ON THE ELIMINATION OF ALGEBRAIC INEQUALITIES

Daniel Pecker

Abstract

Let S be a locally closed semi-algebraic subset of \mathbb{R}^{n}. We find an irreducible equation of an algebraic set of \mathbb{R}^{n+1} projecting upon S. Our methods are simple and explicit.

1. Introduction. The inequality $x \geq 0$ is often replaced by the proposition " x has a square root" or " $\exists t \in \mathbb{R}, t^{2}-x=0$ ". This is the most immediate example of an elimination of one inequality. The general problem is to find an algebraic set projecting upon a given semi-algebraic set: it is a converse of the problem of the elimination of quantifiers.

Motzkin proved that every semi-algebraic subset of \mathbb{R}^{n} is the projection of an algebraic set in \mathbb{R}^{n+1}. However this algebraic set is very complicated and generally reducible.

Andradas and Gamboa proved that any closed semi-algebraic subset of \mathbb{R}^{n} whose Zariski-closure is irreducible is the projection of an irreducible algebraic set in \mathbb{R}^{n+k}.

In this paper we shall first improve Motzkin's result by finding equations generally of minimal degree. Then we shall give a few results concerning irreducibility. One of the first examples of such a construction is due to Rohn and has been studied by Hilbert and Utkin:

If $4 C_{4} C_{2}=\varepsilon^{2}$ is a plane curve of degree six (where $\operatorname{deg}\left(C_{2}\right)=2$, $\left.\operatorname{deg}\left(C_{4}\right)=4, \varepsilon \in \mathbb{R}\right)$, then it is the apparent contour of the quartic surface $C_{2} z^{2}-\varepsilon z+C_{4}=0$.
2. The case of basic closed subsets. Let $\mathbb{R}^{+}=\{x \in \mathbb{R} \mid x \geq 0\}$ be the set of nonnegative numbers. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right)$ be a "parameter" and t an "indeterminate", so that we can speak of the roots of a polynomial $P(\mathbf{x}, t)$. In the same way, unless otherwise specified, the degree of $P(\mathbf{x}, t)$ will be its degree in t.

Let us define the polynomials $a_{i}(\mathbf{x})$ as follows:

$$
a_{k}\left(x_{1}, \ldots, x_{k+1}\right)=x_{k+1}\left(x_{1}+x_{2}+\cdots+x_{k}\right) .
$$

It is easy to see that $a_{1}(\mathbf{x}) \geq 0, \ldots, a_{n}(\mathbf{x}) \geq 0$ if and only if all the x_{i} are nonnegative or all the x_{i} are nonpositive $(i=1, \ldots, n+1)$.

Theorem 1. Let $P_{1}\left(x_{1}, u\right)=u-x_{1}$.

$$
\begin{aligned}
& P_{n+1}\left(x_{1}, \ldots, x_{n+1}, u\right) \\
& \quad=P_{n}\left(a_{1}(\mathbf{x}), \ldots, a_{n}(\mathbf{x}),\left(u-\left(x_{1}+x_{2}+\cdots+x_{n+1}\right)\right)^{2}\right) .
\end{aligned}
$$

Then the following properties are true:
(i) P_{n} is homogeneous of degree 2^{n-1}.
(ii) If all the x_{l} are nonnegative

$$
P_{n}\left(x_{1}, \ldots, x_{n}, u\right)=0 \Rightarrow 0 \leq u \leq 2 \sum_{1}^{n} x_{i} .
$$

(iii) If all the x_{i} are nonnegative, $P_{n}\left(x_{1}, \ldots, x_{n}, t^{2}\right)$ has only real roots.
(iv) If $P_{n}\left(x_{1}, \ldots, x_{n}, t^{2}\right)$ has a real root, then all the x_{i} are nonnegative.
(v)

$$
\begin{aligned}
& P_{n}\left(x_{1}, \ldots, x_{J-1}, 0, x_{j+1}, \ldots, x_{n}, t\right) \\
& \quad=\left[P_{n-1}\left(x_{1}, \ldots, x_{j-1}, x_{J+1}, \ldots, x_{n}, t\right)\right]^{2}
\end{aligned}
$$

(vi) $P_{n}\left(x_{1}, \ldots, x_{n}, t^{2}\right)$ is irreducible and monic in each letter.

