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FOURIER COEFFICIENTS
OF NON-HOLOMORPHIC MODULAR FORMS

AND SUMS OF KLOOSTERMAN SUMS

KA-LAM KUEH

This paper studies Fourier coefficients of non-holomorphic modu-
lar forms and sums of Kloosterman sums.

1. Introduction. Put Γ = PSL(2, Z) and H+ = {x + iy\y > 0}.
Consider the Hubert space £2(H+/Γ) of function u(z) satisfying:

u(γz) = u(z) {γ € Γ)

and
/ x fί i / ,,2dxdy[ \

H+/Γ

Consider the Laplacian Δ on Z2{H+/Γ):

Δ ~ y \dx2 + dy2) *

A function u(z) in £ 2 (/ί + /Γ) is called a cusp form if the constant
term in the Fourier expansion of u(z) vanishes. It is known that the
Laplacian Δ has a complete discrete spectral decomposition on the
subspace of cusp forms. The Maass wave forms uj(z) defined by

(1) Δuj(z) = λjUj(z), (Uj, uj) = 1,

where λ\ < λ\ < A3 < are the discrete eigenvalues of Δ, constitute
an orthonormal basis for the subspace of cusp forms. Note that λ\ >
\π2. From (1) we have the Fourier expansion:

(2) uj(z) = y/yΣpj(n)Kikj(2π\n)e{nx)9 e(θ) = e2πiθ

where λj^ = \ + kj and K^ (•) is the Whittaker function. We have

(3) #{kj\ \kj\ <X} = ̂ X2 + cXlogX + 0(X)

where c is a constant; cf. Venkov [7].
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An important problem in the theory of non-holomorphic modular
form is to estimate the Fourier coefficients pj(n). The Ramanujan-
Peterson conjecture states that for large \n\

Pj(n)<\n\ε (e>0).

A method to study the Fourier coefficients Pj(n) of Uj(z) is the
non-holomorphic Poincare series introduced by Selberg [5]:

Pm(z,s) = Σ (Imyz)^(myz) (Re$>l),

where m > 1 is an integer and ΓQO is the subgroup of translations. The
Poincare series belongs to £ 2 (/f + /Γ), and its inner product against
a function u(z) e Σ?{H+ /Γ) gives the mth Fourier coefficient of
u(z). Selberg [5] obtained the meromorphic continuation of Pm(z, s)
to the entire complex s-plane. By considering the inner product of
two Poincare series, Kuznietsov [4] developed summation formulas
connecting the Fourier coefficients Pj(n) and the Kloosterman sum

cv \ v^ (am + dn\

S(m,n;c)= £ j el 1.
d=i \ c /
d=i

ad=\ (mode)

One of the summation formulas useful to us is equation (9) below.
By using the summation formulas, Kuznietsov [4] proved that

π2(5) y;
0<kj<X

and

( 6 ) ^ S(m9n;c) ^ τl/6lQgl/3 τ^

The Weil estimate gives

\S(m,n\c)\<(m9n,c)l'2d(c)cl'2

9

which yields a trivial bound O(Tι/2+e) for the sum in (6).
The Linnik-Selberg conjecture states that

(7)
c<T
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To deal with the estimate of pj(n), Selberg [5] introduced the above
conjecture.

Another method to study the sum of Kloosterman sum in (6) is by
the Kloosterman zeta function introduced by Selberg [5]:

Selberg [5] obtained the meromorphic continuation of Zm^n{s) to the
entire complex plane. A useful characterization of Zm^n(s) may be
found in (7.26) of Kuznietsov [4].

Goldfeld and Sarnak [3] have given a very simple proof of the bound
O(Tι/6+ε) for the sum in (6) by proving a good bound on Zm^n(s) in
the critical strip.

Equation (5) means that on the average \pj(n)\2/chπkj is bounded
with respect to the indices kj from 0 to X. In this paper, we will
show the following:

THEOREM 1. We have for nι+ε <t (ε > 0),

Theorem 1 means that on the average \pj(n)\2/chπkj is bounded
with respect to kj in short interval.

