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CLASSIFICATION OF ESSENTIAL COMMUTANTS
OF ABELIAN VON NEUMANN ALGEBRAS

Bruce H. WAGNER

The main purpose of this paper is to classify the C*-algebras of
the form 2’ + % , where 2’ denotes the commutant of an abelian
von Neumann algebra 2/, and % is the set of compact operators. By
the famous result of Johnson and Parrott, 2’ +.% is the same as the
essential commutant of 2. These algebras were studied by Plastiras
in the special case in which 2 is generated by its minimal projections
and in addition all of these projections are finite dimensional. Using
a theorem of Andersen, we are able to generalize Plastiras’ main re-
sults to general abelian von Neumann algebras. We also study the
automorphism groups and derivations of these algebras.

If 2 is an abelian von Neumann algebra, then its projection lattice
2 is a complemented commutative subspace lattice, and of course
A = &', Since our results are given in terms of the lattice, we sim-
ply start with such a lattice . and consider the algebra &’ + .7 . In
Corollaries 6 and 9, we give necessary and sufficient conditions for two
such algebras .’ + % and 4’ +.% to be equal or isomorphic. We
then turn to automorphisms, and first catagorize those algebras for
which every unitary operator implementing an automorphism splits
(Theorem 11), and then determine those algebras for which every au-
tomorphism is inner (Theorem 12). These four results generalize the
most important results in [P]. We next calculate the outer automor-
phism group (Corollary 20), and finally show that every derivation of
such an algebra is inner (Theorem 22). This latter portion of the paper
was motivated primarily by similar studies with nests, namely [W1],
[W2], and [DW].

All Hilbert spaces in this paper will be separable and infinite di-
mensional, and will usually be denoted by #. Z(#) will be used to
denote the set of bounded operators on /# , and the set of compact op-
erators will be given by #(#), or just # if the Hilbert space is clear
from the context. If ¥ C #(#), then ' = {T € Z(#): TS =
ST for all S € %} is the commutant of ., and " denotes the
double commutant (') of . The essential commutant of ¥ is
{TeB(#): TS-ST € % for all S € #}. All projections on Hilbert
space will be self-adjoint.
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A commutative subspace lattice (CSL) is a commuting set of pro-
jections on # which is closed under the lattice operations PV Q =
P+Q—-PQ and PAQ = PQ, is closed in the strong operator topology,
and contains 0 and /. A projection E € .¥ isan atomif EP =0 or
E for all P € .#. Note that all atoms are mutually orthogonal. &
i1s nonatomic, or continuous, if it has no atoms, and purely atomic if
> E; = I, where the sum is taken over all atoms E; of .# and conver-
gence is in the strong operator topology. As is often done in the study
of commutative subspace lattices, we will sometimes blur the distinc-
tion between a projection P and its range P# . In this spirit, we will
use dim P to denote the dimension of P# . Also, a projection is in-
finite or finite if its range is infinite or finite dimensional, respectively.
Define &/ () = {atoms of ¥}, .# (%) = {infinite atoms of .#’}, and
F (&) = {finite atoms of .}, and let i(¥) denote the cardinality
of #(&). Let Ps = }_yc(s)A and define . = I - F,. Then
% C FB(P,#) is defined to be the purely atomic CSL 2| px and
likewise % C #F(P.#) is the nonatomic CSL .Z| pw . Finally, we
define the operator d¢ by d#(T) = > E,TE;, where again the sum
is taken over all atoms in . and convergence is in the strong oper-
ator topology. If .# is purely atomic, then T € %’ if and only if
T=064(T),and T e ¥'+% ifandonly if T —-d4(T) € Z by [W3,
Lemma 5] (the proof given in [W3] is for a special case, but it works
for the general case as well).

If V is a unitary operator, then AdV is the operator defined by
(AdV)(A) = VAV*. An isomorphism a of two C*-algebras 2 and
B is spatial if a = AdV forsome V. Let Aut() = { automorphisms
of A} and Inn(2A) = { inner automorphisms of A} = {AdV: V € A},
and let the outer automorphism group Aut(2 )/Inn(2 ) be denoted by
Out(A). In addition, we will use s-Aut(2) to represent the group of
spatial automorphisms of 2. The notation = will be used for both
unitary equivalence and group isomorphism as appropriate.

A CSL .2 is a nest if it is linearly ordered by the usual ordering of
range inclusion, and it is complemented if P+ € & for all P € .Z.
A complemented CSL is the same as a complete Boolean algebra of
projections, and the projection lattice of every abelian von Neumann
algebra is a complemented CSL. On the other hand, if .# is a CSL,
then #” is an abelian von Neumann algebra whose projection lattice
is the complemented subspace-lattice #(%) generated by .. Our
focus in this paper is the C*-algebra (Z") + % = (F(&¥)) +% =
Z'+% , and although this work was motivated by the study of nests,
our results will be stated in terms of the projection lattice (%) of
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Z" . Thus, one can start with a nest . or any other type of CSL, and
simply replace .# by #(¥). This will be a common practice in the
sequel. 2’ +.% is the essential commutant of 2" by [JP, Theorem
2.1], so one can also view this as the study of essential commutants
of abelian von Neumann algebras.

We first mention two well-known results which we will use later.

LeEMMA 1. If .Z is nonatomic CSL, then &' N% = {0}.

Proof. By [Ar, p. 482], there is a continuous nest .# C . such that
A =" . The proof can then be completed by applying the argument
given in [W3, Theorem 14] to .# . O

LEMMA 2. If Z and # are CSL’s and o is a C*-isomorphism of
L'+ % onto #'+ X%, then o is spatial.