Proof. First, we prove (i), (ii), (iii), and (iv) by simultaneous induction: let us suppose (i), (ii), (iii) and (iv) verified for n; we shall prove them for $n+1$.
(i) Easy since the a_{k} are homogeneous of degree 2.
(ii) If u is a root of $P_{n+1}\left(x_{1}, \ldots, x_{n+1}, u\right)=0$, then

$$
\left(u-\left(x_{1}+\cdots+x_{n+1}\right)\right)^{2}
$$

is a root of $P_{n}\left(a_{1}(\mathbf{x}), \ldots, a_{n}(\mathbf{x}), v\right)=0$ by induction

$$
\left(u-\left(x_{1}+\cdots+x_{n+1}\right)\right)^{2} \leq 2\left(a_{1}(\mathbf{x})+\cdots+a_{n}(\mathbf{x})\right) \leq\left(x_{1}+\cdots+x_{n+1}\right)^{2}
$$

whence $0 \leq u \leq 2\left(x_{1}+\cdots+x_{n+1}\right)$, which shows (ii) and (iii).
(iv) If $P_{n+1}\left(x_{1}, \ldots, x_{n+1}, t^{2}\right)=0$ has a real root, then

$$
P_{n}\left(a_{1}(\mathbf{x}), \ldots, a_{n}(\mathbf{x}),\left(t^{2}-\left(x_{1}+\cdots+x_{n+1}\right)\right)^{2}\right)
$$

has a real root and by induction all the $a_{l}(\mathbf{x})$ are nonnegative. Therefore, if all the x_{i} are nonpositive, $P_{n}\left(a_{1}(\mathbf{x}), \ldots, a_{n}(\mathbf{x}), v\right)$ has a root which is greater than $\left(x_{1}+\cdots+x_{n+1}\right)^{2} \geq 2\left(a_{1}(\mathbf{x})+\cdots+a_{n}(\mathbf{x})\right)$. By induction this is possible only if

$$
\left(x_{1}+\cdots+x_{n+1}\right)^{2}=2\left(a_{1}(\mathbf{x})+\cdots+a_{n}(\mathbf{x})\right),
$$

i.e., when all the x_{l} are equal to zero.
(v) By induction: suppose the formula true for n, let us prove it for $n+1$. Let us study the case $j \geq 2$ (the case $j=1$ is similar). Let

$$
\begin{aligned}
& x=\left(x_{1}, \ldots, x_{j-1}, 0, x_{j+1}, \ldots, x_{n+1}\right), \\
& \hat{x}=\left(x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n+1}\right) .
\end{aligned}
$$

We have:

$$
\left\{\begin{array}{l}
a_{i}(x)=a_{i}(\hat{x}) \quad \text { if } i<j-1, \\
a_{j-1}(x)=0, \\
a_{k}(x)=a_{k-1}(\hat{x}) \quad \text { if } k \geq j
\end{array}\right.
$$

Then,

$$
\begin{aligned}
P_{n+1}(x, t)= & P_{n}\left(a_{1}(x), \ldots, a_{n}(x),\left(t-\left(x_{1}+\cdots+x_{n+1}\right)\right)^{2}\right) \\
& =P_{n}\left(a_{1}(\hat{x}), \ldots, a_{j-2}(\hat{x}), 0, a_{j-1}(\hat{x}), \ldots, a_{n-1}(\hat{x}),\right. \\
& \left.\quad\left(t-\left(x_{1}+\cdots+x_{n+1}\right)\right)^{2}\right) \\
& =\left[P_{n-1}\left(a_{1}(\hat{x}), \ldots, a_{n-1}(\hat{x}),\left(t-\left(x_{1}+\cdots+x_{n+1}\right)\right)^{2}\right]^{2}\right. \\
& =\left[P_{n}(\hat{x}, t)\right]^{2} .
\end{aligned}
$$

