ON THE ROMANOV KERNEL
 AND KURANISHI'S L^{2}-ESTIMATE FOR $\bar{\partial}_{b}$ OVER A BALL IN THE STRONGLY PSEUDO CONVEX BOUNDARY

takao Akahori and Harunori Ameku

Abstract

As is proved by Kerzman-Stein, over a compact strongly pseudo convex boundary in C^{n}, Szegö projection S is the operator defined by Henkin-Ramirez modulo compact operators. While, over a special ball, U_{ε}, in the strongly pseudo convex boundary, in order to obtain a local embedding theorem of CR-structures, Kuranishi constructed the Neumann type operator N_{b} for $\bar{\partial}_{b}$ and so we have a local Szegö operator by $$
S_{U_{\varepsilon}}=\mathrm{id}-\bar{\partial}_{b}^{*} N_{b} \bar{\partial}_{b} \quad \text { on } U_{\varepsilon}
$$ where $\bar{\partial}_{b}^{*}$ means the adjoint operator of $\bar{\partial}_{b}$. There might be a relation between $S_{U_{e}}$ and the Romanov kernel like the case of the Szegö operator and the Henkin-Ramirez kernel. We study this problem and show some estimates for the Romanov kernel.

0. Introduction. Let $\left(M,{ }^{\circ} T^{\prime \prime}\right)$ be an abstract strongly pseudo convex CR-manifold. Then as is well known, if $\operatorname{dim}_{R} M=2 n-1 \geq$ 7, $\left(M,{ }^{\circ} T^{\prime \prime}\right)$ is locally embeddable in a complex euclidean space $C^{n}((A k 3),(K))$. In the proof of this local embedding theorem, it is shown that: over a special ball in the strongly pseudo convex boundary, an L^{2}-estimate for $\bar{\partial}_{b}$, which is stronger than the standard L^{2} estimate, is established and so the L^{2}-solution operator for $\bar{\partial}_{b}$ is obtained. This operator plays an essential role in our local embedding theorem. Therefore it must be important to study this solution operator for $\bar{\partial}_{b}$ precisely.

In order to get a solution operator, there exists another method. By using an integral formula, a local solution operator for $\bar{\partial}_{b}$ is constructed explicitly by Henkin and Harvey-Polking. Obviously, these solution operators are different. And it seems quite interesting to study the relation between the L^{2}-solution for $\bar{\partial}_{b}$ and the explicit solution, obtained by using an integral formula. We recall the $\bar{\partial}$-case over a strongly pseudo convex domain in C^{n}. In this case, the explicit solu= tion, constructed by Lieb and Range, is a certain kind of the essential part of the Kohn's L^{2}-solution. Therefore we could hope for a similar result in the $\bar{\partial}_{b}$ case over a special ball in the strongly pseudo
convex boundary. As mentioned already, our L^{2}-a priori estimate is different from the standard L^{2}-estimate. Therefore in the above sense, it seems to be natural to consider that the explicit solution operator would satisfy the similar L^{2}-estimate. In this paper, we discuss this point over rigid hypersurfaces in C^{n} (for the definition, see $\S 3$ in this paper). And we prove our a priori estimate (Main Theorem in $\S 5$ in this paper) for the explicit solution operator.

1. CR-structure and $\bar{\partial}_{b}$-operator. Let M be a real hypersurface in C^{n}. Let p be a reference point of M. We assume that p is a smooth point, namely let ρ be a defining function of M in a neighborhood of p in C^{n}, i.e., there is a neighborhood $V(p)$ of p satisfying:

$$
M \cap V(p)=\{q: q \in V(p), \rho(q)=0\}
$$

and

$$
d \rho \neq 0 \quad \text { over } M \cap V(p) .
$$

Then over $M \cap V(p)$, we can introduce an CR-structure induced from C^{n}. Namely, let

$$
{ }^{\circ} T^{\prime \prime}=T^{\prime \prime} C^{n} \cap C \otimes T M \quad \text { over } M \cap V(p) .
$$

Then this ${ }^{\circ} T^{\prime \prime}$ satisfies

$$
\begin{equation*}
{ }^{\circ} T^{\prime \prime} \cap{ }^{\circ} \bar{T}^{\prime \prime}=0, \quad f-\operatorname{dim}_{C}\left(C \otimes T M /\left({ }^{\circ} T^{\prime \prime}+{ }^{\circ} \bar{T}^{\prime \prime}\right)\right)=1 \tag{1-1}
\end{equation*}
$$

