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ON THE ROMANOV KERNEL
AND KURANISHI'S L2-ESTIMATE
FOR 9, OVER A BALL
IN THE STRONGLY PSEUDO CONVEX BOUNDARY

TAKAO AKAHORI AND HARUNORI AMEKU

As is proved by Kerzman-Stein, over a compact strongly pseudo
convex boundary in C”, Szego projection S is the operator defined
by Henkin-Ramirez modulo compact operators. While, over a special
ball, U, in the strongly pseudo convex boundary, in order to obtain
a local embedding theorem of CR-structures, Kuranishi constructed
the Neumann type operator N, for 3, and so we have a local Szego

operator by L
Sy, =id—9;N,8, on U,

where 3, means the adjoint operator of 3, . There might be a rela-
tion between Sy, and the Romanov kernel like the case of the Szegd
operator and the Henkin-Ramirez kernel. We study this problem and
show some estimates for the Romanov kernel.

0. Introduction. Let (M, °T") be an abstract strongly pseudo con-
vex CR-manifold. Then as is well known, if dimgM = 2n-1 >
7, (M,°T") is locally embeddable in a complex euclidean space
C"((Ak3), (K)). In the proof of this local embedding theorem, it is
shown that: over a special ball in the strongly pseudo convex bound-
ary, an LZ?-estimate for ;, which is stronger than the standard L2-
estimate, is established and so the L2-solution operator for 3§, is
obtained. This operator plays an essential role in our local embed-
ding theorem. Therefore it must be important to study this solution
operator for 9, precisely.

In order to get a solution operator, there exists another method.
By using an integral formula, a local solution operator for 8, is con-
structed explicitly by Henkin and Harvey-Polking. Obviously, these
solution operators are different. And it seems quite interesting to study
the relation between the L2-solution for 8, and the explicit solution,
obtained by using an integral formula. We recall the d-case over a
strongly pseudo convex domain in C”. In this case, the explicit solu-
tion, constructed by Lieb and Range, is a certain kind of the essential
part of the Kohn’s L2-solution. Therefore we could hope for a sim-
ilar result in the 8, case over a special ball in the strongly pseudo
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convex boundary. As mentioned already, our L2-a priori estimate is
different from the standard L2-estimate. Therefore in the above sense,
it seems to be natural to consider that the explicit solution operator
would satisfy the similar L2-estimate. In this paper, we discuss this
point over rigid hypersurfaces in C” (for the definition, see §3 in this
paper). And we prove our a priori estimate (Main Theorem in §5 in
this paper) for the explicit solution operator.

1. CR-structure and 0-operator. Let M be a real hypersurface in
C". Let p be a reference point of M . We assume that p is a smooth
point, namely let p be a defining function of M in a neighborhood
of p in C", i.e., there is a neighborhood V' (p) of p satisfying:

MnV(p)={q:9€V(p), p(q) =0}

and
dp#0 over MNV(p).

Then over M NV (p), we can introduce an CR-structure induced from
C" . Namely, let

°T'=T"C"NnCQ®TM over MNV(p).
Then this °T" satisfies
(1-1) °T"N°T' =0, f-dimc(CRTM/CT"+°T") =1,
(12 [TM NV (p), °T"), T(MnV(p), °T"IcT(MNV(p),°T").

This pair (M NV (p), °T") is called a CR-structure, or a CR-manifold.
Let (MNV(p),°T") be a CR-manifold. We introduce a C*® vector
bundle decomposition

(1-3) C®TM =°T"+°T" +C¢{,
where

(1-3-1) { is a real vector field,
(1-3-2) {g¢°Ty +°T, forgin MV (p).

By using this decomposition, we have a Levi form
L(X,Y)=vV-1[X,Y]; forX,YinI(MnV(p),°T"),

where [X, Y], means the {-part of [X, Y] according to (1-3). As
is well known, this map L makes sense for elements X, Y in °7".
And if this Levi form is positive or negative definite, (M NV (p), °T")
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is called a strongly pseudo convex real hypersurface. Next we briefly
explain 8,-complex. For u in I'(M NV (p), C), we set
dpu(x) =Xu for X in°T",

where I'(M NV (p), c) means the spacing consisting of C® functions
over M NV (p). Namely we have a first order differential operator
9p: T(MNV(p), c) = T(MnV(p), °T")").
By the same way as for usual differential forms, we have
3P T(MV(p), APCT")*) = T(MV(p), APH(ET"))
and so o) —
a7 o3? = 0.