With Theorem 1, we will show furthermore

THEOREM 2. For any f{t) —• +oo and f(t) = o(t) as t —• +oo,

and nι+ε < t (ε > 0), we have

4 ( t

and

THEOREM 3. For Y > 10, we have

2

logy.f (Σ
γ \c<χ

2

S(m, n c) \ dx
d I X m,n
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It may be interesting to note that we get as a by-product of the proof
of Theorem 2 the following:

THEOREM 4. For any σ e C, we have

ΓΓ (σ ~ \ ~ / r ) Γ ( σ ~ \
Theorem 4 would follow immediately from the proof of Theorem 2.

In view of (3), it may be interesting to compare Kuznietsov's estimate
(5) with Theorems 1 and 2. Theorem 3 means that the sum in (6) is
"very small" for almost all x and for most of the time better than the
Linnik-Selberg conjecture. More precisely, for Y > 10 and f(x) /
oc, let Mγ c[Y, eY] such that

(J ( ΐfϊ , n 1 C) />/ \ i 1/7 / -k r \Σ
Then Theorem 3 shows that the Lebesgue measure of My is
O(f(YΓ2Y).

By putting σ = | + 1/logn in Lemma 1, Theorem 1 follows im-
mediately. We prove Theorem 3 by establishing Lemma 2, which is
analogous to the explicit formula in the theory of prime number, and
by using Gallagher's mean-value inequality for exponential sum which
is Lemma 3. The method imitates an idea of Gallagher [2].

2. Lemmas. The proof of Lemma 1 is based on the following equa-
tion (9) which follows by putting s\ = σ + it and S2 = o - it in the
lemmas in §4.1 and §4.4 of Kuznietsov [4].

PROPOSITION. For s = σ + it, | < σ < | , and any integer n > I,

we have

(9) \Σ

x c h π r

)

2}-2σ ^S{n,n\c),( 4πn\\
v / \ v CD I ? 1 >

[ishlπtf^ c2σ V c )] '
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where

Ms r ) . |Γ(»-i

and for x > 0

(10) Φ{s,x) = -πf™ (u-^

hitiu) is the Bessel function.

/ - x x / \̂  du(sιnπs)J-2it(xu)}—

We need the following estimate for the Bessel function:

(11) Jit{u) < eπtl2(t2 + w2)"1/4 (t € R)

uniformly in u > 0 for |/| —• +oo.

LEMMA 1. We have for | < σ < f

(12) ^ I ^ ( Π ) I "

Proof. We take | < σ < | in the Proposition. With the bound in
(11), we see from (10) that

/

oo / i \ 2<7-2 J

\U~u) ( ' 2 + X 2 " 2 ) ~ 1 / M
_ 4τrn\0 c /

2<7~2 Λ / x \ 2 j N " 1 / 4 ^

V ί / ) U

<rι/2e2*tt S i n c e | < σ < | .

On considering Weil's bound for S(m, n; c) and (13), the second
term on the right-hand side of (9) is then

(14) <ri/V-Wσ_r'~2



308 KA-LAM KUEH

On the other hand, the integral in (9) is non-negative, and the series
in (9) is

ΪΓΪs

t 2- chπkj '
|Λ-ί |<l ;

since Γ(s) = V2πe^π/2^tσ~ι/2(l + O(\t\-1)), and | Γ ( J - £ -
for \t-kj\< 1.

This proves Lemma 1.

LEMMA 2. We have for T < \.

γ^S(m, n; c) _

kί < ~ μfcr Chπk> 2ik< \ T I'
the implicit constant here depends on m, n.

Before proceeding with the proof of Lemma 2, we need several
analytic properties of Zm,n(s). On the half plane Re s > 0, the
poles of Zmin(s) are located at s = \ + ikj, and as t —• oo

(15» «"•"«„«„ j - , _ j |

Estimate (15) is obvious by using the result and the same method
as in the proof of Theorem 1 of Goldfeld and Sarnak [3]. On the
other hand, by the Lemma of §7.3 of Kuznietsov [4], we have the
representation for Zm^n(s) (s e C):

(16) (2π

δm,n Γ(j)

c h π k k i ' S) "
Ί 2π Γ(l - s)
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where Lm^n(s) denotes the analytic continuation of the function
which is defined in the half plane Re s > \ by the integral