(1-2) $\left[\Gamma\left(M \cap V(p),{ }^{\circ} T^{\prime \prime}\right), \Gamma\left(M \cap V(p),{ }^{\circ} T^{\prime \prime}\right] \subset \Gamma\left(M \cap V(p),{ }^{\circ} T^{\prime \prime}\right)\right.$.
This pair $\left(M \cap V(p),{ }^{\circ} T^{\prime \prime}\right)$ is called a CR-structure, or a CR-manifold.
Let ($M \cap V(p),{ }^{\circ} T^{\prime \prime}$) be a CR-manifold. We introduce a C^{∞} vector bundle decomposition

$$
\begin{equation*}
C \otimes T M={ }^{\circ} T^{\prime \prime}+{ }^{\circ} \bar{T}^{\prime \prime}+C \zeta, \tag{1-3}
\end{equation*}
$$

where

$$
\begin{equation*}
\zeta_{q} \not{ }^{\circ} T_{q}^{\prime \prime}+{ }^{\circ} \bar{T}_{q}^{\prime \prime} \text { for } q \text { in } M \cap V(p) . \tag{1-3-1}
\end{equation*}
$$

By using this decomposition, we have a Levi form

$$
L(X, Y)=\sqrt{-1}[X, \bar{Y}]_{\zeta} \quad \text { for } X, Y \text { in } \Gamma\left(M \cap V(p),{ }^{\circ} T^{\prime \prime}\right),
$$

where $[X, \bar{Y}]_{\zeta}$ means the ζ-part of $[X, \bar{Y}]$ according to (1-3). As is well known, this map L makes sense for elements X, Y in ${ }^{\circ} T^{\prime \prime}$. And if this Levi form is positive or negative definite, $\left(M \cap V(p),{ }^{\circ} T^{\prime \prime}\right)$
is called a strongly pseudo convex real hypersurface. Next we briefly explain $\bar{\partial}_{b}$-complex. For u in $\Gamma(M \cap V(p), C)$, we set

$$
\bar{\partial}_{b} u(x)=X u \quad \text { for } X \text { in }{ }^{\circ} T^{\prime \prime},
$$

where $\Gamma(M \cap V(p), c)$ means the spacing consisting of C^{∞} functions over $M \cap V(p)$. Namely we have a first order differential operator

$$
\bar{\partial}_{b}: \Gamma(M \cap V(p), c) \rightarrow \Gamma\left(M \cap V(p),\left({ }^{\circ} T^{\prime \prime}\right)^{*}\right) .
$$

By the same way as for usual differential forms, we have

$$
\bar{\partial}_{b}^{(p)}: \Gamma\left(M \cap V(p), \Lambda^{p}\left({ }^{\circ} T^{\prime \prime}\right)^{*}\right) \rightarrow \Gamma\left(M \cap V(p), \Lambda^{p+1}\left({ }^{\circ} T^{\prime \prime}\right)^{*}\right)
$$

and so

$$
\bar{\partial}_{b}^{(p+1)} \circ \bar{\partial}_{b}^{(p)}=0 .
$$

2. Kuranishi's L^{2}-estimate. Let ($M,{ }^{\circ} T^{\prime \prime}$) be a strongly pseudo convex CR manifold, embedded as a real hypersurface in C^{n}. Let p be a reference point of M. Then by a change of coordinates, we can assume that there is a neighborhood $W(p)$ of p in C^{n}, satisfying:

$$
\begin{aligned}
& M \cap W(p)=\left\{\left(z_{1}, \ldots, z_{n}\right):\left(z_{1}, \ldots, z_{n}\right) \in W(p),\right. \\
&\left.\operatorname{Im} z_{n}=h\left(z_{1}, \ldots, z_{n-1}, \operatorname{Re} z_{n}\right)\right\},
\end{aligned}
$$

where $z_{i}(p)=0,1 \leq i \leq n-1$, and h is a real valued C^{∞} function, and

$$
\begin{array}{cl}
\left(\partial^{2} h / \partial z_{i} \partial \bar{z}_{j}\right)(0)=\delta_{i j}, & 1 \leq i, j \leq n-1, \\
\left(\partial^{2} h / \partial z_{i} \partial z_{j}\right)(0) & =\delta_{i j}, \\
d h(0, \ldots, 0) & 1 \leq i, j \leq n-1,
\end{array}
$$

In this set up, we introduce a neighborhood $M \cap U_{\varepsilon}(p)$ of p as follows:

$$
\begin{aligned}
& M \cap U_{\varepsilon}(p)=\left\{\left(z_{1}, \ldots, z_{n}\right):\left(z_{1}, \ldots, z_{n}\right) \in W(p),\right. \\
& \operatorname{Im} z_{n}=h\left(z_{1}, \ldots,\right.\left.z_{n-1}, \operatorname{Re} z_{n}\right), \\
&\left.2 \operatorname{Re}\left\{(1 / 2 \sqrt{-1}) z_{n}+z_{n}^{2}\right\}<\varepsilon\right\} .
\end{aligned}
$$

