SYMPLECTIC-WHITTAKER MODELS FOR Gl_n

MICHAEL J. HEUMOS AND STEPHEN RALLIS

We consider the Klyachko models of admissible irreducible representations of the group $\operatorname{GL}_n(F)$ where F is a non-Archimedean local field of characteristic 0. These are models which generalize the usual Whittaker model by allowing the inducing subgroup a symplectic component. We prove the uniqueness of the symplectic models and the disjointness for unitary representations of the different models. Moreover, for $n \leq 4$ we prove that all unitary irreducible representations admit a Klyachko model.

Introduction. Let F be a non-Archimedean local field of characteristic zero. This paper studies the realization of irreducible, admissible representation of $Gl_n(F)$ in certain induced representations generalizing the Whittaker model. In contrast to generalizing by allowing degenerate Whittaker characters or smaller unipotent groups arising from some degenerate data (cf. [Mo-Wa]), we generalize the inducing subgroup by allowing a symplectic component.

Our investigation is motivated by results of A. A. Klyachko [KI], who exhibited a model, in the sense of I. M. Gel'fand, for Gl_n over a finite field. He found a set of representations (which we will refer to as models) which are disjoint, multiplicity free and exhaust the set of irreducible representations. The representations he considers form a family $\mathcal{M}_{n,k}$, $0 \le k \le [\frac{n}{2}]$. One extreme $\mathcal{M}_{n,0}$, is the Whittaker model, a representation induced off a character on the subgroup of unipotent, upper triangular matrices. When n is even, the other extreme $\mathcal{M}_{n,n/2}$ is induced off the trivial character of Sp_n , the symplectic group of $2n \times 2n$ matrices. The other "mixed" models $\mathcal{M}_{n,k}$, $0 < k < \frac{n}{2}$, are induced off characters of subgroups coming from smaller unipotent and symplectic groups. Since the Whittaker model for representations of p-adic Gl_n is of considerable importance, e.g. in the study of automorphic forms, it is natural to investigate the role of the other models in the p-adic case.

The natural category to study in the local field setting is the category of admissible representations. The Whittaker model $\mathcal{M}_{n,0}$ is the only model which has received attention. It was shown by I. M. Gel'fand and D. A. Kazhdan ([Ge-Ka,1]) that the Whittaker model is unique,

meaning that for an irreducible representation π , $\operatorname{Hom}_{\operatorname{Gl}_n}(\pi, \mathcal{M}_{n,0})$ has dimension at most one.

The main results of this paper are:

(1) Uniqueness of the symplectic model.

(2) Unitary disjointness of the set of models, i.e. a unitary representation cannot embed in two different models.

The advent of unitary representations is natural in light of Gl_3 . In that case there is an irreducible representation without a model but the intriguing fact is that all irreducible unitary representations have unique models. This prompts focusing our attention on the questions of existence and uniqueness of models for unitary representations and leads to the remaining results of the paper.

(3) The description of the category of admissible representations of Gl_3 with respect to models. In particular it is shown that every irreducible unitary representation admits a unique model and we describe the (essentially) only representation which does not admit a model.

(4) The existence and uniqueness of models for irreducible, unitary representations of Gl_4 .

The reason for the symplectic group playing such a role is not clear; however there are two properties it enjoys which are prominent in our results and those in [**K**1]. The first is that Sp_n is the fixed point set of an involution on Gl_n , which we use in (1). The second is that there is a bijection between the set of Sp_n double cosets of Gl_{2n} and the set of conjugacy classes of Gl_n . Over the finite field with q elements, this bijection has been central to recent work of Bannai, Kawanaka and Song ([**Ba-Ka-So**]), who prove that the character table of the Hecke algebra of Sp_n bi-invariant functions on Gl_{2n} is "almost" obtained from the character table of Gl_n by the substitution q to q^2 .

A word about the proofs. In the finite field case, no explicit descriptions or structure of the irreducible representations is used. In the *p*-adic case we depend heavily on the description of admissible and unitary representations due to I. N. Bernstein and A. V. Zelevinskii ([**Be-Ze,1**], [**Ze**]) and M. Tadić ([**Ta,1**]). Using these and the yoga of Jacquet functors it is not difficult to inductively show that many representations have models, but this method will not show that a representation has a symplectic model. It is desirable to have a simple inductive statement for the existence of symplectic models. One of our goals is to determine to what extent this is possible. In the case of Gl₄ we show that it is. There we consider a representation induced from representations with symplectic models as part of a family of

248

induced representations depending on a complex parameter s. On these representations we define a functional by an integral and show that it converges if the real part of s is sufficiently large. Then using the theory of Bernstein, developed for the analytic continuation of intertwining operators, we continue the functional to the original representation. This inductive statement in particular provides the symplectic models for certain complementary series representations of Gl₄. Other unitary representations arise as Langlands quotients from square integrable data. For these to have symplectic models it must be shown that the functional descends to the unique irreducible quotient. The representations of Gl₄ which require this attention are special cases of a unitary Langlands quotient representation of Gl_{2n} which is fundamental in the description of the unitary dual. Knowledge of the composition series of this induced representation is used to show that these irreducible quotients have symplectic models in general (Theorem 11.1). (H. Jacquet has recently obtained this result by similar methods.) This is the technical heart of the paper; the case of Gl₄ illustrates the problems that will be encountered in the general case.

We now briefly describe the organization of this paper. Section 1 sets notation and conventions and reviews general background. The next two sections are devoted to proving the general results on uniqueness of symplectic models and unitary disjointness of models. Section 4 presents some results on symplectic orbits in certain flag varieties. The rest of the paper is devoted to specific groups Gl_2 is dispatched in §5. In §6 we recall the classification of the unitary dual of Gl_n due to Tadić, and explicate it in the cases of Gl_3 and Gl_4 in §§7 and 10 respectively. Section 8 contains the proof that every irreducible, unitary representation of Gl_3 has a unique model. Those admissible representations of Gl_3 without models are described in §9. Section 11 shows that the unitary representations of Gl_4 all have models.

We are grateful to various people for discussions which have proven valuable in the production of this paper. In particular we are grateful to M. Tadić for explaining some of his work and to H. Jacquet for his interest and receptivity.

1. Notation and terminology. General references for notation and terminology are [Be-Ze,1] and [Be-Ze,2].

Throughout, F will denote a non-Archimedean local field of characteristic zero, i.e. a *p*-adic field. Unless stated otherwise, GL_n will denote $GL_n(F)$.

The standard (upper triangular) parabolic subgroups of Gl_n are in one-to-one correspondence with partitions of $n: (n_1, \ldots, n_k)$, $n_1 + \cdots + n_k = n$. P_{n_1, \ldots, n_k} denotes the associated group and N_{n_1, \ldots, n_k} its unipotent radical.

 J_n denotes the $2n \times 2n$ matrix $\begin{pmatrix} 0 & 1_n \\ -1_n & 0 \end{pmatrix}$. We sometimes use J to denote the associated symplectic form $J(x, y) = {}^t x J_n y$. The symplectic group Sp_n preserves this form.

Let U_n denote the group of upper triangular unipotent matrices in Gl_n ; thus $U_n = N_{1,1,\dots,1}$. For $0 \le k \le [\frac{n}{2}]$, let N_k be the subgroup of U_n of matrices (u_{ij}) where for $i \ne j$, $u_{ij} = 0$ unless $i \le n - 2k \le j$. With U_{n-2k} embedded in the upper left, Sp_k in the lower right, let $M_k = (U_{n-2k} \times Sp_k)N_k$.

 ν denotes the character $g \rightarrow |\det g|$. δ_P denotes the modular function of the group P. A character of Gl_n is of the form $g \rightarrow \chi(\det g)$ for some character χ of F^{\times} . We sometimes write χ_n to indicate the group involved, but we will continue to write χ_n for the restriction to subgroups of Gl_n .

Induction is always normalized, with ind (resp. Ind) denoting compact (resp. full) induction. Given representations σ_i of Gl_{n_i} , $i = 1, \ldots, k$, extend $\sigma_{n_1} \otimes \cdots \otimes \sigma_{n_k}$ to P_{n_1, \ldots, n_k} so that it is trivial on N_{n_1, \ldots, n_k} . Denote $\operatorname{Ind}_{P_{n_1, \ldots, n_k}}^{\operatorname{Gl}_{n_1} + \cdots + n_k} \sigma_{n_1} \otimes \cdots \otimes \sigma_{n_k}$ by $\sigma_{n_1} \times \cdots \times \sigma_{n_k}$. To a character θ of N_{n_1, \ldots, n_k} and representation π of Gl_n , we

To a character θ of $N_{n_1,...,n_k}$ and representation π of Gl_n , we have the Jacquet functor $r_{n_1,...,n_k;\theta}(\pi)$ which is the quotient of the space of π , V_{π} , by the subspace spanned by $\{\pi(n)v - \theta(n)v|v \in V_{\pi}, n \in N_{n_1,...,n_k}\}$. It is naturally a $Gl_{n_1} \times \cdots \times Gl_{n_k}$ module. If $\theta \equiv 1$, we delete it from the notation and may simply write $(\pi)_N$ if there is no risk of confusion with regard to the subgroup N. \tilde{r} will denote the normalized Jacquet functor (cf. [**Be-Ze**, 2]).

Let ψ be any nontrivial, complex, additive character of F. Define the character ψ_n of U_n by $\psi_n(u_{ij}) = \psi(u_{12} + \cdots + u_{n-1n})$. Any character which is nontrivial on all the simple root groups in U_n will be called nondegenerate or said to be a Whittaker character. The diagonal torus in Gl_n acts transitively on the set of Whittaker characters.

For $k \leq [\frac{n}{2}]$, define the set of models for Gl_n to be the representations

(1.1)
$$\mathscr{M}_{n,k} = \operatorname{Ind}_{M_k}^{\operatorname{Gl}_n} \psi_n \otimes 1 \otimes 1.$$

When *n* is understood, we simply write \mathcal{M}_k . \mathcal{M}_0 is called the Whittaker model. The Whittaker models for any two Whittaker characters are equivalent. If π is a representation, we denote by $\langle \pi \rangle$ (resp. $L(\pi)$) the unique irreducible submodule (resp. quotient module) of π , when it exists.

2. Uniqueness of symplectic models.

2.1. In this section we show that for an irreducible representation π , dim Hom_{Gl_{2n}} $(\pi, \mathcal{M}_n) \leq 1$. The proof is a combination of the proof of the uniqueness of the Whittaker model in the *p*-adic case ([Ge-Ka,1]) and uniqueness of the symplectic model in the finite field case ([Kl]).

2.2. We collect here some results on polar decompositions. We are indebted to Daniel Shapiro for the proofs of these results.

Let k be a field of characteristic different from 2, \overline{k} its algebraic closure and M (resp. \overline{M}) denote the set of $n \times n$ matrices with coefficients in k (resp. \overline{k}). Similarly, let $\overline{G} = \operatorname{Gl}_{2n}(\overline{k})$, $\overline{\operatorname{Sp}} = \operatorname{Sp}_n(\overline{k})$, and G and Sp will be the k rational points of these groups. Let σ denote an involution on \overline{M} , i.e. an anti-automorphism of order two.

LEMMA 2.2.1. For any $A \in G$, there exists a polynomial $f \in \overline{k}[t]$, such that $f(A)^2 = A$.

Proof. If R is a commutative ring with unit, in which 2 is invertible, it follows from the Taylor expansion of $(1+z)^{1/2}$ that 1+p is a square in R, for every nilpotent $p \in R$. If b is a unit in R, let \overline{t} be the image of t in $R[t]/(t-b^2)^n$, $n \ge 1$. Since $\overline{s} = \overline{t} - \overline{b}^2$ is nilpotent in this ring, writing $\overline{t} = \overline{b}^2(1+(\overline{b})^{-2}\overline{s})$ implies that \overline{t} is a square.

Let m(t) be the minimal polynomial of A.

(2.2.1)
$$m(t) = \prod_{1 \le i \le s} (t - a_i)^{n_i}.$$

Choose $b_i \in \overline{k}$ such that $a_i = b_i^2$. Then

(2.2.2)
$$\overline{k}[A] \cong \overline{k}[t]/(m(t)) \cong R_1 \oplus \cdots \oplus R_s$$
,

where $R_i = \overline{k}[t]/(t - b_i^2)^{n_i}$. The conclusion follows easily

PROPOSITION 2.2.2. For any $A \in \overline{G}$, there exist $S, T \in \overline{G}$ such that $\sigma(S) = S$, $\sigma(T) = T^{-1}$ and A = ST.