Proof. The result follows by a slight modification of the argument
given in [JP, Lemma 4.5]. m]

DEFINITION 3. Suppose .# is a complemented CSL and P is a fi-
nite projection in .#’. We define .#? to be the complemented CSL
generated by P and {P1L: L € ¥}, and we say that Z% is a finite
perturbation of .# (this usage differs slightly from that in [D2] and
[DW], but the idea is the same). Note that (L) +% = &' + .7 .
Also, P < P, by Lemma 1, and therefore . = %..

Our main tool for analyzing isomorphisms and automorphisms of
Z'+ % is the following theorem of Andersen.

THEOREM 4 [An, Proposition 2.3.3]. If ¥ and # are comple-
mented CSL’s and &'+ % = #'+ % , then there are finite projections
Pe ¥, Qe &', and a unitary U with U — 1 € % such that
UZPU* = #2 and UPU* = Q.

It follows that U(ZP)'U* = (#2)" and U(LP)U* = (#9) .

LEMMA 5. The projections P and Q in Theorem 4 can be chosen
to be sums of finite atoms and subprojections of infinite atoms.

Proof. This lemma is very similar to [DW, Lemma 3.3]. Let Py €
Z', Qo € #', and U = I + compact be given by Theorem 4 so
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that U(ZP)U* = #% and UPU* = Qy. We may write Py =
Yit1Ai+A and Qo =Y 7, Bj+ B, where each A4;(B;) is dominated
by a finite atom E;(F;) and 4 and B are each dominated by a sum
of infinite atoms. Then E;4; and F;Bj are finite atoms of <%
and #%, respectively. Let C; = E;4, i=1,...,m,and Cjip =
U*(FjB#)U, j=1,...,n. Setting P = P+ Y[2{"C; and Q =
Qo + X" UC;U*, it follows easily that P and Q have the desired
form, U(ZP)U* =.#2, and UPU*= Q. O

For convenience, we will say that a finite projection which is a sum
of finite atoms and subprojections of infinite atoms is o-finite. We
can now characterize when two such algebras ¥/ + % and #' +.%
are equal or isomorphic.

COROLLARY 6. Suppose & and # are complemented CSL’s. Then
L'+ X = M"+F iff thereis a unitary U with U-I € % and a-finite
projections P € %' and Q € #' such that

(i) ULU*= 4., and
(i) UZPU* =.#2 with UPU* = Q.

Proof. Necessity follows immediately from Theorem 4 and Lemma
5. On the other hand, given U, P, and Q satisfying (i) and (ii),
we have U(ZP)U* = #2 since & = % and #2 = #.. Then
(#Q) = UZP)U* C (ZPY+F and (ZF) = U*(#2)U C (#2) +
% since U —I € % . The result now follows because () +.% =
Z'+% and (#) + X =M +F . 0

If & and .# are purely atomic with no infinite atoms, then [P,
Corollary 14(i)(ii)] follows immediately.

CoroLLARY 7 [P, Corollary 14). Suppose &% and # are purely
atomic CSL’s with atoms {E;: 1 < i < oo} and {F;: 1 < i < oo},
respectively, such that dimE;, dimF; < oo forall i. Then &'+ % =
M+ F iff there is a unitary U with U -1 € %, finite subsets
Ny, N1 €N, and a bijection n: N\ Ny — N\ Ny such that UE;U* =
E) forall ieN\ Ny and U(}:,«GN0 E)U*= EIEN‘ F;.

Proof. Simply apply Corollary 6 to the complemented lattices gen-
erated by & and ./, letting P =3,y E; and Q=3 ey F;. O
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LEMMA 8. Suppose & and # are complemented CSL’s and V is
a unitary operator such that V(&' +Z)V* = 4"+ % . Then thereis a
unitary U with U —I € & and o-finite projections P€ &', Q € #'
such that

(i) (AdUV) (&) =4, and
(i) (AAUV)(ZF) =42 with (AdUV)(P)=Q.

Proof. #'+% = V(L' +I)W*=VLV*+F = VLV*)+%, 50
Corollary 6 can be applied to .# and V. V*. Thus, there is a unitary
U with U -1 € % and o-finite projections R € (VZV*) and
Q € 4" such that U(V.ZV*) U* = # and U(VZLV*)R)U* = 42
with URU* = Q. Now (VZV*),=VZV*,s0 (AdUV)(Z) = A4,
Also, (VZV*R = v.ZV'RVy+ 5o (AAUV)(Z) RY) = £L with
(UV)YV*RV(UV)* = Q. Since V*RV is a og-finite projection in &',
the result follows by letting P = VRV*. |

By Lemma 2, C*-isomorphism is the same as unitary equivalence
for essential commutants of abelian von Neumann algebras, so the
next corollary specifies when two such algebras are isomorphic.

COROLLARY 9. Suppose . and # are complemented CSL’s. Then
L'+x =M+ iff

(i) Z=4,

(i) (&) =i(#), and

(iii) there are finite subsets # C F(¥) and & C F(#) and a
bijection 1: F(L)\ P — F(#)\ & such that dimA = dim1(A)
Jor all A € F(Z£)\ Z. In addition, if i(¥) = i(#) = 0, then
dim(} e 5 4) = dim(} g, B).

