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THE p-PARTS OF BRAUER CHARACTER DEGREES
IN p-SOLVABLE GROUPS

You-QIANG WANG

Let G be a finite group. Fix a prime integer p and let ¢ be the
largest integer such that p°¢ divides the degree of some irreducible
Brauer character of G with respect to the same prime p. The pri-
mary object of this paper is to obtain information about the structure
of Sylow p-subgroups of a finite p-solvable group G in knowledge
of e.

As applications, we obtain a bound for the derived length of the
factor group of a solvable group G relative to its unique maximal
normal p-subgroup in terms of the arithmetic structure of its Brauer
character degrees and a bound for the derived length of the factor
group of G relative to its Fitting subgroup in terms of the maxi-
mal integer ¢ when p runs through the prime divisors of the order
of G.

All groups considered are finite. Let G be a group and p be a prime.
We denote by IBr,(G) the set of irreducible Brauer characters of G
with respect to the prime p. For the same prime p, let e,(G) be the
largest integer e such that p¢ divides ¢(1) for some ¢ € IBr,(G).
Let P be a Sylow p-subgroup of G. Then the Sylow p-invariants of
G are defined as follows:

(1) by(G), where p%(@ is the order of P;

(2) ¢cp(G), the class of P, that is, the length of the (upper or) lower
central series of P;

(3) d1,(G), the length of the derived series of P;

(4) ex,(G), where p?%(® is the exponent of P, that is, the greatest
order of any element of P.

For a p-solvable group G, we let /,(G) and r,(G) denote the p-
length and p-rank (respectively) of G, i.e. rp(G) is the largest integer
r such that p” is the order of a p-chief factor of G.

We give a linear bound for r,(G/0,(G)) and a logarithmic bound
for [,(G/0y(G)) in terms of e,(G). Then, using induction on
I,(G/0y(G)) , we obtain bounds for ¢,(G/0,(G)), dl,(G/Op(G)) and
exp(G/0y(G)) in terms of e,(G).
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As one application, we bound the derived length of G/F(G) for a
solvable group G in terms of f(G), where

f(G) = max{e,(G) | p | |G|}
and F(G) is the Fitting subgroup of G.

1. p-rank and p-length. For p-solvable G, we bound in this section
rp(G/0p(G)) and 1,(G/Op(G)) in terms of e,(G).

LeEmMA 1.1. Let G have a nilpotent normal p-complement M and
let O)(G)=1. Then

(1) by(G) < 26,(G);

(2) if |G| is odd, then by(G) < ep(G);

(3) if a Sylow p-subgroup of G is abelian, then b,(G) < ep(G).

Proof. Let ®(M) denote the Frattini subgroup of M . Since M is
nilpotent, M’ < ®(M) and hence M/P(M) is abelian (see Goren-
stein [3, Chapter 6, Theorem 1.6]). Notice that ®(M) « G. Consider
the factor group G/®(M). Let P be a Sylow p-subgroup of G. Then

G/®(M) = MP/D(M) = M/D(M) - POM)/D(M).

Write G; = G/®(M), M, = M/®(M) and P, = PO(M)/P(M).
Then M, is an abelian normal p-complement of G;, and P, =
PO(M)/D(M)=P/PNP(M) = P. By Huppert [5, Chapter 3, Satz
3.18], P acts faithfully on M;, and hence P; acts faithfully on M, .
Then O,(G;) = 1 and P; acts faithfully on Irr(Af;) which is an
abelian p’-group.

By Corollary 2.4 of Passman [16], there exists # € Irr(M;) such that
[Ip(6)] < |P1|Y2. So |Py : Ip(6)| > |P|'/2. By Clifford’s Theorem,
p%©) > |P|/2, Since |P| = |P| and e,(G) > €,(Gy), 2¢,(G) >
by(G) . This gives (1).

If |G| is odd or P is abelian, then we can apply Lemma 2.2 and
Corollary 2.4 of Passman [16] to conclude that there exists 8 € Irr(M;)
such that Ip(6) = 1. By Clifford’s Theorem, |P;| < p%(%), that is,
b,(G) < ep(Gr). So (2) and (3) hold. O

LeMMA 1.2. Let G have a normal p-complement M and let O,(G)
= 1, where p is an odd prime. Let M = M; x --- x M, , where all
M;’s are isomorphic nonabelian simple groups. Then

(1) bp(G) < 265(G);

(2) if e(G) =1, then by(G) =1.
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Proof. Let P be a Sylow p-subgroup of G. Notice that for any
x€Pand M;, xM;x '€ {M,, ..., M,}. Wewrite N; = Stabp(M,)
and C =, N;. Also, we let

Ci=Ce(M)={xeC|xyx ! =yforally e M.

