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MINIMAL MEASURED LAMINATIONS IN
GEOMETRIC 3-MANIFOLDS

KEN'ICHI OHSHIKA

In this paper we deal with codimension-1 measured laminations
whose leaves are minimal surfaces in geometric 3-manifolds with ei-
ther SL2R or H 2 x £ structures. We call such measured laminations
minimal measured laminations^Our main theorem states that in a
geometric 3-manifold with an SZ^R-structure every class in R con-
taining incompressible measured laminations is represented uniquely
by a minimal measured lamination. This implies that every incom-
pressible lamination in such a 3-manifold is equivalent to a unique
minimal measured lamination, which is vertical with respect to geo-
metric fibering structure.

Introduction. Our subjects in this paper are minimal measured lam-
inations in geometric 3-manifolds i.e. measured laminations whose
leaves are minimal surfaces in geometric 3-manifolds. Our mainj e-
sult is concerning minimal laminations in 3-manifolds with SL2R
or H2 x j£-structures. It is shown in Hass [4] that in a geomet-
ric 3-manifold with an SI^R-structure, every incompressible surface
is isotopic to a minimal incompressible surface and that every in-
compressible minimal surface is a vertical torus. Our main theorem
is a generalization of this theorem by Hass to incompressible mea-
sured laminations. Our main theorem for geometric 3-manifolds with
SX2R-structures is as follows.

THEOREM 3.1. Let M be a ^-manifold with a fixed SL-^Bi-structure
g. Let m bea class of R9* represented by an incompressible measured
lamination in M. Then there exists a unique incompressible minimal
measured lamination L in (M9 g) which represents m. Moreover L
is vertical with respect to geometric fibration of (M, g).

In the case of geometric 3-manifolds with H2 x Zs-structures, we
need an additional assumption as follows.

THEOREM 3.2. Let M be a Seifert fibered manifold with a fixed
H2 x E-structure g. Let m be a class of R^ represented by an
incompressible measured lamination such that m(h) = 0 where h
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denotes the class of regular fibers. Then there exists a unique incom-
pressible minimal measured lamination L in (M, g) which repre-
sents m. Moreover L is vertical with respect to geometric fibration of

We obtain the following corollary from the theorem above.

COROLLARY 3.3. Let (M9 g) be as in Theorem 3.1. Then every
incompressible measured lamination is equivalent to a unique minimal
measured lamination. Moreover every minimal measured lamination
is a vertical saturated set over some geodesic measured lamination on
the base 2-orbifold O.

1. Preliminaries, Throughout this paper we deal with closed smooth
3-manifolds. By a word lamination we always mean codimension-1
lamination. A lamination L is a closed subset of a manifold M sat-
isfying the following condition. There exists a local chart {I/,-} where
Ui = VjXl for some open subset F/ of R 2 , such that LnUi = V(XX
for some closed subset I of/, and such that for £// and Uj , the co-
ordinate exchange map φtj can be factored to a coordinate exchange
map between Vt and Vj and that of / . For details of the definition of
laminations in general see Morgan-Shalen [5]. A measured lamination
is a lamination equipped with an invariant transverse measure.

A branched surface is a C1-surface with one-dimensional branch-
ing singularities which may intersect mutually transversely at triple
points. A fibered neighbourhood N{SB) of a branched surface SB is
a neighbourhood of SB fibered by intervals. A branched surface SB
is said to be incompressible when the following three conditions are
satisfied.

(i) The horizontal boundary of the fibered neighbourhood dfίN{SB)
o

is incompressible in M - N{β).
(ii) There are no disks of contact.

(iii) There are no monogons.
See Floyd-Oertel [3] for details.
A measured lamination L is said to be carried by a branched sur-

face SB when L can be isotoped so that L is contained in N(SB)
transversely to all fibers of N{SB). A measured lamination is said to
be incompressible when it is carried by an incompressible branched
surface.

Let (M, g) be a manifold with a Riemannian metric g. A lami-
nation L is said to be minimal (with respect to g) when all its leaves
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are minimal surface (with respect to g). We will deal with minimal
lamination in 3-manifolds with SL2R or H2 x ^-structures.

Throughout this paper the symbol 5? denotes the set of free ho-
motopy classes of loops in M. The symbol R5* denotes the set of
all functions from S? to the set of real numbers R. A measured
lamination (L, μ) corresponds to an element [L, μ] of R5* by the
equation [L, μ](s) = inΐσes μ(σ) for s € 5? where the left hand of
the equation denotes the ^-coordinate of [L, μ].

Two measured laminations L\ and L2 are said to be equivalent if
they are carried by a branched surface with the same weights. This
implies that the two measured laminations are isotopic except for their
compact leaves.

The following lemma is often used in the proof of our main theo-
rem.

