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RINGS OF DIFFERENTIAL OPERATORS
ON ONE DIMENSIONAL ALGEBRAS

MARC CHAMARIE AND IAN M. MUSSON

Let k be an algebraically closed field of characteristic zero, and
A a finitely generated /c-algebra of Krull dimension at most one. In
this paper we study the ring of differential operators 3ί{A). For
example we obtain necessary and sufficient conditions for 2$ (A) to
be a direct sum of Simple rings, or to be left or right Noetherian.

0.1. Let k be an algebraically closed field of characteristic zero and
A a finitely generated (commutative) /c-algebra. The primary purpose
of this paper is to study the ring 3f[A) of differential operators on A
when dim(^4), the Krull dimension of A, is at most one. If A is also
reduced or is a domain 3f(A) has been studied extensively in [10] and
[15] and we prove analogues of the main results of these papers. For
example

THEOREM A. Let A be a finitely generated k-algebra with Krull
dimension at most one. Then

(a) 3f{A) is right Noetherian and finitely generated as a k-algebra.
(b) 3f(A) is left Noetherian if and only if A has an artinian quotient

ring.

0.2. One of the main ideas in [15] is to compare 3f(A), for A &
domain, to 3f(A) where A is the integral closure of A. In particular,
[15, Theorem B] gives necessary and sufficient conditions for 3f(A)
and 3f{A) to be Morita equivalent. We prove a similar result here.
We denote the nilradical of A by N(A), and say that A has injective
normalisation if every maximal ideal of A/N(A) is contained in a
unique maximal ideal of its integral closure.

THEOREM B. Let A be a finitely generated algebra with dim(^4) < 1
and let A be the integral closure of A/N(A). Then the following are
equivalent:

(1) 3l{A) is Morita equivalent to 2r(A).
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(2) 3 (A) is a direct sum of simple rings.
(3) A = A\ (B A2® -" θ Ar where each At is a primary ring with

injective normalisation.

0.3. As geometric motivation for the study of differential operators
on non-reduced algebras we mention a result of S. P. Smith [14]. Let
R = k[x, y] and / G R a polynomial defining an irreducible curve
X. If 0 = 0(X) it is known that the ^(i?)-module 0ff0 has finite
length and has a unique minimal submodule. There is some interest
in describing this submodule. The main result of [14] is that when
the normalisation map X -> X is injective 0fj0 is a simple 3{R)-
module. This follows easily from the fact that 3(R/fnR) is a simple
ring. In turn simplicity of &(R/fnR) follows from a corollary to
Theorem B in this case, see 2.6.

0.4. We outline the proof of Theorem A. The case where A has an
artinian quotient ring is handled in §2. In general, there is a factor al-
gebra A of A which has an artinian quotient ring and a surjective ho-
momorphism φ: 3f(A) —• 2{A), see 4.2. Since 3 {A) is Noetherian
by the results of §2, it will suffice to prove

THEOREM C. With the notation of 4.2, J = Kevφ has finite length
as a right £&(A)-module.

For an arbitrary /:-algebra A we define a standard 2{A)-module to
be a right 3f{A)-module of the form 2r(A, A/M) for some maximal
ideal M of A. Standard modules have been studied in [13]. In §3
we show that if V is any ^-module of finite length then 3f(A, V)
is a direct sum of standard modules (Corollary 3.4). We also explain
how Matlis duality may be used to study standard modules. Finally in
Proposition 4.3 we show that if dim A < 1 then any standard module
has finite length. Theorem C follows easily from these results.

0.5. Let M be a maximal ideal of A and denote by AM, AM
respectively the localization and completion of A at M. Several
results, including Theorem B, remain true when A is replaced by AM
or AM. In 1.1 we abstract the properties of A, AM and AM which
are necessary for the proofs. In some situations, for example when
using Matlis duality, the results for 3{AM) are more pertinent than
those for 3{A).
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0.6. In §5 we describe a method which can be used to compute
3f{A) explicitly in a number of cases.

Any unexplained notation in this paper will be as in [11]. We have
tried to merely sketch proofs which are routine adaptations of those
in [15]. However the proof of the implication (2) => (3) of Theorem
B is new even in the case where A is a domain.

1. Preliminary results.

1.1. Let M be a maximal ideal of the finitely generated algebra A.
Since several results on 3r(A), 2{AM) and 2(AM) can be proved
simultaneously we abstract the required properties of the commutative
algebras here. We assume

(a) dim(^ί) < 1 and A has an artinian quotient ring F.
Next we prove
(b) There exists a subring B of F containing A such that B is

a finitely generated ^-module and (B + N(F))/N(F) is the integral
closure ofl=(A + N(F))/N(F) in F/N(F)._

If x E F and x + N(F) is integral over A, then x is integral
over A, so A[x] is a finitely generated ^4-module. Since the integral
closure of A is a finitely generated ^4-module the result follows.

(c) There is a subalgebra 2? of B such that fi = 5 θ N ( B ) .
Since B/N(B) is a direct sum of Dedekind domains and idempo-

tents may be lifted over a nilpotent ideal, we have B = B\ φ θ Br

where each Bj/N(Bi) is the coordinate ring of a nonsingular curve.
By the infinitesimal lifting property, [6, Exercise II.8.6] there exists a
subalgebra 2?; of Bt with Bt = 2?/ θ N(Bι). Then (c) follows with
2? = 2? i θ θ ~Br.

We next show that the analogues of (a)-(c) remain valid when A

is replaced by AM or AM.
For a multiplicatively closed set S in a commutative ring A we

set 5(0) = {a e A \sa = 0 for some s e S}. Let S = A \ M, and
let 0 = K\ Π Π Kn be a minimal primary decomposition where
Ki is P/-primary. Assume the K[ are numbered so that P[ C M
if and only if 1 < i < m. Then by [1, Proposition 4.9] S(0) =
K\Π" -ΠKm . In particular 5(0) has no embedded primes, so passing
to A/S(0) we may assume S consists of regular elements without
changing assumption (a). Since S = /c*(l + M) we have f|« Mn = 0
by KrulΓs intersection theorem. Hence A c AM Q AM.