2. Kuranishi’s LZ-estimate. Let (A, °T") be a strongly pseudo
convex CR manifold, embedded as a real hypersurface in C". Let p
be a reference point of M . Then by a change of coordinates, we can
assume that there is a neighborhood W(p) of p in C”, satisfying:

MnW(p)={(z1,..., zn): (21, ..., Zn) € W(D),

Imz, =h(zy,..., zy-1, Rezy)},
where z;(p) =0, 1<i<n-1,and A is areal valued C® function,
and

(8%h/82;0Z,)(0) = 4y, 1<i,j<n-1,
(8%h/02,02)(0) = &, 1<i,j<n-1,
dh,...,0)=0.

In this set up, we introduce a neighborhood MNU;(p) of p as follows:

MnUg(p)={(ZI,...,Zn): (ZI, ceey Zn)GW(p),
Imz,=h(zy,..., zp—1, Re z,),

2Re{(1/2vV-1)z, + 22} < €}.

Now we briefly sketch Kuranishi’s L2-estimate over M N U;(p).
Obviously by the above assumption, our M N U,(p) is diffeomorphic
to the real 2n — 1 dimensional ball. We denote this diffeomorphism
map by # and we fix this. If ¢ is chosen sufficiently small, there is
a system of bases Y/, Y;,..., Y, , of °T” over M N Ug(p), where
°T" means the CR structure over M N U;(p) induced from C”. In
our case, we can define a real vector field ¢, dual to

\ _lap$
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where p=Imz, - h(zy,..., z,—1, Rez,). And by using this {, we
have a C*® vector bundle decomposition and so we have the Levi
form. By the Schmidt orthogonal process, form Y|, Y;,..., Y, ;,
we have a system of bases Y, Y,, ..., Y,_; of °T" satisfying

—V=1[Y;, Y,l; = 65,

where —v/=1[Y;, Y;]; means the coefficient of the { part of [Y;, Y]
according to the above C* vector bundle decomposition. By using
this Y, Y», ..., Y,_;, we put an L2-norm on

(M N Ug(p), AP(°T")*).

Namely for u in I'(M n U;(p), A?(°T")*), we have C* functions
u; by
u1=u(Yil,...,Y,-p), I={(iy,...,ip).

By using these u;, we set
Wiy = 3 [ furo hPdi - dxan,
‘ I B](O)

where I runs through all ordered indices of length p and 4 is a dif-
feomorphism map from M N U,(p) to B;(0) defined as above. Fur-
thermore we must introduce several notations. Namely d; denotes
the adjoint operator of 8, with respect to the above L2-norm. And

we set
n—-1
b=|Y v,
i=1

where ¢ = 2Re{1/2v/=1)z,+22}. And we set the characteristic curve
C by

C={(le~--azn)a(zl,---,zn)eMnUe(P),
Yit=0, 1<i<n-1}.

Then in [K], Kuranishi obtained
||(1/b)U||12l4nQ(p) < C{||5b'0”12|mUe(p) + ||5;;U||1214nt4(p)}
for v in T(M N Uy(p) - C, (°T")*) satisfying:

v(¥% =0 on{(z1,...,2n):(21,..., 2Zn) EMNUsp)-C,
t=¢},



ROMANOV KERNEL AND L2.ESTIMATE 5

where
n—-1 _
YO=3 (Yit/b)Y;,
i=1

if dimgM = 2n —1 > 7. Actually, Kuranishi obtained the esti-

mate more precisely. However, in this paper, we discuss this estimate.
A N % .

Then, the L2-solution operator d,N, satisfies

1(1/5)@Ns0) | v, ) < €llvllanu, )

for v in T(M N Ug(p) — C, (°T")*), which is of L?. We show that
an explicit solution obtained by Henkin and Harvey-Polking satisfies
the similar estimate.

3. Rigid hypersurfaces in C”. In this paper, we study the ;-
operator over a special kind of real hypersurfaces in C”. Namely
let

M={(z,...,2zn): Imzy=k(z;,Z;), 1<i,j<n-1},

where k is a real valued C* function which depends only on z;,
Zj, and not on z,, Z, satisfying:

k(0,0)=0 and dk(0,0)=0.

We call M satisfying these relations a rigid hypersurface. Let M be
a rigid hypersurface. And let M be strongly pseudo convex near the
origin. Then by a change of coordinates, the defining equation of M
becomes

n-1
Imz) = E |z{|? + terms of higher order in z, Z,
i=1

where 1 <j<n-1.