LEMMA 1.1. Let (L, μ) be a measured lamination in a closed 3-
manifold M, none of whose components are closed surfaces. Then no
leaves of L are isolated in L. Moreover for any ε > 0 there exists δ
such that for any interval I c M whose length is less than δ, J7 μ < ε.

Proof. Let / be an isolated leaf of L. As / is contained in the
support of μ, / has an atomic measure. As M is closed this is
possible only when / is a closed surface.

As (L, μ) does not have leaves with atomic measures the latter part
of the lemma easily follows from compactness of M. D

2. Incompressible branched surfaces in geometric 3-manifolds. In

this section we characterize incompressible branched surfaces in
Seifert fibered manifolds with SL2R or H2 x ^-structures.

PROPOSITION 2.1. Let L be an incompressible measured lamination
in a Seifert fibered manifold M with SL^YO-structure. Then L is car-
ried by a vertical branched surface over a train track on the base orbifold
O.

Proof of Proposition 2.1. By assumption L is carried by an incom-
pressible branched surface 3B. By choosing an integral weight system
w on 3S, the weighted branched surface {β, w) carries a union of
incompressible surfaces S\, ... , Sn. Such surfaces must be isotopic
to vertical incompressible tori or vertical Klein bottles over simple
closed curves on O or vertical Klein bottles containing two singular
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fibers. Moving the branched surface by isotopy we assume that the
surfaces S\, . . . , Sn are vertical. If we choose w vanishing on no
sectors, the branched surface 38 can be constructed from (J/Li 5/ by
identifying some subsurfaces of them. For i\φ j , let Pij be the sub-
surface of Si which is identified with Pjj in Sj to make the branched
surface &. When i = j , let P} t, Pf ( be subsurfaces which are iden-
tified. (They may have common components.) We will show that we
can retake 38 and {S/} so that Ptj is a vertical annulus or Mόbius
band for each i, j preserving the condition that 38 carries the given
measured lamination L and that 38 is incompressible. Let N{38) be
a fibered neighbourhood of 38. We can assume the surfaces {5/} are
embedded in N(3B) disjointly transversely to the fibers. Let H^jy
be a cobordism in N{3S) between Pij and Pjj (or Pf . and Pfj)
which is homeomorphic to an /-bundle over a surface or the quotient
of a product bundle by an involution on the base surface x{l} in
the case when Pjj is a double covering of Pjj, and let Π ^ J J be
the surface in //{/,,} corresponding to a lift of base surface of the
/-bundle. Then N{3S) is decomposed as \JiN(si) uUi<j-^(n{i,7})
so that they intersect each other only at their boundaries.

Note that if a component P of P} t is identified with itself, P
must doubly cover a surface Pf. As P is equal to the boundary of
an /-bundle over P', P1 must be non-orientable. If an orientation
reversing curve in P1 were inessential in M, there would be an one-
sided projective plane embedded in M, which is impossible.

Now assume that there is some Pij (i Φ j) such that the image of
π\(Pij) in nγ{Si) is trivial. Then Pij is planar, and except one com-
ponent a*0 of dPij, components a[, . . . , a}n of dPij bound disks
Z ) | , . . . , Z ) j in Si. The same holds for Pjj. We denote the compo-
nent of dPjj corresponding to aι

k by aj

k and the disk bounded by
aJ

k in Sj by DJ

k. The two simple closed curves aι

k and α£ bound
an annulus A^ mutually disjointly. As M is irreducible the sphere
D\ uAkUDJ

k bounds a 3-cell Bk in M. Then as H{iJ} U[Jl=ιBk

is also a 3-cell we can isotope L in M through H^jy UBk so that
L n Π{/j } = 0 and L is still contained in N{3B) transversely to
fibers (Figure 2-A). Then we deform B by removing H^jy from
N{3B). It is obvious that the branched surface constructed above is
still incompressible and carries L.

In the following, either Pij is homeomorphic to Pjj or one doubly
covers the other. As the latter case can be treated by the same way as
the former case, for simplicity we only deal with the former case.
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FIGURE 2-A

Next, suppose that there is some Pjj such that some of the bound-
ary components are inessential and the image of π\(Pij) in π\(Si)
is non-trivial. As before inessential components a\, . . . , aι

n and
a\, . . . , aJ

n bound disks D\, ... , Dι

n on 5/ and £>{,.. ., DJ

n on Sj
respectively. We can number the oJk 's so that aι

k U oJk bounds an
annulus A^ and the sphere Dι

k U A^ U DJ

k bounds a 3-cell B^ . Then
we construct a new N{β) by letting it be equal to N{β) U U^ B^ .
Then it is obvious that the new branched surface 3§ still carries L
and is incompressible. Moreover by this method we can make every
component of dPtj essential for the new branched surface 3S.

