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SEQUENCE TRANSFORMATIONS THAT GUARANTEE
A GIVEN RATE OF CONVERGENCE

G. H. FrICKE AND J. A. FRIDY

Let ¢ be a positive number sequence and define the sequence space
Q(t) := {x: xx = O(t;)} . Characterizations are given for matrices
that map the spaces /!, /[*, c, or ¢y into (?), thus ensuring that
the transformed sequence converges at least as fast as 7. These re-
sults yield information about matrices that map /', /*°, ¢, or ¢, into
G :=U,e0,1)Q(r") , the set of geometrically dominated sequences.

1. Introduction. For each r in the interval (0, 1) let
G(r) = {complex sequences x: x; = O(r)}

and define the set of geometrically dominated sequences as

G= |J 6.

re(0,1)

The analytic sequences are defined by
7 = {complex sequences x: limsup |x,|/" < oo}.
n

Obviously G C . In [2, 6, 9, 10] the various authors studied matrix
transformations from & or G into /!, ¢, or [/, but the question
of mapping from [!, ¢, or [® into & or G was not considered. We
shall use the customary notation for a matrix transformation: if 4 is
an infinite matrix with complex entries and x is a complex number
sequence, then A transforms x into the sequence 4Ax whose nth
term is given by

o0
(AX)n =) pe X
k=0
The present work began as a study of /! — G and ¢ — G matrices,
but it was found that such results are merely special cases of a more

general theory. To set the stage for the general theory we replace the
geometric sequence {rk} with a nonnegative sequence ¢ and define

Q1) = {x: x; = O(t) }-
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Throughout the paper T will denote a sequence {1} of nonneg-
ative number sequences such that ™) e Q(¢(m+1)) for each m ; this
ensures that Q(¢(™) C Q(¢("*1), and we define

D(T) = G Q(¢lm),
m=0

ExaMPLE 1. If for each m, (™ is the geometric sequence {rk},
where 0<r, <1 and 7, 11, then D(T) is G.
For a given summability matrix 4, the sequences u and o are
defined by
Un = S‘I—:p |ank]

and
o0
Op = Z Iank|°
k=0

The main results of this paper state that for 4 to map /! [re-
spectively, c] into a “big-oh space” such as €(¢), it is necessary and
sufficient that x4 be in Q(¢) [respectively, o € (¢)]. Moreover, in
order for A to map /! [respectively, c] into D(T) it is necessary
that 4 map into a particular Q(¢™)) for some ¢ in T. Thus the
characterizations of 4: /! — G and A4: ¢ — G are obtained as special
cases of the general theory.

The final section of the paper contains a brief discussion of some
classical matrix methods as mappings into €(¢) spaces.

2. The main results. Using the notation as given above, we proceed
to our first general result.

THEOREM 1. If A is a summability matrix and T, D(T), and u
are as given above, then the following are equivalent:
(1) neD(T);
(i) there exists a 1™ in T such that u e Q(t™);
(iii) there exists a t'" jn T such that A:1' — Q(t™);
(iv) A: ' — D(T).

Proof. Implications (i) = (ii) = (iil) = (iv) are obvious. To prove
that (iv) = (i), first note that (iv) implies that
(1) Un < oo for each n

and
(2) each column of 4 is in D(T).
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It follows from (2) that the sum of any finite number of columns of
A isin D(T), so there exists a sequence {¢(” )} in T and a positive
number sequence {B,,-} that increases to oo such that

(3) > lanl < Bt for each n.

i<m”
To simplify the notation we will write m in place of m* since the
nestedness of the sets {Q(#("™)} ensures that nothing is lost by con-
sidering the subsequence {¢(" )} as the entire sequence {r"™}.

Now assume (1), (2), and (3) hold, but 4 ¢ D(T); we wish to
construct an x in /! such that Ax ¢ D(T). From each row of A4
select an entry satisfying

(an,k‘(m)l 2 %/‘n-

Since u ¢ D(T), (2) allows us to choose a subsequence of these
entries, say {a,/ ;) x'(;)}7z; suchthat n'(i) and k'(i) increase with i;
also, u ¢ D(T) allows us to choose the »’'(i) so that

(m) y _
(4) s?p{un/([)/zn,(i)} =oo for all m.

