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THE /7-PARTS OF BRAUER CHARACTER DEGREES
IN -̂SOLVABLE GROUPS

YOU-QIANG WANG

Let G be a finite group. Fix a prime integer p and let e be the
largest integer such that pe divides the degree of some irreducible
Brauer character of G with respect to the same prime p. The pri-
mary object of this paper is to obtain information about the structure
of Sylow ^-subgroups of a finite ^-solvable group G in knowledge
of e.

As applications, we obtain a bound for the derived length of the
factor group of a solvable group G relative to its unique maximal
normal p-subgroup in terms of the arithmetic structure of its Brauer
character degrees and a bound for the derived length of the factor
group of G relative to its Fitting subgroup in terms of the maxi-
mal integer e when p runs through the prime divisors of the order
of G.

All groups considered are finite. Let G be a group and p be a prime.
We denote by TΆτp{G) the set of irreducible Brauer characters of G
with respect to the prime p. For the same prime p, let ep(G) be the
largest integer e such that pe divides φ(\) for some φ e TBτp(G).
Let P be a Sylow ^-subgroup of G. Then the Sylow /^-invariants of
G are defined as follows:

(1) bp(G), where p W is the order of P
(2) cp(G), the class of P, that is, the length of the (upper or) lower

central series of P
(3) dlp(G), the length of the derived series of P
(4) eXp(G), where pex

P^ is the exponent of P, that is, the greatest
order of any element of P.

For a /j-solvable group G, we let lp(G) and rp(G) denote the p-
length and p-rank (respectively) of G, i.e. rp{G) is the largest integer
r such that pr is the order of a /?-chief factor of G.

We give a linear bound for rp(G/Op(G)) and a logarithmic bound
for lp(G/Op(G)) in terms of ep(G). Then, using induction on
lP(G/Op(G)), we obtain bounds for cp(G/Op(G)), dlp(G/Op(G)) and
exp(G/Op(G)) in terms of ep(G).
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As one application, we bound the derived length of G/F(G) for a
solvable group G in terms of /((?), where

= wΆ{ep{G)\p\\G\)

and F{G) is the Fitting subgroup of G.

1. p-rank and p-length. For p-solvable G, we bound in this section
rp(G/Op(G)) and lp(G/Op(G)) in terms of ep{G).

LEMMA 1.1. Let G have a nίlpotent normal p-complement M and
let Op(G) = 1. Then

(l)bp(G)<2ep(G);
(2) // \G\ is odd, then bp(G) < ep(G)
(3) if a Sylow p-subgroup of G is abelian, then bp(G) < ep{G).

Proof. Let Φ(M) denote the Frattini subgroup of M. Since M is
nilpotent, Mf < Φ(M) and hence M/Φ(M) is abelian (see Goren-
stein [3, Chapter 6, Theorem 1.6]). Notice that Φ(M) <G. Consider
the factor group G/Φ(M). Let P be a Sylow ^-subgroup of G. Then

G/Φ(M) = MP/Φ(M) = M/Φ(M) PΦ{M)/Φ(M).

Write Gγ = G/Φ(M), Mx = M/Φ(M) and Pι = PΦ(M)/Φ(M).
Then Mi is an abelian normal ^-complement of G\, and Pi =
PΦ(M)/Φ(ΛO = P/P n Φ(Af) = P . By Huppert [5, Chapter 3, Satz
3.18], P acts faithfully on M\, and hence Pi acts faithfully on Mi.
Then OP(G\) = 1 and Pi acts faithfully on Irr(Afi) which is an
abelian p'-group.

By Corollary 2.4 of Passman [16], there exists θ e Irr(Λfi) such that
1/^(0)1 < IΛI1 / 2 So |Λ : IPι(θ)\ > | P i | 1 / 2 . By Clifford's Theorem,
p'fo > IPil1/2. Since \PX\ = \P\ and ep(G) > ep{Gx), 2ep(G) >
bp(G). This gives (1).

If |G| is odd or P is abelian, then we can apply Lemma 2.2 and
Corollary 2.4 of Passman [16] to conclude that there exists θ e lττ(M\)
such that IP{{Θ) = 1. By Clifford's Theorem, \PX\ < pep(G^, that is,
bp{G) < ep{Gx). So (2) and (3) hold. α

LEMMA 1.2. Let G have a normal p-complement M and let OP(G)
= 1, where p is an odd prime. Let M = M\ x x Mn, where all
Mi's are isomorphic nonabelian simple groups. Then

{\)bp{G)<2ep{G)'>
(2) if ep(G) = I, then bp(G) = l.