4. Integral formula for 5, and the Romanov kernel. Let u, v be
C* functions from C” x C" to C”,

u(C’ Z) = (ul(c’ Z), ceey un(Ca Z))’
v(¢, z) = (v1(¢, 2), ..., v,(¢, 2)).
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We use the following notations:

u(l, 2)(¢-z2)= Eu,(c (SEEDE
u(l, z)d(¢ -z)= Zu,-<c, 2)d(; - zj),
Jj=1

du(l, 2)d(C-z2) =) du({, 2) Ad({j - z)),
j=1
and we define the following kernels:
(4-1-1) Q*({, z) = 2mi)™"((w({, 2)d( — 2))/(u(C, 2)({ - 2)))
A@u(E, 2)d (L - 2))/(u(C, 2)(¢ - 2))"
(4-1-2) QY({, z) = (2r)™((v(¢, 2)d({ - 2))/(v({, 2)(£ - 2)))
M@, 2)d) (¢ - 2)/(w(¢, 2)(§ = 2))" T,

(4-1-3)  Q%°(¢, 2)
= (2mi)™"((w({, 2)d(L, 2))/(u(C, 2)(€ - 2)))
A(@v(C, 2)d(C - 2))/ (&, 2)( - 2))
A (@S, 2)d(E - 2)/(wE, 2)(€ - 2)))

j+k=n-2
AN@v(E, 2)d( - 2))/(0(, 2)(& - 2)*
Then as is well known, in [B] and [BS], we have
3RV, 2) = QY(L, 2) - Q4L 2),
0QY(¢, z) =
Let M be as in §1 in this paper. Then we can define formally

Ry, )(6)(2) 1= { /C 9 2) A¢(c>}T ,

L(u)(¢)(2) = /4 9 D) A0,

for € 201 (M NU), where { }r, means the tangential part of { } 3
Of course without any assumption for #, v and M, the operators
Ryr, L do not make sense. However if we assume that u is a local
support function for (M, D) at a point p (for the definition, see 2.4
Definition in [BS]), then Rus(u, v)(¢), L(u)(¢) make sense. And
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furthermore, the boundary value of L(u)(¢) from D~ and D* exists
respectively, where D means U and

Dt ={z:zeC", p(z) >0},
D™ ={z:ze(C", p(z) > 0}.
And for ¢ € 2%(MNU),
¢ = — (OpRu(u, v)(@) + Rp(u, v)8p9)
+ Li;(v)(¢) — Ly (u)(¢) on MNU.

Note from this equality, the terms L} (v)(¢) and L;,(u)(¢) are ob-
structions to solving the equations 9,g = ¢. If we set

uj(§, 2)=0p/08;(8), wj(C,2)=-0p/0z;(z), 1<j<n,

then u(C9 Z) = (ul(C: Z)’ ceey un(Cs Z)) and ’U(C, Z) = (UI(C’ Z),
..., Un({, z)) are local support functions for (M, D~) and (M, D*)
respectively. And in the case,

Ly (4)(¢) =0 unless ¢ € 22O (M N V),

Li(v)(¢) =0 unless ¢ € 27" 1 (M NU).
And so we have: for ¢ € 27-1(M NU),

¢ = —{0pRu(u, v)(#) + Rar(u, v)(@p9)},

if n>3.
Henceforth, we abbreviate R for Rys(u, v), where u and v are
defined as above, and R¢ stands for Rys(u, v)(¢)(z).

5. Kuranishi’s LZ-estimate for the Romanov kernel. In §4, we see
that the Romanov kernel R is a certain kind of the solution operator
for 8;,. Concerning this R kernel, in this section, we show an L2-
estimate which the L? solution satisfies. Namely, we show

MAIN THEOREM. For any ¢ in T(M N U,(p) — C, (°T")*), which
is of L?, and for any 6 < 1, we have:

1(1/6°) Rl pnv, o) < Cslllianu, o) »
where Cjs depends only on 6 .
In order to prove the main theorem, we first show

n—1 n—1
Cl\‘E z}2 < b < Cyy ’ > 1212,
i=1 i=1

LEMMA 5.1.
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where C,, C, are positive constants, and b is defined by

n-1
b=\[zln~t|z,
i=1

where {Y]'}1<i<n—1 is obtained from {Y;}1<i<n—1, by the Schmidt or-
thogonal process, and

Y; =08/97] - (p; /p5)0/0Zy, 1Lisn-1,
n—1
p=Imz; -3 |7/ - Q(z}, 7)),
i=1
where {z]}1<i<n means the coordinate obtained in §3 in this paper.