Let / be the Jacobson radical of the semilocal ring Bs. We prove
(a)' dim(^ M ) < 1, dim(^M) < 1, F is the full quotient ring of

AM and AM has an artinian quotient ring Q.
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(b)' Bs (resp. (BS)J) is finitely generated as an AM (resp. AM)
module and BS/N(BS) (resp. (BS)J)/N((BS)J) is the integral closure
of AM/N(A_M) (resix AM/N(AM)).

(c)' Let S (resp. /) be the image of S (resp. /) under the natural
map B -+B (resp. Bs -> % ) . Then Bs = Bs®N(Bs) and (Bs)j =

Applying the exact functor - ®B BS to the sequence 0 —• N(B) —•

fiΛfi-^0 we obtain exactness of 0 -> N(B)S -> Bs -̂ -> % -> 0

where S = π(S). If i:Tΐ -> B is the inclusion map, then elements
of z'(ιS) are units in Bs so there is a map /$: i?^ —• Bs such that
πs/s is the identity on 7?j. Thus Bs = T ^ θ N(7?s). To simplify

notation set 7) = (Bs)j and 7? = C%)j . A similar proof shows that

D = E® N(D).
We claim that D has an artinian quotient ring. It suffices to show

that N(D) is torsion free as an i^-module. If x is any regular element
of E, then since E is the completion of a direct sum of Dedekind
domains at a semimaximal ideal, there is a multiple y of x which
is a regular element of B-ς. Since Bs has an artinian quotient ring,
0 —• N(Bs) —• N(Bs) is exact where the map is multiplication by y.
Applying exactness of the completion shows that y and hence x are
nonzero divisors on N(D) as required.

Finally we claim that D/AM has finite length as an ^^-module.
This is clear if AM = Bs so assume not and let I = ann^ (BS/AM) be
the conductor. Since 7 is a proper ideal of AM we have I QM C J.
However Bs/I has finite length so Jn c I for some n. It follows that
the /-adic and 7-adic topologies on Bs coincide and {Bs)j = (Bs)i
Similarly AM = Aj . Now take the 7-adic completion of the sequence
of ^Λ/-:modules 0 —• AM —• Bs —• BS/AM —> 0. The last term is
unchanged, since it has finite length and this proves the claim. Hence
the conductor of D in AM contains a regular element of D and so
the artinian quotient ring of D is also the quotient ring of AM - This
proves the analogues of properties (a)-(c) for AM and their analogues
for AM are similar.

1.2. Let / be an ideal in a ring A such that f]Jn = 0 and de-
note by A the completion of A in the /-adic topology. If d £

an easy induction shows that d(JnJrq) c / Π . Therefore if
0i > -) is a Cauchy sequence in the /-adic topology, so also
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is d{a) = (d(ao), d(a\)9 . . . ) and d extends to an element of 3fq(A).
Furthermore if d e &q(A) and d vanishes on A then <9 = 0. To
see this suppose a £ A and write a = αi + c*2 where a\ e A and
α 2 € Jn+q. We obtain 0(α) = 5(α 2) 6 / Λ for all n so d(α) = 0.
Thus any element d € ^(Λl) extends uniquely to an element of
3fq(A) and we obtain maps

A®A2ίq(A) - > S * ( i ) and v ϊgu^(Λ) ->3f{A).

THEOREM. 7f A is a finitely generated k-algebra then A®A3Jq(A) =
i ί = 3f{A).

Proof. If 4̂ is the local ring of a point on an algebraic variety, a
corresponding result is proved by Ishibashi in [7, page 13, Corollary]
and his proof extends to the present case. However we include an
alternative proof for the convenience of the reader.

First suppose A = k[x\,... , xn] a polynomial algebra. If d e
we show by induction on the order of d that d ^A®ΛSf{A) —

A[dx 9...,dn] where <9Z = d/dXi. This is clear for d € A. By in-
duction we have d\ = [d, xfl e A[d\, . . . , dn]. Now [rff , */] is the
partial derivative of d\ with respect to dj and [rff , xj\ = [^, X/].
Thus by a familiar argument involving exact differential equations,
there exists d e A[d\,..., dn] such that [d, X/] = rf/ for all / and
rf(l) = 9 ( l ) . It is now easy to see that d and d agree as operators
on A, and as we observed above this implies d = d.

In general write 4̂ = B/I where / is an ideal in B = &[.xi, . . . , xn].
Let / ' be the inverse image of / in B. Then Bf/ίj' = ^4/. Let
5 = { 9 G 3f(B)\d(I) c /} and Γ = { 9 G ̂ (5) | a (7) c /} . Then
by [10, Lemma 1.4] we can identify 3f(A) with S/I3f{B) and in a
similar way ^ ( i ) may be identified with T/ΐ&(B). Write Sq =
5 n 3 ^ ( 5 ) and F = Γ n ^ ^ ( 5 ) . We first show that Tq = B®BS

q .
By [10, Lemma 1.5] there is a finite set of elements {v\, ... , vr} of
/ such that if d e 2Jq{B) then d e Sq if and only if d(vt) e I
for all i. It is also easy to see that for d e 3fq(B), d e Tq if
and only if d(Vi) e / for all /. Let φ r A be the free ^-module
of rank r and φ: 3q{E) —> φr A the homomoφhism of left B-
modules such that for d e 3fq{B), the jth component of φ(d) is
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d(vj) + /. Then Sq = Kerφ and Tq = Kerl ® 0: B®2$q(B) =
2$q(B) -+ 0 r A , However since B is a flat 5-module we also have

Ker \®φ = B®B Ker0. Thus Tq = B ®B S
q as claimed. Applying

B ®B - to the exact sequence 0 -* I2q{B) -* Sq -^ 2q(A) -+ 0

we obtain A®Λ 2)q(A) = Tq/Ϊ3fq(B) = 2Jq(A). Taking direct limits

we have ^(^ί) = \im2fq{A) = A®Λ \\m2q{A) = A®A2){A) as
required.

COROLLARY. If A is a finitely generated k-algebra then for any in-
teger n, 3f(A) = 3f(A) + Jn3f{A).

Proof. This follows since A — A + Jn .

2. Algebras with an artinian quotient ring.

2.1. LEMMA. Let A be any k-algebra and P a finitely generated
projective A-module. Then 3r(A,P) = P®A2J{A) and 3f(P) =
End^(A)(3f(A, P)). Furthermore, if P is a progenerator then 3f{P)
and 2) (A) are Morita equivalent.