Next, suppose that every component of Pij is essential for each
i, j . Then each component of P[j is an annulus or Mόbius band in
the case when 5/ is a Klein bottle. Assume moreover that a compo-
nent α, j of dPij is not homotopic to a regular fiber of M. Then as
both π\(Si) and τt\(Sj) contain the homotopy classes represented by
OLij and a regular fiber, Si and Sj are isotopic (or Sj doubly covers
S{). Let Tij be the cobordism in M between Si and Sj. Then
we let a new iV(^) be equal to N{βί). The new 3S is obviously
incompressible and carries L. Doing this for all the Pij% we can
assume that every component of Pij is a vertical annulus for each
i, 7 if iφj.
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In the case when dPij is empty, either Sj or Sj is unnecessary to
make SB so we can remove one of them.

Finally we consider the case when / = j . We again assume that
Si is a torus for simplicity (the case when Si is a Klein bottle is
quite similar). Let A be a component of P} z which is identified with
B c Pf i different from A. By the same argument as the case when
i Φ j , we can assume that A is an annulus. Let C\ and C2 be the
closures of two components of S/ — (A U B). Then connecting two
boundary components of Q (/ = 1, 2) in H^jy we can make two
tori T\ and Tι. If one of them is compressible, 3S either contains
monogon or carries a compressible surface which is impossible. Then
the homology class of 5/ must be the sum of two classes represented by
the incompressible tori, which is possible only when A is homotopic
to a vertical annulus.

Next assume that a component A of P] l is identified with itself.
This can be possible only when n\{A) contains the homotopy class of
a regular fiber as we have seen before. If neither A is an annulus nor
dA = 0 , dA contains inessential components and we can deform
3S as before and make A an annulus or the whole of 5/. The case
when A = Si happens only when 5/ is a double covering of a vertical
Klein bottle Kf. Then we replace Si by Ki. Anyway Pij is made
vertical preserving the condition that 3S is incompressible and carries
L. Then 3S is also isotopic to a vertical branched surface over a train
track on O possibly having complementary regions which are annuli,
Mόbius bands, or digons. It is easy to remove these complementary
regions by identifying the branches bounding them with their axes.
(In the case of digons we call the segments inside of them connecting
their angles "axes".) D

By the same argument we can prove the following.

PROPOSITION 2.2. Let L be an incompressible measured lamination
in a Seifert fibered manifold M with H2 x E -structure such that for a
regular fiber h, i{L, h) = 0. Then L is carried by a vertical branched
surface over a train track on the base orbifold O.

The following corollary easily follows the propositions above.

COROLLARY 2.3. Let L\, L2 be incompressible measured lamina-
tions in M as in Proposition 2.1 or 2.2. Suppose that [L\] = [Li] in
R^. Then L\ and L2 are equivalent.
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3. Minimal measured laminations in 3-manifolds with ΛT^R-struc-
tures. In this section we prove our main theorem.

THEOREM 3.1. Let M be a 3-manifold with a fixed SL2R-structure
g. Let m bea class of R^ represented by an incompressible measured
lamination in M. Then there exists a unique incompressible minimal
measured lamination L in (AT, g) which represents m. Moreover L
is vertical with respect to geometric fibration of (M, g).

Proof of Theorem 3.1. In the following, we mean "vertical with re-
spect to the geometric fibration" by the word "vertical" for surfaces or
laminations. First we prove the existence of a minimal lamination L
representing m. As m is represented by some incompressible mea-
sured lamination Λ, there exists a weighted incompressible branched
surface {β, ώ) carrying Λ. As is shown in Proposition 2.1, 3S can
be assumed to be a vertical branched surface. Hence L is equivalent
to a measured lamination carried by (β, ω) which is a vertical mea-
sured lamination L over a measured lamination on O. Obviously
the measured lamination L is minimal. Hence m is represented by
the minimal measured lamination L.

Next we will prove the uniqueness of L. Let L be the vertical
minimal measured lamination constructed above, and let L* be an-
other incompressible minimal measured lamination representing m.
We will prove that L and L* are equal.

Since compact incompressible minimal surfaces in M are vertical,
as is shown in Hass [4], isolated leaves of L* are vertical. Let L' be
the complement in L* of the set of all isolated leaves of L*. We
denote the transverse measures of L, L*, L' by μ, μ*, μf respec-
tively. We will prove that Lf is also vertical in the following. For that,
we will prove that LnLf = 0 . Let L and IJ^ be the lifts of L and L'
respectively to the universal cover M = SL2R. Let q: M —• M be
the covering projection. Let h be the element of τt\(M) represented
by a regular fiber of M.