Proof. By the lemma, there exists an $S \in \overline{F}$ such that $S^2 = A\sigma(A)$. As S is a polynomial in $A\sigma(A)$, $\sigma(S) = S$. Set $T = S^{-1}A$. Then $\sigma(T) = \sigma(A)\sigma(A)\sigma(S)^{-1} = \sigma(A)S^{-1}$, and $T\sigma(T) = (S^{-1}A)(\sigma(A)S^{-1}) = S^{-1}(S^2)S^{-1} = I$.

2.3. Let $J = J_n$. For $A \in Gl_{2n}$ set $A^J = -J^t A J$, where tA is the transpose of A.

PROPOSITION 2.3.1. Let k denote a local or global field of characteristic zero. There exist P_1 , $P_2 \in \text{Sp}_n$, such that $A^J = P_1AP_2$.

Proof. By Proposition 2.2.2, there exist $S, T \in \overline{\mathrm{Gl}}_{2n}$, such that $T^J = T^{-1}$, $S^J = S$ and A = ST. Then $A^J = T^{-1}S = T^{-1}AT^{-1}$. Since $T \in \mathrm{Sp}_n$ if and only if $T \in \mathrm{Gl}_{2n}$ and $T^J = T^{-1}$, the proposition will follow if we can show there exists such a decomposition with $T \in \mathrm{Gl}_{2n}$.

The set

(2.3.1)
$$\mathscr{V}(A) = \{(P_1, P_2) | A^J = P_1 A P_2, P_1, P_2 \in \overline{Sp}_n\},\$$

is an algebraic subset of $\overline{\text{Sp}}_n \times \overline{\text{Sp}}_n$. Given $(P_1, P_2), (Q_1, Q_2) \in \mathscr{V}(A)$, set $R = Q_1 P_1^{-1}$. As $P_1 A P_2 = Q_1 A Q_2$, it follows that $Q_2 = A^{-1}R^{-1}AP_2$, so that $R \in A\overline{\text{Sp}}_n A^{-1}$. Define a left action of $\overline{\text{Sp}}_n \cap A\overline{\text{Sp}}_n A^{-1}$ on $\mathscr{V}(A)$ by $R(P_1, P_2) = (RP_1, A^{-1}RAP_2)$. $\mathscr{V}(A)$ is a left principal homogeneous space for this group.

 $A\overline{\operatorname{Sp}}_n A^{-1}$ is the subgroup of $\overline{\operatorname{Gl}}_{2n}$ which leaves invariant the symplectic form associated to the matrix $J' = {}^tAJA^{-1}$. $\overline{\operatorname{Sp}}_n \cap A\overline{\operatorname{Sp}}_n A^{-1}$ is thus the group preserving the forms J and J'; denote it by $\overline{\operatorname{Sp}}(J, J')$.

Since both forms are nondegenerate, an endomorphism Φ is defined by the condition that it satisfy $J'(x, y) = J(\Phi x, y)$. In the terminology of [KI], Φ is a symmetric operator and $\overline{\text{Sp}}(J, J')$ is the centralizer of Φ in $\overline{\text{Sp}}(J)$. By Corollary 5.6 of [KI], $\overline{\text{Sp}}(J, J')$ is connected and there is an exact sequence

$$(2.3.2) 1 \to U \to \overline{\operatorname{Sp}}(J, J') \to S \to 1,$$

where U is a unipotent group and S is a product of symplectic groups. (The statement in **[Kl]** is for a finite field, but it is noted in the proof of Proposition 5.5 that the needed constructions are valid for any algebraically closed field.) Because U is linear and k has characteristic zero, U is connected.

From (2.3.2) we obtain the sequence in Galois cohomology

$$(2.3.3) H1(k, U) \to H1(k, \overline{\operatorname{Sp}}(J, J')) \to H1(k, S),$$

which is exact at the middle term (cf. **[Sp]**, Proposition 2.2). Since U is connected and unipotent, $H^1(k, U) = 0$ (**[Se]**, III, §2.1, Proposition 6). S is a product of symplectic groups which have trivial first

cohomology ([Se], III, §1.2, Proposition 3), and thus $H^1(k, S) = 0$ ([Sp]), and $\mathcal{V}(A)$ has a rational point.

2.4. In this section k will now be a non-Archimedian local field of characteristic zero. Let $\overline{\mathscr{X}} = \overline{G} \times \overline{G}$ and $\mathscr{X} = G \times G$ and define an action on the left (resp. right) of $\overline{Sp} \times \overline{Sp}$ (resp. \overline{G}) on $\overline{\mathscr{X}}$ by coordinate (resp. diagonal) multiplication on the left (resp. right). Let $\mathscr{S}_1(\mathscr{X})$ denote the space of functions on \mathscr{X} which are locally constant, constant on the orbits of $Sp \times Sp$ and compactly supported modulo the action of $Sp \times Sp$, i.e. for each $f \in \mathscr{S}_1$, there exists a compact set $C \subset \mathscr{X}$ such that supp $f \subset (Sp \times Sp)C$.

Define the involution σ on $\overline{\mathscr{X}}$ by $\sigma(g_1, g_2) = ((g_2^{-1})^J, (g_1^{-1})^J)$. Let $\mathscr{S}_1(G)$ denote the space of locally constant functions on G which are constant on the orbits of Sp acting by left multiplication and which are compactly supported modulo Sp. We now have a symplectic version of Theorem 3 in [Ge-Ka,1].

THEOREM 2.4.1. Define the operator A on $\mathcal{S}_1(G)$ by $(Af)(g) = f((g^{-1})^J)$. If $C(f_1, f_2)$ is a G-invariant, bilinear form on $\mathcal{S}_1(G)$, then $C(f_1, f_2) = C(Af_2, Af_1)$.

Proof. The proof follows that of [Ge-Ka,1]. To use their Theorem 1', we need only verify that the $\overline{Sp} \times \overline{Sp} \times \overline{G}$ orbits in $\overline{\mathscr{X}}$ are permuted by σ and that the $Sp \times Sp \times G$ orbits in \mathscr{X} are fixed by σ . The first condition is obvious.

Writing $(g_1, g_2) = (s_1, s_2^{-1})(1, s_2g_2g_1^{-1}s_1)(s_1^{-1}g_1)$, we see that the Sp × Sp × G orbits may be identified with the Sp double cosets in G. We have

(2.4.1)
$$\sigma(s_1g_1g, s_2g_2g) = ((s_2^{-1})^J(g_2^{-1})^J(g^{-1})^J, (s_1^{-1})^J(g_1^{-1})^J(g^{-1})^J),$$

= $(s_2, s_1)((g_2^{-1})^J, (g_1^{-1})^J)(g^{-1})^J,$

so that orbits are invariant. By Proposition 2.3.1, there exist s_3 and $s_4 \in Sp$, such that

(2.4.2)
$$\sigma(1, s_1gs_2) = (s_3g^{-1}s_4, 1) = (1, s_4^{-1}gs_3^{-1})(s_3g^{-1}s_4),$$

so that the orbits are invariant by σ .

Let π be an irreducible, admissible representation of G on a space V. Define the representation $\hat{\pi}$ on V by $\hat{\pi}(g) = \pi((g^{-1})^J)$. By

Theorem 2 in [Ge-Ka,1], $\hat{\pi}$ is equivalent to π' , the contragradient of π .

By Frobenius reciprocity (cf. [Be-Ze,1], Theorem 2.28), π admits an embedding in \mathcal{M}_n if and only if it supports a nontrivial, Sp_n invariant linear functional; the embedding is unique up to scalar if and only if dim Hom_{Sp}(π , 1) equals one.

THEOREM 2.4.2. Let π be an irreducible, admissible representation of Gl_{2n} . Then dim $\operatorname{Hom}_{\operatorname{Sp}_n}(\pi, 1) \leq 1$.

Proof. This a symplectic restatement of Theorem 4 and its corollary in [Ge-Ka,1]. In light of Theorem 2.4.3, their proof applies *mutatis mutandis*. \Box

3. Unitary disjointness of models. The main result of this section is the following theorem.

THEOREM 3.1. Let π be an irreducible, unitary representation of Gl_n . Let s_1 , s_2 be distinct integers, $0 \le s_1$, $s_2 \le \left[\frac{n}{2}\right]$. Then $Hom_{Gl_n}(\pi, \mathcal{M}_{s_1})$ is nonzero for at most one *i*.

Proof. For simplicity denote $\mathcal{M}_i = \mathcal{M}_{s_i}$, $M_i = M_{s_i}$ and $\psi_i = \psi_{s_i}$ (see §1). Assume there are nontrivial maps $\pi \to \mathcal{M}_i$, i = 1, 2.

 π is equivalent to the Hermitian contragradient representation $\pi^+ = \overline{\pi}'$. By dualizing, obtain $\mathscr{M}'_2 \to \pi' \cong \overline{\pi}$. Let $\iota_2 = \operatorname{Ind}_{\mathscr{M}_2}^{\operatorname{Gl}_n} \psi_2^{-1}$. For $f_2 \in \iota_2$, $F \in \mathscr{M}'_2$, the pairing

(3.1.1)
$$\{f, F\} = \int_{M_2 \setminus \operatorname{Gl}_n} f(g) F(g) \, d\dot{g}$$

determines a map $\iota_1 \to \mathscr{M}'_2$, via $f \to \{f, \cdot\}$. Since $\iota_2 \cong \overline{\iota}_2$ (see §1), we obtain a nontrivial map $\iota_2 \to \pi$ ([Be-Ze, 1]); thus the composite

$$(3.1.2) l_2 \to \pi \to \mathcal{M}_1$$

is non trivial. By Frobenius reciprocity, this corresponds to an element of $\operatorname{Hom}_{M_1}(\iota_2, \psi_1)$.

Associated to ι_2 is a unique isomorphism class of equivariant *l*-sheaves \mathscr{F} on $M_2 \setminus \operatorname{Gl}_n$ ([**Be-Ze**, 1], Proposition 2.23). The right action of M_1 on $M_2 \setminus \operatorname{Gl}_n$ is constructive ([**Be-Ze**,1], Theorem A, 6.15) with locally closed orbits (ibid., Proposition 6.8(c)).

The restriction of \mathscr{F} to the orbit $M_2 w M_1$ is associated to the representation $\operatorname{ind}_{(M_1 \cap w^{-1}M,w)}^{M_1} \psi_2^w$, where $\psi_2^w(g) = \psi_2(wgw^{-1})$,

 $g \in M_1 \cap w^{-1}M_2w$. Frobenius reciprocity gives

(3.1.3)
$$\operatorname{Hom}_{M_{1}}(\operatorname{ind}_{(M_{1}\cap w^{-1}M_{2}w)}^{M_{1}}\psi_{2}^{w},\psi_{1})$$
$$=\operatorname{Hom}_{M_{1}\cap w^{-1}M_{2}w}(\psi_{2}^{w},\psi_{1}).$$

The groups M_1 and M_2 are associated to symplectic forms with different ranks, as are M_1 and $w^{-1}M_2w$. Thus there exists $h \in M_1 \cap w^{-1}M_2w$ such that $\psi_2^w(h) \neq \psi_1(h)$; hence the right side of (3.3) is zero (cf. [KI], Proposition 1.3). Consequently there do not exist quasi-invariant distributions on \mathscr{F} supported on a single orbit of M_1 .

The proof of Theorem 6.9 in [**Be-Ze**,1] for invariant distributions can be trivially modified to apply to quasi-invariant distributions, the result being that if an *l*-group acts constructively on an *l*-sheaf \mathscr{F} such that no orbit supports a non-zero quasi-invariant distribution, then there do not exist non-zero quasi-invariant distributions of \mathscr{F} . Therefore the composite (3.2) is zero and the theorem follows. \Box

3.2. Disjointness of symplectic and Whittaker models. In this section we drop the assumption of unitarity.

PROPOSITION 3.2.1. Let π be an irreducible, admissible representation. If π has a Whittaker (resp. symplectic) model, then its contragradient π' likewise has a Whittaker (resp. symplectic) model.

Proof. Having a Whittaker model is equivalent to the existence of a nontrivial, ψ_{2n} -quasi-invariant distribution T. The contragradient π' is equivalent to the representation obtained by composing π with the automorphism $g \to {}^tg^{-1}$ ([Ge-Ka,1], Theorem 2). This automorphism takes U_{2n} to the opposite unipotent subgroup of lower triangular matrices. The opposition element s_0 of the Weyl group conjugates this back to U_{2n} . Therefore $u \to s_0{}^tu^{-1}s_0^{-1}$ preserves U_{2n} and the representation $g \to \pi(s_0{}^tg^{-1}s_0^{-1})$ is equivalent to π' . Thus we have

$$(3.2.1) \quad T(\pi(s_0{}^t u^{-1} s_0^{-1})f) = \psi_{2n}(s_0{}^t u^{-1} s_0^{-1})T(f) \\ = \psi_{2n}^{-1}(u)T(f).$$

 ψ_{2n}^{-1} is a nondegenerate Whittaker; hence π' has a Whittaker model.

