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CLASSIFICATION OF ESSENTIAL COMMUTANTS
OF ABELIAN VON NEUMANN ALGEBRAS

BRUCE H. WAGNER

The main purpose of this paper is to classify the C*-algebras of
the form 2Γ + 3£, where 21' denotes the commutant of an abelian
von Neumann algebra 21, and 3? is the set of compact operators. By
the famous result of Johnson and Parrott, %' +Jί is the same as the
essential commutant of 21. These algebras were studied by Plastiras
in the special case in which 21 is generated by its minimal projections
and in addition all of these projections are finite dimensional. Using
a theorem of Andersen, we are able to generalize Plastiras9 main re-
sults to general abelian von Neumann algebras. We also study the
automorphism groups and derivations of these algebras.

If 21 is an abelian von Neumann algebra, then its projection lattice
S? is a complemented commutative subspace lattice, and of course
21' = £?'. Since our results are given in terms of the lattice, we sim-
ply start with such a lattice 2? and consider the algebra &1 + 3?. In
Corollaries 6 and 9, we give necessary and sufficient conditions for two
such algebras <S" + 3£ and Jί1 + 3ί to be equal or isomorphic. We
then turn to automorphisms, and first catagorize those algebras for
which every unitary operator implementing an automorphism splits
(Theorem 11), and then determine those algebras for which every au-
tomorphism is inner (Theorem 12). These four results generalize the
most important results in [P]. We next calculate the outer automor-
phism group (Corollary 20), and finally show that every derivation of
such an algebra is inner (Theorem 22). This latter portion of the paper
was motivated primarily by similar studies with nests, namely [Wl],
[W2], and [DW].

All Hubert spaces in this paper will be separable and infinite di-
mensional, and will usually be denoted by &. 3B{βf) will be used to
denote the set of bounded operators on ^ , and the set of compact op-
erators will be given by 3P(&), or just X if the Hubert space is clear
from the context. If & c 3S{MT), then <9" = {T € &(&): TS =
ST for all S e ^ } is the commutant of &, and &" denotes the
double commutant (<¥")' of S?. The essential commutant of 5? is
{T e &{&): TS-ST G 3t for all S e <9>}. All projections on Hubert
space will be self-adjoint.
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A commutative subspace lattice (CSL) is a commuting set of pro-
jections on %? which is closed under the lattice operations P\l Q =
P+Q-PQ and PΛQ = PQ, is closed in the strong operator topology,
and contains 0 and /. A projection E e 3* is an atom if EP = 0 or
E for all P e Jϊ?. Note that all atoms are mutually orthogonal. £f
is nonatomic, or continuous, if it has no atoms, and purely atomic if
ΣEi = I, where the sum is taken over all atoms Et of 3 and conver-
gence is in the strong operator topology. As is often done in the study
of commutative subspace lattices, we will sometimes blur the distinc-
tion between a projection P and its range P%f. In this spirit, we will
use dimP to denote the dimension of P%f. Also, a projection is in-
finite or finite if its range is infinite or finite dimensional, respectively.
Define s/(&) = {atoms of 3}, S{&) = {infinite atoms of £?}, and
&{&) = {finite atoms of &}, and let ί{&) denote the cardinality
of J^i^f). Let Pa = ΣAetf(&)A a n d d e f i n e pc = 1 - pa Then
S?a Q &{Pa&) is defined to be the purely atomic CSL &\pjr and
likewise «££ c 38{Pc%f) is the nonatomic CSL JZΊP^ . Finally, we
define the operator δ& by δ&(T) = X)£/Γ£|, where again the sum
is taken over all atoms in £? and convergence is in the strong oper-
ator topology. If 3? is purely atomic, then T G &' if and only if
T = δ#{T), and T e & +3? if and only if T - δ*(T) e 3? by [W3,
Lemma 5] (the proof given in [W3] is for a special case, but it works
for the general case as well).

If V is a unitary operator, then Ad V is the operator defined by
(AdV)(A) = VAV*. An isomorphism a of two C*-algebras 21 and
05 is spatial if a = Ad V for some V. Let Aut(2t) = { automorphisms
of 21} and Inn(2t) = {inner automorphisms of 21} = {Ad V: V € 21},
and let the outer automorphism group Aut(2t)/Inn(2t) be denoted by
Out(2l). In addition, we will use £-Aut(2l) to represent the group of
spatial automorphisms of 21. The notation = will be used for both
unitary equivalence and group isomorphism as appropriate.

A CSL & is a nest if it is linearly ordered by the usual ordering of
range inclusion, and it is complemented if PL e £f for all P e S*.
A complemented CSL is the same as a complete Boolean algebra of
projections, and the projection lattice of every abelian von Neumann
algebra is a complemented CSL. On the other hand, if 3 is a CSL,
then £?" is an abelian von Neumann algebra whose projection lattice
is the complemented subspace lattice Φ{&) generated by 3 . Our
focus in this paper is the C*-algebra (&")' + JΓ = {&(&))' + <& =
&1 +3?, and although this work was motivated by the study of nests,
our results will be stated in terms of the projection lattice &(&) of
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£?". Thus, one can start with a nest 3 or any other type of CSL, and
simply replace 3* by %*(&). This will be a common practice in the
sequel. Sf1 + X is the essential commutant of i ? " by [JP, Theorem
2.1], so one can also view this as the study of essential commutants
of abelian von Neumann algebras.

We first mention two well-known results which we will use later.

LEMMA \. If & is nonatomic CSL, then & nJf = {0}.