For each i, C/C; < Out(M;). By Lemma 1.3 of Gluck and Wolf
[2], C/C; is a cyclic p-group. Let Q,(C/C;) = (xe€ C/C; | xP = 1),
then Q,(C/C;) is a cyclic group of order p.

On the other hand, since C/C; acts faithfully on Af; and since
p1|M;|, C/C; acts faithfully on Irr(M;) (see Isaacs [9, Theorem
6.32]). Thus

\ Ccic(6)=1.
6elr(M,)

So, there exists some 6; € Irr(M;) such that
Qi(C/Ci)NCcc(6:)=1.

This forces that Cc/c (6;) =1, that is, Cc(8;) = C;.

Let 6 =6; x---x0,. Then 6 € Irr(M) = IBr,(M) and I¢(0) =
N, Cc(6;) =N}, C;i. Since P acts faithfully on M, N, C; =1,
and hence I¢(f) = 1. Since C<P, MC <G and hence ep(MC)
ep(G) . Applying Clifford’s Theorem to the group M C, we have |C]|
|C : Ic(6)] < p&»™MC) | Hence

(A) IC| < p%D.

A

On the other hand, P/C is a permutation group on the set {M,...,
M,} and p is an odd prime. So, by Corollary 1 of Gluck [1], we may

assume without loss of generality that Stabp,c{M;, ..., M;} = 1,
that is Stabp{M;, ..., M;} = C for some suitable t € {1, ..., n}.
Choose 6; € Irr(M;) with 6; # 1, j =1,...,¢t. Let 6 =

0y X - x 6 x1x---x1. Then 6 € Irr(M) = IBr,(M) and
Ip(6) < Stabp{M;, ..., M;} = C. Applying Clifford’s Theorem to
the group G, we get |P : Ip(8)| < p%'“) . Hence

(B) |P:C|<p%9.

Combining (A) with (B), we obtain |P| < p?%(%). This gives (1).

Suppose that e,(G) = 1. By (A) and (B), we know that |C| < p
and |P:C|<p.

In the following, we want to show that either C =P or C = 1.
Assume not. Then we have |C|=p and |P| = p?.
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Since P acts faithfully on M, C acts faithfully on M. Since
|C| = p, there exists some M, such that C; = Cc(M}) = 1, that is,
C acts faithfully on M. Thus C acts faithfully on Irr(M}). Hence
there exists some 6 € Irr(M;) such that 6, #1 and C¢(6;) =1.

Since Stab,{M,;, ..., My} = Stab,{M,, ..., M;}, we may as-
sume without loss of generality that k = 1. Choose 6; € Irr(M))
with ;#1, j=2,...,t. Let 0 =0 x0,x--xO;x1x---x1.
Then 6 € Irr(M) = IBr,(M) and Ip(6) < Stabp{M;, ..., M} =C.
So Ip(0) = Ic(8) = Nio; Cc(6;) = 1 (because of Cc(6;) =1). Thus
there exists 6 € Irr(M) = IBr,(M) such that Ip(6) = 1. By Clifford’s
Theorem, |P| = |P: Ip(0)| < p. This contradicts to |P| = p?. So (2)
holds. O

THEOREM 1.3. Let G be p-solvable. Then
1p(G/0p(G)) < 2€p(G).

Proof. By induction on |G|, we may assume without loss of gener-
ality that 0,(G) =1.

If p =2, then G is solvable, and we are done by Manz and Wolf
[13, Theorem 2.3]. In the following, we assume that p is an odd
prime.

Let M be a minimal normal subgroup of G and let N/M =
0,(G/M). By the inductive hypothesis, we may assume that N/M #
1.

Since G is p-solvable and O,(G) = 1, we have the following two
cases:

Case 1. M is an elementary abelian g-group for some prime g # p;

Case 2. M Is the direct product of isomorphic nonabelian simple
p'-group.