Proof. Suppose V is a unitary operator such that V(&' +.2)V* =
A' + % . By Lemma 8, there is a unitary U with U — I € % and
o-finite projections P € &', Q € #' such that (AdUV)(%) = 4.,
(AAUV)(ZFP) = #2, and (AdUV)(P) = Q. Then % & 4, via
UV , proving (i), and AdUYV is a bijection of &/ (Zf) onto & (.laQ)
such that (AdUV)(P) = Q. (ii) now follows since (&%) = i(Z])
and i(#) = i(#2). Finally, let # = {4 € #/(&): A < P} and
@={Ae vy (#): AL Q}. Then F(&£P)={P}U(F(Z)\ZL) and
F(#9) ={Q}U(F (#£)\@). Now justlet T = (AdUV)|g(g)»,and
(iii) follows (note that if (&) =0 = i(#),then P =), , A and
Q=3 peeB)-
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Conversely, suppose (i)-(iii) hold. If ¥ C Z(#) and # C
B(H), let W:# — # be a partial isometry such that WZ4W* =
M. Let {[;:11<i<i(¥)} and {J;:1<i<i(#)=i(Z)} be enu-
merations of .#(.¥) and .#(#), respectively. Let X: # — # be a
partial isometry such that XAX* = t(4) forall 4 € #(Z)\ %L . Now
if i(Z)=i(#)=0,let Y:# — # be a partial isometry such that
YO 4er A)Y* = 3 pce B, and define V' = W + X + Y. Otherwise,
let m =dim(}, crA4) —dim(} pB). If m<0,let C<I; bea
projection of dimension |m|, and let D=0. If m > 0,let D < J;
be a projection of dimension m, and let C = 0. If m = 0, let
C=D=0.Define P=C+3} 4,4 and Q=D+} p.,B. Now
define Y: # — # to be a partial isometry such that YPY* = Q,
YILY*=J; forall i >2,and Y(I; - C)Y* = J; — D, and define
V =W + X + Y. Then in either case V.ZPV* = #2, and it follows
that V(ZF)V* = (#2) and therefore V(&' + Z)WV*=4"'+% . O

If & or # is not complemented, then the same result holds with
item (i) changed to # (%) = % (), simply by applying the corollary
to Z(¥) and #(#). Also, the result for the special case considered
in [P] again follows immediately.

CoROLLARY 10 [P, Theorem 1]. Suppose & and # are purely
atomic CSL’s with atoms {E;: 1 < i < oo} and {F;: 1 < i < oo},
respectively, such that dimE;, dimF; < oo for all i. Then
L'+ % = M+ iff there are finite subsets Ny, Ny C N and a
bijection m: N\ Ng — N\ N; such that dimE; = dim E,; for all
i€EN\ Ny and dim(EiGNo E;) = dim(zjeNl Fj).

Corollary 9 shows that isomorphism is determined by simple con-
ditions on the atoms and unitary equivalence of the nonatomic parts
of . and .. But the latter is equivalent to unitary equivalence
of the nonatomic von Neumann algebras %" and . Let #Z =
L%([0, 1], #, u), where & is the o-algebra of Borel sets and u is
Lebesgue measure. If f € L>([0, 1], #, u), let M, be the multi-
plication operator acting on /% . For 1 < m < 0o, define 2™ =
{Meo---oMs: fe L*(0, 1], Z, u)} acting on %(’") , the direct
sum of m copies of # . Then each nonatomic abelian von Neu-
mann algebra 2 is unitarily equivalent to Y5, 2 (™, where £ is
a uniquely determined subset of {1, 2, ..., 00} [KR, §9.4]). We will
call # the multiplicity sequence of 2. Thus, % = #_ if and only if
Z!" and 4 have the same multiplicity sequences.
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Another result in [P] characterizes certain lattices .# for which ev-
ery unitary ¥ implementing an automorphism of .#'+.% splits. This
means that V' = W + K where W is a unitary satisfying W.&'W* =
Z' and K € % . Equivalently, V' = W;W, for some unitaries W;
satisfying WM\ Z'W = %' and W, -1 € % (justlet W) = W and
Wy =W*V). If # is a multiplicity-free CSL (%' =.¢" is maximal
abelian), then every such unitary splits [JP, Theorem 4.10]. However,
as shown below, there are also other cases for which this is true. In
the following proof, ind( 7") denotes the Fredholm index of an opera-
tor T.

THEOREM 11. Let .# be a CSL. Define
c(k) = card{4 € ¥ (¥): dim 4 = k}.

Then every unitary which implements an automorphism of &' + %
splits if and only if either

(i) ¢(o0) =0 and c(k) = oo for at most one k, or

(ii) ¢(o0) =1 and c(k) < oo forall k.

Proof. By replacing . with the complemented lattice generated
by .Z, we can assume without loss of generality that .# is comple-
mented. Suppose (i) holds, and suppose that V' is a unitary satisfying
V(Z'+Z2)V* = £+ %. Then by Lemma 8, there is a unitary
U with U -1 € % such that (UV)Z(UV)* = %, and finite sub-
sets #,4 C F(¥) = &(Z) such that AdUV is a bijection of
F(Z)\ P onto F(Z)\@ and (UV)X 4 A)UV)* = Y pee B.
Let e(k) = card{4 € ¥/ (¥): dimA4 = k and 4 € &} and f(k) =
card{4 € ¥ (%): dimA4 =k and 4 € €}. Then if c(k) < o0, it fol-
lows that e(k) = f(k), and (i) then implies that e(k) = f(k) for all
k. Thus, there is a partial isometry Y such that AdY is a bijection
of F(Z)NP onto F(L)N&. Let W=Y +UV(Y 4cr A)*. Then
AdW implements an automorphism of .#” since WZW* = %
and WEW* = %, and therefore implements an automorphism of
Z' as well. Also, W is a compact perturbation of UV since Y and
> 4ce A are compact, and UV is in turn a compact perturbation of
V since U-I€X%.