Proof. By [Ar, p. 482], there is a continuous nest Jΐ c & such that
JF = S?1. The proof can then be completed by applying the argument
given in [W3, Theorem 14] to Jt. D

LEMMA 2. If 3 and J£ are CSL's and a is a C*-isomorphism of
onto JK1 +5?, then a is spatial

Proof. The result follows by a slight modification of the argument
given in [JP, Lemma 4.5]. D

DEFINITION 3. Suppose J? is a complemented CSL and P is a fi-
nite projection in 31. We define S?p to be the complemented CSL
generated by P and {P±L: L e 3}, and we say that 3P is a finite
perturbation of 3 (this usage differs slightly from that in [D2] and
[DW], but the idea is the same). Note that {&*)' + X = & + JT.
Also, P <Pa by Lemma 1, and therefore 3C

P = &c.
Our main tool for analyzing isomorphisms and automorphisms of

S" + X is the following theorem of Andersen.

THEOREM 4 [An, Proposition 2.3.3]. If Sf and Jί are comple-
mented CSL *s and £?' +X = JP+3?, then there are finite projections
P e 3', Q e J?f, and a unitary U with U - / € X such that

and UPU* = Q.

It follows that U(&P)"U* = {J?Q)" and U(3P)'U* =

LEMMA 5. The projections P and Q in Theorem 4 can be chosen
to be sums of finite atoms and subprojections of infinite atoms.

Proof. This lemma is very similar to [DW, Lemma 3.3]. Let Po Ξ
31, Qo € Jt', and U = / + compact be given by Theorem 4 so
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that U(5?po)U* = .#£<> and UP0U* = β 0 . We may write Po =
ΣT=\ Ai+A and β 0 = £ ) " = 1 Bj+B, where each Λ, (2f, ) is dominated
by a finite atom Ei(Fj) and 4̂ and 5 are each dominated by a sum
of infinite atoms. Then EjAf and FjBj- are finite atoms of &po
and ^# β o, respectively. Let C, = -E,-^, i = 1, . . . , m, and C/+m =
U*{FjBf)U, j = 1, . . . , n. Setting P = Po + Σ £ Γ Q and β =
Go + Σ?=\n UQU*, it follows easily that JP and β have the desired
form, U(^fp)U* = ^ 2 , and C/PC/* = β . α

For convenience, we will say that a finite projection which is a sum
of finite atoms and subprojections of infinite atoms is σ-finite. We
can now characterize when two such algebras «£*' + 3? and Jί1 + X
are equal or isomorphic.

COROLLARY 6. Suppose Sf and JK are complemented CSL 's. Then
3"+X = jr'+X iff there is a unitary U with U-Ie& and σ-finite
projections P e£?f and QeJf1 such that

(i) U&cU*=Jtc, and
(ϋ) U&a

pU*=jrfi with UPU* = Q.

Proof. Necessity follows immediately from Theorem 4 and Lemma
5. On the other hand, given U, P, and β satisfying (i) and (ii),
we have U(5?P)U* = J?Q since &p = J2? and Jr? = JTC. Then

= U(&P)'U* c ( e 2 ? p ) / + < ^ and ( ^ p y = U*(JtQ)fU c (uf G)'+
since U -I e5?. The result now follows because (-g^71)' + ̂  =
+ JΓ and ( ^ 2 ) ' + ̂  = ^ ' + ̂ . α

If oŜ  and ^# are purely atomic with no infinite atoms, then [P,
Corollary 14(i)(ii)] follows immediately.

COROLLARY 7 [P, Corollary 14]. Suppose & and Jΐ are purely
atomic CSL's with atoms {Ei\ \ < i < oo} and {i7/: 1 < / < oo},
respectively, such that dimis/, dimf/ < oo for all i. Then 3"+3? =
^' + 3f iff there is a unitary U with U - I e 3?, finite subsets
No, N\ c N, am/ a bijection π:N\N0-^N\Nι such that UEfU* =
£ π ( / ) /or a// i e N \ Λb and U(ΣieNo Et)U* =

Proof. Simply apply Corollary 6 to the complemented lattices gen-
erated by & and Jt, letting P = X)/€ΛΓ E, and β = ΣjeN Fj D



COMMUTANTS OF ABELIAN VON NEUMANN ALGEBRAS 369

LEMMA 8. Suppose S? and •# are complemented CSL's and V is
a unitary operator such that V{3"+&) V* = Jf' +3?. Then there is a
unitary U with U -I €3f and σ-finiteprojections P e3", Q € Jΐ'
such that

(i) {AdUV){S?c)=J?c,and
(ii) (AdUV)(3a

p)=jfa

Q with (AdUV)(P) = Q.

Proof. Jf'+3f = V(3'+3ί)V* = V3"V*+3T = (V3V*)'+3f, so
Corollary 6 can be applied to J! and V2Ύ*. Thus, there is a unitary
U with U - I e 3? and σ-finite projections R e {V2Ύ*)1 and
Q€Jt' such that U(V5?V*)CU* = Jίc and U((V£>V*)ξ)U* = Jfβ
with URU* = Q. Now {V3>V*)C = V3>CV*, so (AdUV)(3c) =JTC.
Also, (V&V*)* = V5?a

v"RVV*, so (AdU¥)(£>/'RV) = Jfg with
{UV)V*RV{UVγ = Q. Since V*RV is a σ-finite projection in .2",
the result follows by letting P = VRV*. D

By Lemma 2, C*-isomorphism is the same as unitary equivalence
for essential commutants of abelian von Neumann algebras, so the
next corollary specifies when two such algebras are isomorphic.