The same argument applied to $g \rightarrow -J_{2n}{}^t g^{-1} J_{2n}$ gives the symplectic statement.

THEOREM 3.2.2. An irreducible, admissible representation cannot have both a Whittaker model and a symplectic model.

Proof. If we have $\pi \to \operatorname{Ind}_{U_{2n}}^{\operatorname{Gl}_{2n}} \psi_{2n}$, we obtain $\pi' \to \operatorname{Ind}_{U_{2n}}^{\operatorname{Gl}_{2n}} \psi_{2n}$. As in §3.1, dualizing gives $\operatorname{ind}_{U_{2n}}^{\operatorname{Gl}_{2n}} \psi_{2n} \to \pi$ (cf. [Ge-Ka, 1] §3). Thus if π has a symplectic model, we obtain the composite $\operatorname{ind}_{U_{2n}}^{\operatorname{Gl}_{2n}} \psi_{2n} \to$ $\operatorname{Ind}_{\operatorname{Sp}_n}^{\operatorname{Gl}_{2n}} 1..$

4. Orbits. For applications in $\S11$, we need descriptions of orbits in certain flag varieties. We prove here some general results.

4.1. Sp_n Orbits in $P_{2n-k,k} \setminus \text{Gl}_{2n}$. To compute these orbits it suffices to consider the cases $k \leq n$.

Let \mathscr{X}_k denote the variety of k-planes in 2n-space. For $X_1, X_2 \in \mathscr{X}_k$, let J', J'' be the restrictions of J to X_1 and X_2 respectively. It follows from Witt's theorem that X_1 and X_2 are conjugate by a symplectic endomorphism if and only if the radicals of J' and J'' have the same dimension. Thus \mathscr{X}_k is the union of symplectic orbits

$$(4.1.1) \qquad \qquad \mathscr{X}_k(r) = \{ X \in \mathscr{X}_k | \dim \operatorname{Rad} J |_X = r \}.$$

 $\mathscr{X}_k(r)$ is nonempty if and only if $k \equiv r(2)$.

PROPOSITION 4.1.1. If $k \leq \frac{n}{2}$ set

$$w_k = \begin{pmatrix} w'_k & 0\\ 0 & w'_k \end{pmatrix}$$

where w'_k equals

(4.1.2)
$$\begin{pmatrix} 0 & 0 & 1_k \\ 0 & 1_{n-2k} & 0 \\ 1_k & 0 & 0 \end{pmatrix}$$

If $k > \frac{n}{2}$ set $w_k = \begin{pmatrix} w'_k & 0 \\ 0 & w'_k \end{pmatrix}$ where w'_k equals

(4.1.3)
$$\begin{pmatrix} 0 & 0 & 1_{n-k} \\ 0 & 1_{2k-n} & 0 \\ 1_{n-k} & 0 & \end{pmatrix}.$$

Let

$$\gamma_r = \begin{pmatrix} 1_r & & & \\ & 0 & 1_{\lambda-r} & 0 & 0 \\ & 0 & 0 & 0 & 1_{\lambda_r} \\ & & 1_{n-k} & & \\ & & & 1_r \\ & & & 1_{\lambda-r}0 & & 0 \\ & 0 & 0 & & 1_{\lambda-r}0 \\ & & & & & 1_{n-k} \end{pmatrix}$$

Then

(4.1.5)
$$P_{2n-k,k} \setminus \operatorname{Gl}_{2n} / \operatorname{Sp}_n = \bigcup_{\substack{r \le k \\ r \equiv k(2)}} P_{2n-k,k} w_k \gamma_r \operatorname{Sp}_n.$$

Proof. We may choose a representative for the orbit $\mathscr{X}_k(r)$ which is spanned by the set $\{f_1, \ldots, f_r, f_{r+1}, \ldots, f_{\lambda}, e_{r+1}, \ldots, e_{\lambda}\}$, where $\lambda = (k+r)/2$ and $\{e_1, \ldots, e_n, f_1, \ldots, f_n\}$ is the standard symplectic basis relative to J. A basis for the k-plane X_0 fixed by $P_{2n-k,k}$ is $\{f_{n-k+1}, \ldots, f_n\}$. The image of X_0 under w_k is the space spanned by $\{f_1, \ldots, f_k\}$. γ_r then maps this set to $\{f_1, \ldots, f_{\lambda}, e_{r+1}, \ldots, e_{\lambda}\}$.

4.1.1. We specialize now to the case k = n and describe the stabilizer of an orbit. This will be used in §11 in establishing the uniqueness of symplectic functionals on certain reducible representations.

PROPOSITION 4.1.1.1. Let Σ_r be the stabilizer of the Sp_n orbit of $P_{n,n}\gamma_r$. Then $\Sigma_r \cong (\operatorname{Gl}_r \times \operatorname{Sp}_{(n-r)/2} \times \operatorname{Sp}_{(n-r)/2})U'_r$, where U'_r is unipotent. In particular, for the n-plane X_r , with basis $\{f_1, \ldots, f_{(n-r)/2}, e_{r+1}, \ldots, e_{(n-r)/2}\}$, $\operatorname{Gl}_r \times \operatorname{Sp}_{(n-r)/2} \times \operatorname{Sp}_{(n-r)/2}$ is realized as the matrices of the form

$$\begin{pmatrix} g & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & A & 0 & 0 & B & 0 \\ 0 & 0 & A' & 0 & 0 & B' \\ 0 & 0 & 0 & & {}^t g^{-1} & 0 & 0 \\ 0 & C & 0 & 0 & D & 0 \\ 0 & 0 & C' & 0 & 0 & D' \end{pmatrix}$$

where $g \in Gl_r$, $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ and $\begin{pmatrix} A' & B' \\ C' & D' \end{pmatrix}$ are in $Sp_{(n-r)/2}$, and U'_r is the group of matrices of the form

(4.1.1.2)
$$\begin{pmatrix} 1_r & X & Y & Z \\ 0 & 1_{n-r} & {}^t Z & 0 \\ 0 & 0 & 1_r & 0 \\ 0 & 0 & -{}^t X & 1_{n-r} \end{pmatrix},$$

where Y is symmetric.

Proof. Σ_r preserves the radical of J restricted to X_r ; hence it is contained in the symplectic parabolic subgroup $P_{\{f_1,\ldots,f_r\}}$, fixing this isotropic subspace. The unipotent radical of $P_{\{f_1,\ldots,f_r\}}$ is precisely U'_r ; it clearly leaves X_r invariant.

The Levi component of the parabolic is $\operatorname{Gl}_r \times \operatorname{Sp}_{n-r}$, realized as the matrices of the form

(4.1.1.3)
$$\begin{pmatrix} g & 0 & 0 & 0 \\ 0 & a & 0 & b \\ 0 & 0 & {}^{t}g^{-1} & 0 \\ 0 & c & 0 & d \end{pmatrix},$$

where $g \in Gl_r$ and $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in Sp_{n-r}$. For such an element to fix X_r , the symplectic part must leave the span of $\{e_{r+1}, \ldots, e_{(n-r)/2}, f_{r+1}, \ldots, f_{(n-r)/2}\}$ invariant. Since the symplectic form restricted to this space is nondegenerate, the orthogonal complement is fixed. \Box

It is straightforward to compute the dimension of the stabilizers Σ_r . If *n* is further assumed to be even we have the

COROLLARY 4.1.1.2. Let $n \equiv 0(2)$. There is a single open Sp_n orbit in $P_{n,n} \setminus \operatorname{Gl}_{2n}$ given by the double coset $P_{n,n}\gamma_0 \operatorname{Sp}_n$, where

(4.1.1.4)
$$\gamma_0 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

4.2. $\operatorname{Sp}_{n/2} \times \operatorname{Sp}_{n/2} Orbits in \operatorname{Sp}_n / (P_{n,n} \cap \operatorname{Sp}_n)$. Assume *n* is even and set $P'_{n,n} = P_{n,n} \cap \operatorname{Sp}_n$. Acting on the right $P'_{n,n}$ preserves the span of $\{f_1, \ldots, f_n\}$. Thus we consider the variety $P'_{n,n} \setminus \operatorname{Sp}_n$ of maximal isotropic subspaces.

PROPOSITION 4.2.1. There is a unique open $\operatorname{Sp}_{n/2} \times \operatorname{Sp}_{n/2}$ orbit in $\operatorname{Sp}_n/P'_{n,n}$ given by $(\operatorname{Sp}_{n/2} \times \operatorname{Sp}_{n/2})\rho J P'_{n,n}$, where

(4.2.1)
$$\rho = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Proof. Let (V_n, \langle , \rangle) denote an *n*-dimensional symplectic vector space with standard ordered basis $\{e_1, \ldots, e_{n/2}, f_1, \ldots, f_{n/2}\}$ associated to $J_{n/2}$. Set $W = V_n \oplus V_n$ and define a symplectic form on W by

(4.2.2)
$$\langle (v_1, v_2), (v'_1, v'_2) \rangle = \langle v_1, v'_1 \rangle - \langle v_2, v'_2 \rangle.$$

Let V_n^+ (resp. V_n^-) be the embedding of V_n on the first (resp. second) factor of W. Let e_i^{\pm} (resp. f_i^{\pm}) be the images of e_i (resp. f_i) in V_n^{\pm} . With respect to the basis $\{e_1^+, \ldots, e_{n/2}^+, f_1^+, \ldots, f_{n/2}^+, e_1^-, \ldots, e_{n/2}^-, f_1^-, \ldots, f_{n/2}^-\}$, the matrix of the form on W is $\begin{pmatrix} J & 0 \\ 0 & -J \end{pmatrix}$.

The transformation from W to V_{2n} defined by $e_i^+ \to e_i \quad f_i^+ \to f_i$, $e_i^- \to f_{n/2+i}$ and $f_i^- \to e_{(n/2)+i}$, $1 \le i \le n/2$ is an isometry. The images of V^+ and V^- are spanned by the images of $\{e_1, \ldots, e_{n/2}, f_1, \ldots, f_{n/2}\}$ and $\{e_{n/2+1}, \ldots, e_n, f_{n/2+1}, \ldots, f_n\}$ respectively.

According to Proposition 2.1 in [**PS-Ra**], the only invariant of an $\operatorname{Sp}_{n/2} \times \operatorname{Sp}_{n/2}$ orbit in $P'_{n,n} \setminus \operatorname{Sp}_n$ is the dimension of the intersection of a representative *n*-plane with V^+ or V^- . Thus there is one open orbit which has a representative intersecting V^+ and V^- only in 0. A simple example of such a maximal isotropic subspace is given by the span of $\{e_i + f_{(n/2)+i}\}$. This space is the image of the span of $\{f_1, \ldots, f_n\}$ by the matrix

(4.2.3)
$$\begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} = J^{-1}\rho^{-1}.$$

Thus the open orbit in $P'_{n,n} \setminus \text{Sp}_n$ is $P'_{n,n} J^{-1} \rho^{-1}(\text{Sp}_{n/2} \times \text{Sp}_{n/2})$. Inverting this gives the theorem.

5. Gl_2 . In this case there are two models, the Whittaker model and the pure symplectic (Sl_2) model.

In the notation of [Ze] the admissible representations of Gl_2 are of two types: supercuspidal; $\langle \alpha_1 \times \alpha_2 \rangle$, where α_1 and α_2 are characters of k^{\times} . In general, supercuspidal representations have Whittaker models ([Ge-Ka,2]). The second type is irreducible if and only if $\alpha_1 \neq \alpha_2 \nu^{\pm 1}$. Whittaker models satisfy a hereditary property which says that the representation parabolically induced off representations with Whittaker models themselves have Whittaker models (cf. [**Ro**] Theorem 2, for the precise statement). Thus in the case $\alpha_1 \neq \alpha_2 \nu^{\pm 1}$, these representations have Whittaker models.

The remaining cases are $\langle \alpha \times \alpha \nu^{\pm 1} \rangle$. These representations are the twists of the identity representation and Steinberg representation St. St is square integrable (mod center) and hence has a Whittaker model ([Ze] Example 9.3, Theorems 9.3, 9.7). The identity clearly has the symplectic model.

6. The unitary dual of Gl_n . We now recall the classification of the irreducible, unitary representations of Gl_n due to M. Tadić ([Ta,1]).

Let $D_0(n)$ denote the set isomorphism classes of irreducible representation of Gl_n which are square integrable modulo center and $D_0 = \bigcup_{n\geq 0} D_0(n)$. Let D(n) be the set of representations of the form $\nu^{\alpha}\delta$, where α is real and $\delta \in D_0$; $D = \bigcup_{n\geq 0} D(n)$, M(D) is the collection of all finite (unordered) multisets on D.