Suppose instead that (ii) holds, and let Ay be the one infinite atom.
If V is a unitary such that V(¥'+%)V* = ¥'+% , then we again ob-
tain a unitary U with U —1I € % such that (UV).Z(UV)*, and also
there are o-finite projections P, Q € &' such that (UV)P(UV)* = Q
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and (UV)ZP(UV)* = Z2. Then AdUV is a bijection of F(Z)\ &
onto F(Z)\&, where # ={4e€F(¥):A<P}and & ={4A€
F(Z): AL Q}. Let Py=PAy and Qy = QA . Since c(k) < oo for
all k, it follows that e(k) = f(k) for all k, and therefore dim Py =
dim Qp. Now let Y be a partial isometry such that AdY is a bijec-
tion of F(Z)NZL onto F(Z)N& and also YPY* = Qy. Finally,
define W =Y + UVP~L. As in the argument for case (i), V - W € %
and W¥'W*=9¢".

To prove that either (i) or (ii) is necessary, first suppose that . C
#(#) has at least two infinite atoms A4y and A4;. Let Py < 4y bea
rank-one projection and let F = I—A4g— A, . Define V' to be a unitary
such that Viry = I|rz, V(4o — Py)V* = Ay, and V (4, + P)V* =
Ay. Then certainly V(&' + Z)V* = &' + % . However, there is
no unitary W with V — W € % such that WZ'W* = &', For
if there were, it would follow that W.Z"W* = ", and therefore
WAyW* is an infinite atom of .. But WA\W* = Ay + compact,
so in fact WA W* = A,. Similarly, WA, W* = A;. Let R = 4, +
Py and S = A; + WPyW*. Then, viewing SW|rz and SV|ry as
operators from R# to S#, ind(SW|ry) =0 and ind(SV|ry) =
—1, contradicting the fact that the Fredholm index is invariant under
compact perturbations.

Next, suppose c(oo) = 1 and c(kg) = co. Let Ap be the infinite
atom and let E;, E;, ... be the atoms of dimension ky. Let G =
I—Ay— Y2, E; and define V' to be a unitary such that V|gs =
Ilgw, V(Ao + E|)V* = Ay, and VE;V* = E;_; forall i >2. Then
V(&' +Z)V* = &' + %, but again there is no unitary W with
V-We€Xx and WZ'W* = #'. For W would have to satisfy
WA W* = Ay, so if R = Ay+ E; and S = Ay + WE,W*, then
ind(SW|rz) =0 and ind(SV|r#) = —ko, a contradiction.

Finally, if c(o0) =0, c(ky) = 00, and c(k;) = oo for kg # k; , then
a minor variation of the argument given in [P, Corollary 12] yields a
unitary which implements an automorphism of .#’ +.% but does not
split. O

We can also extend [P, Corollary 13] to the general situation.

THEOREM 12. Let . be a CSL. Then all automorphisms of &'+ %
are inner if and only if

(1) & is purely atomic,
(i) i(&¥)<1, and
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(iii) there is a finite set ¥ C & () such that dim A # dim B for
all distinct atoms A, Be % (Z)\ & .

Proof. Again, by replacing . with the complemented lattice gen-
erated by ., we can assume without loss of generality that & is
complemented. Suppose (1)-(iii) hold, and suppose Ad V' is an auto-
morphism of ¥’ +.% . Then Theorem 11 implies that V' splits, since
c(k) < oo for all k£ by (iii). Thus, ¥ = W + K with K compact
and W a unitary satisfying W.2'W* = &' . Denote the atoms of &
by {4;}},, M < co. Then it follows from (iii) that there is some
N such that (AdW)(4;) = A4; for all i > N and, if an infinite atom
Ajns exists, then (Ad W)(Ainfr) = Ains. By increasing N if necessary,
we can assume Aj; = 4; for some k < N. Nowlet P =Y N 4; if
i(#)=0and P=YN, 4,— 4 if i(¥)=1. Then WP+ € %' and
W-WPlex,so VeZ +%.

To show that (i)-(iii) are necessary, first suppose % is not purely
atomic. Let P, = EAGM(.?)A and P, = I - P,. Then % is a
nonatomic complemented CSL on P.#. From the multiplicity the-
ory of abelian von Neumann algebras, there are orthogonal projections
{Pn: 1< m < oo} suchthat for P, # 0, (| p #)" is unitarily equiv-
alent via a unitary X,, to the algebra (™) defined after Corollary
10. Choose n so that P, # 0, and recall that u is being used to
denote Lebesgue measure. Now if we let f(x) = x2, then there is a
unitary operator Y such that YL2([0, f(1)], ©)™ = L2 ([0, 1], u)™
for all ¢t € [0, 1] [D1, Corollary 7.16]. Let P, be the projection onto
L?([0, 7], w)™ | so YPsY* = P, forall ¢, and Y thus implements
an automorphism of Z (™ . But then P, YPyyY* = Py, Py )y, and it
follows that Y ¢ {P}' +.% , for otherwise the left side would be com-
pact but the right side would not. Thus, X;Y X, ¢ (%] P, z)+% ,and
therefore V = P, +3_,,., Pm+X;Y X, is a unitary which implements
an automorphism of .#’ +.% that is not inner.

