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THE LUROTH SEMIGROUP
OF PLANE ALGEBRAIC CURVES

S. GRECO AND G. RACITI

A "gap" for a smooth irreducible complete algebraic curve C is
a non-negative integer n such that no rational function on C has
degree n . The non-gaps form the so called "Luroth semigroup" of
C .

We give methods to find gaps and non-gaps when C is a plane
curve of degree d, based on properties of linear series and Hubert
functions. It turns out that for d < 14 the Luroth semigroup depends
only on d; and for larger d we point out where two curves might have
different gaps. Bounds are also given for the conductor of the Luroth
semigroup, depending on d .

Introduction. The Luroth semigroup (LS) of a smooth irreducible
complete algebraic curve C is the additive semigroup Sc contain-
ing all the degrees of the rational functions of C (equivalently: the
degrees of the linear series on C without base points). As such it
was introduced by Heinzer and Moh [HM], but the problems related
to it are as old as the theory of curves: indeed the knowledge of the
degrees of the rational functions on C is a remarkable step towards
the knowledge of the geometry of C.

A systematic account on Sc is available only in a few cases, namely
curves with general moduli, hyperelliptic curves, and plane curves up
to degree 9 (see 1.3 below).

The main purpose of this paper is to study Sc for a plane curve C
of degree d > 4 (the situation being trivial for d < 3). After some
preliminaries collected in §1, we prove, in §2, that if a curve carries a
vety ample linear series of degree m and dimension r, then all the
integers n such that m-r+l<n<m belong to its LS (Corollary
2.2). This fact follows from a theorem of Bertini (proved in arbitrary
characteristic by Laksov [L]), and implies that, if C is as above, then
Sc contains all integers n such that ad - a(a + 3)/2 + 1 < n < ad
for a e N and 1 < a < d - 1 (Corollary 2.6).

In §3 we show that no integer n with (a - \)d < n < ad - a2

{a € N) can belong to Sc (Theorem 3.1). To prove this we use
some results of Davis [D] to study the Hubert function of a zero-
dimensional subscheme of P2 contained in C in this way we can
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get control on the indexes of speciality of certain divisors on C, and
we can conclude, by Riemann-Roch, that every linear series on C of
degree n has a base point.

In §4 we show (Theorem 4.1) that if 3 < a < d-1 then Sc contains
at least an integer n such that ad - a2 < n < ad - a(a + 3)/2 in
particular we get that 3d - 9 always belongs to Sc, thus answering
a question raised in [HM]. The proof consists in showing that there
is a pencil of curves of degree a with sufficiently many base points
on C and this follows from the existence of suitable nets, whose
construction is possible by results of Maggioni-Ragusa [MR].

We also show, following a suggestion by P. Ellia, that for any d >
2a - 2 and any n as above there is a curve C of degree d such that
n eSc (at least in characteristic zero, Proposition 4.3).

The above results on plane curves are summarized in §5 (Theorem
5.1), where they are used to give bounds on the conductor of Sc
(Corollary 5.3), and to compute Sc when d < 14: in this case it
turns out that Sc depends only on d (Corollary 5.5).

We wish to thank W. Heinzer for bringing our attention to these
problems, and M. Boratynski for many helpful discussions. Our thanks
go also to the Department of Mathematics of Purdue University and
to the Mittag-Leffler Institute for hospitality and support to the first
author during some preliminary work on the subject of this paper.

1. Preliminaries. We shall denote by C a smooth irreducible com-
plete curve of genus g over an algebraically closed field k of arbi-
trary characteristic. We denote by k(C) the field of rational functions
on C, and we use freely the basic facts on divisor and linear series
on C (see [H] for a reference). We denote by Pr the projective
r-dimensional space over k.

1.1. DEFINITION. A non-negative integer n is said to be a "gap" if
every linear series of degree n on C has at least a base point.

The set of non-gaps is denoted by Sc, and is an additive sub-semi-
group of N (as one shows easily by using the sum of linear series).

Following [HM] we call Sc the "Liiroth semigroup" (shortly LS)
of C the motivation for this name can be found in [HM].