COROLLARY 9. Suppose & and J! are complemented CSL's. Then
3" + 3? = J?1 + 5? iff

(1) -Zc — M c ,

(ii) i{3) = i(jT), and
(iii) there are finite subsets & c &(&) and & c &{*) and a

bijection τ: &{S?) \9> -» &{Jt) \& such that dim A = dimτ(Λ)
for all A € &"(&) \&. In addition, if i(&) = i{JT) = 0, then

Proof. Suppose V is a unitary operator such that V{S?'
Jt' + J£. By Lemma 8, there is a unitary U with U - I e 3? and
σ-finite projections P € 3", Q € Jt' such that (Ad UV){3C) = Jίc,
(Ad UV)(3f) = Jfβ, and (Ad UV)(P) = Q. Then 5fc = J!c via
C/F, proving (i), and Ad UV is a bijection of sf{S?l) onto
such that (AdC/F)(P) = Q. (ii) now follows since i{3)
and /(^f) = i(^). Finally, let ^ = {A e st{&)\ A < P} and
a = {A € j/(uf): ^ < Q}. Then ^ ( ^ p ) = {P} u (^(^) \^>) and
^•(^G) = {Q}u{^{Jί)\a). Now just let τ = (Ad UV)\n^y^., and
(iii) follows (note that if i(&) = 0 = i{Jί), then P = Σ,Ae& A a n d
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Conversely, suppose (i)-(iii) hold. If & c &(%[) and Jt c
&{%ϊ), let WiJ^-^J^ be a partial isometry such that W£?CW* =
Λfc. Let {/,-: 1 < i < ί ( ^ ) } and {/,: 1 < / < i{Jt) = /(-2*)} be enu-
merations of S{&) and J ^ Λ T ), respectively. Let X: %{ -> ̂  be a
partial isometry such that X4ΛΓ* = τ(Λl) for all A e 3r(£?)\3ΰ. Now
if i(&) = i{Jt) = 0, let Y\%{-+ %f2 be a partial isometry such that
Y{ΣA€&A)Y* = Σ * e r 5 > a n d d e f i n e V =W + X+Y. Otherwise,
let m = dim(Y^Ae^A) " d i m ( Σ i ? e ^ 5 ) If m < 0, let C < I\ be a
projection of dimension \m\, and let 2) = 0. If m > 0, let D < J\
be a projection of dimension m, and let C = 0. If m = 0, let

C = D = 0. Define P = C + Σ Λ G ^ a n d Q = D + Σ,Be&B- N o w

define 7 : %{ -+ %ί to be a partial isometry such that YPY* = Q,
7/zT* = /,- for all / > 2, and 7(/i - C)7* = /! - 2), and define
F = W + X + Y. Then in either case VS?P V* = Jί^, and it follows
that V{&pyv* = (jrQ)' and therefore V(2» +5?)V* =jr' + 3T. u

If 3* or Jί is not complemented, then the same result holds with
item (i) changed to W(^fc) = ^{Jtc), simply by applying the corollary
to g 7 ^ ) and &(Jΐ). Also, the result for the special case considered
in [P] again follows immediately.

COROLLARY 10 [P, Theorem 1]. Suppose £? and Jf are purely
atomic CSL's with atoms {Ei: 1 < i < oo} and {Fji 1 < / < oo},
respectively, such that dim Ei, dimFf < oo for all i. Then
3" + X ^ jg* + x iff there a r e finite subsets No, N\ c N and a
bijection π: N\ NQ —• N\ N\ such that dimEj = d i m ^ i ) for all
ieN\N0 and dim(ΣieN0Ei) =

Corollary 9 shows that isomorphism is determined by simple con-
ditions on the atoms and unitary equivalence of the nonatomic parts
of & and Jί. But the latter is equivalent to unitary equivalence
of the nonatomic von Neumann algebras 3" and Jt". Let J? =
L2([0, l],&, μ)9 where SB is the σ-algebra of Borel sets and μ is
Lebesgue measure. If / € L°°([0, 1], 3S, μ), let Mf be the multi-
plication operator acting on ?PC. For 1 < m < oo, define JΓ(W) =
{Mf ® -®Mf:fe L°°([0 ,l],&,μ)} acting on ^ ( m ) , the direct

sum of m copies of %?c. Then each nonatomic abelian von Neu-
mann algebra 21 is unitarily equivalent to Σ%ejr 2 ^ , where f is
a uniquely determined subset of {1, 2, . . . , oo} [KR, §9.4]. We will
call / the multiplicity sequence of 21. Thus, £fc = Jtc if and only if
&" and ^ζ.;/ have the same multiplicity sequences.
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Another result in [P] characterizes certain lattices Sf for which ev-
ery unitary V implementing an automorphism of S"+3? splits. This
means that V — W + K where W is a unitary satisfying WJϊf'W* =
&' and K e 3?. Equivalently, V = WXW2 for some unitaries Wt

satisfying WX&W{ =3" and W2 - 1 e X (just let Wx = W and
W2 = W*V). If & is a multiplicity-free CSL (-S" = .2"' is maximal
abelian), then every such unitary splits [JP, Theorem 4.10]. However,
as shown below, there are also other cases for which this is true. In
the following proof, ind( T) denotes the Fredholm index of an opera-
tor T.

THEOREM 11. Let 3 be a CSL. Define

c(k) = C2Lΐd{A G J / ( ^ ) : dim ,4 = k}.

Then every unitary which implements an automorphism of J?' + 3?
splits if and only if either

(i) c(oo) = 0 and c(k) = oo for at most one k, or
(ii) c(oc) = 1 and c(k) < oo for all k.