(vi) By induction. Suppose $P_{n}\left(x, t^{2}\right)$ irreducible. Let

$$
P_{n+1}\left(x_{1}, \ldots, x_{n+1}, t^{2}\right)=A(x, t) \cdot B(x, t),
$$

A and B monic in t. Let us substitute 0 for x_{n+1} in this factorization; using (v) we get:

$$
\left(P_{n}\left(x_{1}, \ldots, x_{n}, t^{2}\right)\right)^{2}=A\left(x_{1}, \ldots, x_{n}, 0, t\right) \cdot B\left(x_{1}, \ldots, x_{n}, 0, t\right) .
$$

Since $P_{n}\left(x, t^{2}\right)$ is irreducible, and A and B are monic in t, we get either:

$$
A\left(x_{1}, \ldots, x_{n}, 0, t\right)=B\left(x_{1}, \ldots, x_{n}, 0, t\right)=P_{n}\left(x_{1}, \ldots, x_{n}, t^{2}\right)
$$

or:

$$
A\left(x_{1}, \ldots, x_{n}, 0, t\right)=\left(P_{n}\left(x_{1}, \ldots, x_{n}, t^{2}\right)\right)^{2} .
$$

In the first case, at any point where all the x_{i} are positive P_{n} has a simple root and then $\partial A / \partial t \neq 0$. Then (by the implicit function theorem) A has a root for x in a neighborhood of $\left(x_{1}, \ldots, x_{n}, 0\right)$, which is impossible since P_{n+1} does not have such a root when x_{n+1} is negative. In the second case P_{n+1} and A have the same degree in t, and since A and B are monic in t, we obtain finally $A(x, t)=$ $P_{n+1}\left(x, t^{2}\right), B(x, t)=1$.

Remarks. We can compute easily P_{1}, P_{2}, P_{3}.

$$
\begin{aligned}
& P_{1}\left(x, t^{2}\right)=t^{2}-x, \\
& P_{2}\left(x, y, t^{2}\right)=\left(t^{2}-(x+y)\right)^{2}-x y, \\
& P_{3}\left(x, y, z, t^{2}\right) \\
& \quad=\left[\left(t^{2}-(x+y+z)\right)^{2}-(x y+y z+z x)\right]^{2}-x y z(x+y) .
\end{aligned}
$$

If we use the elementary symmetric polynomials $s_{1}=x+y+z+u$, $s_{2}, s_{3}, s_{4}=x y z u$, we can even write P_{4} :

$$
\begin{aligned}
& P_{4}\left(x, y, z, u, t^{2}\right) \\
& \quad=\left[\left(\left(t^{2}-s_{1}\right)^{2}-s_{2}\right)^{2}-x y z(x+y)-u(x+y+z)(x y+y z+z x)\right]^{2} \\
& \quad-s_{4}(x+y)(x+y+z)(x y+y z+z x) .
\end{aligned}
$$

The main step in Motzkin's work (cf. [M1], [M2]) was to find "a real polynomial $U_{d}^{\prime}\left(x_{1}, \ldots, x_{d}, t^{2}\right)$ such that $x_{1} \geq 0, \ldots, x_{d} \geq 0$ if and only if, for some $t, U_{d}^{\prime}\left(x_{1}, \ldots, x_{d}, t^{2}\right)=0$." His polynomials are reducible, nonhomogeneous, have some complex roots even when all the x_{i} are positive, and they are very complicated:
$U_{2}^{\prime}\left(x, y, t^{2}\right)=\left[t^{4}(x-y)^{6}-2 t^{2}(x-y)^{2}(x+y)+1\right]\left[\left(t^{2}-y\right)^{2}+(x-y)^{2}\right]$, $\operatorname{deg}_{t}\left(U_{2}^{\prime}\right)=4$, but $\operatorname{deg}_{t}\left(U_{3}^{\prime}\right)=104, \operatorname{deg}_{t}\left(U_{4}^{\prime}\right)=12,496, \operatorname{deg}_{t}\left(U_{5}^{\prime}\right)=$ 7, 997, 472!!!