Proof. By the dual basis lemma, there exists JC, G P and α, G
P* = Hom^(P, A), 1 < i < n, such that l/> = ^ x , α/, so the map
P®A2#{A) —> 3(A, P) sending x®d to xd has an inverse given by
d -+Σxi <8)aid.

Define 0: ^ ( P ) -> Έnά^{A){2{A, P)) by letting 0(rf) send rf; to
rfrf' for rf G ̂ ( P ) and d! e &(A, P). Then (/> is onto since if
σ e End^(A)(&(A, P)) then φ(Σσ(χi)ai) = σ Clearly φ is one-
one.

Finally if PA is a progenerator then so is (P ® 2$(A))^(A) so the
result follows.

THEOREM. Let A be a finitely generated algebra which has an ar-
tinian quotient ring F and suppose dim(^) < 1. If A/N(A) is in-
tegrally closed in F/N(F) then 3f(A) and 3f{A/N(A)) are Morita
equivalent.

Proof. In this case we can take B = A in statement (b) of 1.1. Hence
by (c) in 1.1 we have A = A Θ N where A is a subalgebra of A and
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N = N(A). Since A has an artinian quotient ring, N is torsionfree
and hence projective as an ^4-module. Also A is an A progenerator,
so by the lemma 2^(A) and 2 (A) are Morita equivalent. However
by [11, Lemma 2.1], 2 (A) = 2j{A) so the result follows.

2.2. THEOREM. Let A be a finitely generated k-algebra of Krull
dimension at most one which has an artinian quotient ring F. Then

(a) 2 (A) is (left and right) Noetherian.
(b) 2(A) is a finitely generated k-algebra,
(c) 2(A) has left and right Krull dimension equal to that of A.
(d) If M is a simple 2(A)-module then End^μ) M = k.

Proof. It is known that the required properties of 2(A) are Morita
invariant. Let B be a subalgebra of F containing A chosen as in 1.1.
Then by Theorem 2.1 2(B) and 2(B/N(B)) are Morita equivalent.
Since B/N(B) is a direct sum of coordinate rings of non-singular
curves 2(B/N(B)) has all the required properties and thus so does
2{B). Also 2(A) and 2{B) are orders in the same semisimple
artinian ring by [11, Theorem A] and B/A is a finitely generated
torsion ^4-module. It is now straightforward to complete the proof as
in [15, §2] or [10, §5].

2.3. LEMMA. Suppose άim(A) < 1, and A has an artinian quotient
ring and injective normalisation. Then A is a direct sum of primary
rings.

Proof. We first handle the special case where A is reduced. Let
A be the integral closure of A, M a maximal ideal of A and S =
A — M. By hypothesis As is regular local and hence a domain by [8,
Theorem 164]. Therefore AM is also a domain, so by [8, Theorem
168] A = A i Θ Θ An is a direct sum of domains A(.

In general, by applying the above argument to A/N(A) and then
lifting idempotents over N(A) we have A = A\ Θ ®An where each
A{ has a unique minimal prime. Since A has an artinian quotient
ring, it follows that A\ is primary.

2.4. LEMMA. Suppose dim(^4) < 1 and A is a simple left 2(A)-
module. Then A is a primary ring with injective normalisation.
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Proof. Let S be the set of elements of A which are regular
modiV(;4). Since S(0) is a ^(yl)-submodule of A by [11, Lemma
1.4], we have S(0) = 0. Hence A has an artinian quotient ring.
If A = A\ Θ A2 a direct sum of algebras then each A\ is a 3f{A)-
submodule by [10, Proposition 1.14]. Hence in view of Lemma 2.3,
it is enough to show that A has injective normalisation. Also we can
assume άim(A) = 1. Let M be a maximal ideal of A. We claim
that A = AM has a unique minimal prime. Let K\ πKi Π Π Kn = 0
be a minimal primary decomposition in A where Kj is ^/-primary,
and assume for a contradiction that n > 1. Since A has an artinian
quotient ring, the ideals Pt , 1 < / < n, are the minimal primes of
A. Set / = K\+K2. Since the set of zero divisors of A equals (J" Pi
by [1, Proposition 4.7] and / £ (Ji pi bY I8> Theorem 81], / con-
tains a regular element. Thus AM 11 is artinian and hence / Π A Φ 0.
Also I Φ A since the ^ are proper ideals in the local ring A. Now
by [11, Lemma 1.4] and [1, Proposition 4.9], each Kι is a 3 (A)-
submodule of A. Therefore / is a Sr(^4)-submodule. Since every
element of 3 (A) extends uniquely to an element of 3 (A), In A is a
proper 3 (A)-submodule of A. This is a contradiction, so the nilradi-
cal N(AM) is the unique minimal prime of AM . Now AM/N(AM) is
the completion of A/N(A) in the M/N(A)-adic topology. Since this
is a domain, it follows by [5, Theorem 6.5] that M/N(A) is contained
in a unique maximal ideal of the integral closure of A/N(A). Thus
A has injective normalisation.

2.5. Proof of Theorem B (1) => (2) is trivial.
(2) =>> (3). Assume 3f{A) is a direct sum of simple rings, and let

1 = β\ + + er be a decomposition of the identity into centrally
primitive idempotents. Since any central element of 3 {A) belongs
to A, we have 3(A) = 2{Ae\) Θ Θ 3(Aer) and each 3{Aeϊ) is
simple. Therefore we can assume that 3(A) is simple. This implies
that A is a simple ^(^)-module because any proper factor module
would have non-zero annihilator in A and hence in 3 (A). Hence by
Lemma 2.4 A is a primary ring with injective normalisation.