Proof. By replacing S? with the complemented lattice generated
by 3, we can assume without loss of generality that 3 is comple-
mented. Suppose (i) holds, and suppose that V is a unitary satisfying
V(&' + 3T)V* = 3' + 3T. Then by Lemma 8, there is a unitary
U with U - / e X such that (UV)&C(UV)* = &c, and finite sub-
sets <^, β c &(&) = s/(&) such that Ad£/K is a bijection of
9 {&)\9 onto 7{&)\β and (UV)(ΣAe^A)(UVy = ΣB^B.
Let e(k) = card{̂ l e &(&): dim A = k and A e &>} and f(k) =
card{ ί̂ G s*(&): dim A = kandAe@}. Then if c(k) < oo, it fol-
lows that e(k) = f{k), and (i) then implies that e(k) = f(k) for all
k. Thus, there is a partial isometry Y such that Ad 7 is a bijection
of ^(^f)n^ onto &-(&)Π0. Let ^ = 7+ VV(^A^A)L . Then
AdW implements an automorphism of S?" since WS?CW* = -2£
and Ŵoĝ  WΓ* = S?a, and therefore implements an automorphism of
&1 as well. Also, W is a compact perturbation of C/K since 7 and
Σ ) ^ G ^ ^

 a r e compact, and UV is in turn a compact perturbation of
K since U-IeJf.

Suppose instead that (ii) holds, and let Ao be the one infinite atom.
If V is a unitary such that F(-S"+^)F* = 3"+5?, then we again ob-
tain a unitary U with U-IeJ? such that (UV)5fc(UV)*, and also
there are σ-finite projections P, Q e&' such that (UV)P{UV)* = Q
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and {UV)3>a

p{UVy=&a

Q. Then AdUV is abijectionof
onto &{&) \a, where &> = {A e &{&)\ A < P} and a = {A e
&*(&): A < Q}. Let PQ = PAQ and β 0 = QA0 Since c(Λ ) < oo for
all A:, it follows that e(k) = f{k) for all fc, and therefore dimPo =
dim <2o Now let Y be a partial isometry such that Ad Y is a bijec-
tion of ^(-S*) n ^ 3 onto ^(-2*) n<? and also ΓPoF* = Qo Finally,
define FF = Y + UVPL. As in the argument for case (i), V -W e3?
and W&'W*=&'.

To prove that either (i) or (ii) is necessary, first suppose that & c
3B{&) has at least two infinite atoms Ao and A\. Let Po < Ao be a
rank-one projection and let F = I-AQ-AI . Define V to be a unitary
such that V\Fjr = I\F* , V{A0 - P0)V* = Ao, and V(A1 + P0)V* =
Ax. Then certainly F ( ^ ' + JΓ)F* = ^ ' + j r . However, there is
no unitary W with V - PΓ G X such that W5?'W* = -2^. For
if there were, it would follow that JV£?"W* = &" 9 and therefore
JVAQW* is an infinite atom of £f. But WA0W* = Ao + compact,
s o i n f a c t WA0W* = A o . S i m i l a r l y , WAXW* = A X . L e t R = A { +
Po and S = Aχ + WP0W*. Then, viewing SW\R^ and 5 ^ ^ as
operators from Rβf to 5 X , inά(SW\iur) = 0 and indί^FJ i^) =
- 1 , contradicting the fact that the Fredholm index is invariant under
compact perturbations.

Next, suppose c(oo) = 1 and c(ko) = oo. Let AQ be the infinite
atom and let E\, Eι, . . . be the atoms of dimension ko. Let G =
/ - Ao - Y^Lχ Ei and define V to be a unitary such that V\Q# =
I\G*, V{A0 + Eχ)V* = ^ o , and FE/K* = ^/-i for all i > 2. Then
V(&' + 3ί)V* = &1 + Jf9 but again there is no unitary W with
V - W e X and W5?'W* = 3". For W would have to satisfy
WA0W* = Ao, so if R = A0 + Eι and 5 = Ao + WEiW*, then
indiSWljvr) = 0 and i n d ^ F I ^ ) = -&o > a contradiction.

Finally, if c(oo) = 0, c(ko) = oo, and c(k\) = oo for koφk\, then
a minor variation of the argument given in [P, Corollary 12] yields a
unitary which implements an automorphism of &' +5? but does not
split. D

We can also extend [P, Corollary 13] to the general situation.

THEOREM 12. Let & beaCSL. Then all automorphisms of 3"
are inner if and only if

(i) S? is purely atomic,
(ii) i{&) <\yand
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(iii) there is a finite set 5? c sf(&) such that dim A Φ dim B for
all distinct atoms A, Be

Proof. Again, by replacing S? with the complemented lattice gen-
erated by S*, we can assume without loss of generality that $? is
complemented. Suppose (i)—(iii) hold, and suppose Ad V is an auto-
morphism of o2" +X. Then Theorem 11 implies that V splits, since
c(k) < oo for all k by (iii). Thus, V = W + K with K compact
and W a unitary satisfying W3"W* = Jg". Denote the atoms of &
by {Ai}fί{, M < oo. Then it follows from (iii) that there is some
N such that (Ad W)(Af) = A\ for all i > N and, if an infinite atom
Ainf exists, then (AdW)(Ainf) = Ainf. By increasing TV if necessary,
we can assume Amf = A^ for some k < N. Now let P = Σ/Ii A\ if
z(-S*) = 0 and P = £ £ i ^ -Ak if / ( ^ ) = 1. Then WPL e &' and
W - WP̂ P-1 G X, so F e ^ ' + J .

To show that (i)—(iii) are necessary, first suppose 2 is not purely
atomic. Let Pa = T,Ae*?{2>) A and Pc = I - Pa. Then ^ is a
nonatomic complemented CSL on P c ^ . From the multiplicity the-
ory of abelian von Neumann algebras, there are orthogonal projections
{Pm: 1 < m < oo} such that for Pm φ 0, (JPAp &)" is unitarily equiv-

fit

alent via a unitary X w to the algebra jg*(m) defined after Corollary
10. Choose w so that Pn Φ 0, and recall that μ is being used to
denote Lebesgue measure. Now if we let f(x) = x2, then there is a
unitary operator Y such that YL2 ([0, /(*)], μ)(n) = £ 2 ([0, t], μ) ( M )

for all t e [0, 1] [Dl, Corollary 7.16]. Let P, be the projection onto
L2 ([0, t], μ ) ( n ) , so YPf{f) Y* = Pt for all ί, and 7 thus implements
an automorphism of Z^ . But then Pή4YPXμY* = Pή4P\/2, and it
follows that Y $ {PtY+Jf, for otherwise the left side would be com-
pact but the right side would not. Thus, X*YXn £ (&c\pMxΎ+<&,*&&
therefore V = Pa + Σm^n pm+Xn Yχn is a unitary which implements
an automorphism of JZ" + X that is not inner.