Now we briefly sketch Kuranishi's L^{2}-estimate over $M \cap U_{\varepsilon}(p)$. Obviously by the above assumption, our $M \cap U_{\varepsilon}(p)$ is diffeomorphic to the real $2 n-1$ dimensional ball. We denote this diffeomorphism map by h and we fix this. If ε is chosen sufficiently small, there is a system of bases $Y_{1}^{\prime}, Y_{2}^{\prime}, \ldots, Y_{n-1}^{\prime}$ of ${ }^{\circ} T^{\prime \prime}$ over $M \cap U_{\varepsilon}(p)$, where ${ }^{\circ} T^{\prime \prime}$ means the CR structure over $M \cap U_{\varepsilon}(p)$ induced from C^{n}. In our case, we can define a real vector field ζ, dual to

$$
\sqrt{-1} \partial \rho
$$

where $\rho=\operatorname{Im} z_{n}-h\left(z_{1}, \ldots, z_{n-1}, \operatorname{Re} z_{n}\right)$. And by using this ζ, we have a C^{∞} vector bundle decomposition and so we have the Levi form. By the Schmidt orthogonal process, form $Y_{1}^{\prime}, Y_{2}^{\prime}, \ldots, Y_{n-1}^{\prime}$, we have a system of bases $Y_{1}, Y_{2}, \ldots, Y_{n-1}$ of ${ }^{\circ} T^{\prime \prime}$ satisfying

$$
-\sqrt{-1}\left[Y_{i}, \bar{Y}_{j}\right]_{\zeta}=\delta_{i j}
$$

where $-\sqrt{-1}\left[Y_{i}, \bar{Y}_{j}\right]_{\zeta}$ means the coefficient of the ζ part of $\left[Y_{i}, \bar{Y}_{j}\right]$ according to the above C^{∞} vector bundle decomposition. By using this $Y_{1}, Y_{2}, \ldots, Y_{n-1}$, we put an L^{2}-norm on

$$
\Gamma\left(M \cap U_{\varepsilon}(p), \Lambda^{p}\left({ }^{\circ} T^{\prime \prime}\right)^{*}\right)
$$

Namely for u in $\Gamma\left(M \cap U_{\varepsilon}(p), \Lambda^{p}\left({ }^{\circ} T^{\prime \prime}\right)^{*}\right)$, we have C^{∞} functions u_{I} by

$$
u_{I}=u\left(Y_{i_{1}}, \ldots, Y_{i_{p}}\right), \quad I=\left(i_{1}, \ldots, i_{p}\right)
$$

By using these u_{I}, we set

$$
\|u\|_{M \cap U_{e}(p)}^{2}=\sum_{I} \int_{B_{1}(0)}\left|u_{I} \circ h\right|^{2} d x_{1} \cdots d x_{2 n-1}
$$

where I runs through all ordered indices of length p and h is a diffeomorphism map from $M \cap U_{\varepsilon}(p)$ to $B_{1}(0)$ defined as above. Furthermore we must introduce several notations. Namely $\bar{\partial}_{1}^{*}$ denotes the adjoint operator of $\bar{\partial}_{1}$ with respect to the above L^{2}-norm. And we set

$$
b=\sqrt{\sum_{i=1}^{n-1}\left|Y_{i} t\right|^{2}}
$$

where $\left.t=2 \operatorname{Re}\{1 / 2 \sqrt{-1}) z_{n}+z_{n}^{2}\right\}$. And we set the characteristic curve C by

$$
\begin{aligned}
C=\left\{\left(z_{1}, \ldots, z_{n}\right),\left(z_{1}, \ldots, z_{n}\right) \in M \cap\right. & U_{\varepsilon}(p) \\
& \left.Y_{i} t=0,1 \leq i \leq n-1\right\}
\end{aligned}
$$

Then in [K], Kuranishi obtained

$$
\|(1 / b) v\|_{M \cap U_{\varepsilon}(p)}^{2} \leq c\left\{\left\|\bar{\partial}_{b} v\right\|_{M \cap U_{e}(p)}^{2}+\left\|\bar{\partial}_{b}^{*} v\right\|_{M \cap U_{e}(p)}^{2}\right\}
$$

for v in $\Gamma\left(M \cap U_{\varepsilon}(p)-C,\left({ }^{\circ} T^{\prime \prime}\right)^{*}\right)$ satisfying:

$$
\begin{array}{r}
v\left(Y^{0}\right)=0 \quad \text { on }\left\{\left(z_{1}, \ldots, z_{n}\right):\left(z_{1}, \ldots, z_{n}\right) \in M \cap U_{\varepsilon}(p)-C\right. \\
t=\varepsilon\}
\end{array}
$$