, N 1 f°° (n\it , NAs) = πL Km) σ2Mσ-
h(r9s)

and

and

h{r,s) = ^si

Pm,n(l) = (2/

(s- 2 + /» - ^ - ir) ,

c=l

I I

By (16), we see that

Re j
s=l/2+ιkj

(17)

Consider s = σ + it with

(18)

Γ(2ιkj)pj(n)pj(m).

o - x log(|ί|

for a small (5 > 0. Deforming suitably the integral path in the integral
of Lm^n{s), we have for 5 satisfying (18)

(19) Lm,n(s) = O(log2\t\)

since ζ(x + iy) Φ 0 and ζ(x + iy) < log(|y| + 2) in the region x >
l-(c/log( |y | + 2)) ( c > 0 ) .

Also for 5 satisfying (18), we have

and

(21)

By using the estimate on Bessel function

< min ί 1, 0 J ,
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we prove (21) as follows: note first that (2/ +1) Γ(s+/)/Γ(2-
1. Thus

«Σ Σ
/=0 \<c<20πy/mή

00

+Σ Σ
1=0 c>20πy/mn

< Σ

\S(m , n;
c

, n;
c

c)\

c)\

hι+\

hι+\

V
AπJmn

\S{m9 n\ c)\
L^ \

+ Σ
\<c<20πy/mή l>20πφΫm

\S(m,n;c)\
'21+1

V

+ Σ
l>20πy/mή 1=0

\S(m, n\ c)\

\<c<20πy/mn
(

c>20πy/mή
(2/!)

\S(m,n;c)\

c>20πy/mn

mn.

c
l<c<20πy/mn

\S(m 9 n \ c ) \

c ) (2/)!

This proves (21). Estimate (21) is obviously not the best, but we
are satisfied with this presently.

Also by using Theorem 1 and (5), we have that

(22) Σ
\krt\>ι

for s satisfying (18) and max{m1+e, n1+ε} < \t\. Thus by (19), (20),
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(21) and (22), equation (16) becomes

(23) Z m n(s) = (2
\kΓt\<\

for s satisfying (18) and mn < \t\ and max{ra1 + ε, n 1 + ε } < \t\.
We are now in a position to prove Lemma 2.

Proof of Lemma 2. Choose 0 < e < ί/log(|ί| + 2) for small δ > 0.
By (15) and the Lindelόf-Phragmen principle it follows that

(24) l Z m M s ) l ^

for ^+ε <σ< l+ε, since Z m , Λ ( | + e ) < ε~2 by (8); and obviously

(25) \ZmM\ « λ

for j§ < σ < \ - ε.
Consider the integral

(26)

with Γ > 0 not an ordinate of a pole of Zm,n(s). Now by Lemma
3.12 of Titchmarsh [6], we get

(27)
c<x

Computations of residues yield

lik i

' 2s - 1

where ξj is the residue of Zm^n(s) at s = \ + /7c7. Using (17), we
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see that

( 2 9 ) ξj << chπkj lkjl *

Now we estimate the integrals in (28). By (25), we have first

•1/lO+iT r 2 5 " 1

(30) /

and

(31) /

By (24), we have

i/2-ε±iT χ2s-l r-2eχ'-l/2

ZmMΪ—rds « ί—ί
l/lO±iT 2S-I m,n 8

/
r2"5"1

 r l / 2 + ε i

/ Z m,π( J )έ—ϊ~ d s < P2I/|
\/2+ε±iτ 2^ - 1 W,Λ ε 2 | ί |

for I log ̂  I » 1.
Finally, by (23) we have

rl/2+e±iT r 2 5

(33) / Zm9n(s)j

^-j chπkj

l/2+ε±iT r 2 ^-l
( y / ) ( j , ) d s + Om,n{ε).

\/2-e±iT Zs " !

