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SEQUENCE TRANSFORMATIONS THAT GUARANTEE
A GIVEN RATE OF CONVERGENCE

G. H. FRICKE AND J. A. FRIDY

Let t be a positive number sequence and define the sequence space
Ω(ί) := {x: Xk = 0 ( 4 ) } . Characterizations are given for matrices
that map the spaces I1, l°° , c , or c0 into Ω(/), thus ensuring that
the transformed sequence converges at least as fast as t. These re-
sults yield information about matrices that map Z1, /°° , c, or c0 into
G := UΓG(O, l) Ω(r"), the set of geometrically dominated sequences.

1. Introduction. For each r in the interval (0, 1) let

G(r) = {complex sequences x: xk = O(rk)}

and define the set of geometrically dominated sequences as

<7= U G W .
re(0,l)

The analytic sequences are defined by

si = \ complex sequences x: limsup |ΛΓΛ2|
1/Λ2 < oc >.

Obviously G c sf . In [2, 6, 9, 10] the various authors studied matrix
transformations from J / or G into I1, c, or /°°, but the question
of mapping yrom Z1, c, or /°° /wto J / or G was not considered. We
shall use the customary notation for a matrix transformation: if A is
an infinite matrix with complex entries and x is a complex number
sequence, then A transforms x into the sequence Ax whose nth
term is given by

The present work began as a study of I1 - G and c — G matrices,
but it was found that such results are merely special cases of a more
general theory. To set the stage for the general theory we replace the
geometric sequence {rk} with a nonnegative sequence t and define

239



240 G. H. FRICKE AND J. A. FRIDY

Throughout the paper T will denote a sequence {t^}™=x ofnonneg-
ative number sequences such that ί(m) E Ω(/(w + 1 )) for each m; this
ensures that Ω(t^) c Ω(/(m + 1)), and we define

D(T) =
ra=0

EXAMPLE 1. If for each m, ί(m) is the geometric sequence {r^},
where 0 < rm < 1 and rm | 1, then 25 (Γ) is G.

For a given summability matrix A, the sequences μ and σ are
defined by

μn =sup\ank\
k

and

k=0

The main results of this paper state that for A to map I1 [re-
spectively, c] into a "big-oh space" such as Ω(ί), it is necessary and
sufficient that μ be in Ω(/) [respectively, σ e Ω(ί)]. Moreover, in
order for A to map lx [respectively, c] into D(T) it is necessary
that A map into a particular Ω(/(m)) for some ί(m) in T. Thus the
characterizations of A: I1 —• G and A: c -* G are obtained as special
cases of the general theory.

The final section of the paper contains a brief discussion of some
classical matrix methods as mappings into Ω(/) spaces.

2. The main results. Using the notation as given above, we proceed
to our first general result.

THEOREM I. If A is a summability matrix and T, D(T), and μ
are as given above, then the following are equivalent:

(i) μeD(T);
(ii) there exists a t^ in T such that μ e Ω(tW)

(iii) there exists a t^ in T such that A: I1 -+ Ω(t^)
(iv) A: I1 -+D{T).

Proof. Implications (i) => (ii) => (iii) => (iv) are obvious. To prove
that (iv) => (i), first note that (iv) implies that

(1) μn < oo for each n

and

(2) each column of A is in D(T).
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It follows from (2) that the sum of any finite number of columns of
A is in D(T), so there exists a sequence {6m '} in Γ and a positive
number sequence {Bm*} that increases to oo such that

(3) ] Γ \ani\<Bm*t{

n

mΊ for each n.
i<m*

To simplify the notation we will write m in place of m* since the
nestedness of the sets {Ω(ί(m))} ensures that nothing is lost by con-
sidering the subsequence {6m*}} as the entire sequence {ί ( m )}.

Now assume (1), (2), and (3) hold, but μ φ D{T)\ we wish to
construct an x in Z1 such that Ax φ D{T). From each row of A
select an entry satisfying

\anX(m)\ ^ 5^π

Since μ φ D{T), (2) allows us to choose a subsequence of these
entries, say {dn'^.k'^V^ such that n'{i) and k'(i) increase with /;
also, μ $ D(T) allows us to choose the n'(ϊ) so that

(4) mv{μn,{i)lt
{f{i)} = oc for all m.