where

$$
Y^{0}=\sum_{i=1}^{n-1}\left(\bar{Y}_{i} t / b\right) Y_{i}
$$

if $\operatorname{dim}_{R} M=2 n-1 \geq 7$. Actually, Kuranishi obtained the estimate more precisely. However, in this paper, we discuss this estimate. Then, the L^{2}-solution operator $\bar{\partial}_{b}^{*} N_{b}$ satisfies

$$
\left\|(1 / b)\left(\bar{\partial}_{b}^{*} N_{b} v\right)\right\|_{M \cap U_{e}(p)} \leq c\|v\|_{M \cap U_{e}(p)}
$$

for v in $\Gamma\left(M \cap U_{\varepsilon}(p)-C,\left({ }^{\circ} T^{\prime \prime}\right)^{*}\right)$, which is of L^{2}. We show that an explicit solution obtained by Henkin and Harvey-Polking satisfies the similar estimate.
3. Rigid hypersurfaces in C^{n}. In this paper, we study the $\bar{\partial}_{b^{-}}$ operator over a special kind of real hypersurfaces in C^{n}. Namely let

$$
M=\left\{\left(z_{1}, \ldots, z_{n}\right): \operatorname{Im} z_{n}=k\left(z_{i}, \bar{z}_{j}\right), 1 \leq i, j \leq n-1\right\}
$$

where k is a real valued C^{∞} function which depends only on z_{i}, \bar{z}_{j}, and not on z_{n}, \bar{z}_{n} satisfying:

$$
k(0,0)=0 \quad \text { and } \quad d k(0,0)=0
$$

We call M satisfying these relations a rigid hypersurface. Let M be a rigid hypersurface. And let M be strongly pseudo convex near the origin. Then by a change of coordinates, the defining equation of M becomes

$$
\operatorname{Im} z_{n}^{\prime \prime}=\sum_{i=1}^{n-1}\left|z_{i}^{\prime \prime}\right|^{2}+\text { terms of higher order in } z_{j}^{\prime \prime}, \bar{z}_{j}^{\prime \prime}
$$

where $1 \leq j \leq n-1$.
4. Integral formula for $\bar{\partial}_{b}$ and the Romanov kernel. Let u, v be C^{∞} functions from $C^{n} \times C^{n}$ to C^{n},

$$
\begin{aligned}
& u(\zeta, z)=\left(u_{1}(\zeta, z), \ldots, u_{n}(\zeta, z)\right) \\
& v(\zeta, z)=\left(v_{1}(\zeta, z), \ldots, v_{n}(\zeta, z)\right)
\end{aligned}
$$

We use the following notations:

$$
\begin{aligned}
u(\zeta, z)(\zeta-z) & =\sum_{j=1}^{n} u_{j}(\zeta, z)\left(\zeta_{j}-z_{j}\right), \\
u(\zeta, z) d(\zeta-z) & =\sum_{j=1}^{n} u_{j}(\zeta, z) d\left(\zeta_{j}-z_{j}\right), \\
\bar{\partial} u(\zeta, z) d(\zeta-z) & =\sum_{j=1}^{n} \bar{\partial} u_{j}(\zeta, z) \wedge d\left(\zeta_{j}-z_{j}\right),
\end{aligned}
$$

and we define the following kernels:

$$
\begin{align*}
\Omega^{u}(\zeta, z)= & (2 \pi i)^{-n}((u(\zeta, z) d(\zeta-z)) /(u(\zeta, z)(\zeta-z))) \tag{4-1-1}\\
& \wedge((\bar{\partial} u(\zeta, z) d(\zeta-z)) /(u(\zeta, z)(\zeta-z)))^{n-1},
\end{align*}
$$

$$
\begin{align*}
\Omega^{v}(\zeta, z)= & (2 \pi i)^{-n}((v(\zeta, z) d(\zeta-z)) /(v(\zeta, z)(\zeta-z))) \tag{4-1-2}\\
& \wedge((\bar{\partial} v(\zeta, z) d)(\zeta-z)) /(v(\zeta, z)(\zeta-z)))^{n-1},
\end{align*}
$$

(4-1-3) $\quad \Omega^{u, v}(\zeta, z)$

$$
\begin{aligned}
= & (2 \pi i)^{-n}((u(\zeta, z) d(\zeta, z)) /(u(\zeta, z)(\zeta-z))) \\
& \wedge((\bar{\partial} v(\zeta, z) d(\zeta-z)) /(v(\zeta, z)(\zeta-z))) \\
& \wedge \sum_{j+k=n-2}((\bar{\partial} u(\zeta, z) d(\zeta-z)) /(u(\zeta, z)(\zeta-z)))^{j} \\
& \wedge((\bar{\partial} v(\zeta, z) d(\zeta-z)) /(v(\zeta, z)(\zeta-z)))^{k} .
\end{aligned}
$$