Consider the group N. Notice that M = O, (N) and Gp(N) = 1.
Applying Lemma 1.1 (1) and Lemma 1.2 (1) to the group N, we get
by(N) < 2e5(N). Since NaG, e,(N) < e,(G) by Clifford’s Theorem.
Hence b,(N) < 2e,(G). .

By the inductive hypothesis, the p-rank r,(G/N) of G/N does not
exceed 2¢,(G/N) < 2e,(G). Since r,(G) < max{r,(G/N), bp(N)},
rp(G) < 26y(G). m]

By using Lemma 1.1 (2) instead of Lemma 1.1 (1), the same proof
yields the following improvement for groups of odd order.
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THEOREM 1.4. Let G be a group of odd order. Then
75(G/0p(G)) < &(G).

We note that Theorem 1.3 and Theorem 1.4 improve Theorem 2.1
of Manz [12], by the Fong-Swan Theorem.

THEOREM 1.5. Let G be solvable and e,(G) < p. Then
12(G/0p(G)) < €(G).

Proof. By induction on |G|, we may assume without loss of gener-
ality that 0,(G) =1.

Let M be a minimal normal subgroup of G and let N/M =
0,(G/M) . By the inductive hypothesis, we may assume that N/M #
1. Since O,(G) =1, M isan elementary abelian g-group with g # p.

Consider the group N. Since N< G and O,(G) = 1, Oy(N) =
1. Notice that N has a normal p-complement M and e,(N) <
ep(G)<p.

Let P be a Sylow p-subgroup of N. Since O,(N) =1, P acts
faithfully on M by conjugation. Hence P acts faithfully on Irr(M).
Since M is an elementary abelian g-group, Irr(M) is an abelian
g-group. Let Q;,...,Q, be the P-orbits of Irr(M) and p/ =
max{|Qy|, ..., |Qn]|}. We may assume without loss of generality that
Q| = p/. Let 6, € Q;. Applying Clifford’s Theorem to the group
N, we get |Q| =|P: Ip(0))] < p&?). So |Qi| < p?. By Corollary
2.4 of Passman [16], there exists 6 € Irr(AM) such that Ip(6) = 1. We
apply Clifford’s Theorem to conclude that |P| = |P : Ip(8)| < p&™.
So b,(N) < e,(N), and hence by(N) < ey(G).

By the inductive hypothesis, the p-rank r,(G/N) of G/N does
not exceed e,(G/N) < e,(G). Since r,(G) < max{r,(G/N), b,(N)},
12(G) < €y(G). 0

Recall that the rank r(G) of G is the maximum dimension of all
chief-factors of G and f(G)=max{e,(G) | p||G|}.

COROLLARY 1.6. Let G be solvable. Then
(1) r(G/F(G)) < 2f(G);
(2) if |G| is odd, then r(G/F(G)) < f(G).

Proof. Let p be a prime number such that p | |G|. Then, by
Theorem 1.3 and Theorem 1.4, 7,(G/0,(G)) < 2¢,(G) < 2f(G), and
if |G| is odd, r,(G/0,(G)) < €,(G) < f(G). Since Oy(G) < F(G),
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this yields that 7(G/F(G)) < 2f(G), and if |G| is odd, r(G/F(G)) <
1(G). O

Combining Wolf [17, Theorem 2.3] with Theorem 1.3, we have

THEOREM 1.7. Let G be p-solvable. Then
(1) [,(G/0y(G)) < 1+1og,(2e,(G)) if p is not a Fermat prime; and
(2) 1,(G/ 0p(G)) < 2+10g,(26,(G)/(p—1)) where s = (p*~p+1)/p.

2. Sylow p-invariants. In this section, we bound c¢,(G/0,(G)),
dl,(G/0p(G)) and ex,(G/0,(G)) for a p-solvable group G in terms
of e,(G). In particular, we show that if e¢,(G) = 1, then a Sylow
p-subgroup of G/0,(G) is elementary abelian. We also give bounds
for b,(G/0,(G)).

LEMMA 2.1. Let G have a normal p-complement and let O,(G) =
1. Then

(1) dIp(G) < ¢5(G);

(2) ex,(G) < €(G);

(3) ¢(G) < p% @1,

Proof. Let P be a Sylow p-subgroup of G and let H be the normal
p-complement of G. Then P acts faithfully on Irr(H).