For each / we also have

(5) I<V(I),*'(I)I ^ iVn'(i) = 5SUP{I^(/),^I>
k

Finally, choose a further subsequence*of these entries so that for
each j

(6) \anU)t

Now define x in Z1 by

~J, if fc = fc(7) and anU)MJ)
Xk = ,

1 Λ otherwise.

For each j this yields
i\\ > — / . \an(i\.k(iλ\4~l + \CLn(iλ.k(i\\4~J +
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Hence, Ax £ Q.{t^'λ^), and it follows that Ax φ D(T).
By taking T as in Example 1 we get the following corollary as an

immediate consequence of Theorem 1.

COROLLARY lA. If A is a summability matrix and μn = sup^ \ank\,
then A: l{ —> G if and only if μ eG.

Another consequence of Theorem 1 can be obtained by replacing T
with a single sequence, i.e., ί(m) = t for every m. Thus D(T) = Ω(ί),
and we get the following result.

COROLLARY IB. If A is a summability matrix and t is a nonneg-
ative number sequence, then A = I1 —• Ω(ί) if and only if μe Ω(ί).

This corollary gives rise to the title of the paper, because it character-
izes those matrices A that will transform every absolutely convergent
series Σxk into a series YJ(Ax)n that converges at least as fast as a
given series £) tn .

Now we turn our attention to matrix mappings from /°° into D(T),
which, as we shall see, subsumes the cases of mappings from c or CQ
into D(T).

THEOREM 2. If A is a summability matrix and T, D{T), and σ
are as given above, then the following are equivalent:

(i) σeD(T);
(ii) there exists a t^ in T such that σ e Ω(t^)

(iii) there exists a t^ in T such that A: l°° -+ Ω(t^)
(iv) there exists a t^ in T such that A: c -+ Ω(t^)
(v) there exists a t^ in T such that A:co-> Ω(t^)

(vi) A:co-+D{T).

Proof. As in the proof of Theorem 1, most of the implications are
obvious and we prove here only that (vi) => (i). Note that (vi) implies
that each row of A is in l{ (i.e., σn < oo) and each column of A is in
some Ω(£(m)). Therefore finite sums of the column sequences are in
D{T), and we can choose a sequence of t^ 's with constants Bj > 0
such that for each j

(7) W

Suppose that σ £ D(T). Choose increasing sequences {k(j)} and
{n(j)} of column and row indices as follows: k{\) and n(0) are
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chosen arbitrarily, and after k(j) and n(j - 1) are selected choose

n(j) > n(J ~ 1) s o that

(8) °nϋ) > U(2Bkυ) + j)

Next choose k(j + 1) > k{j) so that

(9) Σ ι^),ti<

Thus (7), (8), and (9) together yield

(10) ^ \anU)Λ\>j{2BkU)+j)t^f.
k=\+k(j)

Now define the sequence x by

xk = -—n(J)' . 9 if fc(j) < k < k(j + 1) and dn(j)9k Φ 0?

and xk = 0 otherwise. It is clear that x e c o , but for each j we have

an(j),kXk\{Λx)n{j)\ >- Σ, \an(j),k\
k=l+k(j) k>k{j+\)

>-lBk{j)tn

U)

Hence, ^ x ^ Ω(ί^(Λ)) for 7 = 1, 2, . . . , so Ax φ D(T). Thus we
have shown that if (i) is false then (vi) does not hold, which completes
the proof.

As with Theorem 1, we can state two immediate corollaries to The-
orem 2. The first is the case in which D(T) = G as in Example 1,
and the second is the case in which T consists of a single sequence.

COROLLARY 2A. If A is a summability matrix and σn = Σ)£= 1 \ank\>
then A maps l°°, c, and CQ into G if and only if σ eG.