Given $a = (\delta_1, \ldots, \delta_n) \in M(D)$, $\delta_i = \nu^{\alpha_i} \delta_0^i$, $\delta_0^i \in D_0$, we may assume that $\alpha_1 \ge \cdots \ge \alpha_n$. The induced representation $\delta_1 \times \cdots \times \delta_n$ has a unique irreducible quotient module, L(a).

Given an irreducible representation σ , let σ^+ denote its Hermitian (complex conjugate) contragradient. Set $\Pi(\sigma, \alpha) = \nu^{\alpha} \sigma \times \nu^{-\alpha} \sigma^+$, for α real. For a positive integer n and $\delta \in D_0$, set $u(\delta, n) = L(\nu^p \delta, \nu^{p-1} \delta, \dots, \nu^{-p} \delta)$, where p = (n-1)/2. Thus if δ is a representation of Gl_m , $u(\delta, n)$ is a representation of Gl_{nm} . (We sometimes write $u(\delta_m, n)$.)

THEOREM 6.1 (*Tadić*). Let $B = \{u(\delta, n), \Pi(u(\delta, n), \alpha) | \delta \in D_0, 0 < \alpha < \frac{1}{2}\}$.

(i) If $\sigma_1, \ldots, \sigma_r \in B$, then $\sigma_1 \times \cdots \times \sigma_r$ is irreducible and unitary. (ii) If π is an irreducible unitarizable representation, then there exist $\tau_1, \ldots, \tau_s \in B$, unique up to permutation, such that $\pi = \tau_1 \times \cdots \times \tau_s$.

7. The unitary dual of Gl_3 . In this section we explicate Theorem 6.1 in the case of Gl_3 . Denote by B_n the set B of Theorem 6.1 for Gl_n , i.e. the set of representations of Gl_m , $m \le n$, contained in B. Let B'_n denote the set of elements of B_n which are representations of Gl_n . B_3 is the disjoint union of $B_1 = B'_1$, B'_2 and B'_3 .

For Gl_2 , B'_2 is composed of:

(i) The supercuspidal representations and the Steinberg representation St. These are of the form $u(\delta_2, 1)$.

(ii) The unitary characters. These are of the form

$$L(\nu^{1/2}\delta_1\times\nu^{-1/2}\delta_1), \qquad \delta_1\in B_1$$

([Ze], §§9.1 and 3.2).

(iii) The complementary series $\Pi(\delta_1, \alpha)$, $\delta_1 \in B_1$, $\alpha \in (0, \frac{1}{2})$. The rest of B_2 comes from B_1 , viz.

(iv) $\delta_1 \times \delta_2$, δ_1 , $\delta_2 \in B_1$.

 B_3 is the union of B_2 and B'_3 , which contains:

- (i') The square integrable representations $\delta_3 = u(\delta_3, 1)$.
- (ii") The unitary characteris $u(\delta_1, 3) = L(\nu \delta_1 \times \delta_1 \times \nu^{-1} \delta_1), \delta_1 \in B_1$.

The representations arising from B_1 and B'_2 are:

- (iii') $\chi_1 \times \delta_2$, $\chi_1 \in B_1$, $\delta_2 \in D_0(2)$.
- (iv') $\chi_1 \times \chi_2$, χ_i a unitary character of Gl_i .
- (v') $\chi_1 \times \nu^{\alpha} \chi_2 \times \nu^{-\alpha} \chi_2$, χ_1 , $\chi_2 \in B_1$, $0 < \alpha < \frac{1}{2}$.

The remaining unitary representations of Gl_3 arise from B_1 :

 $(\mathbf{vi}') \quad \chi_1 \times \chi_2 \times \chi_3, \ \chi_1, \ \chi_2, \ \chi_3 \in B_1.$

8. Models for Gl₃. For Gl₃ there are only two models, the Whittaker model \mathcal{M}_0 and the mixed model \mathcal{M}_1 . The main result of this section is the following.

THEOREM 8.1. Let π be an irreducible unitary representation of Gl₃. Then π can be uniquely embedded as a submodule of \mathcal{M}_0 or \mathcal{M}_1 .

Proof. By Theorem 3.1, π cannot be realized in both models. Since the Whittaker model is unique, we need to show that every representation has a model and that the mixed model is unique. We do this by examining the catalog of representations compiled in the previous section, showing that they all have models and then examining those with mixed models to establish uniqueness in those cases.

The simplest cases to deal with are those with Whittaker models. We need two facts. The first is the hereditary property of Whittaker models quoted in §5. The other is that square integrable representations have Whittaker models, since in the terminology of [Ze] they are transposes of segments ([Ze], Theorem 9.3). Thus case (i'), (iii'), (v') and (vi') all have Whittaker models.

Case (ii') is the unitary character χ_3 . Frobenius reciprocity gives $\operatorname{Hom}_{\operatorname{Gl}_3}(\chi_3, \mathcal{M}_1) = \operatorname{Hom}_{\operatorname{Sl}_2}(1, 1)$, thus the existence and uniqueness in this case. The remaining case (iv') is $\chi_1 \times \chi_2$ where χ_i is a unitary

character of Gl_i . Inducing in stages, we have

(8.1)
$$\mathscr{M}_{1} \cong \operatorname{Ind}_{P_{1,2}}^{\operatorname{Gl}_{3}}[\operatorname{Ind}_{1\times \operatorname{Sl}_{2}}^{\operatorname{Gl}_{1}} 1] \otimes 1.$$

Two guises of Frobenius reciprocity ([**Be-Ze,2**]), Proposition 1.9(b); [**Be-Ze,2**] Theorem 2.28) imply

(8.2)
$$\operatorname{Hom}_{\operatorname{Gl}_{3}}(\operatorname{Ind}_{P_{1,2}}^{\operatorname{Gl}_{3}}\chi_{1}\otimes\chi_{2}, \operatorname{Ind}_{1\times\operatorname{Sl}_{2}\times N_{1}}^{\operatorname{Gl}_{3}}1) = \operatorname{Hom}_{\operatorname{Gl}_{1}\times\operatorname{Gl}_{2}}(\tilde{r}_{1,2}(\operatorname{Ind}_{P_{1,2}}^{\operatorname{Gl}_{3}}\chi_{1}\otimes\chi_{2}), \operatorname{Ind}_{1\times\operatorname{Sl}_{2}}^{\operatorname{Gl}_{1}\times\operatorname{Gl}_{2}}1), = \operatorname{Hom}_{\operatorname{Sl}_{2}}(\tilde{r}_{1,2}(\operatorname{Ind}_{P_{1,2}}^{\operatorname{Gl}_{3}}\chi_{1}\otimes\chi_{2})|_{\operatorname{Sl}_{2}}, 1).$$

According to Theorem 1.2 ([Ze]), the $Gl_1 \times Gl_2$ module

(8.3)
$$\tilde{r}_{1,2}(\operatorname{Ind}_{P_{1,2}}^{\operatorname{Gl}_3}\chi_1\otimes\chi_2)$$

has a filtration of length two with quotient module (closed orbit) $\chi_1 \otimes \chi_2$ and submodule (open orbit) $\nu^{-1/2}\chi_2 \otimes \operatorname{Ind}_{P_{1,1}}^{\operatorname{Gl}_2}(\chi_1 \otimes \nu^{1/2}\chi_2)$. The last representation cannot support an Sl₂ invariant functional since the second factor has a Whittaker model. Restricted to Sl₂, the first representation is the identity, it has a unique Sl₂ invariant functional and thus the quotient of $\tilde{r}_{1,2}(\operatorname{Ind}_{P_{1,2}}^{\operatorname{Gl}_3}\chi_1 \otimes \chi_2)$ supports this functional. Hence (8.2) is one dimensional and $\chi_1 \times \chi_2$ is uniquely embedded in \mathscr{M}_1 .

9. Representations of Gl_3 without models. In this section we determine the admissible, irreducible representations of Gl_3 which do not embed in either \mathcal{M}_0 or \mathcal{M}_1 . It turns out that these are essentially the non-unitarizable representations, i.e. what remains after discarding the representations arising from twisting the inducing data in the set of representations that give the unitary dual.

9.1. Consider the representation $I = \operatorname{Ind}_{P_{2,1}}^{G_{1_3}} \nu^{1/2} \otimes \nu^{-1}$. In the notation of [Ze], $I = \langle 1 \times \nu \rangle \times \nu^{-1}$. By Proposition 2.1 and Corollary 2.3 in [Ze], I is multiplicity free, as is $J = \nu^{-1} \times \langle 1 \times \nu \rangle$, and they have the same composition factors. By transitivity of induction, J embeds in $\nu^{-1} \times 1 \times \nu$. Both of these have unique irreducible submodules $\langle J \rangle$ and $\langle \nu^{-1} \times 1 \times \nu \rangle$, which are equal. $\langle J \rangle = 1$, the trivial representation ([Ze], Proposition 1.10, example 3.2). Thus we have an exact sequence

$$(9.1.1) 0 \to \langle I \rangle \to I \to 1 \to 0.$$

THEOREM 9.1.1. The representation $\langle I \rangle$ has neither a Whittaker model nor a mixed model.

Proof. Consider the case of the mixed model. By Frobenius reciprocity

(9.1.2)
$$\operatorname{Hom}_{\operatorname{Gl}_{3}}(\langle I \rangle, \mathscr{M}_{1}) = \operatorname{Hom}_{(1 \times \operatorname{Sl}_{2})N_{1,2}}(\langle I \rangle, 1),$$
$$= \operatorname{Hom}_{\operatorname{Sl}_{2}}(r_{1,2}(\langle I \rangle)|_{\operatorname{Sl}_{2}}, 1).$$

By exactness of $r_{1,2}$, $r_{1,2}(I)/r_{1,2}(\langle I \rangle) = 1$.

We describe $r_{1,2}(I)$ in detail. There are two orbits of $P_{1,2}$ on $P_{2,1} \setminus Gl_3$, viz. the closed orbit which has stabilizer $P_{1,1,1}$, and the orbit $P_{2,1}w$, where

(9.1.3)
$$w = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

The stabilizer of $P_{2,1}w$ is $Gl_1 \times Gl_2$. Orbital analysis ([Ca], 3.4) implies that I has a $P_{1,2}$ submodule equivalent to

(9.1.4)
$$R_1 = \operatorname{ind}_{\operatorname{Gl}_1 \times \operatorname{Gl}_2}^{P_{1,2}} \nu^{-1} \otimes \nu^{1/2},$$

and corresponding $P_{1,2}$ quotient module

(9.1.5)
$$R_2 = \operatorname{ind}_{P_{1,1,1}}^{P_{1,2}} \nu \otimes \nu^{1/2} \otimes \nu^{-3/2}.$$

Thus we have the exact sequence of $P_{1,2}$ modules

$$(9.1.6) 0 \to R_1 \to I \to R_2 \to 0,$$

and the exact sequence of $Gl_1 \times Gl_2$ modules

$$(9.1.7) 0 \to r_{1,2}(R_1) \to r_{1,2}(I) \to r_{1,2}(R_2) \to 0.$$

The center of $Gl_1 \times Gl_2$ acts on $r_{1,2}(R_1)$ and $r_{1,2}(R_2)$ by the characters

(9.1.8)
$$\begin{pmatrix} s & 0 & 0 \\ 0 & t & 0 \\ 0 & 0 & t \end{pmatrix} \to 1, \frac{|s|}{|t|},$$

respectively. Thus

$$(9.1.9) r_{1,2}(I) = r_{1,2}(R_1) \oplus r_{1,2}(R_2).$$

Let $f \in R_1$. From the relation

(9.1.10)
$$f\begin{pmatrix} s & x & y \\ 0 & s \\ 0 & g \\ 0 & s \end{pmatrix} = |s|^{-2} |\det g| f\begin{pmatrix} 1 & s^{-1}x & s^{-1}y \\ 0 & s \\ 0 & s \end{pmatrix},$$

we may, via the restriction to $N_{1,2}$, identify R_1 with the space of Schwartz functions on F^2 . The action of $N_{1,2}$ becomes

(9.1.11)
$$\left(\begin{pmatrix} 1 & u & v \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} f \right) (x, y) = f(x + u, y + v).$$

Write $f = \sum_{i=1}^{n} c_i \chi_i$, where $c_i \in \mathbb{C}$ and χ_i is the characteristic function of the ball of some small radius r, entered at (u_i, v_i) . Let χ_0 be the characteristic function of the ball of radius r centered at (0, 0). Then

(9.1.12)
$$\chi_i = \begin{pmatrix} 1 & u_i & v_i \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \chi_0,$$

which equals χ_0 in $r_{1,2}(R_1)$. Thus $f \equiv c\chi_0$, and $r_{1,2}(R_1)$ is the one dimensional representation $1 \otimes 1$. Restricted to Sl_2 , it is trivial.