Our first step is to prove that vertical tori approximating L inter-
sects L' only by simple closed curves homotopic to the regular fiber
of M. Let S be a vertical torus and let S be q~x{S). Suppose
S n V Φ 0 . Let A be a component of S intersecting L1. We will
analyze the type of the intersection λnL'. We often use the following
three facts. The first is that λΓ\Lr is invariant by a covering transla-
tion corresponding to π\(S). The second is the maximal principle of
minimal surfaces that λ can be tangent to Lr only in the form of the
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multiple saddle, the form z = 0 and z = 9t(x + iy)n . The third is
that each component of λ Π L' is a properly embedded graph because
V is carried by a branched surface.

First we see that there are no closed curves in λ n L'. If there were,
we could find an innermost disk D in λ bounded by a simple closed
curve c c λΓ\Lf. Then the simple closed curve c would bound a disk
Dr also jn^a component λ' of Ϊ!, and the 2-sphere Z)uD' bounds a 3-
cellin SL2R. Hence d(λ9 D1) is bounded. Let z be a point of intD'
where the distance function from D' to λ attains the maximum. Then
by translating λr by an isometry ξ along the perpendicular from z to
λ we could make ζλ' tangent to λ from one side, which contradicts
the maximal principle of minimal surfaces.

The plane λ has a 2-dimensional Euclidean structure induced from
the geometric structure g in M. We choose a coordinate system so
that the y-axis is a lift of a geometric fiber (i.e. y-axis is vertical).

We classify embeddings of R into λ n V into the following four
types. Let / : R —• λ Π L! be an embedding. We assume that the
parameter is equal to the length parameter in λ.

1. The x-coordinate of \f(t)\ is bounded as t -+ ±00.
2. The x-coordinate of \f(t)\ is bounded as either t —• —00 or

t -» 00 and goes to infinity as t goes to infinity with the other sign.
3. The x-coordinate of f(t) goes to infinity with the same sign

when t —> -oc and when t —• 00.
4. The x-coordinates of f{t) go to infinity with different signs as

t —> —00 a n d t —> 0 0 .

We will show that there can only exist an embedding of type (1)
above. Moreover if an embedding of type (1) does exist, it must be
Λ-invariant. Before proving these, we note the following fact. As M
is compact, there exists a constant η such that for any point x in
M there exists a flow-box for L () centered at x whose height with
respect to g is greater than η everywhere. Let v be a leaf of l / ) .
Then by lifting the flow-boxes above and taking a subset we can con-
struct an ^/-neighbourhood Nv of v which has an /-bundle structure
in the vertical direction of flow boxes, whose fibers are geodesic arcs
orthogonal to v with lengths equal to η with respect to g such that
each leaf in the neighbourhood is transverse to the fibers. We call this
neighbourhood the ^-neighbourhood Nv from now on.

(1) (The case when there exists an embedding / of the type (1).)
We assume that f(t) —» 00 as / —> ±00. First we will show that /(R)
must be invariant by the covering translation h.
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Assume that there exists an embedding / : R —• λ n LI of type (1)
which is not invariant by the covering translation h. Let ft'•: R —• λ n
L' be the composition of A' and / . Let Λy be the //-neighbourhood
of a component of λ Π Z' containing / ( R ) . The images yj (R) 's may
be contained in the same component of λ Π L as / ( R ) . But by the
assumption for sufficiently small or large T, the fi{{t \ t < Γ})'s
(ι = 0, ± 1 , ± 2 , . . .) or the fi({t \ t > T})'& are disjoint. We can
assume the former holds since the argument is completely the same
in the latter case as in the former case. The images /(R) and yj (R)
may intersect transversely. But by changing the track at these double
points, we can assume that /(R) does not intersect transversely the

Then if y-coordinates of f(t) go to infinity with different signs as
t —• —oo and t —> oo, the situation of |J -F}(R) is as depicted in Figure
3.A. Then let /)/ be the space between y)(R) and y)+i(R). If the y
coordinates of f(t) go to infinity with the same sign, let E\ be the
one of the open regions in λ bounded by yj (R) whose x-coordinate
is bounded. Then there are two possibilities. The one is the case
when -- D E-ι D Eo D Eι D -- (Figure 3.B-(a)). In this case
let Di be Eι - EiΛ.\. The other is the case when E\ 's are mutually
disjoint (Figure 3.B-(b)). In this case take a line {x \ x = K} for
sufficiently large K so that it intersects all of the fi(R) % and let Dt

be a component of {x \ x > AΓj-IJ^^R) between /(R) and fi+\(R)
containing an end.

FIGURE 3-A
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( a )

FIGURE 3-B

We will use the following claims later.

( b )

Claim 1. For any positive real number ε, there does not exist a
sequence of embedded arcs {a(Si) (0 < Si < εz )} in λπLf (where 57
is the length parameter in λ) with a bounded sequence {ε, } such that
8j > ε and d(a(0), a/(ez)) < δi where <ϊ/ —• 0 as / —> oo.