BRAUER CHARACTER DEGREES 353

Proof. Let P be a Sylow /7-subgroup of G. Notice that for any

x e P and Λ/,, xM(x~l € {Mi,... , Mn}. We write ΛΓ, = StabP(Λ//)

and C = Π"=i Ni • A l s o » w e l e t

Ci = Cc{Mi) = {xeC\ xyx~ι = y for all y e Λ/J.

For each /, C/Q < Out(Λ/, ) . By Lemma 1.3 of Gluck and Wolf
[2], C/Q is a cyclic p-group. Let Ωi(C/Q) = (x € C/Q | ** = 1),
then Ωi(C/Q) is a cyclic group of order p.

On the other hand, since C/Ci acts faithfully on A/} and since
p\\Mi\, C/Q acts faithfully on Irr(Λ/, ) (see Isaacs [9, Theorem
6.32]). Thus

Π Q:/ς(0) = l.
βeIrr(A/,)

So, there exists some θt e Irr(il/, ) such that

«i(C/c,-)nc c / C ( (fl i) = i .

This forces that CC/c.(θi) = 1, that is, Cc{θi) = Ct.
Let β = θx x x 'θn • Then θ € Irr(Λί) = IBrp(Aί) and Ic(θ) =

Π"=i Cc(0/) = Π"=i Q. Since P acts faithfully on M , f|"=i Q = 1,
and hence 7c(β) = 1. Since C < P, MC < (7 and hence eP(MC) <
ep(G). Applying Clifford's Theorem to the group MC, we have \C\ =
\C:Ic{θ)\<pe>{MC). Hence

(A) \C\<pe^.

On the other hand, P/C is a permutation group on the set {M\,...,
Mn~) and p is an odd prime. So, by Corollary 1 of Gluck [1], we may
assume without loss of generality that Stab/>/C{Λ/i,... , Mt} = 1,
that is Stabp{Mχ,... , Mt) = C for some suitable t e{ί, ... , n}.

Choose θj € Irτ(Mj) with θj-φ 1, j = 1, . . . , t. Let θ =
θι x x θt x 1 x x 1. Then θ e ln(M) = lBrp(M) and
IP(Θ) < Stabp{Λ/Ί, ... ,Mt} = C. Applying Clifford's Theorem to
the group G, we get |P : IP(Θ)\ < pep{G). Hence

(B) \P:C\< pe>{G).

Combining (A) with (B), we obtain \P\ < p2ep{G). This gives (1).
Suppose that ep{G) = 1. By (A) and (B), we know that \C\ < p

and \P:C\<p.
In the following, we want to show that either C = P or C = 1.

Assume not. Then we have \C\ = p and \P\ = p2.
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Since P acts faithfully on M, C acts faithfully on M. Since
\C\ = p, there exists some M^ such that Q = CciM^) = 1, that is,
C acts faithfully on M^. Thus C acts faithfully on Irr(Λ/fc). Hence
there exists some θ^ e Iττ(Mk) such that Θ^Φ \ and Cc{θk) = 1

Since Stabp{Λ/ί+i, . . . , Mn} = Stab^{Λ/i, . . . , Mt}, we may as-
sume without loss of generality that k = 1. Choose θj e lrr(Mj)
with θjφl, j = 2, ... ,t. Let 0 = θ\ x 02 x x θt x 1 x x 1.
Then θ e Irr(M) = ΊBτp(M) and IP{Θ) < StabP{M!, . . . , Mt} = C.
So IP(Θ) = Ic(θ) = Π/=i Cc(^) = 1 (because of Cc{θx) = 1). Thus
there exists θ e Iτr(M) = IBrp(Af) such that 7>(0) = 1. By Clifford's
Theorem, \P\ = \P : 7P(0)| < p. This contradicts to |P | = p2. So (2)
holds. D

THEOREM 1.3. Let G be p-solvable. Then

rp(G/Op(G))<2ep(G).

Proof. By induction on |G| , we may assume without loss of gener-
ality that Op(G) = l.

If p = 2, then G is solvable, and we are done by Manz and Wolf
[13, Theorem 2.3]. In the following, we assume that p is an odd
prime.