1.2. REMARK. It is easy to show that the following are equivalent
for a given n eN

(i) n e Sc (i.e. there is a g£ without base points).
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(ii) There exists a g* without base points.
(iii) There is a rational function / e k(C) of degree n (i.e. the

divisor of zeros (or poles) of / has degree ή).
(iv) There is a finite morphism C —• P1 of degree n .
(v) There is an invertible sheaf on C of degree n and generated

by global sections.

1.3. EXAMPLES, (i) Sc = N if and only if C ~ P 1 .
(ii) If g = 1 then n = 1 is the only gap.

(iii) If g > 2 and C is hyperelliptic then Sc is generated by 2,
g + 1, g + 2 (see [HM]).

(iv) Sc is known for every plane curve C of degree d < 9 (see
[HM]). We shall see later how to compute Sc for d < 14.

(v) It is known that if C has "general moduli" then Sc = {n e
N|Λ > (g + l)/2} (in characteristic zero, see e.g. [HO], introduction).

2. An elementary method to find non-gaps. If we know that n eSc,
i.e. that there is a σ = gr

n without base points, we can try to consider
the residual series of σ with respect to a general point P, to get a
g£Z\ If this linear series happens to be without base points, then we
get n - 1 G Sc. This elementary idea can be carried out in several
cases, giving in a unified way a number of (mostly well-known) facts.
Our argument is based on the following lemma.

2.1. LEMMA. Let p C ^ C ' c F , r > 2, be a birational mor-
phism, where C is a (possibly singular) curve of degree n not con-
tained in a hyperplane.

Then:
(a) n, n - 1 e Sc.
(b) If C is non-strange and r > 3 then n-2, ... , n-r+l eSc.

(See [H], /7. 311 for the definition of a strange curve.)

Proof, (a) The hyperplanes (resp. the hyperplanes through a general
point P e C) determine, by pull-back, a linear series without base
points of degree n (resp. n - 1).

(b) If C is non-strange and / is an integer such that 2 < / < r - 1
then by [L], Lemma 1 there are non-singular distinct points P\, ... , P/
on C such that the linear space L they span determines on C exactly
the divisor D = P{ + + Pt (we identify Pt with φ~ι(Pi)).

Thus the hyperplanes through P\9 ... , Pi cut out on C, outside of
D, a linear series of degree n - i without base points.
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2.2. COROLLARY. Let σ = gr

n be a linear series on C without base
points, and let φ: C —• Ψr be the corresponding morphism. Assume
that r>2 and that φ: C -> C := ψ{C) is birational Then

(a) n, n-\eSc.
(b) If either char(/c) = 0 or σ is very ample then n, n - 1, . . . ,

n - r + 1 G Sc .

Proof. By assumption C is a non-degenerate curve of degree n.
Then (a) follows immediately from 2.1 (a). To prove (b) we may as-
sume r > 3 (otherwise apply (a)). Then C is neither a line nor
a conic, and hence C is non-strange ([H], Theorem 3.9), and the
conclusion follows from (a) and 2.1(b).

2.3. REMARK. In characteristic zero the existence of P\, . . . , P/ as
in the proof of 2.1 is a classical theorem of Bertini. Thus in charac-
teristic zero 2.1 and 2.2 are much simpler to state and to prove.

2.4. COROLLARY, (i) // n > g + 1 then n eSc.
(ii) If C is non-hyperelliptic then g e Sc -

Proof. By a theorem of Halphen's ([H], Prop. 6.1) for any n > g+3
C has a very ample linear series of degree n . Then (i) follows from
2.2.

Similarly if C is non-hyperelliptic the canonical series is a very
ample linear series of degree 2g — 2 and dimension g — 1, and (ii)
follows again by 2.2.

2.5. REMARKS, (i) Corollary 2.4 is well known in characteristic
zero (e.g. [ACGH]), but we are not aware of any proof in positive
characteristic.

(ii) If C is non-hyperelliptic of genus 3 then 2 = g—1 £ Sc'- this
follows easily by considering C as a non-singular plane quartic (see
Theorem 3.1 below for details). On the other hand if g > 4 then
g - 1 e Sc ([ACGH], p. 372, F). For further information on the gaps
"near g" see e.g. [HO].