Proof. Suppose that such a sequence exists. Then there exists a
sequence {/?/} of translates of the α z ' s by elements of πi(*S) which
stays in a compact subset of λ because λ/π\(S) is compact. Then βt

has a subsequence converging to a continuous map β: [0, δ] —» A Π1/
with <5 > ε and β{Q) ~ β{δ). The image of /? cannot contain a closed
curve as was shown before. Hence the image of β must be a tree. As
β(Q) = /?(£) ? in a small neighbourhood of /?, β must turn to nearly
the opposite direction at least once for large /. Let v1 be a leaf of Lf

containing the image of β . Let N^ be the ^/-neighbourhoods of v1.
Then as the image of βι is contained in λ Π Nv> ? such a situation is
possible only when λ is tangent to L! from one side at the image of
β , which contradicts the maximal principle of minimal surfaces. D

We define a function P from /±i(R) to the set of straight arcs in
λ as follows. For x e f±\(R), the arc P{x) is a perpendicular from
x to /(R). We choose a perpendicular P(x) so that the function
P satisfies the following condition. For x ψ y, two segments P(x)
and P{y) do not intersect transversely. The length of P{x) is smaller
than the horizontal distance from x to /(R) in the same direction as
P{x). Let to be a real number where P°f±\ is not continuous. Then
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we require that Pof±x is left continuous at to and \imt^t+Q Po f±x{t)
also exists. Let P' o /±i(ί0) denote the right limit. Then we require
that P'(XQ) and P(xo) have the same length and lie in the same side of
/(R) where XQ = f±\(to), and every half line centered at Xo between
P(xo) and P'(xo) intersects / ( R ) . Such a function P is easily con-
structed by starting from the function of shortest perpendiculars and
changing it into intervals bounded by points of discontinuity which
are not of types we required by choosing perpendiculars to the oppo-
site side. For X G / ± I ( R ) , let H(x) be the length of P(x). Then the
following claim holds.

Claim 2. For any positive real number ε, there exists a constant K
such that H(f±ι(ή) < ε if t > K.

Proof. We only consider f\ because the proof for /_! is completely
the same.

First we see that there does not exist a constant ε such that for
some K, H{f\{t)) > ε if t > K. Suppose that there were such
ε. Then for each / there would exist a constant Kt such that the
horizontal distance between fi+\{t) and //(R) in one direction would
be greater than ε for t > K[ by the assumption on P{x). Then the
horizontal distance between fi(t) and /(R) would be greater than
iε for t > Kiy which would contradict the assumption that the x-
coordinate of \Jifi(H) is bounded.

Next we see that for any positive number ε, there exists a constant
K such that for any interval [Γ, T + K] there exists te[T, T + K]
for which H(f\(t)) < e. Suppose that there were not such a constant
K. Then there would exist ε, and for any « G N , there would exist
intervals [Tn ,Tn + n] such that H(f(ή) > ε if t e [Tn, Tn + n].
Let x( ) and y( ) denote the x and y-coordinate respectively. If
(maxte[Tnίτn+n]yU(t))-minte[TniTΛn]y(f(t))) does not go to oo as
n —• oo, some translates of f[Tn , Tn + n] by some powers of h con-
verge to a non-proper map to λ uniformly on a compact set because
x(f(t)) is bounded, which is a contradiction. Hence we could obtain
a sequence of intervals {[sn, tn]} such that y(f(tn))—y(f(sn)) = n\h\
and H(f(t)) > ε for t G [sn, tn] where \h\ denotes the translation
length of h. Then the vertical distance between fn(sn) and f{tn)
would be greater than nε, which is a contradiction.

Now if our claim does not hold, there must exist some ε, K and
intervals // = [s?, sj] such that \s} -s?\ <K, H(fι(sj)) = ε/2, and
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maxxeIiH(fι(X)) > ε. It is obvious that \sj - sf\ > ε. For ε/2 let

J^1 be an arc consisting of points on P(f(x)) at distance ε/2 from
/(R) for x G /,- and circular arcs from P(f(xo)) to Pr(f(xo)) for all
points Xo in /,- where P o f is not continuous. (It is easy to see that
such a set becomes an embedded arc.) Then by Claim 1 there exists
a constant δ such that fjε/2 ds > δ. For v (ε/2 < 3ε/4), let I\ be
the longest subarc of /,- such that H(f(x)) > v for every x e / f .
The length of 1\ is at least 2{ε -u). We define JV for If by the

same way as we define jf1. Then the JV 's are disjoint for fixed /,
and fr ds > δ. Let δ1 be min{δ, ε/4} , and let JV be a subarc
of JV with the length <5' containing the initial endpoint of JV . Let
Si be their union Ue/2<ι/<3e/4 ̂ Γ Then Area(S/) > ε<5'/4. We can
assume that the 5/ 's are disjoint by properness of f\. If 5/ does not
intersect /)(R) for 7 > 2 then 5/ is contained in \Jj<kDk. Therefore
ιS, is disjoint from hk(Sι>) for each /' and k > j . If S/ intersects
fj(R), Sj is disjoint from h^S^) for every /' because hJ'(Sj') is
apart from //(R) with distance at least ε/2 and diam(5f/) < β/2.
Thus as infinitely many hj(Sι) 's are contained in a compact set, it is
a contradiction. D