Let ¥ be a minimal normal subgroup of G and let N/M =
OP(G/M). By the inductive hypothesis, we may assume that N/M Φ
1.

Since G is /?-solvable and OP(G) = 1, we have the following two
cases:

Case 1. M is an elementary abelian <?-group for some prime qφp\

Case 2. M Is the direct product of isomorphic nonabelian simple
//-group.

Consider the group N. Notice that M = Op>(N) and OP{N) = 1.
Applying Lemma 1.1 (1) and Lemma 1.2 (1) to the group N, we get
bp(N) < 2ep(N). Since N<G, ep(N) < ep(G) by Clifford's Theorem.
Hence bp{N) < 2ep(G). ^

By the inductive hypothesis, the p-rank rp(G/N) of G/N does not
exceed 2ep{G/N) < 2ep(G). Since rp{G) < max{rp(G/N), bp(N)}9

rp(G)<2ep(G). π

By using Lemma 1.1 (2) instead of Lemma 1.1 (1), the same proof
yields the following improvement for groups of odd order.
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THEOREM 1.4. Let G be a group of odd order. Then

rp(G/Op(G))<ep(G).

We note that Theorem 1.3 and Theorem 1.4 improve Theorem 2.1
of Manz [12], by the Fong-Swan Theorem.

THEOREM 1.5. Let G be solvable and ep(G) <p. Then

rp(G/Op(G))<ep(G).

Proof. By induction on |G|, we may assume without loss of gener-
ality that OP{G) = 1.

Let M be a minimal normal subgroup of G and let N/M =
OP{G/M). By the inductive hypothesis, we may assume that N/M φ
1. Since OP(G) = 1, M is an elementary abelian #-group with q Φ p.

Consider the group N. Since N< G and OP(G) = 1, OP(N) =
1. Notice that N has a normal p-complement M and ep{N) <
ep(G)<p.

Let P be a Sylow /^-subgroup of N. Since OP(JV) = 1, P acts
faithfully on M by conjugation. Hence P acts faithfully on Irτ(Λ/).
Since M is an elementary abelian #-group, Irr(Af) is an abelian
g-group. Let Ω\9 ... ,Ωn be the P-orbits of Irr(Aί) and pf =
max{|Ωi | , . . . , |ΩΛ | } . We may assume without loss of generality that
|Ωi| = pf. Let θ\ € Ω\. Applying Cliίford's Theorem to the group
N, we get |Ωi| = \P : Ip(θχ)\ < pe*>{N). So |Ωi| < pp. By Corollary
2.4 of Passman [16], there exists θ e Irr(Af) such that IP(Θ) = 1. We
apply Clifford's Theorem to conclude that \P\ = \P : IP(Θ)\ < pe?{N).
So bp(N) < ep(N), and hence bp(N) < ep(G).

By the inductive hypothesis, the /?-rank rp(G/N) of G/N does
not exceed ep(G/N) < ep(G). Since rp{G) < max{rp(G/N), bp(N)},
rp(G)<ep(G). π

Recall that the rank r(G) of G is the maximum dimension of all
chief-factors of G and f(G) = max{^(C?) | p \ \G\}.

COROLLARY 1.6. Let G be solvable. Then
(l)r(G/F(G))<2f(G);
(2) if \G\ is oddf then r(G/F(G)) < f{G).

Proof. Let p be a prime number such that p \ |G| . Then, by
Theorem 1.3 and Theorem 1.4, rp(G/Op(G)) < 2ep(G) < 2f(G), and
if |G| is odd, rp(G/Op(G)) < ep(G) < f{G). Since OP(G) < F(G),
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this yields that r(G/F(G)) < 2f(G), and if \G\ is odd, r(G/F(G)) <
f{G). D

Combining Wolf [17, Theorem 2.3] with Theorem 1.3, we have

THEOREM 1.7. Let G be p-solvable. Then
(1) lp(G/Op(G)) < l+\ogp{2ep(G)) if p is not a Fermatprime; and
(2) lp(G/Op(G)) < 2+\ogs(2ep(G)/(p-l)) where s = (p2-p+\)/p.

2. Sylow /^-invariants. In this section, we bound cp(G/Op(G))9

dlp{G/Op(G)) and exp(G/Op(G)) for a p-solvable group G in terms
of ep(G). In particular, we show that if ep{G) = 1, then a Sylow
p-subgroup of G/OP(G) is elementary abelian. We also give bounds
for bp(G/Op(G)).