Write Q = Irr(H). Let Qq, ..., Q, be the P-orbits of Q. Then
P acts transitively on each ;. Let ¢, : P — S(Q;) be the homomor-
phism induced by the action, where S(€;) is the permutation group
on Q;. Then we can define a homomorphism from P into the direct
product

S(Qq) x -+ x S(Qy)
as follows:
p:P—SQ)x--xS(Qy),
9(x) = (p1(x), ..., ou(x)), Xx€EP.

Since P acts faithfullyon Q, Kerg = 1, and hence ¢ is an injection?
By the definition of ¢, we know that

P=9(P)< 91(P) X X on(P),

where each ¢;(P) < §(€;) is a p-group.
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Since dl(¢;(P)) <dI(P), max{dl(¢p;(P)):i=1,...,n} <dI(P).
On the other hand, we have that

di(P) =dl(p(P))
< dl(g1(P) x -+ X pn(P))
= max{d/(¢;(P)):i=1,..., n}.

Hence, dl,(G) = max{dl(¢;(P)):i=1, ..., n}. Similarly,
exp(G) = max{exy(p;(P)):i=1,..., n},

and
¢p(G) = max{cy(p;,(P)):i=1,...,n}.

Let p/ = max{|Q;|:i =1, ..., n}. We may assume without loss
of generality that |Q;| = p/. By Huppert [5, Chapter 3, Satz 15.3],
dl,(G) < f, exy(G) < f and ¢,(G) < p/~'. Choose 6 € Q;. By
Clifford’s Theorem, |Q,| = |P : Ip(6)| < p%?). So f < e,(G). Thus
the conclusions (1)-(3) hold. a

THEOREM 2.2. Let G be p-solvable. Then
(1) diy(G/0p(G)) < (G 0p(G))ep(G)
(2) exy(G/0p(G)) < 1(G/0y(G))ep(G) ;
(3) &(G/0p(G)) < 1,(G/Op(G))p% D1

Proof. Since e,(G) = e,(G/0,(G)) , we may assume without loss of
generality that O,(G) = 1. We use induction on /,(G).

Write E = O0,(G) and M = O, ,(G). Since Op(G) =1, Op)(M) =
1. Clearly, M has a normal p-complement E. Thus, by Lemma 2.1,
we have that

dl,(M) < ey(M), ex,(M)<e,(M), and c,(M)<ps™-1,

Since M <G, e,(M) < e,(G). Hence,
(A) dlp(M) < e(G), exp(M) < ep(G), cp(M) Spe"(G)_l .

Since M = Oy ,(G), Op(G/M) =1 and [,(G/M) = [,(G) - 1.
Then the induction yields that
dlp(G/M) < [,(G/M)ep(G/M),
exp(G/M) < [,(G/M)e,(G/M), and
¢ (G/M) < Ip(G/M)p% M~
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Hence, (B)
dl,(G/M) < (I,(G) — Dep(G),
exp(G/M) < (Ip(G) — 1)ep(G),
¢p(GIM) < (I,(G) — 1)p% D1,
By (A) and (B), we have the conclusions. O

Combining Theorem 1.7 with Theorem 2.2, we have

COROLLARY 2.3. Let G be p-solvable. Then
(1) if p is not a Fermat prime, then

dlp(G/0p(G)) < (1 +log,(2e,(G)))ep(G),
exp(G/0p(G)) < (1 +log,(2e,(G)))ep(G),
¢p(G/0p(G)) < (1 +log,(26,(G)))p% D~
(2) if p is a Fermat prime, then
dlp(G/0p(G)) < (2 +logs(26,(G)/(p - 1)))ep(G),
exp(G/0p(G)) < (2 + logs(26,(G)/ (0 — 1)))ep(G),
cp(G/0p(G)) < (2 +10gs(2¢,(G) /(0 — 1))p% D1,
where s = (p2 —p +1)/p.

In the rest of this section, we give some improvements on the
bounds we just got for the cases €,(G) =1, 2 and ¢,(G) <p.