COROLLARY 2B. If A is a summability matrix and t is a nonneg-
ative number sequence, then A maps l°°, c, and Co into Ω(ί) if and
only ifσe Ω(ί).

Once again, it is the latter corollary that is described in the title
of the paper: for, if one wishes to have a matrix A that transforms
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every null sequence into a sequence that converges at least as rapidly
as some tn | 0, then A must satisfy σ e Ω(ί). Similarly, if t is a
nonzero constant sequence, then Ω(ί) = /°°, and in this case Corollary
2B reduces to the well-known result that A preserves boundedness if
and only if σ is bounded.

Another observation should be made about obtaining a "given rate
of convergence" by mapping Co into Ω(ί). Recent work [1, 7] has
shown that regular matrices cannot accelerate the rate of convergence
of every null sequence. Therefore, we emphasize that having A map
Co into Ω(ί) does not say that every sequence in c0 is accelerated,
even if tn j 0 very rapidly; some sequences that are already in Ω(ί)
may map into other members of Ω(ί) that converge at the same rate
or slower.

3. Examples involving classical matrices. If A is regular then σ e
/°° but σ φ Co. Therefore Theorem 2 and its corollaries do not yield
much information about regular matrices, and this includes most of
the classical methods. We can, however, draw some conclusions about
mapping Z1 into Ω(ί) by finding μ and applying Corollary IB.

EXAMPLE 2. The Cesaro matrix of order j is given by

(see, e.g., [8, p. 46], so it is plain that

/ιB = C,-[n, 0] = ^ ,

whence Cμ I1 ->Ω(l//ι).

EXAMPLE 3. For the Euler-Knopp mean of order r it is known
[3, Theorem 9] that μn ~ [2πr(l - r)n\~ll2; so by Corollary IB,

EXAMPLE 4. For the Taylor matrix Tr [3, Theorem 11] we have
μn ~ (1 - r)[2πrή\~χl2, and therefore

EXAMPLE 5. The Borel matrix [8, p. 53] is given by B[n, k] =
e~nnk/k!, and it is not hard to show that

μn = B[n, n] = (I) ±.
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From Stirling's Formula it follows that

1

y/rπn

and so B, like Er and Γ r ,maps Z1 into Ω(n~1/2).

EXAMPLE 6. The Hausdorff means [5, Chapter 5] can be defined by

H9[n,k]= ί Er[n,k]dφ,
Jo

where Er is the Euler-Knopp mean and l§\dφ\ < oo. Thus from
Example 3 we infer that

\Hψ[n, k]\ < Kn-χl2 ί [r(l - r)Γι'2\dφ(r)\,
Jo+

where K is a constant. Therefore we conclude that if

'0+

then μn = O(n-χl2) and Hφ: Z1 ^ Ω ^ " 1 / 2 ) .

EXAMPLE 7. The Nόrlund mean generated by the nonnegative se-
quence p with po > 0 is given by

Pn-k/Pn, iϊk<n,

0, if k>n.

In general,

μn = — mdx{pk}%=0,

and this is somewhat awkward in Corollary IB. In case p is monotonic
the μ formula becomes quite simple, and we can state the following
easy conclusions:

(i) if p is nonincreasing, then μn = Po/Pn and Np: Z1 —• Ω(l/Pn)
(ii) if p is nondecreasing then μn = pn/Pn and Np = I1 —>

It should be noted that these results do not always give much in-
formation. For example, in Case (i) if p e I1 then l/P φ. CQ and
(i) asserts only that Np maps I1 into l°°. (Every Nόrlund matrix
maps /°° into /°° because σn := 1.) Similarly, if pn = Rn, where
R > 1, then pn/Pn ~ (R-l)/R, and (ii) tells us only that Np maps Z1

into /°°.
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EXAMPLE 8. An Abel matrix [4] is given by

where 0 < tn < 1 and limπ tn = 0. For At it is obvious that μn = tn ,
and therefore by Corollary IB, At: l{ -+ Ω(ί).

The authors would like to thank Professor James DeFranza for some
very helpful conversations.
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