Then as is well known, in [B] and [BS], we have

$$
\begin{aligned}
& \bar{\partial} \Omega^{u, v}(\zeta, z)=\Omega^{v}(\zeta, z)-\Omega^{u}(\zeta, z), \\
& \bar{\partial} \boldsymbol{\Omega}^{v}(\zeta, z)=0 .
\end{aligned}
$$

Let M be as in $\S 1$ in this paper. Then we can define formally

$$
\begin{aligned}
R_{M}(u, v)(\phi)(z) & :=\left\{\int_{\zeta \in M} \Omega^{u, v}(\zeta, z) \wedge \phi(\zeta)\right\}_{T_{M}} \\
L(u)(\phi)(z) & :=\int_{\zeta \in M} \Omega^{u}(\zeta, z) \wedge \phi(\zeta),
\end{aligned}
$$

for $\phi \in \mathscr{D}^{0,1}(M \cap U)$, where $\left\}_{T_{M}}\right.$ means the tangential part of $\}$: Of course without any assumption for u, v and M, the operators R_{M}, L do not make sense. However if we assume that u is a local support function for (M, D) at a point p (for the definition, see 2.4 Definition in [BS]), then $R_{M}(u, v)(\phi), L(u)(\phi)$ make sense. And
furthermore, the boundary value of $L(u)(\phi)$ from D^{-}and D^{+}exists respectively, where D means U and

$$
\begin{aligned}
& D^{+}=\left\{z: z \in C^{n}, \rho(z)>0\right\}, \\
& D^{-}=\left\{z: z \in C^{n}, \rho(z)>0\right\} .
\end{aligned}
$$

And for $\phi \in \mathscr{D}^{0,1}(M \cap U)$,

$$
\begin{aligned}
\phi= & -\left(\bar{\partial}_{b} R_{M}(u, v)(\phi)+R_{M}(u, v) \bar{\partial}_{b} \phi\right) \\
& +L_{M}^{+}(v)(\phi)-L_{M}^{-}(u)(\phi) \quad \text { on } M \cap U .
\end{aligned}
$$

Note from this equality, the terms $L_{M}^{+}(v)(\phi)$ and $L_{M}^{-}(u)(\phi)$ are obstructions to solving the equations $\bar{\partial}_{b} g=\phi$. If we set

$$
u_{j}(\zeta, z)=\partial \rho / \partial \zeta_{j}(\zeta), \quad v_{j}(\zeta, z)=-\partial \rho / \partial z_{j}(z), \quad 1 \leq j \leq n,
$$

then $u(\zeta, z)=\left(u_{1}(\zeta, z), \ldots, u_{n}(\zeta, z)\right)$ and $v(\zeta, z)=\left(v_{1}(\zeta, z)\right.$, $\ldots, v_{n}(\zeta, z)$) are local support functions for (M, D^{-}) and (M, D^{+}) respectively. And in the case,

$$
\begin{array}{ll}
L_{M}^{-}(u)(\phi)=0 & \text { unless } \phi \in \mathscr{D}^{p, 0}(M \cap U), \\
L_{M}^{+}(v)(\phi)=0 & \text { unless } \phi \in \mathscr{D}^{p, n-1}(M \cap U) .
\end{array}
$$

And so we have: for $\phi \in \mathscr{D}^{p, 1}(M \cap U)$,

$$
\phi=-\left\{\bar{\partial}_{b} R_{M}(u, v)(\phi)+R_{M}(u, v)\left(\bar{\partial}_{b} \phi\right)\right\},
$$

if $n \geq 3$.
Henceforth, we abbreviate R for $R_{M}(u, v)$, where u and v are defined as above, and $R \phi$ stands for $R_{M}(u, v)(\phi)(z)$.
5. Kuranishi's L^{2}-estimate for the Romanov kernel. In $\S 4$, we see that the Romanov kernel R is a certain kind of the solution operator for $\bar{\partial}_{b}$. Concerning this R kernel, in this section, we show an L^{2} estimate which the L^{2} solution satisfies. Namely, we show

Main Theorem. For any ϕ in $\Gamma\left(M \cap U_{\varepsilon}(p)-C,\left({ }^{\circ} T^{\prime \prime}\right)^{*}\right)$, which is of L^{2}, and for any $\delta<1$, we have:

$$
\left\|\left(1 / b^{\delta}\right) R \phi\right\|_{M \cap U_{e}(p)} \leq C_{\delta}\|\phi\|_{M \cap U_{e}(p)},
$$

where C_{δ} depends only on δ.
In order to prove the main theorem, we first show
Lemma 5.1.