Since the center of $Gl_1 \times Gl_2$ acts on $r_{1,2}(R_2)$ by a nontrivial character, the trivial representation does not occur there. Thus $r_{1,2}(\langle I \rangle)$ will have a nonzero Sl_2 invariant functional if and only if $r_{1,2}(R_2)$ has one.

 $N_{1,2}$ acts trivially on R_2 , hence $R_2 = r_{1,2}(R_2)$, and restriction to $Gl_1 \times Gl_2$ gives

(9.1.13)
$$r_{1,2}(R_2) = \operatorname{ind}_{\operatorname{Gl}_1 \times \operatorname{Gl}_2}^{\operatorname{Gl}_1 \times \operatorname{Gl}_2} \nu \otimes \nu^{1/2} \otimes \nu^{-3/2}$$
$$= \nu \otimes \operatorname{ind}_{P_{1,1}}^{\operatorname{Gl}_2} \nu^{1/2} \otimes \nu^{-3/2}.$$

Since

(9.1.14)
$$(\operatorname{ind}_{P_{1,1}}^{\operatorname{Gl}_2} \nu^{1/2} \otimes \nu^{-3/2})|_{\operatorname{Sl}_2} = \operatorname{ind}_{P_{1,1}'}^{\operatorname{Sl}_2} \nu \otimes \nu^{-1},$$

we have

(9.1.15)
$$\operatorname{Hom}_{\operatorname{Sl}_{2}}(\operatorname{ind}_{\operatorname{Gl}_{1}}^{\operatorname{Gl}_{1}} \times P_{1,1}^{\circ} \nu \otimes \nu^{1/2} \otimes \nu^{-3/2}, 1) \\ = \operatorname{Hom}_{\operatorname{Sl}_{2}}(\operatorname{ind}_{P_{1,1}^{\circ}}^{\operatorname{Sl}_{2}} \nu \otimes \nu^{-1}, 1) \\ = \operatorname{Hom}_{P_{1,1}^{\prime}}(\nu^{5} \otimes 1, 1),$$

which is clearly zero. Thus $\langle I \rangle$ has no mixed model.

Now consider the Whittaker model. Note that $\langle I \rangle$ will have a Whittaker model if and only if $r_{1,1,1;\psi_3}(\langle I \rangle) \neq 0$. By exactness of $r_{1,1,1;\psi_3}$,

$$(9.1.16) 0 \to r_{1,1,1;\psi_3}(\langle I \rangle) \to r_{1,1,1;\psi_3}(I);$$

hence to show that $\langle I \rangle$ does not have a Whittaker model, it suffices to show that $r_{1,1,1;\psi_3}(I) = 0$.

Consider U_3 acting on $P_{2,1} \setminus Gl_3$. There is the orbit of $P_{2,1}$ with stabilizer U_3 , and the orbits $P_{2,1}w_1$ and $P_{2,1}w_2$ where

(9.1.17)
$$w_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
 and $w_2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$.

The stabilizers P_{w_1} and P_{w_2} of these orbits are the matrices of the form

$$(9.1.18) \qquad \begin{pmatrix} 1 & * & * \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix},$$

respectively. We have a filtration of I by U_3 invariant subspaces $I \supset F_1 \supset F_2$, where $F_2 = \operatorname{ind}_{P_{w_2}}^{U_3} 1$, $F_1/F_2 = \operatorname{ind}_{P_{w_1}}^{U_3} 1$, and $I/F_1 = 1$. Obviously there are no U_3 morphisms between 1 and ψ_3 . Since ψ_3 is nontrivial on the inducing subgroups, $\operatorname{Hom}_{U_3}(F_2, \psi_3)$ and $\operatorname{Hom}_{U_3}(F_1/F_2, \psi_3)$ are both zero. Thus $r_{1,1,1}; \psi_3(I) = 0$.

9.2. The classification of irreducible, admissible representations of Gl_n is given by Theorem 6.1 in [Ze]. Using the previous methods and the injectivity of the Whittaker map ([Ja-Sh]), it can be shown that, modulo twisting the inducing data by characters the counterexample presented is unique.

9.3. We compare the *p*-adic and finite field situations with respect to the counterexample. The representation $\overline{I} = 1 \times \nu \times \nu^{-1}$ is multiplicity free and has length four ([Ze], Corollary 2.3). The finite field analogue of \overline{I} is $I_f = \operatorname{Ind}_{P_{1,1,1}}^{\operatorname{Gl}_3} 1$. There is a bijective correspondence between the irreducible representations that appear in I_f and the irreducible representation of the group algebra $\mathbb{C}S_3$, with the degree of the latter giving the corresponding multiplicity (cf. [Car], Theorem 10.1.2). S_3 has two distinct characters and a two dimensional representation. Thus I_f has three irreducible constituents one appearing with multiplicity two.

10. The unitary dual of Gl_4 . We now enumerate the set of irreducible unitary representations of Gl_4 . In the notation introduced in §§6 and 8, the basic set of representations is $B_4 = B'_4 \cup B_3$. In the following, the δ_n 's will be in $D_0(n)$, all α 's are in the interval $(0, \frac{1}{2})$ and the χ_n 's will be unitary characters of Gl_n (see §1 for conventions).

 B'_4 consists of the following:

- (i) $u(\delta_4, 1) = \delta_4$, the square integrable representations of Gl₄.
- (ii) $u(\delta_2, 2) = L(\nu^{1/2}\delta_2 \times \nu^{-1/2}\delta_2)$.
- (iii) $u(\delta_1, 4)$, the representations of the form

$$L(\nu^{3/2}\chi_1 \times \nu^{1/2}\chi_1 \times \nu^{-1/2}\chi_1 \times \nu^{-3/2}\chi_1).$$

These representations are all characters ([Ze]).

The complementary series induced off $P_{2,2}$:

- (iv-1) $\nu^{\alpha}\delta_2 \times \nu^{-\alpha}\delta_2$.
- (iv-2) $\nu^{\alpha}\chi_2 \times \nu^{-\alpha}\chi_2$.

The representations induced off the parabolic subgroup $P_{1,3}$ are:

(v-1) $\chi_1 \times \delta_3$.

(v-2) $\chi_1 \times \chi_3$.

The representations induced off the parabolic subgroup $P_{1,1,2}$ are: (vi-1) $\chi'_1 \times \chi''_1 \times \delta_2$.

(vi-2) $\chi'_1 \times \chi''_1 \times \chi_2$.

(vi-3) $\delta_2 \times \nu^{\alpha} \chi_1 \times \nu^{-\alpha} \chi_1$.

(vi-4) $\nu^{\alpha}\chi_1 \times \nu^{-\alpha}\chi_1 \times \chi_2$.

The representations induced off the Borel subgroup $P_{1,1,1,1}$ are: (vii-1) $\chi'_1 \times \chi''_1 \times \nu^{\alpha} \chi'''_1 \times \nu^{-\alpha} \chi'''_1$.

(vii-2) $\chi_1' \times \chi_1'' \times \chi_1''' \times \chi_1''''$. (vii-3) $\nu^{\alpha_1}\chi_1' \times \nu^{-\alpha_1}\chi_1' \times \nu^{\alpha_2}\chi_1'' \times \nu^{-\alpha_2}\chi_1''$.

The remaining representations are induced off $P_{2,2}$:

- (viii-1) $\delta'_2 \times \delta''_2$.
- (viii-2) $\delta_2 \times \chi_2$.
- (viii-3) $\chi'_2 \times \chi''_2$.

11. Models for unitary representations of Gl₄. In this section we consider the unitary representations of Gl₄ with respect to the questions of existence and uniqueness of models. Besides the Whittaker model, there is a mixed model and a symplectic model. These cases lead to the technical heart of our investigation where we confront some of the significant problems which are encountered in proving that an irreducible unitary representation has a unique symplectic model. One of our goals is to determine to what extent a simple inductive statement, analogous to the hereditary property of Whittaker models, holds for symplectic models.

We prove the following general results.

THEOREM 11.1. Let δ be an (arbitrary) irreducible admissible representation of Gl_n .

266

(a) The representation $\nu^{1/2}\delta \times \nu^{-1/2}\delta$ admits a nontrivial Sp_n invariant functional.

(b) If δ is further assumed to be square integrable, then the functional is supported on the unique irreducible quotient $L(\nu^{1/2}\delta \times \nu^{-1/2}\delta)$.

LEMMA 11.2. Let π_1 and π_2 be irreducible admissible representations of Gl_n . The representation

(11.1.1)
$$\operatorname{Ind}_{P_{n,n}}^{\operatorname{Gl}_{2n}} \pi_1 \otimes \pi_2 \otimes \delta_{P_{n,n}}^{s}$$

has a filtration by Sp_n invariant subspaces with associated subquotient representations

(11.1.2)
$$X_r(s) = \operatorname{ind}_{\Sigma_r}^{\operatorname{Sp}_n} (\pi_1 \otimes \pi_2)^{\gamma_r} \otimes \delta_{\Sigma_r}^{s+(r-n+1)/2},$$

where Σ_r is the group described in Proposition 4.1.1.1, and the superscript γ_r indicates composition with conjugation by γ_r .

COROLLARY 11.3. Except for a finite set of s the representations (11.1.1) have at most one nontrivial Sp_n invariant functional.

The remaining results pertain to Gl_4 . In this case, a functional is explicitly constructed on the representations of the corollary for Res sufficiently large, where π_1 and π_2 are assumed to have symplectic functionals. The corollary then allows us to apply the method of Bernstein to analytically continue the functional to the cases of interest. We obtain the following.

PROPOSITION 11.4. If π_1 and π_2 are irreducible representations of Gl₂ with symplectic invariant functionals, then for Res $\gg 0$, there exists a unique nontrivial Sp₂ invariant functional on Ind_{P_{2,2}^{Gl₄} $\pi_1 \otimes \pi_2 \otimes \delta_{P_{2,2}}^s$ given by a convergent integral. Moreover this functional may be analytically continued to the entire complex plane as a rational function in q^{-s} .}

Along the way, we examine the catalog of unitary representations of Gl_4 , determining first which of them have Whittaker or mixed models. From the results stated above our final result easily follows.

THEOREM 11.5. If π is an irreducible unitary representation of Gl₄, then π can be realized in a unique way as a submodule of exactly one

of the following representations: the Whittaker \mathcal{M}_0 , the mixed model \mathcal{M}_1 or the symplectic model \mathcal{M}_2 .

11.1. Simple cases for Gl_4 . The previously observed facts about square integrable representations and the hereditary property of the Whittaker model allow us to conclude that cases (i), (iv-1), (vi-1), (vi-1), (vi-3), (vii-1), (vii-2), (vii-3) and (viii-1) all have Whittaker models.

Case (iii), the unitary characters, obviously have symplectic models. By Theorem 2.4.1, all these models are unique.

11.2. Representations of Gl_4 with the mixed model. There are four cases which have mixed models: (v-2), (vi-2), (vi-4) and (viii-2).

11.2.1. Case (v-2). Noting that \mathcal{M}_1 may be written

(11.2.1.1)
$$\operatorname{Ind}_{P_{2,2}}^{\operatorname{Gl}_4} \operatorname{Ind}_{U_2 \times \operatorname{Sl}_2}^{\operatorname{Gl}_2} \psi_2 \otimes 1,$$

we have

(11.2.1.2)
$$\operatorname{Hom}_{\operatorname{Gl}_{4}}(\operatorname{Ind}_{P_{1,3}}^{\operatorname{Gl}_{4}}\chi_{1}\otimes\chi_{3}, \operatorname{Ind}_{U_{2}}^{\operatorname{Gl}_{4}}\otimes\operatorname{Sl}_{2}\times N_{2}}\psi_{2}\otimes 1\otimes 1)$$

= $\operatorname{Hom}_{\operatorname{Gl}_{2}}\times\operatorname{Gl}_{2}(\tilde{r}_{2,2}(\operatorname{Ind}_{P_{1,3}}^{\operatorname{Gl}_{4}}\chi_{1}\otimes\chi_{3}), (\operatorname{Ind}_{U_{2}}^{\operatorname{Gl}_{2}}\psi_{2})\otimes(\operatorname{Ind}_{\operatorname{Sl}_{2}}^{\operatorname{Gl}_{2}}1)).$

Proposition 1.5 ([Ze]) gives

(11.2.1.3)
$$\tilde{r}_{1,1,2}(\chi_1 \otimes \chi_3) = \chi_1 \otimes \tilde{r}_{1,2}(\chi_3) = \chi_1 \otimes \nu^{-1}\chi_3 \otimes \nu^{1/2}\chi_3.$$

The $Gl_2 \times Gl_2$ representation

(11.2.1.4)
$$(\operatorname{Ind}_{P_{1,1}}^{\operatorname{Gl}_2} \nu^{-1/2} \chi_1 \otimes \nu^{-1/2} \chi_3) \otimes \nu^{1/2} \chi_3$$

corresponds to the closed $P_{2,2}$ orbit of $P_{1,3}\setminus \text{Gl}_4$ and hence gives a quotient module of the orbit filtration of $\tilde{r}_{2,2}(\text{Ind}_{P_{1,3}}^{\text{Gl}_4}\chi_1\otimes\chi_3)$ ([Ze], Theorem 1.2).