Now suppose 3* is purely atomic but that -2* has at least two
infinite atoms. Again, denote the atoms of £f by {Ai}f^x, M < oo.
By relabeling if necessary, we can assume A\ and A2 are infinite.
Let R = Σh=3Ai and define a unitary V = J ^ + W, where W
is a partial isometry satisfying WA\W* = ^2 and WA2W* = A\.
Then VJ?fV* = -S", so Ad F certainly implements an isomorphism
of -S" + JΓ. However, V-δ<?(V) = VR1 = W £ X, and therefore
V £ & + X by [W3, Lemma 5].
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Finally, suppose (i) and (ii) hold, but (iii) is false. Then there is an
infinite sequence of atoms {Bt} such that dim2?2fc-i = dimB2k for
fc = 1, 2, 3, . . . . Let S = Σ X i Bj and define a unitary V = I\s±^ +
W, where W is a partial isometry satisfying WB2k-ιW* = i?2fc and
WB>i]<W* = l?2fc-i f° r all A:. Then Ad V implements an isomorphism
of -S", and therefore &' + X also, but again V $ 5?1 + 3? since

W $JΓ. D

The last proof used several techniques for constructing automor-
phisms which are not inner. These techniques give an indication of
how to calculate the outer automorphism group of &' + X. First,
we will use Sym(S) to denote the group of all permutations of a set
S. Now let S? be a CSL and let iV = ΣAer(<?)A If ^ is a fi-
nite sum of atoms in &{&), define SΈ to be the lattice S'P^E1-
on P^E^^f. Given S?E and .SJr, let I S O ( ^ , ^ ) denote the set
of bijections 0: J / ( ^ ) -> ^(-S^) which preserve dimension. Note
that θ extends to a map which takes sums of atoms to sums of
atoms. Let I S C V ^ ) = \JISO(&E > &F) , where the union is taken
over all pairs (E, F) of finite sums of atoms in &(&) with the
property that if i(&) = 0, then dim E = dim F. Now if θ e
ISO(o2£, £?p) and G is a finite sum of atoms in S?E, then define
#G € ISO((O2^)G, (-2J00(G)) by restriction. We can now define an
equivalence relation on lSO$r(<2?) by 0 ~ τ if there are finite sums
G and H of atoms such that ΘQ = ?H The class of 0 will be denoted
by [θ].

We next define a multiplication on ISCV(«5*)/ ~ . Suppose 0 e
ISO(-S£, .250 and τ € I S O ( ^ , <Sfr), and define [τ][θ] = [/>], where
p = rF G !± o θθ-i,F±Gj. It is not hard to see that this multiplication is
well-defined and associative, [id] is an identity, and [θ]~ι = [θ~1].
Thus, ISCVCS*)/ ~ is a group, denoted Λ - I S C V ^ ) . We note that
this group is very similar to, and was motivated by, the group <z- Aut^f
in[DW, p. 615-616].

We are now in a position to calculate Ou^-S^ + 3Γ). For sim-
plicity, we will compute this group separately for the purely atomic
and nonatomic cases, and then combine these results to prove the
general case in Corollary 20. In the following theorem, we note that

= {id} if i{&) = 0 or 1, and α-ISO^(^) = {[id]} if
is finite.

THEOREM 13. Suppose J? is a purely atomic CSL. Then

x aΊ
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The proof will be completed by a succession of lemmas. First, note
that each of the groups in the statement of the theorem is the same
for S* as for the complemented lattice generated by S?, so we can
assume -§* is complemented. After the next technical lemma, we will
define a map Γ: Aut(-S" + JΓ) -• S y m p ^ ) ) x tf-ISCV^), and
then show that Γ is a surjective group homomorphism whose kernel
is Inn(-2*' + X) 5 completing the proof.

LEMMA 14. Suppose J? is a complemented CSL and W is a unitary
in 3"+3? such that Ad W isabijectionof&iS?)^ onto ^[^)\5^
for some finite sets &, 5? c y ^ ) . Then therejs a finite set 310 ^
such that (Ad W){A) = A for all A e &*(&) \ &.

Proof. Write W = S + K for some S e 3" and K e 3?, and
suppose (Ad W)(Ei) Φ Et for an infinite set {£;: 1 < i < oo} c
F{&)\31. Let βi e EiJT with | |^ || = 1, and let fr = We{. \\Ket\\ -+
0 since e, -* 0 weakly and K is compact. But then

1 = (ft, ft) = (EfWEtβi, /,) = ( ^ ( 5 + ΛΓ)^,, fi)

a contradiction. D

If α G Aλ&(&'+&), then α = Ad F for some unitary V by Lemma
2. If AdF = AdF' on -S" + Jf,then V*V e {&' + &)' = C/, so F
is unique up to multiplication by a scalar of modulus 1. By Lemma
8, there is a unitary U with U - / e ^ and σ-finite projections
P, β € .2" such that (Adt7F)(P) = β and (AdC/F)^) = ^ β .
Thus, AdUV is a bijection of ^{^p) onto ^ ( ^ β ) . Because of
the form of P and β , this induces a unique bijection j α of ^(J?)
satisfying ια(A)Q± = (AdC/FJ^P1) for all A e S{&). It follows
that ια(A)-α(A) e X for all A e S{&). From the above, a different
choice of F has no effect on Ad UV. Suppose £/', P', and β' satisfy
the same properties as C/, P, and β, and ι'α is the corresponding
induced bijection of J r( e^

?). But then ια(A) - ΐα(A) e X for all
A e ^(J?), so ια = ι'α. This shows that zα is well-defined, i.e., it
is determined by any F implementing α and any £/, P, and β
satisfying Lemma 8 for F and J?. An equivalent characterization of
ια is that it is the unique bijection of ^(5?) such that ια(A) - α(A) e
JT for all i ί e ^ ( ^ ) .