LEMMA 2.1. Let G have a normal p-complement and let OP(G) =
1. Then

(l)dlp(G)<ep(G);
(2)exp(G)<ep(G);

(3) cp{G) < p ^ ) " 1 .

Proof. Let P be a Sylow /7-subgroup of G and let H be the normal
/?-comρlement of G. Then P acts faithfully on Irr(i7).

Write Ω = Irr(i ί) . Let Ωx, . . . , Ωn be the P-orbits of Ω. Then
P acts transitively on each Ω/. Let φt^: P —> S(Ω/) be the homomor-
phism induced by the action, where S(Ωj) is the permutation group
on Ω| . Then we can define a homomorphism from P into the direct
product

as follows:

, •••, ψn(χ))> xeP.

Since P acts faithfully on Ω, Ker φ = 1, and hence 9? is an injection?.
By the definition of φ, we know that

P = <p(P)<<Pi(P)X'-x<Pn(P),

where each (pi{P) < S{Ωi) is a /?-group.
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S i n c e dl(<Pi(P)) < d l ( P ) , m a x { d l ( φ i ( P ) ) : i = 1 , . . . , « } < d l { P ) .
On the other hand, we have that

dl{P) = dl{φ{P))

<dl(φι(P)x -xφn(P))

H e n c e , d l p ( G ) = m a x { d l ( φ i ( P ) ) : i = I,..., n } . S i m i l a r l y ,

exp(G) = max{exp(<Pi(P)) : i = 1 , . . . , » } ,

a n d

Cp(G) = max{cp((pi(P)): i = 1 , . . . , « } .

Let /?-f = max{|Ω,| : / = 1,... , n}. We may assume without loss
of generality that |Ωi| = pf. By Huppert [5, Chapter 3, Satz 15.3],
dlp(G) < f, exp(G) < f and cp(G) < pf~x. Choose θ € Ωx. By
Clifford's Theorem, lΩ^ = \P : IP{Θ)\ < pep{G). So / < ep(G). Thus
the conclusions (l)-(3) hold. D

THEOREM 2.2. Let G be p-sohαble. Then
(1) dl

p
(G/Op(G)) < ίp(G/Op(G))e

p
(G)

(2) ex
p
(G/Op(G)) < l

p
(G/Op(G))e

p
(G)

(3) c
p
(G/Op(G)) < ^

1

Proof. Since ep(G) = ep(G/Op(G)), we may assume without loss of
generality that OP(G) = 1. We use induction on lp{G).

Write E = Op.(G) and Λf = Op>>p(G). Since OP(C?) = 1, OP{M) =
1. Clearly, M has a normal ^-complement £ . Thus, by Lemma 2.1,
we have that

dlp(M)<ep(M), eXp(M) < ep(M), and cp(M) <

Since M < G, ep(M) <ep{G). Hence,

(A) dlp(M)<ep(G), eXp(M) < ep(G),

Since M = Op>>p(G), OP(G/M) = 1 and lp(G/M) = lp{G) - 1.
Then the induction yields that

dlp(G/M) < lp(G/M)ep(G/M),

exp{G/M) < lp(G/M)ep{G/M), and

cp(G/M) <
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Hence, (B)
dlp(G/M)<(lp(G)-l)ep(G),
exp(G/M)<(lp(G)-l)ep(G),

By (A) and (B), we have the conclusions.

Combining Theorem 1.7 with Theorem 2.2, we have

COROLLARY 2.3. Let G be p-solvable. Then
(1) if p is not a Fermat prime, then

dlp(G/Op(G)) < (1 +\ogp(2ep(G)))ep(G),

exp(G/Op(G)) < (l+logp(2ep(G)))ep(G),

cp(G/Op(G)) < (1 +logp(2ep(G)))pe^-1

(2) if p is a Fermat prime, then

dlp(G/Op(G)) < (2 + logs(2ep(G)/(p - l)))

exp(G/Op(G)) < (2 + lof>s(2ep(G)/(p-l)))eP(G),

cp(G/Op(G)) < (2 + logs(2ep(G)/(p-l)))Pe>{G)-1,

where s — {p2 -p + l)/p.

In the rest of this section, we give some improvements on the
bounds we just got for the cases ep(G) = 1,2 and ep(G) < p.