In the case of Fig. 3-B-(b), let Ff: R+ -> A be a map whose image
is the component of D/_i nyj(R) containing the end, and let Fj~ be
a map whose image is the component of Dt n .//(R) containing the
end. Then by applying the same technique as Claim 2 we can prove
that for each ε there exists K such that d(F~(ή, i^+(R+)) < ε and
^ ^ ( O ^ Γ ί R + ^ ^ β for * > * .

As /(R) is not an isolated leaf, there is a side of /(R) such that for
each perpendicular p(t) at f(t) to that side, /p(r) μ > 0. By Claim 2
and the remark above, there exists a side of /(R) or J F + ( R + ) from
which either /i(R) or /-ι(R) or F~(R+) approaches to /(R) or
F+(R+) closer and closer. Assume that /ι(R) approaches to /(R).
(Other cases are completely the same.) Let v be the leaf of L which
contains /(R). Then for some A:, the image fx ([K, 00)) is contained
in an ^-neighbourhood Nv of v. Suppose that f\([K, 00)) is con-
tained in a leaf uf in Nv different from v . Then along f\{[K, 00)),
v1 approaches to v closer and closer. Let ht be the interval between
f\{t) and v (on the side of /(R)) in the fiber containing /^ί) of the
/-bundle structure of JVi/. Then the leaves intersecting hΪQ (to > K)
remain to intersect ht for t > to because they are transverse to all
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fibers of the /-bundle structure as is seen in the remark before we start
the case (1). Therefore μ(ht) (more precisely μ(q(ht))) is constant as
t -> oo, and μ(ht) > 0 because v is not isolated on this side. As the
length of ht with respect to g goes to zero as t -» oo, this contradicts
Lemma 1.1.

Next suppose that f\([K, oo)) is contained in v . We consider two
cases in the following. Let Bt be a flow box constituting Nu which
contains f\(t) and intersects /(R) for sufficiently large t. The first
case is when f\(t) is on a component of leaves different from that
containing /(R) n Bt for every sufficiently large t, and the second
case is when there is a sequence {(,-} going to oo such that fι(tj) is
on the same component of leaves in Bt as /(R) Γ\Bt.. In the first
case, we can consider the family of arcs ht as the paragraph before
and it implies the same contradiction. In the second case, the distance
between fχ(t) and /(R) on v also goes to zero as / —• oo. Consider
the limit of the image of v by q along the region in v bounded
by /ι(R) and /(R) towards +00 direction. Then as the distance
between f\(tj) and /(R) goes to zero on both λ and v, the limit
leaf must be tangent to q(λ). It cannot be tangent to q(λ) in the form
of multiple saddle because the distance from f\(t) to /(R) goes to
zero. Hence the limit leaf is tangent to q(λ) from one side. As L' is
closed, this leaf is contained in ΊJ, hence is minimal surface. This is
a contradiction.

At last we have proved that every embedding of type (1) must be
A-invariant.

(2) Let / : R -* λ Π L' be an embedding of type (2). Let k be
an element of π\(S) such that (h,k) = π\(S), and such that k
translates λ to positive direction with respect to the x-coordinate.
Then for large n, both /(R) and h o /(R) intersect h~n o k o /(R)
and h~n~ι o k o / (R), which implies there exists a closed curve in
A n I ' , a contradiction.

(3) Let / be an embedding of type (3). Suppose that /(R) and
Λo/(R) intersect. Then there exists an /^-invariant embedding g from
R into I X - o c ^ °/( R ) of type (1). Then for some k e π{(S) - (A),
kog(R) intersects each hιof(R) transversely and they make a closed
curve in λ Π L' together, which is a contradiction. Hence we can
assume that /(R) n h o /(R) = 0 . Moreover we can assume that for
every γ e π\(S), γ o f(R) does not intersect /(R) transversely by
changing the track of /(R) at crossing point of /(R) Πyo /(R) is
necessary.
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Let E be one of the regions in λ bounded by /(R) which lies on
the right side of /(R) and only contains an end with x —> oc. (We
call this side the inside of /(R).) Then for each γ e π\(S), one of
γ(E) nE = 0, γ(E) c E, γ(E) D E holds.