The submodule of the representation is computed similarly. First

(11.2.1.5)
$$\tilde{r}_{1,2,1}(\chi_1\otimes\chi_3)=\chi_1\otimes\nu^{-1/2}\chi_3\otimes\nu\chi_3.$$

Conjugating by the coset representative

$$(11.2.1.6) \qquad \qquad \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

of the open $P_{2,2}$ orbit in $P_{1,3} \setminus \text{Gl}_4$ to get $\nu^{-1/2} \chi_3 \otimes \chi_1 \otimes \nu^{1/2} \chi_3$, then inducing we obtain the submodule

(11.2.1.7)
$$\nu^{-1/2}\chi_3 \otimes (\operatorname{Ind}_{P_{1,1}}^{\operatorname{Gl}_2}\nu^{-1/2}\chi_1 \otimes \nu^{3/2}\chi_3).$$

Clearly there are no nontrivial morphisms from this representation to

(11.2.1.8)
$$(\operatorname{Ind}_{U_2}^{\operatorname{Gl}_2}\psi_2)\otimes(\operatorname{Ind}_{\operatorname{Sl}_2}^{\operatorname{Gl}_2}1),$$

On the other hand $\operatorname{Ind}_{P_{1,1}}^{\operatorname{Gl}_2} \nu^{-1/2} \chi_1 \otimes \nu^{3/2} \chi_3$ has a unique Whittaker model. Whence the uniqueness of the mixed model for $\chi_1 \times \chi_3$.

11.2.2. Cases (vi-2), (vi-4), (viii-1). The remaining representations are all induced off $P_{2,2}$ and are irreducible. For a representation of the form $\pi = \operatorname{Ind}_{P_{2,2}}^{\operatorname{Gl}_4} \pi_1 \otimes \pi_2$, $\tilde{r}_{2,2}(\pi)$ has a filtration of $\operatorname{Gl}_2 \times \operatorname{Gl}_2$ invariant subspaces $0 = \tau_0 \subset \tau_1 \subset \tau_2 \subset \tau_3 = \pi$, such that τ_3/τ_2 is isomorphic to $F_1 = \pi_1 \otimes \pi_2$, τ_2/τ_1 is isomorphic to $F_{w_1} = \pi_2 \otimes \pi_1$ and τ_1 is isomorphic to

(11.2.2.1)
$$F_{w_2} = \operatorname{Ind}_{P_{1,1,1,1}}^{\operatorname{Gl}_2 \times \operatorname{Gl}_2} w_2[\tilde{r}_{1,1}(\pi_1) \otimes \tilde{r}_{1,1}(\pi_2)],$$

where

(11.2.2.2)
$$w_1 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}, \quad w_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Case (v-4) is of the form $\chi'_1 \times \chi''_1 \times \chi_2$. $\chi'_1 \times \chi''_1$ is an irreducible representation of Gl₂ with Whittaker model; χ_2 has an Sl₂ model. Hence

(11.2.2.3)
dim Hom_{Gl₂ × Gl₂}((
$$\chi'_1 × \chi''_1$$
) $\otimes \chi_2$, (Ind^{Gl₂}_{U₂} ψ_2) \otimes (Ind^{Gl₂}_{Sl₂}1)) = 1.

Also

(11.2.2.4) $\operatorname{Hom}_{\operatorname{Gl}_2 \times \operatorname{Gl}_2}(\chi_2 \otimes (\chi'_1 \times \chi''_1), (\operatorname{Ind}_{U_2}^{\operatorname{Gl}_2} \psi_2) \otimes (\operatorname{Ind}_{\operatorname{Sl}_2}^{\operatorname{Gl}_2} 1)) = 0.$ $\tilde{r}_{1,1}(\chi'_1 \times \chi''_1)$ is glued from $\chi'_1 \otimes \chi''_1$ and $\chi''_1 \otimes \chi'_1$. $\tilde{r}_{1,1}(\chi_2) = \nu^{-1/2}\chi_2 \otimes \nu^{1/2}\chi_2$. Hence F_{w_2} has composition factors

(11.2.2.5)
$$(\operatorname{Ind}_{P_{1,1}}^{\operatorname{Gl}_2}\chi_1'\otimes\nu^{-1/2}\chi_2)\otimes(\operatorname{Ind}_{P_{1,1}}^{\operatorname{Gl}_2}\chi_1''\otimes\nu^{1/2}\chi_2),$$

and

(11.2.2.6)
$$(\operatorname{Ind}_{P_{1,1}}^{\operatorname{Gl}_2}\chi_1''\otimes\nu^{-1/2}\chi_2)\otimes(\operatorname{Ind}_{P_{1,1}}^{\operatorname{Gl}_2}\chi_1'\otimes\nu^{1/2}\chi_2).$$

Neither of these representations admits nontrivial homomorphisms into (11.2.1.7). Thus $\chi'_1 \times \chi''_1 \times \chi_2$ has a unique mixed model.

The remaining cases are of the form $\delta_2 \times \chi_2$. The argument is similar to the previous cases. The quotient of $\tilde{r}_{2,2}(\delta_2 \times \chi_2)$ will be $\delta_2 \otimes \chi_2$, which has a unique map to (11.2.1.7). Thus it remains to show that the other filtration factors of $\tilde{r}_{2,2}(\delta_2 \times \chi_2)$ have no such morphisms. By disjointness of models, $F_{w_1} = \chi_2 \otimes \delta_2$ has no such map. To describe F_{w_2} , it is necessary to specify δ_2 .

As in the previous case F_{w_2} is built from $\tilde{r}_{1,1}(\delta_2) \otimes \tilde{r}_{1,1}(\chi_2)$ so δ_2 is either supercuspidal, the complementary series $\nu^{\alpha}\chi_1 \times \nu^{-\alpha}\chi_1$ or St, the Steinberg representation. If δ is supercuspidal, $\tilde{r}_{1,1}(\delta_2) = 0$. For the complementary series, $\tilde{r}_{1,1}(\nu^{\alpha}\chi_1 \times \nu^{-\alpha}\chi_1)$ is glued from $\nu^{\alpha}\chi_1 \otimes \nu^{-\alpha}\chi_1$ and $\nu^{-\alpha}\chi_1 \otimes \nu^{\alpha}\chi_1$. $\tilde{r}_{1,1}(\chi_2) = \nu^{-1/2}\chi_2 \otimes \nu^{1/2}\chi_2$. Thus F_{w_2} is glued from $(\nu^{\alpha}\chi_1 \times \nu^{-1/2}\chi_2) \otimes (\nu^{-\alpha}\chi_1 \times \nu^{1/2}\chi_2)$ and $(\nu^{-\alpha}\chi_1 \times \nu^{-1/2}\chi_2) \otimes (\nu^{\alpha}\chi_1 \times \nu^{1/2}\chi_2)$. Since the characters are the only Gl₂ representations with Sl₂ models, we see that in each case the second tensor factor has no such model, since the central characters of these representations are $\nu^{1/2\pm\alpha}(\chi_1 \otimes \chi_2)$, with $0 < \alpha < \frac{1}{2}$, which are not unitary.

For $\delta_2 = St$, we have the exact sequence

(11.2.2.7)
$$0 \to 1 \to \nu^{-1/2} \times \nu^{1/2} \to \operatorname{St} \to 0.$$

 $\tilde{r}_{1,1}$ is an exact functor; hence we get the exact sequence of $Gl_1 \times Gl_1$ representations

 $(11.2.2.8) \quad 0 \to \nu^{-1/2} \otimes \nu^{1/2} \to \tilde{r}_{1,1}(\nu^{-1/2} \times \nu^{1/2}) \to \tilde{r}_{1,1}(\mathbf{St}) \to 0.$

As $\tilde{r}_{1,1}(St) = \nu^{1/2} \otimes \nu^{-1/2}$ ([Ze], Theorem 1.2), $F_{w_2} = (\nu^{1/2} \times \nu^{-1/2} \chi_2)$ $\otimes (\nu^{-1/2} \times \nu^{1/2} \chi_2)$. If χ_2 is nontrivial, the second factor is irreducible and has a Whittaker model. If χ_2 is trivial, $\nu^{-1/2} \times \nu^{1/2}$ is reducible and supports no Sl₂ invariant functional, for if it did, it would have an irreducible unitary character as a quotient but St is the unique irreducible quotient.

11.3. Unitary representations and symplectic models. We investigate symplectic models for certain representations of Gl_{2n} . This will include giving the proofs of the general results stated at the beginning of §11 and finishing the proof of Theorem 11.5, by showing that the remaining three cases for Gl_4 have symplectic models.

11.3.1. Proof of Theorem 11.1; case (ii). Case (ii) is $u(\delta, 2) = L(\nu^{1/2}\delta \times \nu^{-1/2}\delta)$, where δ is square integrable. That this has a symplectic functional is precisely Theorem 11.1(b). The proof naturally divides into two parts.

11.3.1.1. Consider in general the Gl_{2n} representation

(11.3.1.1.1)
$$u(\delta, 2) = L(\nu^{1/2}\delta \times \nu^{-1/2}\delta),$$

where $\delta \in D_0(n)$. Since δ has a Whittaker model, the full induced representation $\pi = \nu^{1/2} \delta \times \nu^{-1/2} \delta$ does so too.

Suppose that δ is square integrable. Then, in the terminology and notation of Zelevinsky ([Ze]), $\delta = \langle \Delta \rangle^t$, where Δ is a segment $\{\sigma, \nu\sigma, \ldots, \nu^i\sigma\}$, with σ supercuspidal, and δ is the unique irreducible quotient of

(11.3.1.1.2)
$$\sigma \times \nu \sigma \times \cdots \times \nu^{k} \sigma$$

(ibid., $\S9.1$, Theorem 9.3). According to Lemma 3.2 in [Ta,2], in the Grothendieck ring of admissible representations of finite length,

(11.3.1.1.3)
$$\pi = u(\delta, 2) + (\langle \Delta_{\cup} \rangle^t \times \langle \Delta_{\cap} \rangle^t)$$

where

(11.3.1.1.4)
$$\Delta_{\cap} = \nu^{1/2} \Delta \cap \nu^{-1/2} \Delta, \quad \Delta_{\cup} = \nu^{1/2} \Delta \cup \nu^{-1/2} \Delta.$$

In particular, π has length two. The submodule is an irreducible tempered representation, hence has a Whittaker model. Since a representation cannot have both a symplectic and Whittaker model (Theorem 3.2.2), we conclude that if π has a map into the symplectic model, it must be supported on the irreducible quotient $u(\delta, 2)$.

We remark that the composition factors appearing in the induced representation which gives $u(\delta, n)$ (see §6) are now known. In the notation of [Ta,3], $u(\delta, n) = L(a)$, the unique irreducible quotient of a representation $\lambda(a)$, where a is a multiset of segments. Then a necessary and sufficient condition for L(b) to be a subquotient of $\lambda(a)$ is that $b \leq a$ in the Zelevinsky partial ordering ([Ze, §7]), so that the composition factors appearing in the Langlands, i.e. square integrable setting are exactly those which appear in the Zelevinsky, i.e. cuspidal setting. A proof of this result will be appearing in a forthcoming paper of Tadić.

11.3.1.2. We now show that $u(\delta, 2)$ has a symplectic functional by constructing one on $\nu^{1/2}\delta \times \nu^{-1/2}\delta$.

Consider the representation

(11.3.1.2.1)
$$I_s = \operatorname{Ind}_{P_{n,n}}^{\operatorname{Gl}_{2n}}(\pi \otimes \pi) \otimes \delta_{P_{n,n}}^s,$$

where s is a complex parameter. For $f_s \in I_s$ and

(11.3.1.2.2)
$$p = \begin{pmatrix} g & * \\ 0 & {}^{t}g^{-1} \end{pmatrix} \in P'_{n,n},$$

we have

(11.3.1.2.3)
$$f_{s}(p) = \delta_{P_{n,n}}^{s+1/2}(p)(\pi(g) \otimes \pi({}^{t}g^{-1}))f_{s}(1)$$
$$= |\det g|^{2ns+n}(\pi(g) \otimes \pi'(g))f(1)$$
$$= \delta_{P'_{n,n}}^{(2ns+n)/(n+1)}(p)(\pi(g) \otimes \pi'(g))f(1).$$

Thus restricting f_s to Sp_n gives an element of

(11.3.1.2.4)
$$\operatorname{Ind}_{P'_{n,n}}^{\operatorname{Sp}_n}(\pi \otimes \pi') \otimes \delta_{P'_{n,n}}^{s'},$$

where $s' = (2ns + n)/(n + 1) - \frac{1}{2}$. Let $l: \pi \otimes \pi' \to \mathbb{C}$ be the standard pairing. Then $l \circ f_s \in I'_{s'} =$ Ind $P_{n',n}^{Sp_n} \delta_{P_{n',n}'}^{S'}$. *l* is surjective and induction is an exact functor. Thus when $s' = \frac{1}{2}$, integration over $P'_{n,n} \setminus Sp_n$ with respect to the quasiinvariant measure is a nontrivial, Sp_n invariant functional on I'_s . This value of s' corresponds to s = 1/2n.