COROLLARY 2.4. Let G be solvable and ep{G) <p. Then
(1) if p is not a Fermat prime, then

dlp(G/Op(G))<ep(G),
exp(G/Op(G))<ep(G),

p

(2) if p is a Fermat prime, then

dlp(G/Op(G))<2ep(G),
exp(G/Op(G))<2ep(G),

Proof. By Theorem 1.5 and Wolf [17, Theorem 2.3], lp(G/Op(G)) <
1 + \ogp(ep(G)), if p is not a Fermat prime; and lp(G/Op{G)) < 2 +
logs{ep{G)/(p - 1 ) ) , if p is a Fermat prime, where s = (p2-p +l)/p.
Since ep(G) < p, lp(G/Op(G)) < 1, ifp is not a Fermat prime; and
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lp(G/Op(G)) < 2, if p is a Fermat prime. Hence the conclusions
follow from Theorem 2.2. D

For a group G, Michler [14] and Okuyama [15] show that if ep(G) =
0, then G has a normal Sylow /?-subgrouρ. The assertion for p-
solvable groups is elementary and well-known.

THEOREM 2.5. Let G be p-solvable and ep(G) = 1. Then

rp(G/Op(G)) < 1.

Proof. The case p = 2 is done by Theorem 1.5. In the following,
we assume that p is an odd prime. By induction on \G\, we may
assume without loss of generality that OP{G) = 1.

Let M be a minimal normal subgroup of G and N/M = OP(G/M).
By the inductive hypothesis, we may assume that N/M Φ 1. Since G
is p-solvable and OP{G) = 1, we have the following two cases:

Case 1. M is an elementary abelian #-group for some prime

QφP-

Case 2. M is the direct product of isomorphic nonabelian simple
p'-groups.

Consider the group N. Since N< G and OP(G) = 1, OP{N) = 1.
Then 1 < ep(N) < ep(G) = 1. Thus ep(N) = 1. Notice that N
has a normal ^-complement M. By Lemma 2.1, N/M is an abelian
p-group. Applying Lemma 1.1 (3) and Lemma 1.2 (2) to the group
N, we get bp(N) = 1.

By the inductive hypothesis, the /?-rank rp(G/N) < 1. Since rp(G)
< mdLx{rp{G/N), bp(N)}, rp(G) < 1. D

Since lp(G) < rp(G) (see Huppert [5, Chapter 6, Hauptsatz 6.6
(c)]), we get the following corollary by combining Theorem 2.2 with
Theorem 2.5.

COROLLARY 2.6. Let G be p-solvable and ep{G) = 1. Then a Sylow
p-subgroup of G/OP(G) is an elementary abelian p-group.

For ep(G) = 2, there is no general result similar to Corollary 2.6.
Let G = S3wrZ 2 . Then e2(G) = 2 and O2(G) = 1. The Sylow
2-subgroup of G is Z2 w r Z 2 , which is not abelian.

However, for solvable groups, we have the following corollary.
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COROLLARY 2.7. Let G be solvable and ep(G) = 2 with p > 5.
Then

(l)dlp(G/Op(G))<2;
(2)exp(G/Op(G))<2;
(3)cp(G/Op(G))<p.

Proof. For p > 5, by Theorem 1.5 and Wolf [17, Theorem 2.3],
lp(G/Op(G)) < 1 if ep(G) = 2. Hence the conclusions follow from
Theorem 2.2. D

In closing this section, we include the following remark, which tells
us that logarithmic bounds for the Sylow /?-invariants of G/OP(G) in
terms of ep(G) are probably the best bounds we can expect.

REMARK 2.8. Fix a prime p. Let Go φ 1 be a //-group. We
construct groups by iterated wreath products as follows: let G\ =
GQWTZP and Gi = G\wτZp. Following this way, we have Gn =
Gn-\ wrZp for any natural number n .

By Hall and Higman [4, Lemma 3.5.1], dlp(Gn) = exp(Gn) = n.
Since OP{G\) = 1 and \G\\P = p, ep(G\) = 1. In the following, we
use an induction argument on n to show that

Pn-ι<ep(Gn)<(pn-l)/(p-l).

Suppose that pn~2 < ep{Gn-λ) < (pn~ι - \)/{p - 1). By the
d e f i n i t i o n o f Gn, Gn = {Gn-\ x ••• x G Λ - i ) x Zp. L e t Hn =

p-times

Gn-\ x x G^-i. Then Hn<Gn and ep{Hn) =pep(Gn-ι). Hence
p-times

p " - 1 < ep(/fn) < ep{Gn). In particular, pn~ι < ep{Gn).
On the other hand, let φ € IBrp(Gn) such that ί?(l) = p^^m.