$$
C_{1} \sqrt{\sum_{i=1}^{n-1}\left|z_{i}^{\prime \prime}\right|^{2}} \leq b \leq C_{2} \sqrt{\sum_{i=1}^{n-1}\left|z_{i}^{\prime \prime}\right|^{2}}
$$

where C_{1}, C_{2} are positive constants, and b is defined by

$$
b=\sqrt{\sum_{i=1}^{n-1}\left|Y_{i}^{\prime \prime} t\right|^{2}},
$$

where $\left\{Y_{i}^{\prime \prime}\right\}_{1 \leq i \leq n-1}$ is obtained from $\left\{Y_{i}\right\}_{1 \leq i \leq n-1}$, by the Schmidt orthogonal process, and

$$
\begin{gathered}
Y_{i}=\partial / \partial \bar{z}_{i}^{\prime \prime}-\left(\rho_{i}^{-} / \rho_{n}^{-}\right) \partial / \partial \bar{z}_{n}^{\prime \prime}, \quad 1 \leq i \leq n-1, \\
\rho=\operatorname{Im} z_{n}^{\prime \prime}-\sum_{i=1}^{n-1}\left|z_{i}^{\prime \prime}\right|^{2}-Q\left(z_{j}^{\prime \prime}, \bar{z}_{j}^{\prime \prime}\right),
\end{gathered}
$$

where $\left\{z_{i}^{\prime \prime}\right\}_{1 \leq i \leq n}$ means the coordinate obtained in $\S 3$ in this paper.
Proof of Lemma 5.1. By the construction of $Y_{i}^{\prime \prime}, Y_{i}^{\prime \prime}$ is a linear combination of $Y_{j}, 1 \leq j \leq n$, satisfying:

$$
Y_{i}^{\prime \prime}:=\sum_{j=1}^{n-1} a_{j i} Y_{j}
$$

where $a_{j i}$ is a C^{∞} function over $M \cap U_{\varepsilon}(p)$ and $a_{j i}(p)=0$. So

$$
Y_{i}^{\prime \prime} t=Y_{i} t+\sum_{j=1}^{n-1} a_{j i} Y_{j} t .
$$

While

$$
\begin{aligned}
Y_{j} t & =\left(\partial / \partial \bar{z}_{j}^{\prime \prime}-\left(\rho_{i}^{-} / \rho_{n}^{-}\right) \partial / \partial \bar{z}_{n}^{\prime \prime}\right) 2 \operatorname{Re}\left\{(1 / 2 \sqrt{-1}) z_{n}^{\prime \prime}+z_{n}^{\prime \prime 2}\right\} \\
& =z_{i}^{\prime \prime}\left(1+4 \sqrt{-1} z_{n}^{\prime \prime}\right) .
\end{aligned}
$$

Therefore we have our lemma.
And we have
Lemma 5.2. There is a constant c satisfying:

$$
\int_{\zeta \in M \cap U_{\varepsilon}(p)}\left(1 / b^{\delta}\right)\left|\Omega^{u, v}(\zeta, z)\right| d V_{\zeta} \leq c \quad \text { for } z \text { in } U_{\varepsilon}(p) .
$$

This lemma is proved in [HP]. So we briefly sketch the proof. For a system of coordinates of $M \cap U_{\varepsilon}(p)$, we can adopt ($\left.z_{1}^{\prime \prime}, \ldots, z_{n-1}^{\prime \prime}, t\right)$; which we constructed in $\S 3$ in this paper, where $t=\operatorname{Re} z_{n}^{\prime \prime}$. Then over: $M \cap U_{\varepsilon}(p)$,

$$
c_{1}\left(|t|+\sum_{i=1}^{n-1}\left|z_{i}^{\prime \prime}\right|^{2}\right) \leq\left|z_{n}^{\prime \prime}\right| \leq c_{2}\left(|t|+\sum_{i=1}^{n-1}\left|z_{i}^{\prime \prime}\right|^{2}\right),
$$

where c_{1}, c_{2} are positive constants. So over $M \cap U_{\varepsilon}(p)$,

$$
c_{3}\left(|t|+\sum_{i=1}^{n-1}\left|z_{i}^{\prime \prime}\right|^{2}\right) \leq\left|u\left(\zeta-z^{\prime \prime}\right)\right| \leq c_{4}\left(|t|+\sum_{i=1}^{n-1}\left|z_{i}^{\prime \prime}\right|^{2}\right)
$$

where c_{3}, c_{4} are positive constants. And

$$
c_{5}\left(|t|+\sum_{i=1}^{n-1}\left|z_{i}^{\prime \prime}\right|^{2}\right) \leq\left|v\left(\zeta-z^{\prime \prime}\right)\right| \leq c_{6}\left(|t|+\sum_{i=1}^{n-1}\left|z_{i}^{\prime \prime}\right|^{2}\right)
$$