CoOROLLARY 2.4. Let G be solvable and e,(G) < p. Then
(1) if p is not a Fermat prime, then
dlp(G/0p(G)) < €(G),
exp(G/0p(G)) < €y(G),
&(G/0y(G)) < p% D1
(2) if p is a Fermat prime, then
dlp(G/0y(G)) < 2€5(G),
ex,(G/0p(G)) < 2¢,(G),
p(G/0p(G)) < 2p% D71,

Proof. By Theorem 1.5 and Wolf [17, Theorem 2.3], /,(G/0,(G)) <
1 +1log,(ep(G)), if p is not a Fermat prime; and [,(G/0y(G)) <2 +
log,(e,(G)/(p—1)), if p is a Fermat prime, where s = (p2—p+1)/p.
Since €,(G) < p, I[,(G/0y(G)) < 1, if p is not a Fermat prime; and
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l,(G/0y(G)) £ 2, if p is a Fermat prime. Hence the conclusions
follow from Theorem 2.2. O

For agroup G, Michler [14] and Okuyama [15] show that if €,(G) =
0, then G has a normal Sylow p-subgroup. The assertion for p-
solvable groups is elementary and well-known.

THEOREM 2.5. Let G be p-solvable and e,(G) = 1. Then
(G/0p(G)) < 1.

Proof. The case p = 2 is done by Theorem 1.5. In the following,
we assume that p is an odd prime. By induction on |G|, we may
assume without loss of generality that O,(G) = 1.

Let M be a minimal normal subgroup of G and N/M = O,(G/M).
By the inductive hypothesis, we may assume that N/M # 1. Since G
is p-solvable and O,(G) = 1, we have the following two cases:

Case 1. M 1is an elementary abelian g-group for some prime
q#D.

Case 2. M is the direct product of isomorphic nonabelian simple
p’-groups.

Consider the group N. Since N<G and O,(G) =1, Op(N) =1.
Then 1 < ¢p(N) < ¢,(G) = 1. Thus ¢,(N) = 1. Notice that N
has a normal p-complement A . By Lemma 2.1, N/M is an abelian
p-group. Applying Lemma 1.1 (3) and Lemma 1.2 (2) to the group
N, weget by(N)=1.

By the inductive hypothesis, the p-rank r,(G/N) < 1. Since r,(G)
< max{r,(G/N), b,(N)}, 1,(G) < 1. 0

Since [,(G) < rp(G) (see Huppert [5, Chapter 6, Hauptsatz 6.6
(c)]), we get the following corollary by combining Theorem 2.2 with
Theorem 2.5.

COROLLARY 2.6. Let G be p-solvable and e,(G) = 1. Then a Sylow
p-subgroup of G/O,(G) is an elementary abelian p-group.

For e,(G) = 2, there is no general result similar to Corollary 2.6.
Let G = S3wrZ;. Then €(G) = 2 and O,(G) = 1. The Sylow
2-subgroup of G is Z, wr Z,, which is not abelian.

However, for solvable groups, we have the following corollary.
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CoROLLARY 2.7. Let G be solvable and e,(G) = 2 with p > 5.
Then

(1) d1p(G/0y(@)) < 2;

(2) ex,(G/0y(G)) < 2;

(3) &p(G/0,(G)) < p.

Proof. For p > 5, by Theorem 1.5 and Wolf [17, Theorem 2.3],
I,(G/0,(G)) £ 1 if €,(G) = 2. Hence the conclusions follow from
Theorem 2.2. O

In closing this section, we include the following remark, which tells
us that logarithmic bounds for the Sylow p-invariants of G/0,(G) in
terms of e,(G) are probably the best bounds we can expect.

REMARK 2.8. Fix a prime p. Let Gy # 1 be a p’-group. We
construct groups by iterated wreath products as follows: let G; =
GowrZ, and G, = GywrZ,. Following this way, we have G, =
G,—1 wrZ, for any natural number 7.

By Hall and Higman [4, Lemma 3.5.1], d[,(G,) = exp(G,) = n.
Since O,(G;) =1 and |Gy|, = p, €,(Gy) = 1. In the following, we
use an induction argument on n to show that

P <ep(G) S (0" -1)/(p - 1).

Suppose that p"~2 < ,(Gy,—1) < (@* ! - 1)/(p — 1). By the
definition of Gy, G, = (Gy—1 X - X Gu1) X Z,. Let H, =

p-times

Gp_1x -+ XGp_y. Then H,<G, and ey(H,) = pey(G,-1). Hence

p-times
p"1 < ey(Hp) < ey(Gy). In particular, p"~! < e,(Gp).