Choose 0 6 ΪBτp(Hn) such that {*> € IBrp(Gn | θ). By Clifford's
Theorem, #>(1) = ^0(1) with a positive integer e . Also, by Lemma
3.2 of Isaacs [8], φ is an irreducible constituent of ΘG». Thus φ{\) <
ΘG«{\) = \Gn : Hn\θ{\) = pθ{\). So 0 < e < p. This yields that
eP{Gn) < ep{Hn) + 1. Hence ep{Gn) < p(pn-1 - l)/(p - 1) + 1 =

Now we consider bounding the bp(G/Op(G)) for a /^-solvable group
G in terms of ep(G).

LEMMA 2.9. Let G have a solvable normal p-complement H and
let OP{G) = 1. Then bp(G) < 2dl(H)ep(G).
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Proof. We use an induction argument on dl{H). Let P be a Sylow
p-subgroup of G. Then P acts on H/H' by conjugation. Let Q =
CP(H/H>).

Since P/Q acts faithfully on # / # ' , P/Q acts faithfully on
lτr(H/H') which is an abelian /?'-group. By Corollary 2.4 of Passman
[16], there exists θ e ln{H/H') such that |C>/C(0)| < \P/Q\ι/2. So
\P/Q •• CP/Q(Θ)\ > \P/Q\V2. Consider θ e Iττ(H) with H' < Ker0.
By Clifford's Theorem, \P : Ip{θ)\ < pe*{G). Since \P : IP{Θ)\ = \P/Q :
CP;Q(Θ)\ , \P/Q\V2 < Pe"{G). Hence logp \P/Q\ < 2ep(G). If Q = 1,
then we are done.

Next, we assume that Q φ 1. We claim that Q acts faithfully
on H'. Assume not. We may assume without loss of generality that
Q acts trivially on H'. Since Q = CP(H/H'), Q acts trivially on
H/H'. Since (\Q\, \H\) = 1, Q acts trivially on H (see Huppert [5,
Chapter 3, Hilfssatz 13.3 (b)]). But since P acts faithfully on H, we
must have Q = 1. This contradicts to Q ψ 1.

Write (?i = H'Q. Then (?i has a normal p-complement i/' and
OP(G\) = CQ(H') = 1. Furthermore, we claim that G\<G. Since
i/' < G and β < P, we only need to show that ΛQ/r1 C H'Q for
all Λ € H. Let # € Q = CP(H/H'). Then q-γhqh~x e H'. Hence
/^/r 1 e tftf' C <2#' = # ' ρ . Thus G{ = H'Q<G. By Clifford's
Theorem, ep{G\) < ep(G).

Since dl(H') = dl{H) - 1 < dl{H), by induction, logp | β | <
2dl(H')ep(Gι) = 2(rf/(//) - 1)^(GO. Hence,

<2(dl(H)-l)ep(G) + 2

= 2dl(H)ep(G),

which is the claim. D

The following Lemma is a corollary of Lemma 1.1.

LEMMA 2.10. Let G be solvable, OP{G) = 1 and P a Sylow p-
subgroup of G. Let G have a normal p-complement. Then

bp{G)<2ep{F{G)P).
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Proof. Since OP(G) = 1, the Fitting subgroup F(G) is a pf-group.
By Huppert [5, Chapter 3, Satz 4.2], CG(F(G)) < F(G) and hence
Cp(F(G)) = 1. Let Gγ = F(G)P. Then Ĝ  has a nilpotent normal
/?-complement F(G) and Op(Gi) = CP(F{G)) = 1. By Lemma 1.1,
bp(Gχ) < 2ep{Gx). Since bp(G{) = bp(G), Z>P(C?) < 2ep(F(G)P). D

To handle p-solvable groups with arbitrary ^-length, we introduce
the following definition.

DEFINITION 2.11. For a prime p and a positive integer n, we define
λp(n) and βp(n) by

and

i=0

PROPOSITION 2.12. 7/p is a prime and n is a positive integer, then

λp(n) <n-l and βp(n) <2n-\.