where c_{5}, c_{6} are positive constants. And

$$
u d(\zeta-z) \wedge v d(\zeta-z)=Q(|\zeta-z|)
$$

So each coefficient of $\left(1 / b^{\delta}\right) R$ is dominated by

$$
\left(\sum_{i=1}^{n-1}\left|z_{i}^{\prime \prime}\right|^{2}\right)^{-(\delta / 2)}\left(|t|+\sqrt{\sum_{i=1}^{n-1}\left|z_{i}^{\prime \prime}\right|^{2}}\right)\left(|t|+\sum_{i=1}^{n-1}\left|z_{i}^{\prime \prime}\right|^{2}\right)^{-n} .
$$

And this is locally integrable on $C^{n-1} \times R$ if $\delta<1$. In fact, by using polar coordinates, we compute the following integral. We set

$$
\begin{aligned}
& x_{1}=r \cos \theta_{1} \cos \theta_{2} \cdots \cos \theta_{2 n-3} \cos \theta_{2 n-2}, \\
& y_{1}=r \cos \theta_{1} \cos \theta_{2} \cdots \cos \theta_{2 n-3} \sin \theta_{2 n-2}, \\
& x_{2}=r \cos \theta_{1} \cdots \cos \theta_{2 n-4} \sin \theta_{2 n-3}, \\
& y_{2}=r \cos \theta_{1} \cdots \sin \theta_{2 n-4}, \\
& \ldots \\
& x_{n-1}=r \cos \theta_{1} \sin \theta_{2}, \\
& y_{n-1}=r \sin \theta_{1},
\end{aligned}
$$

where $z_{j}^{\prime \prime}=x_{j}+\sqrt{-1} y_{j}, 1 \leq j \leq n-1$. Then

$$
\begin{aligned}
& \left(\sum_{i=1}^{n-1}\left|z_{i}^{\prime \prime}\right|^{2}\right)^{-(\delta / 2)}\left(|t|+\sqrt{\sum_{i=1}^{n-1}\left|z_{i}^{\prime \prime}\right|^{2}}\right)\left(|t|+\sum_{i=1}^{n-1}\left|z_{i}^{\prime \prime}\right|^{2}\right)^{-n} \\
& \quad=r^{-\delta}(t+r)\left(t+r^{2}\right)^{-n}
\end{aligned}
$$

So

$$
\begin{aligned}
& \int_{M \cap U_{e}(p)}\left(\sum_{i=1}^{n-1}\left|z_{i}^{\prime \prime}\right|^{2}\right)^{-(\delta / 2)}\left(|t|+\sqrt{\sum_{i=1}^{n-1}\left|z_{i}^{\prime \prime}\right|^{2}}\right) \\
& \quad \times\left(|t|+\sum_{i=1}^{n-1}\left|z_{i}^{\prime \prime}\right|^{2}\right) d V_{z, t} \\
& \leq \int_{0}^{\varepsilon} \int_{0}^{\infty} r^{-\delta}(t+r)\left(t+r^{2}\right)^{-n} r^{2 n-3} d t d r \\
& =\int_{0}^{\varepsilon} \int_{0}^{\infty}\left\{\left(1 /\left(t+r^{2}\right)^{n-1}\right) r^{2 n-3-\delta}\right. \\
& \left.\quad+\left(1 /\left(t+r^{2}\right)^{n}\right)\left(\left(r-r^{2}\right) / r^{\delta}\right) r^{2 n-3}\right\} d t d r
\end{aligned}
$$

While

$$
\begin{aligned}
& \int_{0}^{\infty}\left(1 /\left(t+r^{2}\right)^{n-1}\right) r^{2 n-3-\delta} d t \\
& =-(1 /(n-2))\left[\left(1 /\left(t+r^{2}\right)^{n-2}\right) r^{2 n-3-\delta}\right]_{0}^{\infty} \\
& =(1 /(n-2)) r^{1-\delta}, \\
& \int_{0}^{\infty}\left(1 /\left(t+r^{2}\right)^{n}\right)\left(\left(r-r^{2}\right) r^{2 n-3} d t\right. \\
& =-(1 /(n-1))\left[\left(1 /\left(t+r^{2}\right)^{n-1}(1-r)\right) r^{2 n-2-\delta}\right]_{0}^{\infty} \\
& =(1 /(n-1))(1-r) r^{-\delta} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\int_{M \cap U_{e}(p)} & \left(\sum_{i=1}^{n-1}\left|z_{i}^{\prime \prime}\right|^{2}\right)^{-(\delta / 2)}\left(|t|+\sqrt{\sum_{i=1}^{n-1}\left|z_{i}^{\prime \prime}\right|^{2}}\right)\left(|t|+\sum_{i=1}^{n-1}\left|z_{i}^{\prime \prime}\right|^{2}\right) d V_{z, t} \\
\leq & \int_{0}^{\varepsilon}\left((1 /(n-2)) r^{1-\delta}+(1 /(n-1)) r^{-\delta}-(1 /(n-1)) r^{1-\delta}\right) d r \\
= & (1 /((n-2)(2-\delta))) \varepsilon^{1-(\delta / 2)} \\
& \quad+(1 /((n-1)(1-\delta))) \varepsilon^{(1 / 2)-(\delta / 2)} \\
& -(1 /((n-1)(2-\delta))) \varepsilon^{1-(\delta / 2)}
\end{aligned}
$$