(3) => ( l ) . We may assume that A is a primary ring with injectivέ
normalisation. Let F be the artinian quotient ring of A and let B be
a subalgebra of F containing A and satisfying properties (a)-(c) of
1.1. We claim 3(A) and 3(B) are Morita equivalent. Let M be a
maximal ideal of A and Q the unique maximal ideal of B containing
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M. Since BQ/AM is a finitely generated torsion ^M-module we have
Qr c ann^OβρAΊΛ/) for some r. Let /> = ^ ( # β , ̂ M ) = {rf e
^ ( J ϊ β ^ C B β ) c ^ M } . As in the proof of [15, 3.3 and 3.4], it is
enough to show there exists a d e P such that d(l) e k\ {0}. Now
BQ = Έ-Q Θ N(BQ) where Sg- is a subalgebra of J5ρ with unique

maximal ideal ζ). Since 2?^ is a discrete valuation ring, there exists

t e ΈQ and d e ΌQTBQ such that Q = ί£g and fl(ί) = 1. Set

d = Π5=i(*0 ~ 7) € ^ ( Λ g ) . By [11, Lemma 2.1] we can extend d

to a differential operator on J? e by setting d{N(BQ)) = 0. Note that

d{tn) = V * for some λnek and λΛ = 0 if and only if 1 < n < r-1.

As in [15] this implies d(Qr) c β r . Since BQ = (A: + kt + +

ktr-χ) Θ β" Θ JV(5β), we have d{BQ) Ck + Qr CAM so deP and

rf(l) G k \ {0} as required.
This shows that 3{A) and 3f{B) are Morita equivalent. Finally

2{B) and &(B/N(B)) are Morita equivalent by Theorem 2.1, and
B/N(B) is the integral closure of A/N(A), so the theorem is proved.

2.6. COROLLARY. Let A be a finitely generated k-algebra with
< 1. The following conditions are equivalent

(1) 3f{A) is a simple ring.
(2) A is a simple left 3f (A)-module.
(3) A is a primary ring with injective normalisation.

Proof. (1) => (2) was noted in the proof of Theorem B.
(2) => (3) is the statement of Lemma 2.4.
(3) => (1) We can assume dim(^) = 1. By Theorem B, 3f{A)

is Morita equivalent to 3\Λ) where A is the integral closure of
A/N(A). Since A/N(A) is a domain, A is the coordinate ring of
a nonsingular, irreducible curve. Thus 3f{A) is a simple ring and
hence 3f{A) is also simple.

REMARK. If R = k[x, y] and / = f(x, y) € R is irreducible, it
is easily seen that A = R/fnR is a primary ring for all n > 1. Thus
if X is the planar curve defined by / and the normalisation map
X —• X is injective we have that 3f{A) is a simple ring and A is a
simple ^(^4)-module. This gives Proposition 2.8 and Corollary 2.9 of
[14].
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2.7. PROPOSITION. Let A be a finitely generated k-algebra with
dim(^4) < 1, and assume that A has an artinian quotient ring F.
Then A has finite length as a left 2(A)-module.

Proof. Let B be a subalgebra of F containing A and satisfying
conditions (a)-(c) of 1.1. Set / = annA(B/A). Since B/A is a finitely
generated torsion ^4-module, A/I has finite length. Also B = B\@
•• 0 β r where each B[ is primary and Bi/N(Bi) is the coordinate
ring of a nonsingular curve. Thus Bj is a simple ^(if/)-module. Let
π z : B —• Bi be the projection map. If M is a ^(^-submodule of A,
we define λ(M) = {i\m{M) Φ 0} . We claim that I(φieλ{M) Bt) c M .
Since also M c ®ieλ(M) Bt, and there are only finitely many choices
for λ(M) this will show that A has finite length as a ̂ ( ^ d l

Assume / e λ(M). Let ^ = τr, (l) G 5, ; then π/(Af) =
so 3f{B)M D 3{B)eιM = Bt, since 5/ is a simple S r(
Since I3f{B) c ^ ( ^ ) we obtain M = ̂ ( ^ ) M D I3f{B)M D IBt as
required.

REMARK. The above remains true if A is not assumed to have an
artinian quotient ring, see Proposition 4.3.

2.8. All of the results in this section hold if A is replaced by AM or
AM . For the analogue of Theorem 2.2 with A replaced by AM , we
should observe that if B is an overring of A constructed in 1.1, then
the endomorphism ring of any simple 3f(B/N(B))-mod\x\e equals k.
This easily reduces to the following special case.

LEMMA. If B = k[[x]], 2 = 3f(B) and M is any simple 2-
module, then End^ M = k.

Proof. Since M is holonomic, [3, Ch. 3, Prop. 3.11] applies.

3. Standard modules.

3.1. Let A be an arbitrary (commutative) fc-algebra. If V is an A-
module and M an ideal of A we denote by anny(M), soc^F) and
EA(V) the annihilator of ¥ in V 9 the socle of V and the injective
hull of V respectively.
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LEMMA. Let Q be an ideal of A, and V an A-module with QV = 0.
(a) If d e 3n(A, V) then d(Qn+ι) = 0 (equivalent^ dQn+ι = 0

in 3f{A, V)).
(b) If Q is M-primary where M is a maximal ideal of A then

3f{A9 V) = {d e Homk(A, V)\d{Mn) = 0 for some ή). In particu-
lar, when 2(A, V) is regarded as a right A-module via the action of
2f(A), then SOCA{D(A, V)) = a n n ^ ^ j M is an essentialsubmodule.

Proof, (a) If x e Q, then by induction on n, 0 = [d, x](Qn) =
d(xQn) - xd(Qn). Hence d{xQn) = 0 and the result follows.

(b) Suppose Ms C Q for some s. By (a) d e 3rn(A, V) implies
d(Ms(n+V) = 0. Conversely if d e Homk(A9 V) and d{Mn) = 0,
then as in the proof of [11, Lemma 2.1] we have [d, A\ = [d, M]t c
Σj+k=i MJ'dMk w h i c h is zero for i>s + n. T h u s d e &s+n(A, F ) .
For the final statement suppose d e 3r(A ,V), d φ 0 and choose n
minimal with d{Mn) = 0. there exists x e Mn~x with d(x) φ 0.
Therefore dx € a n n ^ ? ̂ j M and the result follows.

COROLLARY. [Compare [13, Corollary 4.5].) / / M w α maximal
ideal of A then as a right A-module

Proof. Set E = EA(M). It is well known that Homk(A,A/M)
is an injective ^-module, so E may be identified with a submod-
ule of H o m ^ ( ^ , ^ / M ) . Also E = \JnannEMn by [12, Proposi-
tion 4.23] so E c {d e Homk(A, A/M)\d(Mn) = 0 for some n} =
2r(A, Λ/Af). By the lemma 2\A, A/M) is an essential extension of
Homk(A/M, 4/Af) = Λ/Af so the result follows.