Proof. Since λp{n) <(n- \)/(p - 1), λp(n) < n - 1. Since p > 2,
2(/7 - I)2 - p > {p - I)2 - (p - 1), and hence 2«(/? - I)2 - np >
(p-l)2-(p-l).So (2/i - 1) > (Λp/(P " I)2) " (1/(P " 1)) Since

2 - 1)), &(«) < In - 1. D

THEOREM 2.13. Let G be p-solvable and Op>{G) be solvable. Sup-
pose that Op(G) = l. Then

(1) b p ( G ) < 6 d l ( O p , ( G ) ) e p ( O p . J G ) ) -I; a n d
( 2 ) bp{G) < 4dl(Op<(G))ep{Op> p(G))-l unless p is a Fermatprime.

Proof. Write E = Op>(G) and M = Op >p(G). Since OP(G) = 1,
OP{M) = 1. Clearly, M has a solvable normal p-complement £•.
Thus bp{M) < 2dl(Op.(G))ep(Op. p(G)) by Lemma 2.9.

Let bp(M) = m, hence \M/E\= pm. By Wolf [17, Corollary 2.1],
we have that

(1) 2^(6) < m + β,(m); and
(2) bp(G) <m + λp(m) unless p is a Fermat prime.

Applying Proposition 2.12, we obtain

(2) bp{G) < 2m - 1 unless p is a Fermat prime.
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Since m = bp(M), we get
(1) bp(G) < 6dI(Op.(G))ep(Op,9P(G)) - 1 and
(2) bp(G) < 4dl(Op'(G))ep(Op'iP(G)) - 1 unless p is a Fermat

prime. D

Similarly, applying Lemma 2.10, we obtain the following Theorem.

THEOREM 2.14. Let G be solvable, OP(G) = 1 and P a Sylow
p-subgroup of Op> p(G). Then

(l)bp(G)<6ep(F(G)P)-l;and
(2) bp{G) < 4ep(F(G)P) - 1 unless p is a Fermat prime.

3. The derived length of solvable groups. Let n = Π/U/7/*' ^
prime number decomposition of a natural number n (α; Φ 0). We
define

k

For a group G, we let

ω(G) = max{ω(χ(l))\χeIrr(G)}

and

ωp(G) = max{ω(p(l)) | φ G ΪBτp(G)}.

Recall that f(G) = max{ep{G) \ p \ \G\}.
For a solvable group G, we obtain a bound for the derived length of

G/OP(G) in terms of ωp(G) and a quadratic bound for the derived
length of G/F(G) in terms of f(G).

LEMMA 3.1. Let G be solvable with OP(G) = 1 and lp{G) = 1.
Then dl(G)<5ωp(G).

Proof. Since OP{G) = 1 and lp{G) = 1, ep(G) > 1. Thus ωp(G) >
ep(G) > 1. If ωp(G) = 1, then dl{G) < 4 by Huppert [7, Theorem
1]. So, dl(G) < 5ωp(G), and we are done in this case.

In the following, we assume that ωp(G)>2. We have two cases to
consider.

Case I. Op,JG) = G.

By Lemma 2.1, dl{G/Op>{G)) < ep(G), and hence dl{G/Op {G)) <
. Since Op.{G) is a />'-group, ωp(Op>(<?)) = ω(Op.(G)).
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If ω(Op'(G)) > 2, then, by Huppert [6, Theorem 3], dl{Op {G)) <
2ω(θ/(G)), and hence dl{Op>{G)) < 2ωp(0p>(G)). Since Op {G)<
G, ωp{Op.{G)) < (ϋp(G) by Clifford's Theorem. So dl(Op>(G)) <
2ωp{G). Thus

< 2ωp(G) + ωp{G) = 3ωp{G).

If ω(Op'(G)) < 1, then, by Isaacs and Passman [10, Theorem 6.1],
dl(Op'(G)) < 3,and hence

dl{G) < dl{Op.{G)) + dl{G/Op.{G)) <3 + ωp(G).

Since ωp(G) > 2, dl(G) < 2ωp(G) + ωp(G) = 3ωp(G).

Case 2. Op >p>p (G) = G.

Write M = Op> p{G). By what we have just proved in the above,
we have that

(1) if ωp(M) = 1, then dl{M) < 4;
(2) if ωp(M) > 2, then dl(M) < 3ωp{M).

Since M<G, ωp(M) < ωp(G). Furthermore, since ωp(G) > 2,
3ωp(G) > 6. Thus dl{M) < 3ωp{G).

