fo E\ e0 (A xa Z) eo = f0oFQ9

the functional on O2 obtained from / and f are equal. We re-
mark also that ~ is equivalent to quasi-equivalence for the primed
functional, as in §2.

LEMMA 4.1. Let {tj}j>o and {rj}j>o be weight sequences with tj,

rj — 0 or 1 for all j . Let f, g be the corresponding weights on A,

and let fo, go be the resulting states on O2. Then

(1) fo is pure if and only if {tj} is not eventually repeating.

(2) fo and go are unitarily equivalent if {tj} and {rj} have equal
tails, and are disjoint otherwise.

Proof. It is clear that {(/} ~ {*/-«} for some non-zero n if and only
if {tj} is eventually repeating. Suppose that {tj} is not eventually
repeating. Then Corollary 2.5 implies that f and f oan are disjoint
for n Φ 0. Now by Lemma 1.2 we conclude that / ' is a pure state
of A xa Z, and hence that fo — f\eo(A xa Z)e0 is a pure state of O2 .
The proof of the other implication in (1) will follow from the proof
of (2).

We know by Theorem 3.6 that fo and go are quasi-equivalent or
disjoint, depending on whether {tj} and {rj} have or do not have
equal tails. From what we have already shown it follows that if {tj}
and {rj} are not eventually repeating then f0 and £0 are pure, and
hence quasi-equivalent if and only if unitarily equivalent. (We men-
tion that what we have done so far already proves Theorem 4.2 below.)
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We claim now that if {tj} is eventually repeating, then π*(A x α z ) ' is
non-trivial and abelian. Since π~f{e§) has central cover 1, it follows
that πfi{Oι)' is non-trivial and abelian. It then follows that repeat-
ing weight sequences can never yield pure states on Oχ, proving the
reverse implication in (1). Moreover two repeating weight sequences
with equal tails yield quasi-equivalent states on <92 with multiplicity-
free GNS representations, and hence are unitarily equivalent. Thus
the lemma will follow from the claim.

So assume that {tj} eventually repeats with period n. Then the
weight sequences {tj} and {ί/_Λ} differ in only finitely many places.
It follows that there is a unitary element Wo in A so that

foan=foAd(W0).

An easy calculation shows that the map

ηf> (x) e ηf> {A) h+ ηf (a~
n (x) Wo)

defines a unitary operator W on Hf , and that

%f o a~n = Ad(W) o πf.

Letting π = Σkez πf ° a"k ® ̂ k acting on Hf ® /2(Z), we have that

n-\

^ = Σ Σ A d ( ^ ) o nf o a~J ® δkn+J.
7=0 kez

Letting W = W ®\, U = 1 ® C/o, and M = π^(A xa Z)", and

using Lemma 1.2, it is clear that WUn e Af;. We will finish the
proof by showing that M' is generated as a von Neumann algebra by
WUn . By Lemma 1.2 we may work interchangeably with M or with

Since n is the period of repetition in {tj}, it is easily seen that

π(A)" = lΣτk<g>δk: TkeL(Hf) , Tk+n = WTkW* I .
U J

Let operators on Hf <g> /2(Z) have matrix decompositions along the

basis {δk} of /2(Z). Then T = (Ty) is in π(Λ)" if and only if

0, iφj,

WaTbbW~a, i = j z=an + b, with 0 < b < n.
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A routine calculation now shows that S = (S/;) is in π(A)' if and
only if

Γ 0, iφj (modtf),

λjj an

and only if

iJ I λij W^~J)lni = j (mod n),

where the λy are constants. Additionally, 5 commutes with U if

s = Γ 0, iφj (modn),
/7 \ λ (i — 7) W^~^ln , i = j (mod n),

where A(p) is the (necessarily unique) value of {A >̂;,Λ+̂ : A: G Z]
Thus S eMf if and only if there is a function λ: Z —• C such that

THEOREM 4.2 ([2, Proposition 2.10]). There are uncountably many
inequivalent pure states of Oι which extend the trace on Choi's alge-
bra. D

5. Invariants for diagonal product states on Oχ. We now indicate
how the techniques of [11] can be extended to give information about
the modular spectrum and period of the factors obtained from weight
sequences.

DEFINITION. Let {tj} be a weight sequence. If there is a non-zero
k for which {tj} ~ {£/_&}, we define the period of {tj} to be

per{ίy}=inf{fc>0: {tj} ~ {tj-k}}.

If there is no such non-zero k, we say that the period of {tj} is
infinite.

THEOREM 5.1. Let {tj} be a weight sequence such that Σtj(l-tj) =
oo, and ρer{f/} < oo. Let f be the weight on A corresponding to
{tj}, and fo the state on Oι constructed from f. Let Mf = τtf{A)",
and MQ = n? {(h)". Then MQ is a type III factor, and

S(M0)DS(Mf),

T(M0)cT{Mf).

(S and T are modular spectrum and modular period, respectively.
These invariants were defined in [5]. See also [11].)
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Proof. By the results of §§2 and 3 we may assume that 0 < tj < 1
for all j . Let n = per{ί7}. Then there is a unitary operator W on
Hf such that

7tfθan = Ad ( W) o 7Γy.

Let π: 4 -+ L(Hf ®Cn) be given by

n-\

7=0

where {£/: 0 < ./ < w} is an orthonormal basis for Cn , and let W be
the unitary operator on Hf <8> CΛ whose matrix relative to {δj} is

/ 0 1

1
^ oj

Then π o α = Ad(WΓ) o π . Therefore a extends to an automorphism
of n{A)n. Let φ be the faithful normal semi-finite weight on Mf
defined in [11], (φ{x) = supn(xηf(en), ηf(en)), x e Mf+), and let
Φ = φ® ln . Then Φ is a faithful normal semi-finite weight on π(A)".
Now the proofs in [11] can be adapted in a fairly straightforward
manner to prove the theorem. D
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