3.2. LEMMA. Let K be an ideal of B, and A = B/K. // F w any
A-module then there is an isomorphism of right 3r(A)-modules

3fA{A ,V) = {de 3JB(B, V)\d(K) = 0} .

Proof. Apply the functor <®#(-, K), which is left exact by
[15, 1.3c)], to the sequence 0 -> K —> B -^ A -^ 0 to obtain
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0 -+ 3rB(A, V) -> &B(B, V) -> 2B{K, V). The result follows since
&B(A,V)=3rA(A,V).

3.3. Let B = k[x\, . . . , xn] be a polynomial algebra. For 1 < / < n
set di = d/dXi. Let m = (xx, . . . , xn) and D = k[dχ, . . . , dn].
Then Z) is a subalgebra of 1 ( 5 ) with 1 ( 5 ) = D Θ mβ{B). Let
π: B -+ B/m be the natural map. The map ̂ ( 5 ) -> 1 ( 5 , 5/w)
sending d to πd is surjective with kernel mβ{B). Thus as right
Sr(5)-modules, D = 3f(B)/mβ(B) = 1 ( 5 , 5/m). To avoid any
confusion we shall write Ό2^ for 2) considered as a right 3f{B)-
module rather than as a subalgebra of 3{B). Clearly -D (̂̂ ) is a
holonomic l(5)-module supported by the origin. (We refer to [4]
for definitions.)

LEMMA, (a) Let X be a right 2{B)-module such that soc#(X) =
annχ(m) is an essential B-submodule of X. Then X = SOCB(X)®/CD.

(b) The map Y -± Y ®kD defines an equivalence of categories be-
tween the category of finite dimension vector spaces over k and the
category ofholonomic 3f (B)-modules supported by the origin.

Proof. This follows from [4, V.3.1.2 and V.3.1.6] and induction
on n.

3.4. THEOREM. Let A be a finitely generated k-algebra and 0 —>
U-^V-^W-^0an exact sequence of A-modules where V has finite
length. Then the sequence of right &(A)-modules

(*) 0 — 3f{A, U) -> 3f{A, V)

is exact and splits.

Proof. For each maximal ideal M let V(M) = {v e V\vMr = 0
some r} . Then V = 0 V(M), the sum ranging over maximal ideals
M of A, so 3{A, V) = ®3r(A, F(M)). In proving the theorem we-
can assume V = K(Λf), so VMr = 0 for some r.

By Lemma 3.1 2(A, V) = U , L where ^ = {rf e Hom^(^ ? F) |
d(Ms) — 0}, which we identify with Homk(A/Ms, V). The exact-
ness of the sequence (*) follows easily from this.
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Now write A — BjK where B — k[x\, . . . , xn] a polynomial alge-
bra. We can assume M = mjK where K c m = ( ci, . . . , xn). Let
D = k[d\, . . . , #„] as in 3.3. Since ^ ( 5 , F) has a finite composi-
tion series with factors isomorphic to D&φ), it is a holonomic 2(B)-
module supported by the origin. Hence by Lemma 3.3 2(B, V) =
2${B, U)®2${B, W). Considering the submodules annihilated by AT
and using Lemma 3.2 we obtain ^ ( Λ , V) = ̂ (^4, £/) © ^ ( ^ , fΓ) as
required.

Let l(V) denote the composition length of the ^4-module V.

COROLLARY. Let V bean A-module of finite length. Then 2'(A, V)
is a direct sum of 1{V) standard modules. Furthermore l(V) =
l($ocA3f(A9V)).

Proof. The first statement follows by applying Theorem 3.4 to a
composition series for V, the second from the fact that any standard
module has simple socle as an ^4-module by Corollary 3.1.

3.5. The following result will be useful in computing examples.

COROLLARY. Let K be an ideal in the polynomial algebra B =
k[x\, . . . , xn] with K c m = (x\, . . . , xn) Let A = B/K, D =
k[d\, . . . , dn] as in 3.3 and M = m/K. Suppose that V is an
A-module of finite length such that VMS = 0 for some s. Then
3{A, V) = (socA3f{A, V))annDK.

Proof. By Lemma 3.3 2{B, V) = (ann^(5 9v)ΠΪ)D. By Lemma
3.2 since K c m,!2f(A,V) = ann^(BV)K D &nn&(B,v)Hl so
ann&(B,v)HL = a n n ^ μ , κ ) ^ = socA3r(A, V). As a right 9f(B)-
module 3f{B, V) is isomoφhic to a direct sum of copies of D2\^ .
Hence 3f(A9 V) = ann^ (# ,v)K = (soc^ 3f{A, V)) ann/> K as required.

3.6. We explain how Matlis duality can be used in the study of
standard modules. Let M be a maximal ideal of A, A = AM and
2 = 3f(A9 A/M). Observe that 2 may be regarded in a natural
way as a right ^(^-module . Indeed A/Mn = A/Mn for all n, so
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by Lemma 3.1, 2, may be identified with 2 {A, AIM). Clearly any
^(vί)-submodule of 2 is a «9r(^4)-submodule. Conversely let X be
a Sr(^4)-submodule of 2 and / e X. Then / Λ F = 0 for some n.
If d e 2(A) we can use Corollary 1.2 to write d = d\ + dι where
dx e 2)'{A) and d2 e Mn3f{A). Then fd = fd{ e X. Thus X
is a ^(-4) submodule of 2 . If F is an yί-submodule of ^ , set
V* = {a e A\υ{a) = 0 for all v e V} and if V is an ideal of A, set
F* = {d e 2\d(v) = 0 for all v e V}. Then by [12, Theorem 5.21]
V —• F* sets up a one-one order reversing correspondence between
^-submodules of ^ and of A. It is easily verified that right 2(A)-
submodules of 2 and left «Sr(^4)-submodules of A correspond under
this duality. Hence we have

PROPOSITION. The maps V —• V* give a one-one order reversing cor-
respondence between the submodules of the right 2J{A)-module
3^(A, A/M) and submodules of the left 2{A)-module A.