Now suppose .¥ is purely atomic but that . has at least two
infinite atoms. Again, denote the atoms of . by {4;}},, M < .
By relabeling if necessary, we can assume A4; and A, are infinite.
Let R = Eﬁ‘; A; and define a unitary V = I|gy + W, where W
is a partial isometry satisfying WA, W* = 4, and WA, W* = A4;.
Then VZ'V* =.%",s0 AdV certainly implements an isomorphism
of &' +% . However, V —0%(V)=VR: =W ¢ %, and therefore
V ¢ &'+ % by [W3, Lemma 5].



374 BRUCE H. WAGNER

Finally, suppose (i) and (ii) hold, but (iii) is false. Then there is an
infinite sequence of atoms {B;} such that dim B,;_; = dim By; for
k=1,2,3,....Let §$=3"72, B; and define a unitary V = I|g., +
W, where W is a partial isometry satisfying W B,;,_W* = B,; and
WBy W* = By, forall k. Then Ad V' implements an isomorphism
of #', and therefore ¥’ + % also, but again V ¢ ¥’ + % since
V-0x(V)=VS=W ¢ % . O

The last proof used several techniques for constructing automor-
phisms which are not inner. These techniques give an indication of
how to calculate the outer automorphism group of &’ + % . First,
we will use Sym(S) to denote the group of all permutations of a set
S. Now let ¥ be a CSL and let Py = }_ 55 4. If E is a fi-
nite sum of atoms in ¥ (%), define % to be the lattice ZPsE~+
on PEL¥? . Given % and %, let ISO(Z, %) denote the set
of bijections 0: &/ (%) — & () which preserve dimension. Note
that 6 extends to a map which takes sums of atoms to sums of
atoms. Let ISOgs(¥) = JISO(Z%, ZF), where the union is taken
over all pairs (E, F) of finite sums of atoms in (%) with the
property that if i(#) = 0, then dim E = dim F. Now if 0 €
ISO(%%, %) and G is a finite sum of atoms in %%, then define
6c € 1SO ((Z)g» (ZF)eg)) by restriction. We can now define an
equivalence relation on ISO&(¥) by 8 ~ 7 if there are finite sums
G and H of atoms such that 6; = 7y . The class of 8 will be denoted
by [0].

We next define a multiplication on ISOg(%)/ ~. Suppose 6 €
ISO(%% , %) and 7t € ISO(%%, Z4), and define [7][0] = [p], where
P = Tpgt ©0g-1 g1 . It is not hard to see that this multiplication is
well-defined and associative, [id] is an identity, and [0]~! = [6~!].
Thus, ISO#(#)/ ~ is a group, denoted a-ISOs (). We note that
this group is very similar to, and was motivated by, the group a- Aut.#
in [DW, p. 615-616].

We are now in a position to calculate Out(.#’' + .%Z ). For sim-
plicity, we will compute this group separately for the purely atomic
and nonatomic cases, and then combine these results to prove the
general case in Corollary 20. In the following theorem, we note that
Sym(f# (%)) = {id} if (&) =0 or 1, and a-ISOx (%) = {[id]} if
F(Z) is finite.

THEOREM 13. Suppose .Z is a purely atomic CSL. Then
Out(#' + %) = Sym(F# (Z)) x a-ISO#(Z).
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The proof will be completed by a succession of lemmas. First, note
that each of the groups in the statement of the theorem is the same
for .# as for the complemented lattice generated by &, so we can
assume .Z is complemented. After the next technical lemma, we will
define a map I': Aut(¥’ + %) — Sym(F (%)) x a-ISO#(¥), and
then show that I' is a surjective group homomorphism whose kernel
is Inn(Z’ + %), completing the proof.

LEMMA 14. Suppose .# is a complemented CSL and W is a unitary
in &'+% suchthat AW is a bijection of F (Z)\&# onto F(ZL)\&
for some finite sets &, ¥ C F(Z). Then there is a finite set £ 2 &
such that (AdW)(A)=A forall Ac F(L)\Z.

Proof. Write W = S + K for some S € &' and K € %, and
suppose (AdW)(E;) # E; for an infinite set {E;: 1 < i < oo} C
F(L)\Z. Let ¢; € E;# with |le;|| =1, and let f; = We;. ||Ke;i|| —
0 since e¢; — 0 weakly and K is compact. But then

1= (f,, ﬂ) = <EilWEiei, f;) = (EiJ'(S+K)E,-e,-, f;)
= (EiJ-KEiei’ f;) = (Kei’ Ez-L.f» s
a contradiction. O

If a € Aut(¥'+%), then a = AdV for some unitary ¥ by Lemma
2. If AdV=AdV' on &'+ % ,then V*V' € (X' +F) =Cl,s0 V
is unique up to multiplication by a scalar of modulus 1. By Lemma
8, there is a unitary U with U — I € Z and o-finite projections
P, Q € .# such that (AdUV)(P) = Q and (AdUV)(Z?) = 2.
Thus, AdUV is a bijection of .#(Z%) onto .#(#2). Because of
the form of P and Q, this induces a unique bijection 1, of .#(.¥)
satisfying 1,(4)Qt = (AdUV)(4P*) for all 4 € #(&). It follows
that 1,(4)—a(A4) € Z forall 4 € #(¥). From the above, a different
choice of ¥ hasnoeffecton AUV . Suppose U’, P',and Q' satisfy
the same properties as U, P, and Q, and 7, is the corresponding
induced bijection of #(#). But then 1,(4) — i,(4) € Z for all
A e A (&), so i, = 1,. This shows that i1, is well-defined, i.e., it
is determined by any V implementing o« and any U, P, and Q
satisfying Lemma 8 for V' and .#. An equivalent characterization of
1, is that it is the unique bijection of (%) such that 1,(4) —a(A4) €
Z forall Ae 7(¥).