First assume that there exists a non-trivial element k eπγ(S) such
that k(E) c E. Then there is a sequence of inclusions D k~ι(E) D
E D k(E) D k2(E) D . As vertical diameter of US-oo ̂  ° / ( R )
is bounded by \h\, the same argument as in the case of (1) can be
applied, and we can see that for every e there exists K such that
d(f(t), k±ιf(R)) < ε if t > K. As /(R) is non-isolated from at
least one side, the argument of (1) implies a contradiction.

Next assume that for each γ e πχ(S) - {l}9 γ{E) Γ\E = 0 . We
assume moreover that there exists a leaf of λΓ\Lf near /(R) which
is of type (3) and not isolated from the inside. As we have already
excluded the cases (1) and (2), if such a leaf does not exist, almost all
leaves near /(R) are of type (4). This case will be dealt with in (4).

By retaking / , we can assume that /(R) is not isolated from the
inside. Let W{t) be length(2s n{x = t}). Then by the same argument
as in (1), W{t) —• 0 as t —> oo. But as /(R) is not isolated from
inside, the same argument as (1) implies that μ(En{x = t}) does not
go to 0 as t —• oc, which is a contradiction as in (1).

Thus such an embedding / cannot exist.
(4) Suppose that there exists an embedding / of type (4). We have

already excluded the cases when there exists an embedding of type
(1), (2), (3) except when there exists an embedding of type (3) such
that all leaves near it are of type (4). Hence we can assume that there
exists a neighbourhood of /(R) containing a non-empty set of leaves
of type (4). Let n(x) be a short vertical line centered at x. Then
for each t e R, μ(n(f(ή)) > 0 because /(R) is not isolated. On the
other hand, μ[h] = 0. Let h be a lift of a regular fiber on λ. Then
for almost every leaf / which intersects λ near /(R), the intersection
of h and / is inessential. Hence each leaf / intersects λ near /(R)
by m\ and again by mi where / passes λ to the opposite direction,
and both m\ and rri2 are of type (4). For almost every leaf /, we
can assume that / does not intersect the strip between m\ and mi
because almost all leaves of λ n L are of type (4). Then for almost
every /, a union of parts of λ and / between m\ and mi bounds a
region homeomorphic to D2 x R. Hence we can choose such a region
which is innermost. We use the notation /, m\, rri2 for the ones
whose bounding region is innermost. Then for the tie T between ni\
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and mi, int(Γ)nZ = 0 . Let τ be the tie on / between πiχ and mi.
We will prove that the surfaces q(T) and q{τ) are homeomorphic to
the annulus. It is easy to see that if q(T) is an annulus, q(τ) is also an
annulus. Therefore we only need to show that q{T) is an annulus. It
is also easy to see that either q \ T is injective or q(T) is an annulus.
Let v(t) be the vertical width of T at x = t. If v(t) does not go to
0 as t —• ±00, the surface q(T) must be an annulus because q{T) is
a subsurface of the surface S which has a finite area. If υ(t) goes to
0 as t —• ±00, let υ'(t) be the distance on τ of the two intersections
of dT and x = t. Suppose vf(t) does not go to 0 as t —• ±00.
Then the closure of #(τ) must contain a point where Z/ is tangent
to itself from one side, because we can choose a sequence of the two
intersections of x = t and ΘT = dτ whose image by q converges
to the same point. If v'(t) goes to 0 as t —• 00, q(τ) converges to a
surface which is tangent to S from one side. Hence q(T) must be
an annulus.

Then there exists a point P in intτ where the distance function
from τ to λ attains the maximum. By translating τ along the per-
pendicular from P to λ by an isometry ζ, the surface £(τ) becomes
tangent to λ from one side, which is a contradiction. This completes
the proof of the case (4).

Now let us consider the intersection Z n Lf. As L is a vertical set
over a measured geodesic lamination on O, L is approximated by
vertical tori. More precisely, for each point x e L and e > 0, there
exists a vertical torus on either side of L which passes through an
ε-neighbourhood of x and whose tangent plane at that point differs
at most ε from the tangent plane of L at x .

Let λ be a component of L. Now suppose that there exists a
component of λnLf which is not of type (1) and Λ-invariant. We
can prove that there are no components of type (1) which are not h-
invariant by the same argument as for S n L'. As for each nearby
torus S, S ΠLf is of type (1) and /z-invariant, and for each point
x G L, L passes arbitrarily near x infinitely many times, there exist
infinitely many components of λΓ\U of type (1), which make closed
curves in λπL' with a component of type (2), (3), (4), a contradiction.
Hence λπ Lf also consists of components which are of type (1) and
/^-invariant.