4. Algebras with Krull dimension at most one.

4.1. If TV is a 2(A)-submodule of A, there is a natural map 2(A)
-> 2{AIN) with kernel Δ(A, N) [11, 1.2]. It is of interest to know
when this map is surjective. We prove one result in this direction. It
is convenient to express A in the form A = B/L where L is an ideal
in a polynomial algebra B.

LEMMA. Let L, N, Q be ideals of the polynomial algebra B such
that L = TV n β , Q is M-primary where M is a maximal ideal of
B, and N/L is a 3)(B jL)-submodule of B/L. Then the natural map
2(B/L) -• 2{BfN) is surjective.

Proof. Given d e 2{BfN) we can lift d to an element d e 2J{B)
such that d(N) c N and d{b + N) = d(b) + N for all b e B [10,
Lemma 1.4.]. Let N = [f\, . . . , f p ) . We show there are elements
d\, . . . , dp e 2{B) such that d' = d + f\d\ + + fpdp satisfies
d'{L) C L. Then d' will induce an element of 3!{B/L) which mapί
onto d. Since L = iVnβ, it is enough to ensure that d'(L) QQ. If d
has order t, then d{Ms) c Λf5"' for every 5. Choose 5 large enough
so that Ms~ι c β . Since Af is a maximal ideal of B, L/L Π Af5 is
a finite dimensional vector space over k and we can choose elements
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V\, ... ,vq EL whose images form a basis. For each j write d(Vj) =
Σι fiaji w ^ h aji £ B Since B/Ms is a local artinian ring, there
exists dιeSf(B/Ms) such that dι(υj + Ms) = -an + Ms for all j , by
[11, Lemma 2.1]. Using [10, Lemma 1.4] we can lift d[ to an element
dι e 3{B) such that d[(Ms) c Ms and dι(vj) + Ms = -ajΊ + Ms for
all 7. If d' = d + Σι //<*/ w e have 0'(v7 ) G F C β for all j and
<9'(LnΛP) c d(Ms) + Σfιdι(Ms) c ^ - ^ c β . Hence <9'(L) C β a s
required.

4.2. We establish some notation which we will use from now on in
dealing with algebras of dimension at most one. Let K be an ideal in
a polynomial algebra B such that A = B/K has dimension at most
one. Let K = f]λeA Kλ be a minimal primary decomposition where
Kλ is /^-primary and set Ω = {λ e A\Pλ is minimal over K} and
/ = Γ\λeΩKλ B y [H> Lemma 1.4], / / # is a Sr(^l)-submodule of ^ .
Also A = B/I has an artinian quotient ring since it has no embedded
primes. If Q = Π;ieΛ\Ω ^λ > then 7 = //ΛΓ is isomorphic to an ideal
of A/Q and so has finite length as an ^4-module. We let / = A(A, 7)
the kernel of the map φ: 3f{A) —• 3f{A).

COROLLARY. The map φ is surjective.

Proof. Let {Kλ\λ e Λ \ Ω} = {K{, . . . , Km} and suppose ^ is
iVprimary. Let LQ = I and for 1 < / < m, L, = / n JCΊ Π Π JSΓ, , so
that Lm = K. By [11, Lemma 1.4] L/_i/L/ is a ^(yl/L^-submodule
of -4/Z//, and since P/ is a maximal ideal of ^4, it follows from
Lemma 4.1, that the map 3f{A/Li) -+ 3f{A/Li^\) is surjective. Since
0 is obtained as the composite 2{AIK) -• 9r(A/Lm-{) - * . . . - •
2{AjLx) -• 3{All), the result follows.

4.3. PROPOSITION. Lei A be a finitely generated algebra with
dim(^4) < 1 αtfd M α maximal ideal of A. 77tefi

(a) ^(-4, v4/M) has finite length as a right 2{A)-module.

(b) ^Λ/ has finite length as a left 3>r(AMymodule.

Proof. By Proposition 3.6 the two assertions are equivalent. Ap-
ply the left exact functor «3^(-, A/M) to the exact sequence 0 —•
7 -+_A ->A-+0to obtain 0 -> 3fΛ(Ά9 A/M) -+ 2fA{A,A/M) -*
3A(I> A/M). Since 7 and A/M are both finite dimensional over



284 MARC CHAMARIE AND IAN M. MUSSON

Λ:, it is enough to show that 3fΛ(Ά, A/M) = 3fj(A, A/M) has fi-
nite length as a right 3f{A)-module. Thus in proving the theorem we
can assume that A has an artinian quotient ring. However we have
already obtained statement (b) in this case, see 2.8.

We remark that the above result fails for domains of dimension
two. For example let A = k[x, y, z]/(x3 + y3 + z3) and M the ideal
of A generated by x , y, z . By [2, Proposition 1], Mn is a &(A)-
submodule of A for every n. Thus Mn is a Sr(^4)-submodule of A
for all n.

4.4. THEOREM C. With the notation of 4.2, / has finite length as
a right 2J{A)-module.

Proof. As noted in [11, 1.2] / = A(A,I) = 3f{A, I). Since /
has finite length, this is a finite direct sum of standard modules by
Corollary 3.4. By Proposition 4.3, each standard module has finite
length so the result follows.

4.5. Proof of Theorem A. Let A be a finitely generated A -algebra
with dimension at most one. If 3f{A) is left Noetherian then A has
an artinian quotient ring by [11, Theorem A].

Conversely, suppose that A has an artinian quotient ring. Then by
Theorem 2.2 9f(A) is left and right Noetherian and finitely generated
as a /c-algebra. In particular this proves statement (b) of the theorem.

In general with the notation of 4.2, we have A = A/7 and 3f{A) =
2J{A)jJ. Since / and 3f(A) are Noetherian as right Sr(y4)-modules
by Theorem 2.2 and Theorem C, 3f{A) is right Noetherian.

Let Jx =AA(Ί90) and N = J n J\. We know £f{A)/J = 3f(A)
is a finitely generated fc-algebra. Also J/N embeds in 3f(A)/J\ and
hence in 3A(J) which is finite dimensional. It follows that 3t(A)/N
is a finitely generated algebra. Now N is a ^(^4)-submodule of / and
so of finite length and since J\J = 0, N is a right SΓ(^4)/iV-module.
Let X be a finite set of elements of 2{A) whose images generate
3f(A)/N as a Λ -algebra and Y a finite set of generators for TV as a
right 3f(A)/N module. If S is the subalgebra of 3f{A) generated by
X U 7 , then {S + N)/N = &(A)/N. Thus given d e &(A)9 there
exists d'eS such that d-d' eN= Y{3f(A)/N) C S, so S = 2 {A).