Proof of Lemma 5.1. By the construction of Y/", Y/ is a linear
combination of Y;, 1< j < n, satisfying:

n—1
,, ® — e .
Y’i '_E :a}l},}:
j=1

where aj; isa C* function over M N U,(p) and a;;(p) =0. So

n—1
Y,-”t =Yt + Zaﬁth.
Jj=1

While
Yjt = (8/8Z] — (p; [ p7)8/0Zy)2Re{(1/2V 1)z, + 2,7}
= z/(1+4v-1z})).
Therefore we have our lemma. O
And we have
LEMMA 5.2. There is a constant ¢ satisfying:

/ (1/9)QY(C, 2)dVs < ¢ for z in Us(p).
{eMnU,(p)

This lemma is proved in [HP]. So we briefly sketch the proof. For a
system of coordinates of MNU;(p), we can adopt (27, ..., z,_;, t)j,‘
which we constructed in §3 in this paper, where ¢ = Re zj; . Then over
M N U8 (p) ’

n—1 n—1
¢ (Itl +> IZi-’lz) <lzl < e (ltl +> IZ§’|2) ;
i=1 i=1
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where c;, ¢, are positive constants. So over M N U(p),

n—1 n-1
c3 (Vl +y |Z;"|2) <|u@-2")| < cq (|t| +) |Z§'|2) ,
1 i=1

i=

where c3, ¢4 are positive constants. And

n—1 n—1
Cs (Itl +> |Z§~’|2> < (€ -2z") < c (ltl + |Zi~’|2> ,
i=1 i=1
where ¢s5, ¢ are positive constants. And

ud(§ —z) Avd(¢ - z) = Q(I¢ - z|).

So each coefficient of (1/b%)R is dominated by

n—1 —(4/2)
(zaz:fv) i+
i=1

And this is locally integrable on C*~1x R if § < 1. In fact, by using
polar coordinates, we compute the following integral. We set

n—1 —n
(m +Z|z:-'|2) .
i=1

X1 =rcosfycosf,---cosby,_3c0862,_2,
y1=rcosf;cosf;---cosby,_3sin0y,_>,
Xy =rcosf;---cosby,_48in6,_3,

Y2 = rCos 01 cee sin02,,-4 ,

Xp_1 =rcosf;sinf,,
Yn-1 =rsinby,

where z] =x;++v-1y;, 1<j<n-1. Then

n—1 -(6/2) n—1 n—1 -n
( |z;f|2) |1z (|z|+z:|z;-'|2)
i=1 i=1 i=1

=r9(t+r)(t+rH)"
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So
~(6/2) [——n_l
"2 "2
/MnU(p) (le | ) (ltl i i-_—ZI|ZI| )
n—1
(ltI+le”I2) dv;,.
/ / )t +r2) "2 3dedr
— n— 1 2n—-3—0
—/0 /0 {(1/(t+r®)Yyr
+ (1/(t + )™ ((r — r?)/r°)r**=3} dt dr.
While
/w(l/(t + ) hy2n=3=0 gy
0
— (1/(n=2))[(1/(t + r2)=2)r2n =301
= (1/(n=2))r'~?,
/oo(l/(t + )" ((r = r)r¥n=3ds
0
= — (1/(n = )/t +r?)" 11 = r))r"=201%
=(1/(n=1))(1=r)r~?
Therefore

i=1 i=1
s/()((l/(n—z>>“’+<1/<n—1 Nrd = (1/(n = 1)r'=)dr
= (1/((n - 2)(2 - 8)))s!=¢/)
+(1/((n = 1)(1 = 8)))g1/2=6/2
— (1/((n = 1)(2 = 6)))e! =07,

—(6/2) n—-1 n—1
22 t + 22 ) L+ Y 1242 ) dYy,
/MQU@)(D |) (II ZI,I)(H > |) y

Therefore we have our lemma. ]
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Now we prove our main theorem.

[ /)R, 0)(@) AV
MNU,(p)

. 2
20 u,v
< /an (1/b )(/MOWQ <c,z>¢<c>ch) av,

2
s/ (/ (1/6%)Q%" (L, z)¢(C)|dV¢> dv;
MnU,(p) \/MNU,(p)

s/ {(/ |<1/b5>9“’”<c,z>|ch)
mnu,p) | \Jmnu, )

x ( | laphee, z>||¢<c>|2ch)} av,
MNU,(p)

(by the Schwarz lemma)

<c / (0)I?dV;  (by Lemma 5.2 in this paper)
MnU,(p)

< CZ”¢”.%mUe(p)'

So we have our theorem. O
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