For each i we also have
(5) @iy ko)) = 3ty = %Sgp“an'(i),kl}'

Finally, choose a further subsequence®of these entries so that for
each j

k(=1)) )
(6) |angj), k()| > 12Br(j-nty;y 4

Now define x in /! by

X ={4_j, lfk=k(]) and an(j),k(j)#o,
k 0, otherwise.
For each j this yields

[(AX) ()| = -Z |@n(jy k)47 + |ancy k(|47 + Z |@n(jy k(i |47

i<J i>j
> =Byt )+ a4 = tay Y4
i>j
2 =Bij-nlyg) )+ a4
> = Bi(jnyty ™ + H12By oyt 4714

(k(j=1))

= Bi(j-1ln(j)
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Hence, Ax ¢ Q(t*U-1)) and it follows that Ax ¢ D(T).
By taking 7 as in Example 1 we get the following corollary as an
immediate consequence of Theorem 1.

COROLLARY 1A. If A is a summability matrix and p, = supy |a,;|,
then A:1' - G ifand only if u€G.

Another consequence of Theorem 1 can be obtained by replacing T
with a single sequence, i.e., t”) = ¢ for every m. Thus D(T) = Q(¢),
and we get the following result.

COROLLARY 1B. If A is a summability matrix and t is a nonneg-
ative number sequence, then A =1' — Q(t) if and only if u € Q(t).

This corollary gives rise to the title of the paper, because it character-
izes those matrices 4 that will transform every absolutely convergent
series ) Xx; into a series ) (Ax), that converges at least as fast as a
given series > 1.

Now we turn our attention to matrix mappings from /* into D(T),
which, as we shall see, subsumes the cases of mappings from ¢ or ¢
into D(T).

THEOREM 2. If A is a summability matrix and T, D(T), and o
are as given above, then the following are equivalent:

(i) o€D(T);

(ii) there exists a t'") in T such that o € Q(t™);

(iii) there exists a 1™ in T such that A:1° — Q(t™);

(iv) there exists a t'™ in T such that A: c — Q(t™);

(v) there exists a t'™ in T such that A: cy — Q(t™);

(vi) A4:¢co— D(T).

Proof. As in the proof of Theorem 1, most of the implications are
obvious and we prove here only that (vi) = (i) . Note that (vi) implies
that each row of 4 isin /! (i.e., 6, < 00) and each column of 4 isin
some Q(¢(™). Therefore finite sums of the column sequences are in
D(T), and we can choose a sequence of ¢U)’s with constants B; > 0
such that for each j

(7) > laul < Bt
k<j

Suppose that ¢ ¢ D(T). Choose increasing sequences {k(j)} and
{n(j)} of column and row indices as follows: k(1) and n(0) are
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chosen arbitrarily, and after k£(j) and n(j — 1) are selected choose
n(j) > n(j— 1) so that

. . k
(8) On(j) 2 U (2By(jy + J) + 2Bk(j)]tf,(§§))
Next choose k(j+ 1) > k(j) so that
i
9) D 12y il < Bty
k>k(j+1)

Thus (7), (8), and (9) together yield

k(j+1) )
(10) S a2 J@Brgy + D).

k=1+k(j)

Now define the sequence x by

Xp = LK k() <k <K@+ 1) and a,(;) x #0,
lan(jy, klJ

and x;, = 0 otherwise. It is clear that x € ¢y, but for each j we have

k(j+1)
[(AX)np) = = D angy el +| D @iy X = D lang)
k<k(j) k=11k(j) k>k(j+1)
k(j+1) i
> 2By ts W+ > lawg k|_>]t§1(§.§”.
k=1+k(j)

Hence, Ax ¢ Q%)) for j=1,2,...,s0 Ax ¢ D(T). Thus we
have shown that if (i) is false then (vi) does not hold, which completes
the proof.

As with Theorem 1, we can state two immediate corollaries to The-
orem 2. The first is the case in which D(T) = G as in Example 1,
and the second is the case in which T consists of a single sequence.

COROLLARY 2A. If A is a summability matrix and 6, = Y _}_; |@u],
then A maps [®,c, and cy into G ifand only if 0 €G.