The restriction map $I_{1/2n} \rightarrow I'_{1/2}$ corresponds to a map between the finite sections of sheaves, induced from the restriction from $P_{n,n} \setminus \text{Gl}_{2n}$ to the image of $P'_{n,n} \setminus \text{Sp}_n$ in $P_{n,n} \setminus \text{Gl}_{2n}$, which is closed. This is also surjective ([Be-Ze,2], Propositions 1.8, 1.16, Proposition 2.23). The composite $I_{1/2n} \to I'_{1/2} \to \mathbb{C}$ is thus Sp_n invariant and nontrivial. Since

(11.3.1.2.5)
$$I_{1/2n} = \operatorname{Ind}_{P_{n,n}}^{\operatorname{Gl}_{2n}}(\pi \otimes \pi) \otimes \delta_{P_{n,n}}^{1/2n}$$
$$= \operatorname{Ind}_{P_{n,n}}^{\operatorname{Gl}_{2n}}(\nu^{1/2}\pi \otimes \nu^{-1/2}\pi),$$

we have shown that $\nu^{1/2}\pi \times \nu^{-1/2}\pi$ has an Sp_n invariant functional.

11.3.2. Proofs of Lemma 11.2 and Corollary 11.3. The Sp_n orbits of $P_{n,n} \setminus \operatorname{Gl}_{2n}$ are described in Proposition 4.1.1. Orbital analysis (cf. [Ca]) then gives a filtration of (11.1.2) of the form stated in Lemma 11.2.

The corollary will follow by showing that, except for a finite number of values of s, only one of the representation $X_r(s)$ carries a unique symplectic functional.

Conjugating the matrix (4.1.1.1) by γ_r gives

$$(11.3.2.1) \qquad \begin{pmatrix} g & 0 & 0 & 0 & 0 & 0 \\ 0 & A' & B' & 0 & 0 & 0 \\ 0 & C' & D' & 0 & 0 & 0 \\ 0 & 0 & 0 & tg^{-1} & 0 & 0 \\ 0 & 0 & 0 & 0 & A & B \\ 0 & 0 & 0 & 0 & C & D \end{pmatrix}$$

Conjugating the unipotent element (4.1.1.2) by γ_r gives

(11.3.2.2)
$$\begin{pmatrix} 1 & X_2 & Z_2 & Y & X_1 & Z_1 \\ 0 & 1 & 0 & {}^tZ_2 & 0 & 0 \\ 0 & 0 & 1 & -{}^tX_2 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & {}^tZ_1 & 1 & 0 \\ 0 & 0 & 0 & -{}^tX_1 & 0 & 1 \end{pmatrix},$$

where $X = (X_1X_2)$, $Z = (Z_1Z_2)$ and Y is symmetric. Mindful of the normalization in the induction, the inducing representation applied to an element of Σ_r is

$$(11.3.2.3) \qquad \pi_1 \left[\begin{pmatrix} 1 & X_2 & Z_2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} g & 0 & 0 \\ 0 & A' & B' \\ 0 & C' & D' \end{pmatrix} \right] \\ \otimes \pi_2 \left[\begin{pmatrix} 1 & 0 & 0 \\ {}^tZ_1 & 1 & 0 \\ -{}^tX_1 & 0 & 1 \end{pmatrix} \begin{pmatrix} g^0 & 0 \\ 0 & A & B \\ 0 & C & D \end{pmatrix} \right] |\det g|^{s+n/2}.$$

The contragradient of $X_r(s)$ is

(11.3.2.4)
$$\operatorname{Ind}_{\Sigma_r}^{\operatorname{Sp}_n}[(\pi_1 \otimes \pi_2)^{\gamma_r}]' \otimes \delta_{\Sigma_r}^{-s-(r-n-1)/2}.$$

Let $U'_{r}(0)$ be the elements of the form (11.3.2.2) with Y = 0. Then

(11.3.2.5)
$$\operatorname{Hom}_{\operatorname{Sp}_n}(X_r(s), 1) = \operatorname{Hom}_{\operatorname{Sp}_n}(1, X_r(s)').$$

which in turn equals

(11.3.2.6)

$$\operatorname{Hom}_{(\operatorname{Gl}_r \times \operatorname{Sp}_{(n-r)/2} \times \operatorname{Sp}_{(n-r)/2})U'_r(0)}((\pi'_1 \otimes \pi'_2)|\det g|^{-s+n/2+(2n-r+1)}, 1),$$

where the groups act according to (11.3.2.3). Applying Jacquet functors, (11.3.2.6) equals

(11.3.2.7)

$$\operatorname{Hom}_{\operatorname{Gl}_{r}\times\operatorname{Sp}_{(n-r)/2}\times\operatorname{Sp}_{(n-r)/2}}(((\pi'_{1})_{N(r)}\otimes(\pi'_{2})_{\overline{N}(r)})\otimes|\det|^{-s+n/2+(2n-r+1)}, 1),$$

where N(r) is the group of unipotent matrices appearing in (11.3.2.3) and $\overline{N}(r)$ is the opposite unipotent subgroup. Gl_r acts in $(\pi'_2)_{\overline{N}(r)}$ via transpose inverse. Since $(\pi'_2)_{\overline{N}(r)} = ((\pi_2)_{N(r)})'$ ([Cas], Corollary 4.2.5), we find $\operatorname{Hom}_{\operatorname{Sp}_r}(X_r(s), 1)$ equal to

(11.3.2.8)

$$\operatorname{Hom}_{\operatorname{Gl}_{r}} \times \operatorname{Sp}_{(n-r)/2} \times \operatorname{Sp}_{(n-r)/2}((\pi'_{1})_{N(r)} \otimes ((\pi_{2})_{N(r)})' \otimes |\det|^{-s+n/2+(2n-r+1)}, 1).$$

If $r \neq 0$, there is only one value of s for which this groups can be nonzero. If r = 0, we have

(11.3.2.9)
$$\operatorname{Hom}_{\operatorname{Sp}_n}(X_r(s), 1) = \operatorname{Hom}_{\operatorname{Sp}_{n/2}} \times \operatorname{Sp}_{n/2}(\pi_1 \otimes \pi_2, 1).$$

This space has dimension one precisely when π_1 and π_2 both admit symplectic models.

11.3.3. Proofs of Proposition 11.4 and Theorem 11.5; cases (iv-2), (viii-3). Let π_1 and π_2 be irreducible with Sl₂ invariant functionals l_1 and l_1 . Consider the representation $I_s = \text{Ind}_{P_{2,2}}^{\text{Gl}_4} \pi_1 \otimes \pi_2 \otimes \delta_{P_{2,2}}^s$. Set $l = l_1 \otimes l_2$, and denote $P_{2,2}$ by P.

By Corollary 4.1.1.2 the open Sp_2 orbit in $P \setminus Gl_4$ is given by the coset $P\gamma Gl_4$ where

(11.3.3.1)
$$\gamma = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

For $f_s \in I_s$, $l \circ f_s(\gamma g) = l \circ f_s(\gamma)$ for $g \in Sl_2 \times Sl_2$, embedded in Sp_2 so as to be γ conjugate to the diagonal embedding in Gl_4 . Consider the integral

(11.3.3.2)
$$\lambda(f_s) = \int_{(\mathrm{Sl}_2 \times \mathrm{Sl}_2) \setminus \mathrm{Sp}_2} l \circ f_s(\gamma m) \, dm \, ,$$

where dm is a right invariant measure on $(Sl_2 \times Sl_2) \setminus Sp_2$. If this converges, it will provide an Sp_2 invariant functional on I_s . Letting $P' = P \cap Sp_2$, by Proposition 4.2.1, the open dense P' orbit in $(Sl_2 \times Sl_2) \setminus Sp_2$ is $(Sl_2 \times Sl_2) \rho JP'$. Thus

(11.3.3.3)
$$\Lambda(f_s) = \int_{(\mathrm{Sl}_2 \times \mathrm{Sl}_2)\rho J P'} l \circ f_s(\gamma m) \, dm \, ,$$

We may view the domain of integration as the P' orbit $P'_X \setminus P'$ where

(11.3.3.4)
$$P'_{X} = \left\{ \begin{pmatrix} b & 0 \\ g & 0 \\ 0 & c \\ 0 & tg^{-1} \end{pmatrix} \middle| g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{Sl}_{2} \right\},$$

and thus

(11.3.3.5)
$$\Lambda(f_s) = \int_{P'_x \setminus P'} l \circ f_s(\gamma \rho J p) \, dp \, ,$$

where dp is a right invariant measure on $P'_X \setminus P'$. As

(11.3.3.6)
$$P' = \left\{ \begin{pmatrix} g & gZ \\ 0 & {}^tg^{-1} \end{pmatrix} | g \in \operatorname{Gl}_2, Z \in \operatorname{Sym}_2 \right\},$$

 $P'_X \setminus P_X = \mathrm{Sl}_2 \setminus \mathrm{Gl}_2 \times \mathrm{Sym}_2$. For a right invariant measure dg on $\mathrm{Sl}_2 \setminus \mathrm{Gl}_2$ and an additive invariant measure dZ on Sym_2 , $dp = |g|^3 dZ dg$. If $h = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{Sl}_2$, $g \in \mathrm{Gl}_2$ and $Z \in \mathrm{Sym}_2$,

(11.3.3.7)
$$\begin{pmatrix} h & b & 0 \\ 0 & c \\ 0 & {}^{t}h^{-1} \end{pmatrix} \begin{pmatrix} g & gZ \\ 0 & {}^{t}g^{-1} \end{pmatrix}$$
$$= \begin{pmatrix} hg & 0 \\ 0 & {}^{t}(hg)^{-1} \end{pmatrix} \begin{pmatrix} 1 & Z + hg \begin{pmatrix} b & 0 \\ 0 & c \end{pmatrix} {}^{t}g^{-1} \\ 0 & 1 \end{pmatrix}.$$

Then by the invariance of dZ,

(11.3.3.8)

$$\Lambda(f_s) = \int_{\operatorname{Sl}_2 \setminus \operatorname{Gl}_2 \times \operatorname{Sym}_2} l \circ f_s \left(\gamma \rho J \begin{pmatrix} g & 0 \\ 0 & {}^t g^{-1} \end{pmatrix} \begin{pmatrix} 1 & Z \\ 0 & 1 \end{pmatrix} \right) |g|^3 dg dZ.$$

 $g \rightarrow {}^{t}gJg$ maps $\mathrm{Sl}_2 \setminus \mathrm{Gl}_2$ bijectively onto the nonzero 2×2 skew symmetric matrices. Identified with F^{\times} , the invariant measure on this Gl_2 orbit is $d^{\times}\lambda = d\lambda/|\lambda|$, where $d\lambda$ is an additive measure. Thus

(11.3.3.9)
$$\Lambda(f_s) = \int_{F^{\times} \times \operatorname{Sym}_2} l \circ f_s \left(\gamma \rho J D(\lambda) \begin{pmatrix} 1 & Z \\ 0 & 1 \end{pmatrix} \right) |\lambda|^3 d^{\times} \lambda dZ,$$

where

(11.3.3.10)
$$D(\lambda) = \begin{pmatrix} \lambda & & \\ & 1 & \\ & & \lambda^{-1} & \\ & & & 1 \end{pmatrix}.$$

Set $\xi = \gamma \rho J$. Then

(11.3.3.11)
$$\omega = \xi D(\lambda) \begin{pmatrix} 1 & Z \\ 0 & 1 \end{pmatrix} \xi^{-1} \\ = \begin{pmatrix} 1+y\lambda & x\lambda & x\lambda & 1-\lambda+y\lambda \\ -z & 1-y & -y & -z \\ z & \lambda^{-1}-1+y & y+\lambda^{-1} & z \\ -\lambda y & -\lambda x & -\lambda x & \lambda-\lambda y \end{pmatrix},$$

where $Z = \begin{pmatrix} x & y \\ y & z \end{pmatrix}$. Define h by

(11.3.3.12)
$$\omega = \begin{pmatrix} 1 & & \\ & -\lambda & \\ & & 1 \\ & & & -\lambda \end{pmatrix} h$$