Now Ad£/F is also a bijection of &*(&) \3ΰ onto &{&) \α9

w h e r e ^ = {A e &*{&): A < P } and & = {A e f ( & ) : A < Q } .
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Thus, (AdUV)\#-(&)\<? e ISO(.2fc,-2», where E = ΣA€&A a n d

F = Σ,Ae&A Moreover, if i{2?) = 0, then E = P and F = Q,
so dim£ = dimF. Let pα = [ ( A d t / F ) ^ ) ^ ] . If U', P', and β'
satisfy the same properties as U, P, and Q, we will obtain analogous
sets &' and &' and projections E' and i*7. Let

M = ̂  U {(Ad K*C

and
&> = ̂ " U {(Ad V*U'*)(A): ̂  6

Then AdF*C/'*ί7Γ is abijectionof 9"{ST)\3l onto ^ ( ^ ) \ ^ and
V*U'*UV = / +compact, so Lemma 14, with W = V*U'*UV,
implies that there is a finite set ^ 3 a such that (AdC/F)(Λ) =
(AdU'V)(A) for all ^ e « ^ ( ^ ) \ ^ . Therefore ( A d C / F ) ^ ) ^ ~
(Adt/'KJly-^^ , and it follows that ^ α is well-defined. Thus, we
have proved

LEMMA 15. The map Γ: Autp="+jr)
έy Γ(α) = (iQ, φa) is well-defined.

LEMMA 16. Γ is suήective.

Proof. Suppose (/, [φ]) e Sym(^(^)) xα-ISOy(^). Let ψ e [φ],
so ψ G ISO(=2£:, ^ ) for some E, F. Let PΓ be a partial isom-
etry such that WAW* = ψ{A) for all A e st{S?E) = &{2k) and
WAW* = /(Λ) for all A € J^J?). If dim£ = dimF (in particular,
if i(&) = 0), let X be a partial isometry satisfying XEX* = F,
and define V = X + W, Po = 0, and £>0 = 0. On the other
hand, if dim is φ dimF (so / ( ^ ) > 0), choose an infinite atom AQ
and finite subprojections PQ < AQ and QQ < ι(A0) such that
dim(2s + PQ) = dim(.F + Qo) Let Y be a partial isometry with
Y(AOPJ-) Y* = i(Λo)Go and Γ(£ + Po)^* = F + Go, and define V =
Y + W{E + Ao)1. Then in either case (Ad V)(5?E+P<>) = &F+Q<>, so
a = Ad V is an automorphism of £?' + 3?, and it is readily ap-
parent that Γ(α) = (i, [φ]) (simply let U = I, P = E + Po, and

LEMMA 17. Γ is a group homomorphism.

Proof. Let aλ, a2 G Autί-S5" + X) with αi = Ad Vx and α2 =
Adϊ-2. Define a $ = a2o a\ = Adί^Fi. Use Lemma 8 to obtain
unitaries Uι, Uι, and U3 with Uj-I eJ? and σ-finite projections
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Pi, Pi, P*, Qi, Qi, Qs in 3" such that (Adl^XP,-) = β and
(AdUiVi)(J2?p.) = XQΪ f o r / = 1 , 2 , ( A d U 3 V 2 V ι ) ( P 3 ) = Q3, a n d

i)(^/'3) = &%. Then jβ((4) - α/(4) € X for all Λ e
, so iα2 (ϊα,(Λ)) - α2 (*«,(Λ)) e'jΓ. But then

(la2 O ία,)(Λ) - α 3 M ) = /β2 (i«,M)) - <*2 {laχ(A))

+ a2(laί(A))-a2(aι(A))

= la2{laι(A))-a2{ιaι(A))

+ V2(ιaι(A)-aι(A))V2*€^>

and it lollows that iα j = ιOi o i α i .
Now let ^ = {A e &{&)'. A < Pi} and <St = {A € &(&): A <

Qi), i = 1 , 2 , 3 , so pα ; = [ ( A d l Z / F ; ) ^ ) ^ ] for i = 1 , 2 , and
0>α3 = [(Ad C/3 K2 F i ) ^ ) v ^ , ] If we define

^ 4 = ̂  U{(AdFt*Ut)(A):

and
«» = <%u{(Adl/2K2)μ): ^ e QΛP2},

then AdU2V2UχVχ is a bijection of ^ ( ^ ) \ ^ 4 onto
and ^α 2^α i = ({AdU2V2UχVι)\9r^)\^] by definition of the product
in α-ISOyV ~ . Define X = C/3F2F! and Γ = U2V2UiVi, and let

^ = ̂ 3 U {(AdX*)(A):A

and
y = ̂ 4U{(AdΎ*){Λ): A

Then Ad Γ*Z is a bijection of &(&) \ & onto ^ r(^5 ') \ & and
y*X = / + compact, so Lemma 14, with W_= Y*X, implies that
(AdX){A) = (AdY)(A) for all A G &{&) \3l, where & is some
finite set containing 31. Therefore (AdZ)|y-(^)\^ ~ (AdY)^^)^,
i.e., ^ 3 = φaiφΛι. * •

LEMMA 18. Ker(Γ) = Inn(.2" + JT).