On the other hand, let ¢ € IBry(G,) such that ¢(1) = 5% m .
Choose 6 € IBr,(H,) such that ¢ € IBr,(G, | ). By Clifford’s
Theorem, ¢(1) = ef(1) with a positive integer e. Also, by Lemma
3.2 of Isaacs [8], ¢ is an irreducible constituent of 8% . Thus ¢(1) <
6%:(1) = |Gy : Hy|6(1) = p6(1). So 0 < e < p. This yields that
ep(Gn) < epy(Hy) + 1. Hence €,(Gn) < pp" ' = 1)/p-1)+1=
" -1/-1).

Now we consider bounding the b,(G/0,(G)) for a p-solvable group
G in terms of e,(G).

LEMMA 2.9. Let G have a solvable normal p-complement H and
let Op(G)=1. Then by(G) < 2dI(H)ey(G).
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Proof. We use an induction argument on d/(H). Let P be a Sylow
p-subgroup of G. Then P acts on H/H' by conjugation. Let Q =
Cy,(H/H').

Since P/Q acts faithfully on H/H', P/Q acts faithfully on
Irr(H/H') which is an abelian p’-group. By Corollary 2.4 of Passman
[16], there exists 6 € Irr(H/H') such that |Cp/o(6)| < |P/Q|2. So
|P/Q: Cpjp(8)] > |P/Q|'/2. Consider 6 € Irr(H) with H' < Ker§.
By Clifford’s Theorem, |P : I,(6)| < p%© . Since |P: Ip(8)| = |P/Q:
Cpio(0)], |P/Q|'/? < p%'© . Hence log, |P/Q| < 26,(G). If Q =1,
then we are done.

Next, we assume that Q # 1. We claim that Q acts faithfully
on H'. Assume not. We may assume without loss of generality that
Q acts trivially on H'. Since Q = Cp(H/H'), Q acts trivially on
H/H'. Since (|Q|, |H|) =1, Q acts trivially on H (see Huppert [S5,
Chapter 3, Hilfssatz 13.3 (b)]). But since P acts faithfully on H, we
must have Q = 1. This contradicts to Q # 1.

Write Gy = H'Q. Then G; has a normal p-complement H' and
0y(Gy) = Co(H') = 1. Furthermore, we claim that G, <G. Since
H' <G and Q< P, we only need to show that hQh~! C H'Q for
all he H. Let g € Q = C,(H/H'"). Then g~ 'hgh~! € H'. Hence
hgh—! € qH' C QH' = H'Q. Thus G, = H'Q «G. By Clifford’s
Theorem, ¢,(G;) < e,(G).

Since dI(H') = dI(H) — 1 < dI(H), by induction, log,|Q| <
2d1(H")ey(G1) = 2(dI(H) — 1)e,(Gy) . Hence,

by(G) = log, | P|
= log,(1Q||P/Q))
log, |Q| + log, |P/ Q]

< 2(dI(H) — 1)ey(Gy) + 2e,(G)
< 2(dI(H) — 1)ep(G) + 2e,(G)
= 2dI(H)ep(G),
which is the claim. O

The following Lemma is a corollary of Lemma 1.1.

LEMMA 2.10. Let G be solvable, O,(G) = 1 and P a Sylow p-
subgroup of G. Let G have a normal p-complement. Then

by(G) < 2¢(F(G)P).
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Proof. Since O,(G) = 1, the Fitting subgroup F(G) is a p'-group.
By Huppert [5, Chapter 3, Satz 4.2], Cg(F(G)) < F(G) and hence
Cp(F(G)) =1. Let G, = F(G)P. Then G; has a nilpotent normal
p-complement F(G) and O,(G,) = Cp(F(G)) = 1. By Lemma 1.1,
bp(Gy) < 2ep(Gy) . Since by(Gy) = by(G), by(G) < 2ep(F(G)P). O

To handle p-solvable groups with arbitrary p-length, we introduce
the following definition.

DEFINITION 2.11. For a prime p and a positive integer »n, we define
Ap(n) and By(n) by

Ap(n) =Y " [n/p]
i=1
and

Byo(n) = _In/(p — 1)p'].

i=0
ProPosITION 2.12. If p is a prime and n is a positive integer, then
Ap(n)<n—-1 and PBp(n)<2n-1.