Thus

(11.3.3.13)
$$f_s(\omega\xi) = \left(\pi_1 \begin{pmatrix} 1 & 0 \\ 0 & -\lambda \end{pmatrix} \otimes \pi_2 \begin{pmatrix} 1 & 0 \\ 0 & -\lambda \end{pmatrix}\right) f_s(h\xi).$$

By right multiplication on $h\xi$ by elements of the maximal compact subgroup $K = \operatorname{Gl}_n(o)$, obtain $h = h_1 k_1$, $k_1 \in K$, where $h_1 = {\binom{h_1^+}{h_1^-}}$, h_1^+ and h_1^- are 2 × 4 matrices and

(11.3.3.14)
$$h_1^- = \begin{pmatrix} z & \lambda^{-1} + y & 1 & 0 \\ y & x & 0 & 1 \end{pmatrix}.$$

h has an Iwasawa decomposition $\binom{A_1 \ W}{0 \ A_2}k_2$, where $k_2 \in K$. According to Lemma 6.8 in [**PS-Ra**], $|\det A_2| = \kappa_2(h_1^{-1})$, where $\kappa_2(A)$ is the maximum of the absolute values of the 2×2 minors of the 2×4 matrix *A*. We have $|\det a\omega| = 1$, $|\det h| = |\det h_1| = |\lambda|^{-2}$, and $|\det A_1| |\det A_2| = |\lambda|^{-2}$. Thus for some $k \in K$, depending on *x*, *y*, *z* and λ

$$(11.3.3.15)$$

$$f_{s}(\omega\xi) = \left(\pi_{1}\begin{pmatrix}1&0\\0&-\lambda\end{pmatrix}\otimes\pi_{2}\begin{pmatrix}1&0\\0&-\lambda\end{pmatrix}\right)f_{s}(h_{1}k)$$

$$= (|\lambda|^{-2}\kappa_{2}(h_{1}^{-})^{-2})^{s+1/2}\left(\pi_{1}\begin{pmatrix}1&0\\0&-\lambda\end{pmatrix}\otimes\pi_{2}\begin{pmatrix}1&0\\0&-\lambda\end{pmatrix}\right)f_{s}(k).$$

Substituting this in the expression (11.3.2.9), we obtain $\Lambda(f_s)$ equal to

(11.3.3.16)
$$\int_{F^{\times} \times F^{3}} |\lambda|^{-4s+1} \kappa_{2}(h_{1}^{-})^{-(4s+2)} \cdot l\left(\pi_{1}\begin{pmatrix}1 & 0\\ 0 & -\lambda\end{pmatrix} \otimes \pi_{2}\begin{pmatrix}1 & 0\\ 0 & -\lambda\end{pmatrix}\right) f_{s}(k) d^{\times} \lambda dx dy dz.$$

Making the change of variable $\lambda \to \lambda^{-1}$ and $w = \lambda + y$, we obtain for $\Lambda(f_s)$

$$(11.3.3.17) \qquad \int_{F^4} |w-y|^{4s-2} \kappa_2 \begin{pmatrix} z & w & 1 & 0 \\ y & x & 0 & 1 \end{pmatrix}^{-(4s+2)} \\ \cdot l \left(\pi \begin{pmatrix} 1 & 0 \\ 0 & -\lambda \end{pmatrix} \otimes \pi_2 \begin{pmatrix} 1 & 0 \\ 0 & -\lambda \end{pmatrix} \right) f_s(k) \, dw \, dx \, dy \, dz.$$

276

Since the inducing representations of Gl₂ have symplectic models, either $\pi_i = \chi_i$ are unitary characters or $\pi_1 = \nu^{\alpha} \chi$ and $\pi_2 = \nu^{-\alpha} \chi$, so that

$$(11.3.3.18) \qquad \left| l \left(\pi_1 \begin{pmatrix} 1 & 0 \\ 0 & -\lambda \end{pmatrix} \otimes \pi_2 \begin{pmatrix} 1 & 0 \\ 0 & -\lambda \end{pmatrix} \right) f_s(k) \right| = |lf_s(k)|$$

For $s \ge \frac{1}{2}$,
$$(11.3.3.19) \qquad |w - y|^{4s-2} \le \max\{|w|, |y|\}^{4s-2} \le \kappa_2 \begin{pmatrix} z & w & 1 & 0 \\ y & x & 0 & 1 \end{pmatrix}^{4s-2}$$
,

so the integral of the absolute value of the integrand in (11.3.2.17) is bounded by a constant multiple of

(11.3.3.20)
$$\int_{F^4} \kappa_2 \begin{pmatrix} z & w & 1 & 0 \\ y & x & 0 & 1 \end{pmatrix}^{-4} dw \, dx \, dy \, dz.$$

Let $I(P, s) = \operatorname{Ind}_{P}^{\operatorname{Gl}_{4}} \delta_{P}^{s}$ and $I(\overline{P}, s) = \operatorname{Ind}_{\overline{P}}^{\operatorname{Gl}_{4}} \delta_{\overline{P}}^{s}$, where \overline{P} is the parabolic subgroup opposite to P. Extend δ_{P} to Gl_{4} via the Iwasawa decomposition $\operatorname{Gl}_{4} = PK$. We have the basic intertwining operator $A_{s}: I(P, s) \to I(\overline{P}, -s)$ defined by

(11.3.3.21)
$$A_s(F_s)(g) = \int_{\overline{N}} F_s(\overline{n}g) d\overline{n},$$

where \overline{N} is the unipotent radical of \overline{P} . From the Iwasawa decomposition of $\overline{n} = \begin{pmatrix} 1 & 0 \\ Y & 1 \end{pmatrix}$, with $F_s = \delta_P^{s+1/2}$ obtain

(11.3.3.22)
$$A_s(\delta_P^{s+1/2})(1) = \int_{F^4} \kappa_2(X, 1_2)^{-4s-2} \, dX.$$

 $A_s(\delta_P^{s+1/2})(1)$ converges for Re s > 1/4 (cf. [Bo-Wa]). In particular for s = 1/2, we obtain (11.3.3.20). Thus for $s \ge 1/2$, we have constructed an Sl₂ invariant functional on $\text{Ind}_P^{\text{Gl}_4} \chi_1 \otimes \chi_2 \otimes \delta_P^s$. The representations of interest correspond to $0 \le s < \frac{1}{4}$.

We continue the functional Λ_s using the method of Bernstein (cf. **[Ge-PS]**, pp. 126–129; **[Ka-Pa]**, p. 67). Let V_s denote the space of the representation $I_s = \operatorname{Ind}_P^{\operatorname{Gl}_4} \chi \otimes \delta_P^s$, where χ is a unitary character. Then V_s is naturally isomorphic to V_0 by restriction to K.

The action of Gl_4 on V_0 via I_s is given by

$$(I_s(g)\phi)(k) = \chi(p)\delta_P^{s+1/2}\phi(k'),$$

where kg = pk'. Let V_0^* be the dual, $D = \mathbb{C}^{\times}$ as an irreducible variety and $\mathbb{C}[D] = \mathbb{C}[z, z^{-1}]$ the ring of regular functions on D.

Write $z = q^{-s}$, $-\pi/\log q \le s < \pi/\log q$. Let $R = R_{V_0} \times R_s$ where $R_{V_0} = \{y_{v'}\}$ is a countable basis for V_0 and $R_s = \{g_v\}$ is a countable basis for Sp₂. The family of systems $\Xi_s = \{I_s(g_v)y_{v'} - y_{v'} = 0; (v, v') \in R\}$, $s \in \mathbb{C}$, is polynomial in z and by Corollary 11.3 it is a unique solution for Res sufficiently large. According to Bernstein's theorem, there is a unique solution $\Lambda_s \in (V_0 \otimes \mathbb{C}(D))^*$, $\mathbb{C}(D)$ the function field of D. $\Lambda_s(y)$ is an Sp₂ invariant functional which is a rational function of q^{-s} . In particular this will give nontrivial invariant functionals on the remaining representations.

References

- [Ba-Ka-So] E. Bannai, N. Kawanaka and S. Song, The character table of the Hecke algebra $H(Gl_{2n}(F_q), Sp_{2n}(F_q))$, preprint, July 1988.
- [Be-Ze,1] I. N. Bernstein and A. V. Zelevinskii, Representations of the Group Gl(n, F) where F is a Non-archimedean Local Field, Russ. Math. Surveys, 31, no. 3 (1976), 1-68.
- [Be-Ze,2] ____, Induced representations of reductive p-adic groups, I, Ann. Scient. E. Norm. Sup., Fourth series, 10 (1977), 441–472.
- [Bo-Wa] A. Borel and N. Wallach, Continuous Cohomology, Discrete Subgroups and Representations of Reductive Groups, Annals of Math. Studies, no. 94, Princeton University Press, Princeton, 1980.
- [Car] P. Cartier, Representations of p-adic groups: A survey, in Automorphic Forms, Representations of L-functions, A Borel, W. Casselman, editors, AMS Proc. of Symp. in Pure Math., no. 9 (1966), 149-158.
- [Ca] R. W. Carter, Finite Groups of Lie Type. Conjugacy Classes and Complex Characters, Wiley-Interscience, J. W. Wiley & Sons, 1985.
- [Cas] W. Casselman, Introduction to the theory of admissible representations of p-adic reductive groups, Mimeographed notes, Vancouver, 1975.
- [Ge-Ka,1] I. M. Gel'fand and D. A. Kazhdan, Representations of Gl(n, K) in Lie Groups and their Representations 2, Akadèmiai Kiado, Budapest, 1974.
- [Ge-Ka,2] ____, Representations of the group Gl(n, K), where K is a local field, Funkt. Anal. i Priložen., 6, no. 4, (1972), 73–74.
- [Ge-PS] S. Gelbart and I. Piatetski-Shapiro, *L*-functions for $G \times Gl(n)$, in *Explicit* Construction of Automorphic *L*-Functions, Lecture Notes in Mathematics, no. 1254, Springer-Verlag, 1987.
- [Ja-Sh] H. Jacquet and J. Shalika, *The Whittaker models of induced representa*tions, Pacific J. Math., **109** (1983), 107–120.
- [Ka-Pa] D. A. Kazhdan and S. J. Patterson, *Metaplectic Forms*, Pub. Institut des Hautes Etudes Scient., no. 59, 1984.
- [KI] A. A. Klyachko, Models for the complex representations of the groups Gl(n, q), Math. USSR Sbornik, 48 no. 2, 1984.
- [Mo-Wa] C. Mœglin and J. L. Waldspurger, Modèles de Whittaker dégénérés pour des groupes p-adiques, Mathematische Zeitschrift, 196, (1987), 427-452.
- [PS-Ra] I. Piatetskii-Shapiro and Stephen Rallis, *L-functions for the Classical Groups*, in *Explicit Construction of Automorphic L-Functions*. Lecture Notes in Mathematics, no. 1254, Springer-Verlag, 1987.

- [Ro] F. Rodier, Whittaker models for admissible representations of reductive p-adic split groups, in Harmonic Analysis on Homogeneous Spaces, C. C. Moore, ed., AMS Proc. of Symp. in Pure Math., no. 26, (1973), 425–430.
- [Se] J.-P. Serre, Cohomologie Galoisienne, 2nd ed., Lecture Notes in Mathematics, vol. 5, Springer-Verlag, 1964.
- [Sp] T. Springer, Galois cohomology of linear algebraic groups, in Algebraic Groups and Discontinuous Groups, A. Borel, G. D. Mostow, editors, AMS Proc. of Symp. in Pure Math., no. 9, (1966), 149–158.
- [Ta,1] M. Tadić, Unitary dual of p-adic Gl(n). Proof of Bernstein's conjecture, Bull. Amer. Math. Soc., (New Series), 13, no. 1, (July 1985), 39-42.
- [Ta,2] _____, Topology of unitary dual of nonarchimedean Gl(n), Duke Math. J., 55, no. 2, (1987), 385-422.
- [Ta,3] ____, Classification of unitary representations in irreducible representations of general linear group (nonarchimedean case), Ann. Scient. Éc. Norm. Sup. 4^e série, t. 19, (1986), 335–382.
- [Ze] A. V. Zelevinskiy, Induced representations of reductive p-adic groups II. On irreducible representations of Gl(n), Ann. Scient. Èc. Norm. Sup., Fourth series, 13 (1980), 165–210.

Received December 9, 1988 and in revised form October 24, 1989. The first author was partially supported by NSF grant DMS 88-01579 and the second author was partially supported by NSF grant SMD 84-01947.

Columbia University New York, NY 10027

AND

Ohio State University Columbus, OH 43210