Now AdUV is also a bijection of ¥(¥)\ £ onto ¥F(Z)\&,
where X = {4 € F(ZL): A< P} and ¢ ={Ae F(¥): 4L 0Q}.
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Thus, (AdUV)|g o)\ € ISO(Z, ZF), where E = }_,.»A4 and
F =3 4c¢A. Moreover, if i(Z) =0, then E =P and F = Q,
so dimE =dimF . Let ¢, = [(AdUV)|g(z)\»]. If U’', P!, and Q'
satisfy the same propertiesas U, P,and Q, we will obtain analogous
sets &' and €' and projections E’ and F'. Let

F=PU{AdV*U*)(A): Acd' \&)

and
F =P U{(AdV*U™)(A): Ae@\&'}.

Then AdV*U™*UV is a bijection of F(Z)\ & onto ¥(¥)\.¥ and
V*U*UV = I + compact, so Lemma 14, with W = V*uruv,
implies that there is a finite set # 2 # such that (AdUV)(4) =
(AdU'V)(A) for all 4 € F(Z) \@“. Therefore (AAUV)|g o ~
(AdU'V)|g(#)\o » and it follows that ¢, is well-defined. Thus, we
have proved

LEMMA 15. Themap I': Aut(F'+%) — Sym (F(Z))xa-ISO5 (L)
by T'(a) = (1o, 9a) is well-defined.

LEMMA 16. I is surjective.

Proof. Suppose (1, [¢]) € Sym(~F(¥)) xa-ISO#(Z¥). Let y € [¢],
so ¥ € ISO(%%, %) for some E, F. Let W be a partial isom-
etry such that WAW* = y(A) for all 4 € &/ (%) = F(Z%) and
WAW* = 1(A4) forall 4 € #(Z). If dimE =dim F (in particular,
if i(¥) = 0), let X be a partial isometry satisfying XEX* = F,
and define V = X+ W, Pp = 0, and Qp = 0. On the other
hand, if dimE # dim F (so i(¥) > 0), choose an infinite atom A,
and finite subprojections Py < Ay and Qp < 1i(A4p) such that
dim(E + Py) = dim(F + Qp). Let Y be a partial isometry with
Y(AoPy)Y* =1(A40)Qy and Y(E + Py)Y* = F + Qp, and define V =
Y + W(E + Ag)L. Then in either case (AdV)(ZFE+h) = #F+Q | so
a = AdV is an automorphism of &' + %, and it is readily ap-
parent that I'(a) = (1, [¢]) (simply let U =1, P = E + Py, and
Q=F+Q). 0

LemMA 17. T is a group homomorphism.

Proof. Let a1, ay € Aut(¥' + %) with a; = AdV; and oy =
AdV,. Define a3 = apoa; = AdV,¥V;. Use Lemma 8 to obtain
unitaries U;, U,, and U; with U; —I € & and o-finite projections
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P, P, Py, O, @y, Q3 in & such that (AdU;V;)(P;) = Q; and
(AdUV)(ZP) = 2% for i = 1,2, (AdUsVa¥i)(P3) = Qs, and
(AdUs1y 1) (2P) = 2. Then 1, () — ai(d) € % forall 4 €
F(Z), 50 lo, (1a,(4)) — @3 (1a,(4)) € Z . But then

(1o, © 1o, )(4) — @3(A4) = 1o, (1a,(4)) = @2 (1a,(4))
+ @3 (1o, (4)) — a2 (a1(4))
= la, (1a,(4)) = @2 (10,(4))
+ V3 (1a,(4) —a1(A)) V' € %,

and it 10llows that 1, =1, 01, .

Nowlet # ={Ae€F(¥X):A< P} and g={4€F(Z): AL
Qi}, i=1,2,3,50 ¢, = [(AdU,'Vi)ly(_gz)\gzi] for i =1,2, and
9o, = [(AdUsV2N)|72)\2,] - If we define

Py =P U{(AdV'UT)(A): A€ P\ a1}

and

@y =& U{(AdU,1,)(4): A€ 01\ P},
then AdU,V,UV; is a bijection of (&%) \ £ onto F(¥)\ &,,
and 94,0, = [(AdU,V2U M) s (e)\»] by definition of the product
in a-ISO ¢/ ~. Define X = U3V,V; and Y = U,V,U ¥V, and let

Z=PU{(AdX")(A): A€ @\ &3}

and

=P U{(AdY*)(A): A€ T3\ &,s}.
Then AdY*X is a bijection of F(¥)\ Z# onto ¥(Z)\ ¥ and
Y*X = I + compact, so Lemma 14, with W = Y*X, implies that
(AdX)(A4) = (AdY)(A) for all 4 € F(Z) \ #Z, where # is some
finite set containing % . Therefore (Ad X)|g 2\ ~ (Ad Y)|g@n\z, s
i€, Yo, = @o,Pa, - O

LemMma 18. Ker(I') = Inn(&' +.%).