Proof. Since A,(n) < (n—-1)/(p—1), Ap(n) <n—-1. Since p > 2,
20-1)2-p>@-12-(p-1), and hence 2n(p — 1)2 —np >
(P-1?*-(-1). So 2n-1) 2 (np/(p - 1)*) = (1/(p ~ 1)) . Since
Bp(n) < (np/(p —1)%) = (1/(p = 1)), Bp(n) <2n—1. o

THEOREM 2.13. Let G be p-solvable and O, (G) be solvable. Sup-
pose that O,(G)=1. Then

(1) bp(G) < 6d1(0,(G))ep(0y ,(G)) - 1; and

(2) by(G) < 4d1(0,(G))ey (O, ,(G))—1 unless p is a Fermat prime.

Proof. Write E = Oy(G) and M = Oy ,(G). Since Gp(G) =1,
O,(M) = 1. Clearly, M has a solvable normal p-complement E.
Thus b,(M) < 2d1(0,(G))ep(0, ,(G)) by Lemma 2.9.

Let b,(M) = m, hence |M/E| = p™. By Wolf [17, Corollary 2.1],
we have that

(1) bpy(G) < m + B,(m); and

(2) bp(G) < m+ Ap(m) unless p is a Fermat prime.

Applying Proposition 2.12, we obtain
(1) bp(G) £3m —1; and
(2) bp(G) £ 2m — 1 unless p is a Fermat prime.
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Since m = b,(M), we get

(1) b,(G) < 6d1(0, (G))ey (0 ,(G)) — 15 and

(2) by(G) < 4dl(0,(G))ep(O, ,(G)) — 1 unless p is a Fermat
prime. O

Similarly, applying Lemma 2.10, we obtain the following Theorem.

THEOREM 2.14. Let G be solvable, O,(G) = 1 and P a Sylow
p-subgroup of O, ,(G). Then

(1) by(G) < 6e,(F(G)P)—1; and

(2) bp(G) < 4e,(F(G)P) — 1 unless p is a Fermat prime.

3. The derived length of solvable groups. Let n = f; 1 pf" be the
prime number decomposition of a natural number n (a; # 0). We

define
k
w(n) = Zai.
i=1

For a group G, we let
w(G) = max{w(x(1)) | x € Irr(G)}

and
wp(G) = max{w(¢(1)) | p € IBry(G)}.
Recall that f(G) = max{e,(G) | p | |G|}.
For a solvable group G, we obtain a bound for the derived length of
G/0,(G) in terms of w,(G) and a quadratic bound for the derived
length of G/F(G) in terms of f(G).

LEMMA 3.1. Let G be solvable with O,(G) = 1 and [,(G) = 1.
Then dl(G) < 5w,(G).

Proof . Since Oy(G) =1 and [,(G) =1, ,(G) > 1. Thus w,(G) >
ep(G) 2 1. If wy(G) =1, then dI(G) < 4 by Huppert [7, Theorem
1]. So, dI(G) < 5Sw,(G), and we are done in this case.

In the following, we assume that w,(G) > 2. We have two cases to
consider.

Case 1. O, ,(G)=G.

By Lemma 2.1, d/(G/0,(G)) < ¢,(G), and hence dI(G/0,(G)) <
wp(G) . Since O, (G) is a p'-group, w,(0y(G)) = w(0,(G)).
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If w(0,(G)) > 2, then, by Huppert [6, Theorem 3], d/(0,(G)) <
2w(0,(G)), and hence dI(0,(G)) < 2wp(0,(G)). Since Oy (G) <
G, wp(0,(G)) < wp(G) by Clifford’s Theorem. So dl(0,(G)) <
2w,(G). Thus

dl(G) < dl(0,(G)) +dl(G/ 0y (G))
L 2wp(G) + wp(G) = 3wy(G).

If w(0,(G)) £ 1, then, by Isaacs and Passman [10, Theorem 6.1],
dl(0,(G)) < 3, and hence

dI(G) < dI(0,(G)) + dI(G/0,(G)) < 3+ wy(G).
Since w,(G) > 2, dI(G) < 2w,(G) + w,y(G) = 30,(G).

Case2. Oy , y(G)=G.

Write M = O, ,(G). By what we have just proved in the above,
we have that

(1) if wy(M) =1, then dI(M) < 4;

(2) if wy(M) > 2, then dI(M) < 3wy(M).

Since M <« G, wy,(M) < wp(G). Furthermore, since w,(G) > 2,
3w,(G) > 6. Thus dI(M) < 3w,(G).