Proof. First suppose θ e Inn(^' + X), θ = Ad V. Let C/ be any
unitary and P, Q € 2" be any σ-finite projections satisfying Lemma
8. Suppose ιθ{A) φ A for some A e J Γ ( ^ ) . Write F = S + K
with S e ^ ' a n d X e J . Then ALVAV* = Λ x (S + ϋ:)ΛF* =
Λ^-foίF* 6 JΓ. Also, ιθ(A) - VAV* = ιθ(A) - Θ(A) eJT.lt follows
that ιθ(A) = ̂ x {ιθ(A) -A) = AJi {ιθ{A) - VAV*) + AX{VAV* -A)e
X, a contradiction. Therefore, ιθ = id 6 Sym(JΓ(.2!')).
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Now Ad UV is a bijection of &{&) \& onto &{S?) \6 for some
finite sets &, € c ^ " ( ^ ) . UV e -2"+JΓ since 17-/ € X , so Lemma
14 implies that there is a finite set # D ̂  such that (Ad C/F)(Λ) = Λ
for all A e fζSr) \&. It follows that φθ = [id], and therefore
Γ(0) = (id,[id]).

Suppose on the other hand that Γ(0) = (id, [id]). We want to
show that θ = Ad V e I n n ^ ' + X). Let U be any unitary and
P, Qe£" be any σ-finite projections satisfying Lemma 8. Let & =
{A 6 &{&)'. A<P} and a = {A e &{&): A<Q}. Then Ad UV
is a bijection of ^ " ( ^ ) \ ^ onto 9"(&)\a, and (Ad UV)^^^ ~ id
by the definition of 0>#. It follows that there is a finite set & D &
such that (Adt/F)|^. ( _ s , ) ^=id| y . ( _ ? ) ^. Also, Adί/F is a bijection
of S{&p) onto ^( j^β) such that AQX = (AdC/F)(^PJ-) for all
A e J r ( ^ ) . Let ^ be the finite set β u {A e J ^ ) : ^ P / 0 or
AQ φ 0}, and define P = ΣAeβA and i? = Σ ^ € ^ A T h e n f o r

Γ e &",

UVTV*U* = UVTRLV*U* + UVTRV*U*

= Γi?x + UVTRP±P±V*U* + UVTRPP±V*U*

+ UVTRPV*U*

= TRL + TRP^-Q1 + UVTPPLV*U* + UVTPV*U*
= T + compact.

Equivalent^, (UV)T - T(UV) 6 3Γ for all T e &". Therefore,
[ / F 6 / + 1 by [JP, Theorem 2.1], so V € &' +3? also since
U-IeJF. D

Proof of Theorem 13. Apply Lemmas 15-18. D

THEOREM 19. If Sf is a nonatomic CSL, then

Out(-S" + JT) = 5-

Proof. As before, we can assume ^ is complemented. Let a =
Ad V € Aut(-2" + X), and let C/, P, and β be given by Lemma 8.
Then P = Q = 0 by Lemma 1, so (Ad UV){S?) = ̂ , and therefore
Ad C/F also implements an automorphism of 2"'. By the same rea-
soning used in the proof of Theorem 13, another choice for V has
no effect on Ad UV. If £/', P', and Q' satisfy the same properties
as U, P, and Q, then (Ad C/F)(£) - {Ad U'V){E) e X for every
projection E e 2, and this implies that (Ad UV){E) = (Ad L
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since E is infinite. Thus, the map γ: A\x\{S?' + 5f) -* s-Aut(«S*") by
γ(a) = AdUV is well-defined, i.e., every possible choice of V, U,
P, and Q yields the same automorphism of &11.

Now if AdW e s-Avt(&"), then AdW G Aut(-S" + X) also.
U = / and P = Q = 0 satisfy Lemma 8, so y(Ad W) = AdW. This
shows that 7 is surjective.

Suppose α, β G Aut(-S" + JΓ) with a = Ad Fί and jff = Ad F2 . Let
U\, t/2, and t/3 be unitaries with Ui — I G 3f such that Ad U\ V\,
AdU2V2,AdU3V2Vι e Aut(^ ; /), i.e., y(α) =
Ad (72Γ2, and γ(β o α) = Ad ί / ^ F i . But then

(Ad i72̂ 2 o Ad Ux Vχ)(E) -

for every projection E eJΐ?, and therefore

Thus y(j8) o y(α) = y(jS o a), and 7 is a group homomorphism.
Now suppose a = Ad V e Inn(^ff + X). Let y(α) = Ad UV, and

write U = I + K9 V = S + L with K, L e 3T and S e &'. Then
for each projection £ G ^ , (Ad ί/K)(£) = (/ + K)(S + L)EV* U* =
ESV*U* +M for some M e X. Therefore, £ x(Ad Ϊ7K)(£) G ^ , a
contradiction unless EL{Ad UV){E) = 0. But the same argument ap-
plied to E1 shows that E(Ad UV)(EL) = 0, and these two identities
imply that (Ad UV)(E) = E for all E G &. Therefore, y(α) = id.