The induction formula defining our polynomials P_{k} was found by a geometrical construction (cf. [P1], [P2]):

The algebraic set $\nu_{3}: P_{3}(x, y, z, 1)=0$ is such that the positive cone on it

$$
\begin{aligned}
C^{+}\left(\nu_{3}\right) & =\left\{(x, y, z) \in \mathbb{R}^{3} \mid \exists t>0,\left(\frac{x}{t}, \frac{y}{t}, \frac{z}{t}\right) \in \nu_{3}\right\} \\
& =\left\{(x, y, z) \in \mathbb{R}^{3} \mid \exists t>0, P_{3}\left(x, y, z, t^{2}\right)=0\right\}=\left(\mathbb{R}^{+}\right)^{3} .
\end{aligned}
$$

ν_{3} is projectively equivalent to an algebraic set ν_{3}^{\prime} whose vertical projection is a triangle. And it is not difficult, using P_{2}, to define such a set (see figure).

The following corollary is due to the cooperation of C. Andradas.

Corollary 1. There exists a real irreducible polynomial

$$
P_{n, m}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}, t^{2}\right)
$$

having a real root iff all the x_{i} are nonnegative and all the y_{j} are positive.

Figure

$$
\begin{aligned}
& \text { Surface } z^{4}-2\left(B_{1}+B_{2}\right) z^{2}+B_{1}^{2}+B_{2}^{2}=0 \text { with } \\
& B_{1}=x-x^{2}, B_{2}=(1-x) y-y^{2}
\end{aligned}
$$

Proof. Let us define $P_{n, m}$ by the formula:

$$
\begin{aligned}
& P_{n, m}\left(x_{i}, y_{j}, t^{2}\right) \\
& \quad=\left(y_{1} \ldots y_{m}\right)^{2^{m+n-1}} P_{n+m}\left(x_{i}, y_{1}, \ldots, y_{m-1}, 1 / y_{1} \cdots y_{m}, t^{2}\right)
\end{aligned}
$$

Since the polynomials P_{n} are monic in each variable we see that $P_{n, m}$ cannot have a real root if $y_{1} \cdots y_{m}=0$. The conclusion is easy.

For example we have: $P_{0,2}\left(b, c, t^{2}\right)=\left(b c t^{2}-b^{2} c-1\right)^{2}-b^{2} c$.
Proposition 1. Let S be a semi-algebraic subset of \mathbb{R}^{M} given by:

$$
S=\left\{\mathbf{x} \in \mathbb{R}^{M} \mid b_{1}(\mathbf{x}) \geq 0, \ldots, b_{n}(x) \geq 0, c_{1}(\mathbf{x})>0, \ldots, c_{m}(\mathbf{x})>0\right\} .
$$

There exists a real irreducible polynomial $P(\mathbf{x}, t)$ such that:

$$
x \in S \Leftrightarrow \exists t \in \mathbb{R}, \quad P(\mathbf{x}, t)=0 .
$$

Proof. Let P be a nontrivial irreducible factor of

$$
P_{n, m}\left(b_{i}(\mathbf{x}), c_{j}(\mathbf{x}), t^{2}\right) .
$$

Since $P_{n, m}$ has either only real roots or none, we see that P has a real root iff $P_{n, m}$ has one.
3. The case of obtuse corners. Let us define a function $g(t)$ and a polynomial $Q_{n}(\mathbf{x}, t)$ by the formula:

$$
g(t)=\frac{x_{1}}{t-x_{1}}+\cdots+\frac{x_{n}}{t-x_{n}}-1=\frac{Q_{n}(\mathbf{x}, t)}{\left(t-x_{1}\right) \cdots\left(t-x_{n}\right)} .
$$

By symmetry we may suppose $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$.
The function $g(t)$ has a root on any of the intervals $]-\infty, x_{1}[, \ldots$, $] x_{i} x_{i+1}[, \ldots,] x_{n}, \infty[$ whose closure does not contain zero. To obtain all the other roots of $Q_{n}(\mathbf{x}, t)$, it is enough to take x_{k} as a root or order $p-1$ if x_{k} appears p times in $\left(x_{1}, \ldots, x_{n}\right)$, and take 0 as a root of order q if q of the x_{k} are equal to zero.