Proof. First suppose 6 € Inn(.¥' +.%), 6 = AdV . Let U be any
unitary and P, Q € &' be any o-finite projections satisfying Lemma
8. Suppose 1p(4) # A for some 4 € F(&Z). Write V = S+ K
with S € &' and K € % . Then A+VAV* = AL(S + K)AV* =
ALKAV* € 7 . Also, 19(A) — VAV* = 15(A) — 6(4) € Z . It follows
that 19(A4) = AL (19(A4) — A) = AL (19(A) — VAV*) + AL (VAV* - A) €
Z , a contradiction. Therefore, 1y = id € Sym(#(¥)).
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Now Ad UV is a bijection of & (Z)\ & onto ¥ (Z)\& for some
finitesets #, € C F(¥). UV € Z'+% since U-I € Z ,so Lemma
14 implies that there is a finite set & 2 &% such that (AdUV)(4) = 4
for all 4 € F(%)\ &. It follows that gy = [id], and therefore
I'(6) = (id, [id]).

Suppose on the other hand that I'(§) = (id, [id]). We want to
show that § = AdV € Inn(¥’ + %). Let U be any unitary and
P, Q €.#' be any o-finite projections satisfying Lemma 8. Let & =
{AeF(&¥):A<P}and € ={Ae€F(¥): A< Q}. Then AUV
is a bijection of 7 (Z)\Z onto F(Z)\@, and (AdUV)|g(#)\» ~ id
by the definition of ¢g. It follows that there is a finite set & 2 &
such that (AdUV)| FENG = id | FENG Also, AdUV is a bijection
of #(Z?) onto #(Z9) such that 4Q+ = (AdUV)(AP+) for all
A€ #(&). Let Z be the finite set P U {4 € #(Z): AP # 0 or
AQ # 0}, and define P = Y54 and R=3,.,A4. Then for
T e,

UVTV*U* = UVTR*V*U* + UVTRV*U*
= TR! + UVTRPLPLV*U* + UVTRPPLV*U*
+ UVTRPV*U*
= TR+ + TRPLQ* + UVTPPLV*U* + UVTPV*U*
= T + compact.
Equivalently, (UV)T — T(UV) € % for all T € &". Therefore,

UV € &'+ % by [JP, Theorem 2.1], so V € &' +.% also since
U-Tex. O

Proof of Theorem 13. Apply Lemmas 15-18. O

THEOREM 19. If & is a nonatomic CSL, then
Out(¥' +.7) = s- Aut(L").

Proof. As before, we can assume . is complemented. Let a =
AdV e Aut(Z' + %), and let U, P, and Q be given by Lemma 8.
Then P=Q =0 by Lemma 1, so (AdUV)(¥) =%, and therefore
Ad UV also implements an automorphism of .#". By the same rea-
soning used in the proof of Theorem 13, another choice for V' has
no effect on AAUV . If U’, P, and Q' satisfy the same properties
as U, P, and Q, then (AdUV)(E) - (AdU'V)(E) € Z for every
projection E € %, and this implies that (AdUV')(E) = (AdU'V)(E)
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since E is infinite. Thus, the map y: Aut(¥' +.%) — s- Aut(¥") by
y(a) = AdUV is well-defined, i.e., every possible choice of V', U,
P, and Q vyields the same automorphism of .#”.

Now if AAW € s-Aut(¥"), then AdW € Aut(Z' + %) also.
U=1 and P = Q = 0 satisfy Lemma 8, so y(Ad W) = Ad W . This
shows that y is surjective.

Suppose a, f € Aut(L'+%) with a=Ad V], and f =AdV,. Let
U;, U, and U; be unitaries with U; — I € % such that AdU, V1,
Ad UV, AdUsh 1, € Aut(&Z”), ie., y(a) = AdAUV, y(B) =
AdUyV,, and y(f oa) = AdUsV5V; . But then

(Ad U,V 0 AdUN)(E) — (Ad UV, N)(E) € 2
for every projection E €.#, and therefore
(Ad U212 0 AdUN)(E) = (AdUs V2 N)(E).

Thus y(B)oy(a) =y(Boa), and y is a group homomorphism.

Now suppose a = AdV € Inn(&' +.%). Let y(a) = AdUV, and
write U=I+K, V=8S+L with K,Le % and S €.%'. Then
for each projection £ €., (AAUV)(E)= I+ K)(S+ L)EV*U* =
ESV*U*+ M for some M € % . Therefore, EX(AdUV)(E)e %, a
contradiction unless E+(AdUV)(E) = 0. But the same argument ap-
plied to E+ shows that E(AdUV)(E') = 0, and these two identities
imply that (AdUV)(E) = E for all E € .. Therefore, y(a) =1d.

Finally, suppose a = AdV € Aut(¥’' +.%) and y(a) = AdUV =
id € s-Aut(#¢”). Then UV € ¥, s0 V € ¥ +%, ie, a €
Inn(#’' + %). Therefore, Ker(y) = Inn(.¥’ + %), and the proof
is complete. O

COROLLARY 20. If . is a CSL, then

Out(F' + %) = s-Aut(Z') x Sym(F#(¥)) x a-ISO# (7).