2.6. COROLLARY. Assume C is a plane smooth curve of degree dy

and let a be an integer such that 1 < a < d - I. Then every integer
n such that ad - a(a + 3)/2 + 1 < n < ad belongs to Sc.

Proof. The linear series cut out on C by the curves of degree a has
dimension a(a + 3)/2 and degree ad. Moreover it is easily seen to
be every ample. The conclusion follows then by 2.2(b).
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3. Finding gaps on a plane curve. In §2 we have shown that certain
sequences of integers always belong to Sc , where C is a plane curve
of degree d.

In this section we find something opposite: namely we produce
sequences of integers, none of which belong to Sc . The main result
is Theorem 3.1, whose proof is based on the study of the Hubert
function of certain zero-dimensional subschemes of P 2 .

3.1. THEOREM. If C c P 2 is a non-singular curve of degree d > 4
and {a - \)d + 1 < n < ad - (a2 + 1), with aeN and a > 1, there
is no gr

n on C without base points {i.e. n

3.2. REMARK. It is only a matter of computation to show that n as
above exists if and only if d > a2 + 2 and that ad - (a2 + 1) < g - 1
if a > 1 and d > a2 + 2. So 3.1 agrees with Corollary 2.4(ii).

Before giving the proof of Theorem 3.1 we recall some basic facts
about the Hubert function of a zero-dimensional closed subscheme of
P 2 .

3.3. Some basic facts about Hubert functions. If X c P 2 is a zero-
dimensional closed subscheme of degree δ(X) = n, we denote by
/ / ( I , /) the Hubert function of X and by AH(X, i) = H(X, /) -
H(X, / - 1) its first difference, for every i > 0, H(X, 0) = AH(X, 0)
= 1.

It is well known that, if a is the least degree of a curve through X,
AH(X, -) is characterized by the following properties (see [D]):

(3.3.1) AH(X, i) = i+l for 0 < / < a - 1,

(3.3.2) AH(X9 i)>AH(X, i + 1) for/>α,

(3.3.3) AH(X, /) is eventually zero,

(3.3.4) H{X, s) = Σ AH(X, /) in particular
i=0

δ(X) = J2AH{X9 i) = H{X, s) for s > 0.
ι=0

Moreover it will be important to know

(3.3.5) If X1 c X then AH{X', /) < AH(X, ϊ) for every i > 0

(see [D] or, for more details, [R]).
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In the following we will set AH(X, /) = cz and t = max{/ e N|

CiφO}.
Let s be an integer such that a < s < t, Γ5 any curve of P 2 of

degree cs and Σs = ΣS(X) the linear system of curves of degree s
through X.

3.4. LEMMA. WZY/Z the previous notation we have:

(l)

(2) If there exists s such that cs-\ = cs then Σs has a fixed compo-
nent Γ of degree cs and:

Proof. (1) follows from [D] (2.2)(a) if we observe that by (3.3.2),
as s > a, it is cs < s.

(2) follows from [D] (2.2)(b) and (2.3).

3.5. LEMMA. Let X be a zero dimensional subscheme of P 2 and
suppose that 0 < c;_i = Cj• = h < a for some integer j . Then there
exists a subscheme Y c X such that:

(1)

(2) H(Y, /) = H{X, i) - 1 for every i>j-2.

Proof. By (3.3.4) it is equivalent to show that there exists Y c X,
with δ{Y) = δ{X)-\, such that Δ//(7, i) = c/—1 for some / < ; - 2 .
If we denote by s the least integer for which cs = h , by (2) of Lemma
3.4, the curves of Σs contain a fixed component Γ of degree h and
it is

As ^ < α we get <5(X π Γ) < δ(X), and hence there is a scheme
r such that I n Γ c F c I a n d δ(Y) = δ{X) - 1. For such
a 7 we have AH(Y, /) < c, for every / and AH(Y, /) = c, — 1
for exactly one / respectively by (3.3.5) and (3.3.4). By assumption
cs = cs+\ = = c5+£ , /c > 1 it can be neither AH(Y, /) = c, - 1 if
5 < / < s + k - 1 by (3.3.2) nor AH(Y, /) = ct - I if i > s + k for
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otherwise Lemma 3.4(1) would imply <J(Γn X) = 5(Γn Y) < m - 1,
a contradiction. Then AH(Y, /) = c, — 1 for some / < s.