RINGS OF DIFFERENTIAL OPERATORS 285

REMARK. A similar proof shows that if A is a finitely generated
/c-algebra with Krull dimension at most one, and M is a maximal
ideal of A, then the rings 3 (AM) and 2(AM) are right Noetherian.

5. Examples.

5.1. In this section we indicate how 3 (A) may be calculated ex-
plicitly in certain cases. We write A in the form A = B/K where
K is an ideal in the polynomial algebra B, and use the fact that
3(A) = UB{B)(K3(B))/K3(B) where UB(B)(K3(B)) = AB(K 9 K)
is the idealiser of K3(B), see [11, 1.3.]. As a first illustration let B =
k[x,y], M = (x,y), P = (x)9 K = PM = PnM2 = (*2_, xy), and
^ = JB/A: . In the notation of 4.2 we have / = P/K and ^ = B/P =
ifc[y]. We note that y&(k[y]) c ^(Λ), (xd/<9x - \){dldy)\K) c
AT and this last operator induces the operator -(d/dy)1 on fc[y].
Hence 5 = y^(fc[y]) + (xd/dx - ^ [ 9 / δ y ] maps onto ^ ( 1 ) un-
der the natural map 3(A) —> ̂ (-4). The kernel of this map is
/ = A(A,I) =_3(A9I). Since x e / and xM C A: we have
x G s o c ^ ^ ί ^ , / ) , and by Corollary 3.4, soc^^(^ ? 7) is simple.
Thus by Corollary 3.5, / = xannDK where D = k[d/dx, d/dy].
Now anna AT = ann/) P + annz) Λf2 = k[d/dy] + kd/dx. The justifi-
cation for this statement will be given later. Putting the pieces together
we obtain

3 (A) = (S + J

= (y3(k\y]) + (xd/dx - l)k[d/dy]

+ xk[d/dy] + kxd/dx + K3(B))/K3(B).

We also note that AA(19 0) = J\ is equal to the image of y3(k\y]) +
(xd/dx - l)k[d/dy] + xk[d/dy] in 3(A)9 and the prime radical
N = / Π J\ of 3(A) is the image of xk[d/dy], see [11, Theorem B].

A calculation of the algebra 3(A) in this example is carried out by
Muhasky in [10, Example 7.2], and Muhasky uses his calculation to
show that 3(A) is right but not left Noetherian.

5.2. We explain how the above calculation may be extended to
cover other examples. Let A, 7 and A = A/Ί be as in 4.2 and
write A = B/K where K is an ideal in B = k[x\, ... , xn] con-
tained in m = (x\,... , xn). Let <9/ = <9/<9 X/ for 1 < / < n and
D = fc[<9i, ... , <9W]. There seems to be no description known in gen-
eral for 3 (A), even when A is a domain, and we say nothing further
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about this problem here. Instead we assume 3f{A) is known, as for
example in the case A is the coordinate ring of a non-singular curve.
Since the map 3f{A) —• 2{A) is surjective we can find a subset S of
3f{A) which maps onto 9f{A). (The proof of Lemma 4.1 gives an
algorithm for doing this, but as in Example 5.1, it is often easier to
find S directly.) By [15, 1.3d)] we have 3f{B9I) = I3f(B). Thus
identifying 3f(A) with U(K3r(B))/K&(B), we have J = A(A9I) =
{d e I2{B)\d(K) c K}/K3f(B) = ammB)/K9(B)K. Let J =

{d e I3f(B)\d(K) c K}\ then 3r(A) = (S + J + K3f{B))/K3f{B).
By Corollary 3.5, / = (soc^ /) ann/)# so the problem of describing
/ falls into two parts; the calculation of cos^ (/) and that of ann/) K.
We discuss these two parts in 5.3 and 5.4.

5.3. As in the proof of Theorem 3.4 we have 7 = φ7(A/) where the
sum ranges over maximal ideals M of A and this yields a correspond-
ing decomposition of / . Thus we may assume that ann^ 7 is M-
primary, where M = m/K and m = (x\9...9xn)- Hence soc^ / =
annyΛf = ^nnj^^ByK^^B) m = socB(I2(B)/K2f(B)). For arbitrary
ideals K C / of the polynomial algebra B such that ann# I/K is m-
primary, we give a description of the module I3f(B)/K3f(B) and its
socle. We remark that I3{B)/KS{B) is isomorphic to 3f(B9 I/K)
as a right ^(5)-module by [15, 1.3e)] so we also obtain a description
of 2f(B9I/K).

Assume /m 5 + 1 c K for some s > 0. For t e Nn write xι =

x[ι --Xrΐ and \t\ = X)tι-. For i = l9 ... 9 n9 define

7=1

and J, = 1 if 5 = 0, and d = Π"=i ̂ / Let / = ( / , , . . . , f p ) . Each
factor in the series

is spanned by elements of the form yj jc' for 1 < / < p and
t G N". Hence we can choose subsets Tι c Nn, 1 < / < p,
such that {fix' + K\l < i < p, t e Tt) forms a basis for I/K and
the images of those fix' which lie in ImJ + K form a basis of
(Imj +K)/(Im_J+ι +K). For each / and t e Tt set δitt = fix'd

and let σ: 13){B) -»I&(B)/K&(B) be the natural map.
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LEMMA, (a) I3f(B)/K3f(B) = φf=1 ®teT σδiaD andeach

is a simple right 3{B)-module isomorphic to
(b)

Proof. Clearly I3f(B) = K2{B)+YJfix
t2{B). Also rf/jc/ = jcf+10/

by induction on s and hence fi^dxi e fi^x^^iB) C K3f(B)
for all /. Therefore σδiit e soc(I&(B)/K3r(B)). Since ^ =
(~l)ssl moάMS(B) we have fix* = λδi9t mod fix*M&(B) where
λ e fc \ {0}. Using this, we can show by reverse induction on \t\
that ϋfix1 e Σi^σδijD for all i,t. Hence I3f{B)/K2{B) =
ΣitσδijD. Therefore soc(I3f(B)/K3f(B)) is spanned by {σ£, ,ί|
1 < i < p,t e Tt} a n d so l(soc(I3r(B)/K&(B))) < Σ / | 7 / l By
Corollary 3.4 we have equality, so the elements {σδia} are linearly
independent. This proves (b) and (a) follows from Lemma 3.3.