Since G/M is a p'-group, wp(G/M) = w(G/M). If w(G/M) <
1, di(G/M) < 3 by Isaacs and Passman [10, Theorem 6.1]. If
w(G/M) > 2, dI(G/M) < 2w(G/M) by Huppert [6, Theorem 3],
and hence d/(G/M) < 2w,(G/M). Since wy(G/M) < wp(G) and
20y(G) > 4, dI(G/M) < 2wp(G) . Therefore,

dl(G) <dl(M)+dI(G/M)
< 3wp(G) + 2wp(G) = Swy(G).

This completes the proof of the lemma. o

THEOREM 3.2. Let G be solvable and 1,(G/O,(G)) > 1. Then
dl(G/0p(G)) < 51p(G/0p(G))S2(G) -

Proof. We may assume without loss of generality that O,(G) = 1.
We use induction on /,(G). By Lemma 3.1, we can assume that
I(G)>2.

Write M = Oy ,(G). Since Gp(G) = 1, Op(M) = 1. Clearly,
lp(M) =1. Thus d/(M) < Sw,(M) by Lemma 3.1. Since M <G,
wp(M) < wp(G) by Clifford’s Theorem. Hence dI(M) < 5w, (G).
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Since M = Oy ,(G), Op)(G/M) =1 and [,(G/M) = [,(G) - 1.
Notice that 1 < lp(G/M ) < I,(G). Thus, by induction, dI(G/M) <
5[,(G/M)wy(G/M). Since l,(G/M) = [,(G) — 1 and w,(G/M) <
wp(G), dI(G/M) < 5(,(G) — 1)w,(G) . Hence,

dl(G) < dI(M) + dI(G/M)
< 50,(G) + 5(1,(G) — wy(G) = 5,(G)w,(G),

and the assertion holds. O

Combining Theorem 1.7 with Theorem 3.2, we get

CoROLLARY 3.3. Let G be solvable and 1,(G/O,(G)) > 1. Then
(1) if p is not a Fermat prime, then

dI(G/0y(G)) < 5wp(G)(1 +log,(2,(G)));
(2) if p is a Fermat prime, then
dI(G/0p(G)) < 5wp(G)[2 + log; (2w, (G)/(p — 1))],
where s = (p2 —p+1)/p.

As usual, we denote by F(G) the Fitting subgroup of G.

LEMMA 3.4. Let G be solvable and G/F(G) = F(G/F(G)). Then
dl(G/F(G)) < 2f(G)*.

Proof. Let p be a prime number such that p | |G|. By Theorem
2.2, d1,(G/0,(G)) < 1,(G/0s(G))es(G). Combining 1,(G/0y(G)) <
rp(G/0y(G)) with Theorem 1.3, we have

d1y(G/0y(G)) < 2,(G)* < 2/ (G)2.

Since dl,(G/F(G)) = dl,(G/0,(G)), dl,(G/F(G)) < 2f(G)?. Since
G/F(G) = F(G/F(G)),

dl(G/F(G)) = max{dl,(G/F(G))|p | |G/F(G)|}.
Thus dI(G/F(G)) < 2f(G)?. O
THEOREM 3.5. Let G be solvable. Then
dI(G/F(G)) < 2(f(G)* + f(G) +1).
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Proof. Let F,/F(G) = F(G/F(G)). By Corollary 1.6, r(G/F(G)) <
2f(G). We use Leisering and Manz [11, Lemma 2.3] to embed G/F,
in the direct product of some GL(2f(G), p), where p runs through
the prime divisors of |F,/F(G)|. Consequently, Theorem 2.5 of
Leisering and Manz [11] yields that d/(G/F;) < 2f(G) + 2.

Applying Lemma 3.4 to the group F,, we have dI/(F,/F(F;)) <
2f(F;)?. Hence dI(F,/F(G)) < 2f(F;)? < 2f(G)?. Finally,

dl(G/F(G)) < dl(G/F,) + dI(F,/F(G))
< 2f(G) +2+2f(G)?
=2(f(G)*+ f(G)+1). m

Some remarks are appropriate for this theorem.

(1) If f(G)=1, then dI(G/F(G)) <2.

(2) If G has odd order, then dI/(G/F(G)) < f(G)? + f(G) + 2.

(3) Let n(G) be the nilpotent length of G. Then n(G) <
2(f(G)+2).
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