3.6. LEMMA. Lei Z) Z>e<zrc effective divisor on C, and let I c P 2 £e
corresponding closed subscheme. Then the following are equivalent:

(1) There exists a closed subscheme Y c X such that H(X, d-3) =

(2) 77z£ /meαr sw/es1 |Z>| has a base point.

Proof. (1) => (2). Let £ be the divisor of C corresponding to Y.
Then E is effective and E = D-P for a suitable P eC. Moreover,
since the canonical series of C is cut out by the curves of degree d—3,
we have

2

Then, by Riemann-Roch, P is a base point of |JD|.

(2) => (1). Reverse the above argument.

Proof of Theorem 3.1. Clearly we may assume d > a2 + 2, for
otherwise n does not exist.

Let D be an effective divisor of degree n we have to show that
the linear series \D\ has a base point i.e., by Lemma 3.6, that if
X is the closed subscheme of P2 corresponding to D, there is a
closed subscheme Y c X of degree n - 1, such that H(X, d - 3) =
i/(y, ύf — 3) + 1. We argue by contradiction.

So we assume:
(a) H(X, d-3) = H(Y,d-3) for every subscheme Y c X of

degree n - 1.
If y is any subscheme of X of degree n - 1 we have then n - 1 >

i/(y, d - 3) = H(X ,d-3) which implies:
(b) AH(X,d-2)>0,

for otherwise, by (3.3.2) and (3.3.4), H(X, </ - 2) = # ( X , rf - 3) =
ί(Jf) < H - 1.

If a = 1, we have n < d - 2 and then AH(X, d - 2) = 0 by
(3.3.1), (3.3.2) and (3.3.4), contrary to (b).

So we may assume a > 2.
Now if a is the least degree of a curve containing X we have α < a

by Bezout, whence ΔH(X, a - 1) = α. It follows:
(c) if s is any integer such that a-1 < 5 < d - 2 and AH(X 9 s) <a9

then

, d - 2) > 0.
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Indeed if AH(X, /) = ΔH(X, i + 1) for some s < i < d - 3
by Lemma 3.5 there exists Y c X such that δ(Y) = δ(X) - 1 and
H(Y, i) = H(X, 0 - 1 for every /> 5 - 1 , in particular H{Y, rf-3) =
# ( X , r f - 3 ) - 1 against (a).

We shall get a contradiction by showing that (c) implies:
(d) AH(X, i) > AH(Z, i) for all f s, where Z is a complete in-

tersection of type (a, d - a).
Indeed if (d) holds, by (3.3.4) and (3.3.5) we have n > a(d - a)

which is absurd.
To show that (c) implies (d) recall first that, since d - a > a (as

follows easily from d > a2 + 2), from the free resolution of the ho-
mogeneous saturated ideal of Z we have:

AH(Z, /) =

( i+ί for 0 < / < a - 1,

a fora<i<d-a-l,

0 for / > d - 1.

As a < α, (d) holds for 0 < / < a - 1 by (3.3.1) ((c) is not used
here). Next observe that (c) implies

AH(X,d-2-j)> min{a, j + 1}

for all j such that d -2- j > a-\ and in particular for j = a - 1
since d > 2a. This implies (d) for d - a - 1 < i < oo. Finally for
a < i < d - a - 2 the inequality (d) follows easily from (3.3.2). Thus
(c) implies (d) and the proof is complete.

4. Finding non gaps on a plane curve. The sequences of gaps and
non-gaps for a plane curve C of degree d found in 3.1 and 2.6 leave
out the integers n such that ad -a2 < n <ad -a(a + 3)/2, 3 < a <
d-\.