We also see that $g^{\prime}(t)$ never vanishes on these intervals.
Consequently $\psi_{n}(\mathbf{x})=\sup \left\{t \in \mathbb{R} \mid Q_{n}(\mathbf{x}, t)=0\right\}$ is well defined, positive (resp. nonnegative) iff one of the x_{i} is positive (resp. nonnegative). $\psi_{n}(\mathbf{x})$ is continuous because $Q_{n}(\mathbf{x}, t)$ has only real roots.

If $\psi_{n}(\mathbf{x})$ is equal to one of the x_{k}, all the x_{k} are nonpositive, and either the maximum of the x_{k} is 0 , or the maximum of the x_{k} is attained by two or more x_{k}. In the first case, if only one of the x_{k} is equal to 0 , a direct computation shows that $Q_{n}^{\prime}(\mathbf{x}, 0) \neq 0$. In the second case, if the maximum of the x_{k} is attained by exactly two of the x_{k}, we see that $Q_{n}^{\prime}\left(\mathbf{x}, x_{k}\right) \neq 0$. Then, using the implicit function theorem, we have:

Proposition 2. There exists a function $\psi_{n}(\mathbf{x})$, semi-algebraic and continuous on \mathbb{R}^{n}, positive (resp. nonnegative) if and only if one of the x_{i} is positive (resp. nonnegative). Furthermore $\psi_{n}(\mathbf{x})$ is analytic everywhere except on $E_{1} \cup E_{2}$

$$
\begin{aligned}
& E_{1}=\left\{(\mathbf{x}) \in \mathbb{R}^{n} \mid \forall i, x_{i} \leq 0, \exists i_{1}, i_{2}, x_{i_{1}}=x_{i_{2}}=0\right\}, \\
& E_{2}=\left\{(\mathbf{x}) \in \mathbb{R}^{n} \mid \forall i, x_{i} \leq 0, \exists i_{1}, i_{2}, i_{3}, x_{i_{1}}=x_{i_{2}}=x_{i_{3}}=\max _{i}\left(x_{i}\right)\right\} .
\end{aligned}
$$

This allows us to give a very simple proof of the following separation theorem of Mostowski (compare [B-C-R]).

Corollary (Mostowski). Let F be a closed semi-algebraic subset of \mathbb{R}^{n}. There exists a continuous semi-algebraic function ψ zero on F, analytic and positive outside F.

Proof. We know that any closed semi-algebraic set F can be written $F=\bigcup_{1}^{N} F_{i}$ with $F_{i}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid A_{1}^{i}(\mathbf{x}) \geq 0, \ldots, A_{k_{i}}^{i}(\mathbf{x}) \geq 0\right\}$. Let
$f_{i}(\mathbf{x})=\psi_{k_{i}}\left(-A_{1}^{i}(\mathbf{x}), \ldots,-A_{k_{i}}^{i}(\mathbf{x})\right) . f_{i}$ is nonpositive on F_{i}, analytic and positive outside F_{i}. The function $\psi(\mathbf{x})=\prod_{1}^{N}\left(f_{i}(\mathbf{x})+\left|f_{i}(\mathbf{x})\right|\right)$ has the desired property.

We need the following remark:
Lemma. Let C_{1}, \ldots, C_{N} be pairwise relatively prime elements in a factorial ring of characteristic zero. There exist positive integers d_{1}, \ldots, d_{N} such that the elements C_{1}, \ldots, C_{N} and $d_{i} C_{i}-d_{j} C_{j}$ are pairwise relatively prime.

Proof. By induction. Suppose that for $k<N$ there exist positive integers d_{1}, \ldots, d_{k} such that C_{1}, \ldots, C_{N} and $d_{i} C_{i}-d_{j} C_{j}, i<j \leq k$, are pairwise relatively prime. Let P be the finite set of factors appearing in one of these polynomials. Let $j \leq k$ be a fixed integer, and consider the polynomials $n C_{k+1}-d_{j} C_{j}$. These polynomials are pairwise relatively prime, and then, except for a finite number of values for n, they do not possess any factor belonging to P. Take a positive integer d_{k+1} such that, for all $j \leq k, d_{k+1} C_{k+1}-d_{j} C_{j}$ does not possess any factor belonging to P. Any common factor of $d_{k+1} C_{k+1}-d_{j} C_{j}$ and $d_{k+1} C_{k+1}-d_{i} C_{i}$ must be in P, which is impossible.