Since G/M is a p'-group, ωp(G/M) = ω{G/M). If ω(G/M) <
1, dl(G/M) < 3 by Isaacs and Passman [10, Theorem 6.1]. If
ω(G/M) > 2, dl(G/M) < 2ω{G/M) by Huppert [6, Theorem 3],
and hence dl{G/M) < 2ωp{G/M). Since ωp{G/M) < ωp{G) and
2ωp(G) > 4, dl(G/M) < 2ωp{G). Therefore,

dl(G) < dl{M) + dl(G/M)

< 3ωp(G) + 2ωp(G) = 5ωp(G).

This completes the proof of the lemma. D

THEOREM 3.2. Let G be solvable and lp(G/Op(G)) > 1. Then

dl(G/Op(G)) < 5lp(G/Op(G))Ωp(G).

Proof. We may assume without loss of generality that OP(G) = 1
We use induction on lp(G). By Lemma 3.1, we can assume that
lp(G)>2.

Write M = Op>>p(G). Since OP(G) = 1, OP(M) = 1. Clearly,
lp(M) = 1. Thus 'dl(M) < 5ωp(M) by Lemma 3.1. Since M<G,
ωp(M) < ωp(G) by Clifford's Theorem. Hence dl(M) < 5ωp(G).
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Since M = Op tP{G), OP(G/M) = 1 and lp(G/M) = lp{G) - 1.
Notice that 1 < lp{G/M) < lp{G). Thus, by induction, dl{G/M) <
5lp(G/M)ωp(G/M). Since lp(G/M) = lp{G) - 1 and ωp(G/M) <
ωp{G), dl(G/M) < 5(lp(G) - l)ωp(G). Hence,

dl(G) < dl(M) + dl(G/M)

< 5ωp(G) + 5(lp(G) - l)ωp(G) = 5lp(G)ωp(G),

and the assertion holds. D

Combining Theorem 1.7 with Theorem 3.2, we get

COROLLARY 3.3. Let G be solvable and lp(G/Op(G)) > 1. Then

(1) if p is not a Fermat prime, then

dl(G/Op(G)) < 5ωp(G)(l+logp(2ωp(G)))

(2) // p is a Fermat prime, then

dl(G/Op(G)) < 5ωp(G)[2 + logs(2ωp(G)/(p - 1))],

where s = (p2 —p + l)/p.

As usual, we denote by F(G) the Fitting subgroup of G.

LEMMA 3.4. Let G be solvable and G/F(G) = F(G/F(G)). Then

dl(G/F(G)) < 2f{G)2.

Proof. Let p be a prime number such that p \ \G\. By Theorem
2.2, dlp(G/Op(G)) < lp(G/Op(G))ep(G). Combining lp(G/Op(G)) <
rp(G/Op{G)) with Theorem 1.3, we have

dlp(G/Op(G)) <2ep(G)2 <2f(G)2.

Since dlp(G/F(G)) = dlp(G/Op(G)), dlp(G/F(G)) < 2f(G)2. Since
G/F(G) = F(G/F(G)),

dl(G/F(G)) = max{dlp(G/F(G)) \p | \G/F(G)\}.

Thus dl(G/F(G)) < 2f(G)2. α

THEOREM 3.5. Let G be solvable. Then

dl(G/F(G))<2(f(G)2
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Proof. Let F2/F(G) = F(G/F(G)). By Corollary 1.6, r(G/F(G)) <
2f(G). We use Leisering and Manz [11, Lemma 2.3] to embed G/F2

in the direct product of some GL(2f(G) 9p), where p runs through
the prime divisors of \F2/F(G)\. Consequently, Theorem 2.5 of
Leisering and Manz [11] yields that dl(G/F2) < 2f(G) + 2.

Applying Lemma 3.4 to the group F2, we have dl(F2/F(F2)) <
2f(F2)

2. Hence dl(F2/F(G)) < 2f(F2)
2 < 2f(G)2. Finally,

dl(G/F{G)) < dl(G/F2) + dl(F2/F(G))

< 2f{G) + 2 + 2f{G)2

l ) . D

Some remarks are appropriate for this theorem.
(1) If f(G) = 1, then dl(G/F(G)) < 2 .
(2) If G has odd order, then dl(G/F(G)) < f(G)2 + f{G) + 2.
(3) Let n(G) be the nilpotent length of G. Then n(G) <

2(f(G) + 2).
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