In this section we show that, for given a, at least an integer as above
belongs to SQ (Theorem 4.1), and that if d > 2a - 2 then for any
n as above there is a curve C of degree d having n as a non-gap
(characteristic zero, see 4.3).

4.1. THEOREM. If C c P2 is a non-singular curve of degree d and
a is an integer such that d > a > 3 there is at least an n e Sc such
that ad-a2 <n<ad-a{a + 3)/2.
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Proof. Since d > α, we can choose on C a set X of (aγ) - 3 := k
distinct points such that:

(1) no (a22) among the k points, 1 < a1 < a - 1, lie on a curve
of degree a'.

(2) dimΣΛ = (af) - l - f c = 2.
This follows from the proof of Lemma 3.3. in [MR]. Moreover, (cfr.

[GM], Theorem 3.4), as a > 3, every curve in Σa(X) is irreducible
hence every pencil contained in Σa has exactly a2 base points.

Let D be the divisor on C corresponding to X and σ the complete
linear series cut out on C by Σa(X) outside of D. Note that σ has
dimension two.

If a is without base points it cannot be very ample otherwise the
projective image of C by σ would be a non-singular plane curve
of degree ad - k and then, by the genus formula, we would have
ad -k = d, i.e d = (a + 4)/2, which is absurd.

Hence there exists a divisor P + Q on C such that

d i m | σ - ( P + β) | = 1.

So there are two diίferent curves C\ and C2 in Σa(X) such that
CrC>D + P + Q9 i= 1,2.

If σ has base points the same follows easily. Moreover, as C is
non-singular, we can see that i(A, C\ Π Cι) > min i(A, C, Π C), / =
1, 2 and 4̂ any point on C. (This follows from [F], Ch. 3 §3; see
[C], Lemma 5.2 for details.) Then if E is the largest divisor such that
0 < E < Cx•- C for / = 1, 2, and h = degis, we have:

Hence the divisors J3, = Ci-C-E are linearly equivalent and have
disjoint support. Hence they belong to a g\d_h without base point;
and since ad -a2 <ad -h <ad - a(a + 3)/2 our proof is complete.

4.2. COROLLARY. If d>4 then 3d-9eSc.

Proof. Apply Theorem 4.1 with a = 3.

4.3. PROPOSITION. If char(Λ ) = 0 and ad - a2 < n < ad -
a(a + 3)/2, a > 3, then for every d > 2a - 2 there exists a curve
C of degree d such that neSC

Proof. Let Γ and V be two non-singular curves of degree a which
intersect in a2 distinct points P\, ... , Pai. Then, by considering the
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Hubert function of a complete intersection of type (a, a) we see that
2a - 2 is the least degree of a curve to which they impose independent
conditions. Hence, if we fix d > 2a - 2 and k points P\9 ... 9 P^
among P\9 ... 9 Pai9 a(a + 3)/2 < k = ad - n < a2, there always
exists a curve C of degree d which contains these k points and no
one of the other a2 - k. Now we prove that such a C can be found
non-singular. So we consider the linear system Σ of curves of degree
d through Pi, . . . , Pk . Since a > 3 we have d > 2a-2 > a and then
all the curves having Γ or P as a component belong to Σ. Then the
base locus of Σ is contained in the set of points P\9 . . . , Pai and so,
by the above argument, it is exactly {P\9 ... 9 P^}. Then, by Bertini's
theorem, the generic curve of Σ is non-singular off of P\9 ... 9 P^.
The same argument shows that Σ contains some curve non-singular
in P\9 ... 9 Pfc and then the generic curve in Σ is non-singular.

So the pencil generated by Γ and P cuts out on C, outside of
Pi, . . . , /\ , a g\d_k without base points.

4.4. REMARK. If d » a > 3 we can find a curve C of degree d
such that n e Sc for every n e [ad - a2, ad - a(a + 3)/2].

We can argue as in the proof of the above proposition if we make
the following construction. First we fix t + 1 curves Γ, Γ\9 ... 9Γt

of degree a, where t is the number of integers in the interval we
are considering, and we choose them in such a way that Γ n Γz , / =
1 .. . , t, are disjoint sets X\ of a2 distinct points. Then we fix subsets
Yi of Xi in order to obtain all the integers in [ad-a2, ad-a(a+3)/2]
and finally we consider the curve of degree d through Y\ U Yi U U Yn .