Therefore we have our lemma.

Now we prove our main theorem.

$$
\begin{aligned}
& \int_{M \cap U_{e}(p)}\left(1 / b^{2 \delta}\right)\left|R_{M}(u, v)(\phi)\right|^{2} d V \\
& \leq \int_{M \cap U_{e}(p)}\left\{\left(1 / b^{2 \delta}\right)\left(\int_{M \cap U_{e}(p)} \Omega^{u, v}(\zeta, z) \phi(\zeta) d V_{\zeta}\right)^{2}\right\} d V_{z} \\
& \leq \int_{M \cap U_{\varepsilon}(p)}\left(\int_{M \cap U_{\varepsilon}(p)}\left|\left(1 / b^{\delta}\right) \Omega^{u, v}(\zeta, z) \phi(\zeta)\right| d V_{\zeta}\right)^{2} d V_{z} \\
& \leq \int_{M \cap U_{\varepsilon}(p)}\left\{\left(\int_{M \cap U_{\varepsilon}(p)}\left|\left(1 / b^{\delta}\right) \Omega^{u, v}(\zeta, z)\right| d V_{\zeta}\right)\right. \\
& \left.\times\left(\int_{M \cap U_{\varepsilon}(p)}\left|\left(1 / b^{\delta}\right) \Omega^{u, v}(\zeta, z)\right||\phi(\zeta)|^{2} d V_{\zeta}\right)\right\} d V_{z} \\
& \text { (by the Schwarz lemma) } \\
& \leq c^{2} \int_{M \cap U_{\varepsilon}(p)}|\phi(\zeta)|^{2} d V_{\zeta} \quad \text { (by Lemma } 5.2 \text { in this paper) } \\
& \leq c^{2}\|\phi\|_{M \cap U_{e}(p)}^{2} \text {. }
\end{aligned}
$$

So we have our theorem.

References

[Ak 1] T. Akahori, Intrinsic formula for Kuranishi's $\bar{\partial}_{b}^{\phi}$, Publications of the Research Institute for Mathematical Sciences, Kyoto University, 14 (1978), 615-641.
[Ak 2] _- The new estimate for the subbundles E_{j} and its application to the deformation of the boundaries of strongly pseudo convex domains, Invent. Math., 63 (1981), 311-334.
[Ak 3] _ A new approach to the local embedding theorem of CR-structures for $n \geq 4$ (the local solvability for the operator $\bar{\partial}_{b}$ in the abstract sense), Mem. Amer. Math. Soc., 366 (1987).
[Am 1] H. Ameku, A local solution operator for $\bar{\partial}_{b}$ over a certain weakly pseudo convex domain, in preparation.
[B] A. Boggess, Kernels for the tangential Cauchy-Riemann equation, Trans. Amer. Math. Soc., 269 (1980), 1-49.
[BS] A. Boggess and M.-C. Shaw, A kernel approach to the local solvablity of the tangential Cauchy Riemann equations, Trans. Amer. Math. Soc., 289 (1980), 645-658.
[HP] R. Harvey and J. Polking, Fundamental solutions in complex analysis, I, II, Duke Math. J., 46 (1979), 253-300, 301-340.
[K] M. Kuranishi, Strongly pseudo convex CR structures over small balls, Ann. of Math., I, 115 (1982), 451-500, II, 116 (1982), 1-64, III, 116 (1982), 249-330.
[KS] N. Kerzman and E. M. Stein, The Szegö kernel in terms of Cauchy-Fantappiè kernels, Duke Math. J., 45 (1978), 197-224.
[LR] I. Lieb and R. M. Range, The kernels of the $\bar{\partial}$-Neumann operator on strictly pseudo convex domains, Math. Ann., 278 (1987), 151-173.

Received October 26, 1989 and in revised form January 2, 1990.
Nigata University
Niggata 950-21, Japan
AND
RIMS
Кyoto University
Кyoto, Japan