Proposition 3. If the real polynomials $A_{1}(\mathbf{x}), \ldots, A_{h}(\mathbf{x}), B_{1}(\mathbf{x})$, $\ldots, B_{k}(\mathbf{x})$ are pairwise relatively prime, there exists a real irreducible polynomial $R(\mathbf{x}, t)$ which has a nonnegative root iff one $A_{i}(\mathbf{x})$ is nonnegative or one $B_{j}(\mathbf{x})$ is positive. It has a positive root iff one $A_{i}(\mathbf{x})$ or one $B_{j}(\mathbf{x})$ is positive.

Proof. By the lemma, we may suppose that the A_{i}, B_{j}, and their differences are pairwise relatively prime. Let

$$
\begin{aligned}
& \psi_{A}(\mathbf{x})=\psi_{h}\left(A_{1}(\mathbf{x}), \ldots, A_{h}(\mathbf{x})\right), \\
& \psi_{B}(\mathbf{x})=\psi_{k}\left(B_{1}(\mathbf{x}), \ldots, B_{k}(\mathbf{x})\right) .
\end{aligned}
$$

$\psi_{A}(\mathbf{x})$ and $\psi_{B}(\mathbf{x})$ are analytic on \mathbb{R}^{n} except on a set of codimension two at most. Their minimal polynomials $R_{A}\left(\mathbf{x}, \psi_{A}(\mathbf{x})\right)=0$ and $R_{B}\left(\mathbf{x}, \psi_{B}(\mathbf{x})\right)=0$ are therefore irreducible. These polynomials, being factors of Q_{A} and Q_{B} respectively (in $\mathbb{R}(x)[t]$), have only real roots.

Consider now the following function defined for $u \geq 0$ or $v \neq 0$:

$$
\begin{aligned}
& \bar{\psi}(u, v)=\frac{u+v+\sqrt{u^{2}+v^{2}}}{\left(u+\sqrt{u^{2}+v^{2}}\right)^{2}}\left(u^{2}+v^{2}\right) \\
& \bar{\psi}(0,0)=0
\end{aligned}
$$

$\bar{\psi}$ satisfies a real quadratic polynomial $K(u, v, \bar{\psi}(u, v))=0$ which has a nonnegative root if and only if $u \geq 0$ or $v>0$; (if $u \geq 0$ or $v>0, \bar{\psi}(u, v)$ is a nonnegative root of this polynomial).

Let $R_{1}(\mathbf{x}, f)$ be the polynomial obtained by eliminating u and v of the following system (I):

$$
\left\{\begin{array}{l}
R_{A}(\mathbf{x}, u)=0 \tag{I}\\
R_{B}(\mathbf{x}, v)=0 \\
K(u, v, f)=0
\end{array}\right.
$$

We see that $R_{1}\left(\mathbf{x}, \bar{\psi}\left(\psi_{A}(\mathbf{x}), \psi_{B}(\mathbf{x})\right)\right)=0$. Since $\bar{\psi}\left(\psi_{A}(\mathbf{x}), \psi_{B}(\mathbf{x})\right)$ is meromorphic in a dense connected open subset of \mathbb{R}^{n}, there is an irreducible factor $R(\mathbf{x}, f)$ of $R_{1}(\mathbf{x}, f)$ such that $R\left(\mathbf{x}, \bar{\psi}\left(\psi_{A}(\mathbf{x}), \psi_{B}(\mathbf{x})\right)\right)$ $=0$.

If R has a nonnegative root, the system (I) has a solution u, v, f_{1} with f_{1} nonnegative. R_{A} and R_{B} having only real roots, u and v are real numbers. Finally we see that $u \geq 0$ or $v>0$ which shows that $\psi_{A}(\mathbf{x}) \geq 0$ or $\psi_{B}(\mathbf{x})>0$. Conversely, if $\psi_{A}(\mathbf{x}) \geq 0$ or $\psi_{B}(\mathbf{x})>0, \bar{\psi}\left(\psi_{A}(\mathbf{x}), \psi_{B}(\mathbf{x})\right)$ is a nonnegative root of $R(\mathbf{x}, f)=0$.
We may also remark that, since R_{A} and R_{B} have only real roots, R_{1} and R have the same property.