Proof. Again, we can assume without loss of generality that . is
complemented. Let a = AdV € Aut(¥' +.%), and let U, P, and
Q be given by Lemma 8. Let P, =} c (#)4 and P =1 - F,.
Then (AdUV)(&Z) = % and (AAUV)(ZF) = Z2 so (Ad UV)|p»
implements an automorphism o, of &'+ % (P.#) and (AdUV)|p »
implements an automorphism o, of %/ + % (P,#). In addition,
(ac ®ag)oa~! € Inn(F' +.%) since U ~ I € % . Thus, by defining
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I~"(a) = (¥(ac), I'(aa)) = (v(ac)s la, s ¢a,), it follows from Theorems
13 and 19 that I" induces the desired isomorphism. o

Since any unitary which implements an automorphism of %" must
map % (%) onto itself, Corollary 20 thus gives a characterization
of Out(.¥’ + %) in terms of certain maps on # (). Of course,
Sym(# (%)) is isomorphic to the symmetric group on »n letters if
i(#) =n, and Sym(# (%)) = Sym(N) if i(#) = oo. In addition,
Out(.Z!) provides an alternate description of s-Aut(.Z”). To see
this, first note that every element of s-Aut(.%) extends to an auto-
morphism of Z’. On the other hand, every automorphism of %/
is spatial by [Di, §II1.3.2, Corollary 1], and thus defines an element
of s-Aut(.Z) by restriction. Moreover, if AdU € Aut(.%’), then
AdU =1id on &' if and only if U € &/, i.e., AdU € Inn(#).
It follows that Out(¥’ + %) and Out(¥’) differ only in the factor
a-ISO#(Z). s-Aut(Z”) can also be described in another way. As
noted earlier, 2" = y°5 . 2™ where # C{1,2,...,00}. How-
ever, it follows from multiplicity theory that any unitary U which
implements an automorphism of 3% _, 2 can be decomposed as
a direct sum }:j‘i,e # Un of unitaries U, which implement automor-
phisms of 2™ . Consequently, s-Aut(.%") =5 . s-Aut(Z™).

We turn now to derivations of .’ + % . A derivation of a Banach
algebra A C Z(#) is a linear operator J: % — A which satisfies the
property 6(ST) = 6(S)T + So(T) forall S, T € A. J is denoted
by ad X if 6(S) = XS —SX for some X € &(#), and ¢ is inner
if 6 = adX for some X € A. If J is a continuous derivation,
then ¢ is the infinitesimal generator of the uniformly continuous one-
parameter automorphism group {exp(¢d): ¢ € R}, and if d = ad X,
then exp(td) = Ad(exp(¢X)). The approach taken here for derivations
of essential commutants of abelian von Neumann algebras is similar
to the one used in [DW, 3.11-3.13] for quasitriangular algebras (also
see [W1] and [W2]). In the following, ||T|l¢ denotes the essential
norm of T, i.e., ||T|le = |/g(A4)||, where g is the canonical projection
of #(#) onto the Calkin algebra B (#)/%Z (#).

LEMMA 21. Suppose & is a CSL. If AdV € Aut(¥' + %) and
|V =Ille < %, then AQV is inner.

Proof. Without loss of generality, assume .# is complemented, and
apply Lemma 8 to obtain operators U, P, and Q. Let a = AdV,
and define I' as in the proof of Corollary 20. Since U - € %', we
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have |UV - I|l. < 4 also, and it follows that

[UVTV*U* = T| < |[UVTV*U* = TV*U*||.
+ITVU* = Tle < || T|le

forall T € #(#). Now (AdUV)(Z) = % and (AAUV)(ZF) =
Z2 with (AdUV)(P) = Q. Therefore, (AdUV)(4) = A forall A€
% since UVAV*U* — A is the difference of two infinite commuting
projections. Likewise, (AdUV)(AP+) = AQ* for all 4 € #(Z).
Thus, y(a) =id and 1, =id.

Let # ={AcF(Z):A< P} and @ = {Ad e F(¥): 4 < Q}.
Then AdUYV is a bijection of #(Z)\ £ onto F (&) \&. Suppose
(AdUV)(E;) # E; for an infinite set {E;: 1 <i< oo} CF(ZX)\Z.
Let K be a compact operator such that |UV —I —K|| < 4, and let
e; € E;Z with |le;]| =1. Then

1
I(UV —I-K)(e)| 2 |UVe; —eil| - [|Keil| > V2 - || Kei|| > 3

for i large enough, since ||Ke;|| — 0. This contradiction shows that
there is a finite set & D & such that (AdUV)(4) = 4 forall 4 €
F(Z) \.9% , and therefore, ¢, = [id]. The result now follows from
Corollary 20 and the definition of T. O

THEOREM 22. If .Z is a CSL, then every derivation 6: %' + % —
&'+ X is inner.

Proof. The proof is essentially identical to [DW, Theorem 3.13].
Again, we can assume .2 is complemented. By [DW, Lemma 3.12],
6 =adX for some X € Z(#). Then {a; = exp(td) = Ad(e'X): t €
R} is a uniformly continuous automorphism group of ¥’ + %, and
leX — I}l < § for ¢ sufficiently small. Thus, by Lemma 21, o, is
inner for ¢ small. It follows that X = lim, ot~ (e - e &' + %,
and therefore J is inner. O

Finally, we can make the following improvements to Lemma 21.

COROLLARY 23. Suppose Z is a CSL and a € Aut(¥' + 7).

(i) If the spectrum of a is contained in Q = {z € C: Rez > 0},
then « is inner.
(ii) If la —id|| < 1, then « is inner.
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Proof. (i) follows from Theorem 22, using the argument given in
[W2, Corollary 2.4]. (ii) follows from (i) since || —id|| < 1 implies

that the spectrum of o is contained in €. o
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