Finally, suppose α = Ad V e Aut(«S" + X) and γ(a) = Ad UV =
id G s-Aut^"). Then £/F G ^ ' , so F G ^ ' +X, i.e., α G
Inn(^ ; + X). Therefore, Ker(y) = Inn(^' + X), and the proof
is complete. D

COROLLARY 20. If 5? is a CSL, then

x S y m p ^ ) ) x a-

Proof. Again, we can assume without loss of generality that & is
complemented. Let a = Ad V G Aut(^ ; + X), and let U9 P, and
(2 be given by Lemma 8. Let Pa = Y,Aes*{&) A and Pc = I - Pa.
Then (AdUV)(&c)=&c and (AdC/F)(-2f) = ^ β , so
implements an automorphism ac of <£?c

f+3f(Pc^) and a

implements an automorphism aa of ^ + 3£{Pa%f). In addition,
(ac θ α j o α " 1 G Inn(^ff + X) since U -I eX. Thus, by defining
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f (α) = (γ(ac), T(aa)) = (γ(ac), iaa> ψaa)> it follows from Theorems
13 and 19 that f induces the desired isomorphism. α

Since any unitary which implements an automorphism of «S£" must
map (̂<5c) onto itself, Corollary 20 thus gives a characterization
of Out(^ ; + X) in terms of certain maps on Ψ{3*). Of course,
Symp^-S*)) is isomorphic to the symmetric group on n letters if
ι'(J?) = n, and Symp^-S*)) = Sym(N) if /(-S*) = oo. In addition,
Out(-2£') provides an alternate description of s-Aut(J2£/;). To see
this, first note that every element of s-A\xt( <&") extends to an auto-
morphism of S*c . On the other hand, every automorphism of 3%
is spatial by [Di, §111.3.2, Corollary 1], and thus defines an element
of sΆut(&c") by restriction. Moreover, if Adi/ € Aut(-2£')> then
AdU = id on &» if and only if U e &J 9 i.e., Ad U e Inn(^').
It follows that Out(^ ; + X) and Out(.2") differ only in the factor
a-lSOsr(J2?). s-Aut( &") can also be described in another way. As
noted earlier, &» s Σ%e^{m)» w h e r e ^ C {1, 2 , . . . , oo}. How-
ever, it follows from multiplicity theory that any unitary U which
implements an automorphism of ]Π® €Jr S^ can be decomposed as
a direct sum J2%e/ U™ °f ^nitaries Um which implement automor-
phisms of %W . Consequently, s-Aut(-2f) = Σ%e^s'Aut(^{m) )•

We turn now to derivations of -S" + JΓ. A derivation of a Banach
algebra 21 c ^ ( ^ ) is a linear operator (5: 21 -» 21 which satisfies the
property δ{ST) = 5(5)Γ + 5ί(Γ) for all ^ , T e 2t. J is denoted
by adX if δ{S) = XS-SX for some X e ^ ( ^ ) , and δ is inner
if δ = adX for some J E 2(. If £ is a continuous derivation,
then (5 is the infinitesimal generator of the uniformly continuous one-
parameter automorphism group (exp(ί^): ί € l } , and if δ = adX,
then exp(tδ) = Ad(exp(ίX)). The approach taken here for derivations
of essential commutants of abelian von Neumann algebras is similar
to the one used in [DW, 3.11-3.13] for quasitriangular algebras (also
see [Wl] and [W2]). In the following, \\T\\e denotes the essential
norm of Γ, i.e., \\T\\e = \\q(A)\\, where q is the canonical projection
of 3B{X) onto the Calkin algebra

LEMMA 21. Suppose 2> is a CSL. If Ad V e Aut(^ ; + X) and
|| V - I\\e < j , then Ad V is inner.

Proof. Without loss of generality, assume JS? is complemented, and
apply Lemma 8 to obtain operators U, P, and Q. Let a = Ad V,
and define f as in the proof of Corollary 20. Since U - / e X, we
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have || C/F - 7||* < \ also, and it follows that

\\uvτv*u* - τ\\e < \\uvτv*u* - τv*u*\\e

+ \\TV*U*-T\\e<\\T\\e

for all T e &{?). Now (AdC/F)(«££) = ^ and (AdC/F)(-Sf) =
«2^fi with (Ad C/F)(i>) = £>. Therefore, (Ad UV)(A) = Λ for all Λ e
-2£ since UVAV*U* - A is the difference of two infinite commuting
projections. Likewise, {AάUV){APL) = ^ Q 1 for all A e J{&).
Thus, γ(a) = id and ία = id.

Let & = {Ae f(&): A < P} and β = {Λ e ^ ( ^ ) : Λ < β } .
Then Ad C/F is a bijection of ^(-S57) \ ^ onto P(&)\e. Suppose
(Ad UV)(Ei) φ Ei for an infinite set {Et: 1 < / < 00} c &{S?) \ &.
Let K be a compact operator such that ||C/F - / - K\\ < \ , and let
ez e Ei%f with | |i | | | = 1. Then

IKC/F - / - K)(ei)\\ > WUVet - e/|| - IIM H > V 5 - \\Ket\\ > \

for / large enough, since ||-K"̂ /|| —• 0. This contradiction shows that
there is a finite set & D & such that (Ad C/F)(,4) = A for all A e
&*(&) \ # , and therefore, φa = [id]. The result now follows from
Corollary 20 and the definition of Γ. D

THEOREM 22. If & is a CSL, then every derivation δ: S" +5? -•
3" + X is inner.

Proof The proof is essentially identical to [DW, Theorem 3.13].
Again, we can assume J? is complemented. By [DW, Lemma 3.12],
δ = adZ for some X e &{X). Then {at = exρ(ί<5) = Ad(e'x): t e
R} is a uniformly continuous automorphism group of &' + 3£, and
\etX - /| |e < 5 for ί sufficiently small. Thus, by Lemma 21, at is
inner for ί small. It follows that X = lim,_o r ! ( ^ - /) € 3" + 9?,
and therefore δ is inner. α

Finally, we can make the following improvements to Lemma 21.

COROLLARY 23. Suppose Sf is a CSL and a e Aut(^ ;

(i) If the spectrum of a is contained in Ω = {z e C: Rez > 0},
then a is inner.

(ii) If \\a - id || < 1, then a is inner.
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Proof, (i) follows from Theorem 22, using the argument given in
[W2, Corollary 2.4]. (ii) follows from (i) since \\a - id| | < 1 implies
that the spectrum of a is contained in Ω. D
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