Noting that \Γ(s)\ °> \s\~ι for ε < \s\ < 1 and by suitably deforming
the integral path on the right-hand side of (33) to an upper or lower
semi-circle according as \ + ikj stays below or above the integral path,
we get

\/2+e±iT

/ϊϊϊϊι/
J\/\/2-ε±iT ZS - L m,n

since \kj-ψ T\ < 1, so the right-hand side of (33) is

(34)

by Theorem 1.
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Putting (30), (31), (32), and (34) together, equation (28) becomes,

for log|f I > 1 and ε = ίΠog"1 T,

,2ik,

(35)

for T < \x, which combined with (27) yield

(36)
S(m, n; c)

c<x \k.\<T

This completes the proof of Lemma 2.

By putting T = xι^\og4/3x in (36), we get O(x^6\og2/3 x) on
the right-hand side of (36) which is slightly inferior to Kuznietsov's
bound (6).

LEMMA 3. Let A(u) = Σv c{v)eivu be an absolutely convergent se-
ries with complex coefficients c(v) and real indices v. Then for T > 0

2

J-T
-IVU du< i:

t<v<t+T

dt.

Proof. This is Lemma 1 of Gallagher [1].

3. Proofs of Theorems. We prove first Theorem 2. Take σ = | +
1/log rc. Then the Proposition of §2 gives

\krt\<\

which is the assertion of Theorem 1.
In view of |ζ(l + ir)\~ι < log|r| (\r\ -• +oo), a rough estimate

gives

chπr j 11 , 2 / \

dr < t ι log tdz{n).
ί°° 2

(38) y^l^WIΛl^v^^^p
We have, for kj>t + -

-1/2 -1/2-ikj)

>\t + kj\2σ-2\kj - t\2(7-2
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a n d for kj <t-

(40) A(s kj) < e-πctι-2σ\t + kj\2σ-2\t - k^'2.

On considering (37) and (5), inequalities (39) and (40) give rise to

(41) Σ \Pj(n)\2A(s kj) = o(l) (t - +oo).

Now (14) together with (38) and (41) yield, by virtue of (9),

(42) Σ \Pj(n)\2A(s kj) = ^Γ(2σ - 1) + o(l),

since n{Jrε < t. And also for \kj -t\< \/f{t)

A(s;kJ) = 22σ-2Γ1e-*kj

Substituting this into (42), we obtain

(43)

Γ ^ - ^ ~ ik

22~2σ

π
Γ{2σ - l)t + o{t),

since v7Tθ = o{t).
Taking integrals on both sides of (43) yields

/

t+f{)

Σ \Pj(«)\2e-*k

~m \krr\<yfW)

π

r(σ-± + i(r-kj]

T{2σ-\)tf{t) + o{tf{t)).

dr

Interchanging the order of summation and integral in (44), the left-
hand side of (44) becomes

(45) 53 \pj(n)\2e-*k>
\krή<f(t)

dr

o{tf{t)),
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by using (37). Note further that

315

kj-y/tt
Γ ( σ _ i + ι(r-*,))| dr

•ί
J-C

Γ(σ - 5 + ir)

From this and (44) and (45) it follows that

(46) \PA")\2e
2e-πk'

\kΓt\<f{t)

2i~lσ

π

r OO

' - O O

2 X - l

dr)

for eτ = | + 1/logn and nι+ε < t.
Now if we fix n, then we see from the proof that (46) holds good

uniformly for σ in an interval / c ( | , oo). By analytic continuation,
there is a constant ζ for which

(47) ξ Γ Γ (σ - \ + ir) Γ (σ - \ - ir) dr = 22-2<T(2σ -
^-OO V ^ / \ ^ /

(σec)

Indeed ζ = £, since

π

This completes the proof of Theorem 1, and equation (47) gives the
proof of Theorem 4.

Finally we prove Theorem 3. For Y > 10, Y < x < eY, and
Ylβ <T<\Y, Lemma 2 gives

(48) Σ
C<X

5(m, n\ c) lik>
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On applying Lemma 3 to (48), we get

2

II X2ikJ
x

o(ί)

o(\)

rT+\

J~T-\ t<k<ί+\
2kj

dt + o{\)

JΛy-ί|<l

/

Γ+l
Γ1 dt + 6>(1) by Theorem 1,

logΓ
m,n

m,n
logy.

This completes the proof of Theorem 3.
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