Next we will prove that actually each component of Lr is either
contained in L or disjoint from L. Assume that there exists an
embedding / : R —• λ n L1 which is Λ-invariant. Let v be the leaf
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of L' containing / ( R ) . Let z be a point on /(R) such that there
exists a horizontal interval / centered at z which is transverse to
λΓ\Lf. As we have assumed that no leaves are isolated, μ'(/) = ε > 0.
Recall that L is a saturated set over a measured geodesic lamination
/. Let /o be a component of /. Then each leaf of /o is dense in /Q .
Hence there exists a sequence of simple closed curves {σj containing
p o g(z) € O, consisting of an arc on /0 one of whose ends is poq(z)
and an arc transverse to /0 with length l/i. Then /(/0 , 07) -+ 0,
where i denotes the geometric intersection number on O. Let^, be
a lift of Oi to M . Then μ(s/) -+ 0. Let St be a lift of st to M . We
can take s, and S; so that 5/ contains the half of / which has positive
//'-measure. Recall that every component of A Π L' is of type (1) and
A-invariant. Then as [Z/, μ']([Sj]) < [L, μ]([Si]) by the assumption
and the right hand goes to zero as we saw above, there is an intersection
of Si and ΊJ near z which is inessential. Let / ' : R -»A Π1/ be the
inessential intersection and let v' be the leaf of 1! containing / ' (R).
Then λnv' contains another component /"(R) such that /'(R) and
/"(R) bounds R = / x R on 1/. Then i?/(Λ) is a compact annulus,
and λ/(h) is an open annulus which is a closed set in M/(h). The
distance function from R/{h) to λ/(h) lifts to that from R to λ.
Hence the distance function d to λ is bounded on R. Therefore
<tf attains the maximum at some point r on R. We translate 1/ by
an isometry ζ along the perpendicular from r to A so that ζ(v) is
tangent to A from one side, which is a contradiction. Now we have
proved that L does not intersect Lf transversely, which implies that
each component of U is either contained in L or disjoint from L.

Next we will prove that each leaf of L'\L is vertical. Suppose
that Lf\L Φ 0 . Then as each component of U is either contained
in L or disjoint from L, there exists a leaf / of LI contained in
M - L. Each component of M - L is a Seifert fibered manifold
whose base space is an open hyperbolic 2-orbifold and can be com-
pleted to a Seifert fibered manifold N whose base space is a complete
hyperbolic 2-orbifold with totally geodesic boundaries. As L' is car-
ried by an incompressible branched surface, if / is not an image of
a properly embedded open annulus or a torus which is parallel to a
boundary component, there is a loop σ in M - L which intersects /
essentially. In that case, i(σ, L') Φ 0 and i(L, σ) = 0 which contra-
dicts the assumption that [L] = [Lf] in R5*. If / is a torus, it must
coincide with a boundary component because / is minimal surface,
which contradicts the assumption that / c M - L. Assume that / is
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a properly embedded openjinnulus. Then its ends extend to cusps.
Let N be a lift of N to SL2R and let / be a lift of / to N. Then
iV is a saturated set over an ideal polygon P with possibly infinitely
many sides. We call a saturated set over cusps of P also cusps. Then
/ is a plane joining two different cusps of N. Let a, b be two cusps
of P corresponding to these cusps. Let Π be the saturated plane in
N over the geodesic in P joining a and b, and suppose that / Φ Π.
Let d be the distance function on / t o Π. Then the value d(x) goes
to 0 as x goes to cusps, and d is a lift of a distance function on /.
Hence the function d is bounded and there is a point XQ^Ϊ where d
attains the maximum. Then by the same argument as before, we can
translate / by an isometry so that it is tangent to Π from one side,
which is a contradiction. Now we have proved that each leaf of L'\L
is vertical.

Thus we have proved that U is also vertical with respect to the
geometric structure ^ on ¥ . Hence L* is also a saturated set over
a geodesic measured lamination on O. As the geodesic measured
laminations on a hyperbolic 2-orbifold O which have the same image
in Rw (where W denotes the set of a free homotopy class of πfb(O))
must coincide, the projections of L and U to the base orbifold O
coincide by the assumption that [L] = [L*] in R5^. Therefore L and
L* must coincide. D

By the same argument we can prove the following

THEOREM 3.2. Let M be a Seifert fibered manifold with a fixed
H2 x E-structure g. Let m be a class of R^ represented by an in-
compressible measured lamination such that m{h) = 0 where h de-
notes the class of regular fibers. Then there exists a unique incompress-
ible minimal measured lamination L in (M, g) which represents m.
Moreover L is vertical with respect to geometric fibration of (M, g).

The following corollary is obtained by the theorems above and
Corollary 2.3.

COROLLARY 3.3. Let [M, g) be as in Theorem 3.1. Then every
incompressible measured lamination is equivalent to a unique minimal
measured lamination. Moreover every minimal measured lamination
is a vertical saturated set over some geodesic measured lamination on
the base 2-orbifold O.
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