In the proof of our principal result, we shall only need the easier part of Proposition 3, when there is no B_{j}. In this case the polynomial $R(\mathbf{x}, t)$ is monic in t.

4. The principal result.

Theorem. If S is a locally closed semi-algebraic subset of \mathbb{R}^{n}, there exists an irreducible real polynomial $R(\mathbf{x}, t)$ such that:

$$
\mathbf{x} \in S \Leftrightarrow \exists t \in \mathbb{R}, \quad R(\mathbf{x}, t)=0 .
$$

Furthermore, if S is closed, we can suppose R monic in t.
Proof. Let $S=F \cap U$, where F is closed and U open. We know that we can write $F=\bigcap_{1}^{N_{1}} S_{l}$ with

$$
S_{l}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid A_{1}^{l}(\mathbf{x}) \geq 0 \text { or } \cdots \text { or } A_{n_{t}}^{l}(\mathbf{x}) \geq 0\right\}
$$

where the $A_{i}^{l}(\mathbf{x})$ are irreducible polynomials. (Cf. [A-G1] \& [B-C-R] p. 26.). Similarly, we can write $U=\bigcap_{N_{1}+1}^{N} S_{l}$ with:

$$
S_{l}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid A_{1}^{l}(\mathbf{x})>0 \text { or } \ldots \text { or } A_{n_{l}}^{l}(\mathbf{x})>0\right\} .
$$

For each l let $R_{l}\left(\mathbf{x}, u_{1}\right)$ be the polynomial defined in Proposition 3. R_{l} is irreducible, monic in u_{l}, and has only real roots. When $l \leq N_{1}$, R_{l} has a nonnegative root iff $\mathbf{x} \in S_{l}$. When $l>N_{1}, R_{l}$ has a positive root iff $\mathbf{x} \in S_{l}$. The function $\psi_{S_{l}}(\mathbf{x})$ of Proposition 3 is noted f_{l}. Let γ be a root of $P_{N_{1}, N-N_{1}}\left(f_{1}, \ldots, f_{N}, \Gamma^{2}\right)=0$ in an extension field of $\mathbb{R}\left(f_{1}, \ldots, f_{N}\right)$. Let $Q_{1}(\mathbf{x}, \Gamma)$ be the polynomial obtained by eliminating the u_{i} in the system (II):

$$
\left\{\begin{array}{l}
R_{1}\left(\mathbf{x}, u_{1}\right)=0 \tag{II}\\
R_{2}\left(\mathbf{x}, u_{2}\right)=0 \\
\vdots \\
P_{N_{1}, N-N_{1}}\left(u_{1}, u_{2}, \ldots, u_{N}, \Gamma^{2}\right)=0
\end{array}\right.
$$

We have $Q_{1}(\mathbf{x}, \gamma)=0$. Let $R(\mathbf{x}, \Gamma)$ be an irreducible factor of $Q_{1}(\mathbf{x}, \Gamma)$ such that $R(\mathbf{x}, \gamma)=0$.

Since $P_{N_{1}, N-N_{1}}$ is not monic, we must be careful with elimination theory. Let us introduce a new variable u_{N+1}, and consider the following system of homogeneous polynomials in the variables u_{1}, \ldots, u_{N+1} :

$$
\left\{\begin{array}{l}
R_{1}^{h}\left(\mathbf{x}, u_{1}, u_{N+1}\right)=0 \\
R_{2}^{h}\left(\mathbf{x}, u_{2}, u_{N+1}\right)=0 \\
\vdots \\
P_{N_{1}, N-N_{1}}^{h}\left(u_{1}, \ldots, u_{N}, \Gamma^{2}, u_{N+1}\right)
\end{array}\right.
$$

Let $Q_{1}(\mathbf{x}, \Gamma) u_{N+1}^{M}$ be the polynomial obtained by successive elimination of the variables $u_{N}, u_{N-1}, \ldots, u_{1}$ in the system (II^{\prime}). As it is well known for systems of homogeneous equations, this system has a nontrivial solution ($u_{1}, \ldots, u_{N}, u_{N+1}$) iff $Q_{1}(\mathbf{x}, \Gamma)=0$ (cf. [W]).