5.4. We indicate a method which may be used to calculate
in some cases. By Corollary 3.1 we have D = Eβ(B/M) as a B-
module. Also D can be regarded as a BM = k[[χ\ ? > x«]]-module.
It is easily seen that ann# ίΓ = ann£> ̂ , where £ = KBM. Also if
I = I\Γ\l2 are ideals of 2?̂ / then ann# / = ann/) Iχ + ann/) 72 by [12,
Theorem 5.21]. Let £ = f]Kλ be a primary decomposition in BM -
It suffices to calculate ann/) ϋ^ for the primary ideals Kλ of BM. We
give several examples.

(a) For any 5 > 1 ann/)M5 + 1 = P^, the space of all polynomials
in d\, . . . , dn of degree at most s. Let π: B —• 5/M = fc be the
natural map. For any M-primary ideal Q, choose Λ with M 5 + 1 c β .
Define Q1 = {d e Vs\π{d{f)) = 0 for / e Q}. Then (M^ 1 )- 1 = F5

and ann^) Q = QL . This can be calculated simply using vector space
duality.

(b) If P = (xx, . . . , xm)BM , with m <n then as is easily verified,
2amDP = k[dm+\, ... ,dn].

(c) For other primary ideals K, ann/) K may be harder to calculate.

For example, let n = 2 and K = (x\ - x\)B. If d = Σ aijd[d{ , then

rf(x? - x2

3)xfx^ = (fc + 2)Wak+2i ~ k\ (I + 3)!αΛ / + 3 modM. Thus

for all / , f e > 0 } .

5.5. EXAMPLE. Let B = /c[xj, ^2 ? ^3] ? ^ = C*i, ^2) ? M — [x\,

• 2̂,-̂ 3), ^ = kx2Xi + k{x\Xz+x\) + k{x\ + x^), Q = M3 + V, K =
PnQ and A = B/K. We compute ^(^4) in this case. In the notation
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of 4.2, I = P and 7 = P/K. We have chosen this example because 7
is a noncyclic indecomposable ^4-module. We have P = kxx + kx2 +
kx\+kxxx2+K. Let dx = {xxdx-\){x2d2-\), d2 = dx(xxdx-2) and
S = x^(k[x3]) + d2{x3k[d3] + k[θ3]) C 3f{B). Then since d3(P) c P
and d?2(^) <Ξ K it is easily checked that S(K) c # ; thus 5 induces
differential operators on ^4. Clearly S (or rather its image in 3f{A))
maps onto Of (A) = 3t(k[x$X) under the map φ: 3f{A) -* 3f{A). The
kernel of φ is Δ^(^4, 7) whose socle is spanned by the images in 3f{A)
of the elements x\, X\x2, X\d\ and x2d\. Let D = k[d\, 92, #3]
and D1 = ann^Λ: = ann/)P + ann^ Q = ^[93] + kdx + kd2 + kdλd2 +
k(2dxd3 + dl - d\). Let T = x\D' + x%Df + xxdxD' + x2dxD'. Then

AA(Aj) = (T + K9f{B))IK2f{B) and

3f(A) = (S+T + K3f(B))/K3f(B).

6. A generalisation of Nakai's conjecture. It seems reasonable to
conjecture that if A is a finitely generated algebra such that 3f{A)
is generated by 2JX{A) then A is a regular ring. If A = ^(X) is
the coordinate ring of an irreducible variety X this is a well-known
conjecture of Nakai. It is known that Nakai's conjecture holds when
I is a curve [9]. Also if 3f{A) is generated by 3X(A) then A is
reduced [11, Theorem 4.2]. Here we prove

THEOREM. Let A be a finitely generated k-algebra with dim A < 1.
If 3f{A) is generated by 3ίι(A), then A is regular.

To prove this we need the following result which may be of inde-
pendent interest.

PROPOSITION. Let A be a finitely generated k-algebra with dim(^ί)
< 1. If %r(3ί(A)) is Noetherian, then 3f{A) is a direct sum of simple
rings.

Proof. The proof in [15] for domains works with some small changes.
We sketch the argument. If gr(3r(A)) is Noetherian, then so is 3f{A)
and hence A has an artinian quotient ring F by [11, Theorem A]. Let
B be a subalgebra of F such that B is a finitely generated ^-module,
and B/N(B) is the integral closure of A/N(A). We can assume that
άim(A/Q) = 1 for all minimal primes Q of A and similarly for B.
Therefore since 9f(B) is Morita equivalent to &(B/N(B)), 3{β)
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is a direct sum of simple Noetherian hereditary rings of infinite di-
mension over k. Now, consider P = {d e &(F)\d(B) c A}. Then
P contains a regular element c of A, P^B) *S a progenerator and
E = End(P) is Morita equivalent to ^ ( 5 ) . We have

P C ̂ (Λ) C E c

so
gr(P) c gr(&(A)) C gr(£) c

If ^(Λ) = £ , then ^(Λ) and &(B/N(B)) are Morita equivalent
and the result follows. If 2{A) Φ E, then / = P^(^) is an ideal
of &(A), which is a proper left ideal of E. As in [15] we have
dimfc(gr(l?)/gr(/)) = oo and dim^(gr(^(^))/gr(/)) < oo, so gr(JE)
cannot be finitely generated as a g r ^ (.4))-module. However gr(£)
is isomorphic to cgr(j?) which is an ideal of gc(2(A)). So gr(3f(A))
is not Noetherian.

6.2. Proof of Theorem 6.1. If dim(̂ 4) < 1 and 3f{A) is generated
by 3fx(A), then 4̂ is reduced by [11]. Also %r(2(A)) is finitely
generated, so by the Proposition, and Theorem B, A is a direct sum
of domains, so the result follows from the case where A is a domain,
[9].
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