COROLLARY 2B. If A is a summability matrix and t is a nonneg-
ative number sequence, then A maps [®, c, and cy into Q(t) if and
only if 0 € Q(t).

Once again, it is the latter corollary that is described in the title
of the paper: for, if one wishes to have a matrix A4 that transforms
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every null sequence into a sequence that converges at least as rapidly
as some ¢, | 0, then A must satisfy o € Q(¢). Similarly, if 7 is a
nonzero constant sequence, then Q(¢) = /°°, and in this case Corollary
2B reduces to the well-known result that 4 preserves boundedness if
and only if o is bounded.

Another observation should be made about obtaining a “given rate
of convergence” by mapping ¢y into €(¢). Recent work [1, 7] has
shown that regular matrices cannot accelerate the rate of convergence
of every null sequence. Therefore, we emphasize that having 4 map
co into Q(z) does not say that every sequence in ¢y is accelerated,
even if ¢, | 0 very rapidly; some sequences that are already in Q(¢)
may map into other members of Q(¢) that converge at the same rate
or slower.

3. Examples involving classical matrices. If A4 is regular then o €
[* but g ¢ cy. Therefore Theorem 2 and its corollaries do not yield
much information about regular matrices, and this includes most of
the classical methods. We can, however, draw some conclusions about
mapping /! into Q(¢) by finding u and applying Corollary 1B.

ExAMPLE 2. The Cesaro matrix of order j is given by

(n+§:}—k)

(")

(see, e.g., [8, p. 46], so it is plain that

C}[n, k]==

_C __J

whence Cj: ' — Q(1/n).
ExXAMPLE 3. For the Euler-Knopp mean of order r it is known

[3, Theorem 9] that u, ~ [2ar(1 — r)n]~'/2; so by Corollary 1B,
E:I'—-Qn1/?),

ExAMPLE 4. For the Taylor matrix 7, [3, Theorem 11] we have
Un ~ (1 =r)[2nrn]~1/2, and therefore

T,: ' - Q(n~1/?).

ExAMPLE 5. The Borel matrix [8, p. 53] is given by B[n, k] =
e "nk/k, and it is not hard to show that

un=Bln, n1= (2)"

m.
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From Stirling’s Formula it follows that
1
ﬂn /—rnn s
and so B, like E, and T,, maps /! into Q(n=1/2).

ExAMPLE 6. The Hausdorff means [5, Chapter 5] can be defined by
1
Hyln, k1= [ En. Kldp,
0

where E, is the Euler-Knopp mean and fol |dg| < co. Thus from
Example 3 we infer that

1-

\H,[n, k]| < Kn~'/2 / [r(1 = NI 2ldo(r),
0+

where K is a constant. Therefore we conclude that if

1—
[r(1 = n1""2dg| < oo,
0+
then p, = O(n~'/?) and H,: I' = Q(n=1/2y.

ExAMPLE 7. The Norlund mean generated by the nonnegative se-
quence p with py > 0 is given by

Dni/Pn, ifk<nm,

N”[”’k]:{o ifk>n.

In general,
1
Hn = p- max{p};_o>

and this is somewhat awkward in Corollary 1B. In case p is monotonic
the u formula becomes quite simple, and we can state the following
easy conclusions:

(i) if p is nonincreasing, then u, = pg/P, and N,: ' — Q(1/P,);

(ii) if p is nondecreasing then u, = p,/P, and N, = I! —
Q(pn/Py) - :

It should be noted that these results do not always give much in-
formation. For example, in Case (i) if p € /! then 1/P ¢ ¢y and
(i) asserts only that N, maps /! into /®. (Every Norlund matrix
maps [® into [* because g, := 1.) Similarly, if p, = R", where
R > 1, then p,/P, ~ (R—1)/R, and (ii) tells us only that N, maps /!
into /.
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ExXAMPLE 8. An Abel matrix [4] is given by

An, k] = ta(1 = tn)*,

where 0 < ¢, <1 and lim, ¢, = 0. For A, it is obvious that u, =¢,,
and therefore by Corollary 1B, 4;: I! — Q(r).

The authors would like to thank Professor James DeFranza for some
very helpful conversations.
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