Since the polynomials $R_{l}\left(\mathbf{x}, u_{l}\right)$ are monic in u_{l}, we see that any nontrivial root of (II^{\prime}) is such that $u_{N+1} \neq 0$. Therefore, the system (II) has a solution iff $Q_{1}(\mathbf{x}, \Gamma)=0$.

If $R(\mathbf{x}, \Gamma)$ has a real root, the system (II) has a solution u_{1}, \ldots, u_{N}, Γ. Since the R_{i} have only real roots, the u_{i} are real and $P_{N_{1}, N-N_{1}}\left(u_{1}, \ldots, u_{N}, \Gamma^{2}\right)$ has a real root. Therefore, if $l \leq N_{1}, u_{l}$ is a nonnegative root of R_{l}; if $l>N_{1}, u_{l}$ is a positive root of R_{l}, which shows that $\mathbf{x} \in S=\bigcap_{1}^{N_{l}} S_{l}$. Conversely, suppose $\mathbf{x} \in S$. Since the two polynomials $R(\mathbf{x}, \Gamma)$ and $P_{N_{1}, N-N_{1}}\left(f_{1}, \ldots, f_{N}, \Gamma^{2}\right)$ have a common root in an extension field of $\mathbb{R}\left(f_{1}, \ldots, f_{N}\right)$, their resultant relative to Γ vanishes identically. $R(\mathbf{x}, \Gamma)$ and $P_{N_{1}, N-N_{1}}\left(f_{1}(\mathbf{x}), \ldots, f_{N}(\mathbf{x}), \Gamma^{2}\right)$
have a common root. Since $\mathbf{x} \in S, P_{N_{1}, N-N_{1}}\left(f_{1}(\mathbf{x}), \ldots, f_{N}(\mathbf{x}), \Gamma^{2}\right)$ has only real roots, therefore $R(\mathbf{x}, \Gamma)$ has a real root.

Remarks. If $S=\bigcap_{1}^{N} S_{l}$, where each S_{l} is a closed semi-algebraic set written with m_{l} inequalities, the degree of our polynomial is $2^{N} m_{1} \cdots m_{N}$. This degree is smaller than the one obtained in [P2] where the polynomials were solvable by square roots. It would be of interest to give a simple proof that this degree is optimal "in general". (L. Bröcker has a proof using fan theory, valid for basic closed sets.) As in $[\mathbf{P 1}],[\mathbf{P} 2]$ using the changing sign criterion, we obtain:

Corollary. Let S be a locally closed semi-algebraic subset of \mathbb{R}^{n} having some interior points. Then S is the projection of an irreducible algebraic subset of \mathbb{R}^{n+1}.

This corollary is the generalisation to non closed sets of a result in [P1]. This earlier result was itself an improvement of the first paper of Andradas and Gamboa on the subject.

References

[A-G1] C. Andradas and J. M. Gamboa, A note on projections of real algebraic varieties, Pacific J. Math., 115 (1984), 1-11.
[A-G2] _, On projections of real algebraic varieties, Pacific J. Math., 121 (1986), 281-291.
[B-C-R] J.Bochnak, M. Coste and M. F. Roy, Géométrie algébrique réelle, Ergebnisse der Mathematik 12, Springer-Verlag, (1987).
[M1] T. S. Motzkin, Elimination theory of algebraic inequalities, Bull. Amer. Math. Soc., 61 (1955), 326.
[M2] _- The Real Solution Set of a System of Algebraic Inequalities is the Projection of a Hypersurface in One More Dimension, Inequalities II, Academic Press, (1970), 251-254.
[P1] D. Pecker, Sur l'équation d'un ensemble algébrique de R^{n+1} dont la projection dans R^{n} est un ensemble semi-algébrique fermé donné C.R.A.S., t. 306, Série II, (1988), 265-268.
[P2] _L'L'élimination radicale des inégalités, Séminaire DDG (1987-88), Université de Paris 7.
[W] R. Walker, Algebraic Curves, Princeton University Press, (1950).
Received January 24, 1989 and in revised form March 21, 1990.