This construction works, if d is very large with respect to a.

5. The Lϋroth semigroup of a plane curve and its conductor. In this

section we summarize all the results we know on the Lϋroth semigroup
of a plane curve C of degree d, and we apply them to give a lower
and upper bound for the conductor of Sc in terms of d, and to
compute Sc for d < 14.

If d = 1, 2, 3 then C is rational or elliptic, and the situation is
clear, see 1.3. For d > 4 we can summarize 2.6, 3.1 and 4.1 in the
following theorem.

5.1. THEOREM. Let C be a smooth plane curve of degree d > 4
and let a be an integer, 1 < a <d - 1. Then:

(a) // {a - \)d + 1 < n < ad - a2 - 1 then n <£ Sc.
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(b) If a > 3 there is at least an integer n e Sc, such that ad-a2 <
n <ad -a(a + 3)/2. In particular 3d -9 eSC

(c) // ad - a(a + 3)/2 + 1 < n < ad then neSc

5.2. REMARKS, (i) As remarked before statement (a) of 5.1 is void
iff d < a2 + 1.

(ii) Statement (b) is really meaningful if d > a(a + 3)/2+1. Indeed
if d < a(a + 3)/2 by a direct calculation we have

(1) {a - \)d -{a- \){a - 2 ) / 2 + 1 < ad - a2,

(2) ad-a(a

and then (b) follows from (c), applied with a replaced by a - 1.
Recall that if S c N is an additive semigroup, the conductor of S

is the least integer c such that every n > c belongs to S.
If C is a curve we denote by γc the conductor of Sc .

5.3. COROLLARY. Let d > 4 and put

b = min{a e N|α(α + 3)/2 > d - 1},

c = max{α e N|fl2 + 2 < d - 1}.

Then:

cd-c2 <yc<bd- b{b + 3)/2 + 1.

Proof. By 5.1.(a) we have cd - c2 - 1 φ Sc , and this gives the first
inequality.

Moreover b(b + 3)/2 > d - 1, and hence by 5.1(c) Sc contains at
least d - 1 consecutive integers, namely:

{n e N\bd - b(b + 3)/2 +\<n<bd}.

And since d - 1 e S c , we easily get the second inequality.

5.4. REMARKS, (i) The upper bound for the conductor given in
5.2 was first proved by M. Boratynski (unpublished), by a different
method.

(ii) From 5.2, by a direct calculation, one gets

7c < \ (dy/Sd+l - 5d + ό) .
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This shows that for d » 0, yc is bounded above by an integer of
order \fΐd^l2, whence yc < g - 1. This should be computed with
1.3 (ii), 1.3 (v) and 2.5 (ii).

Now we turn our attention to the LS of C for small d's. By a
straightforward calculation we get, from 5.1 and 5.3:

5.5. COROLLARY. If d < 14 then Sc depends only on d, and is
given by the table below.

d

1,2

3

4

5

6

7

8

9

10

11

12

13

14

N

0

1

1,

1,

1,

1,

1,

1,

1,

1,

1,

1,

1,

\SC

2

2 , 3

.. . ,

• ?

. . . ,

* ?

. . . ,

. . . ?

• 5

• * ?

* * ?

4;

5;

6;

7;

8;

9;

10

11

12

7

8,9

9 , . . .

10, . .

1 1 , . .

12, . .

13, .

14,.

15, .

, i i

. , 13

. , 15

. , 1 7 ;

. . , 1 9

. . , 2 1

. . , 2 3

23

25,26

2 7 , . . . , 2 9

2 9 , . . . , 3 2

5.6. REMARKS, (i) Corollary 5.5 was proved in [HM] for d < 9,
by different methods.

(ii) It is not clear to us if Corollary 5.5 holds for d > 14. The first
unknown situation occurs for d = 15, where the only dubious integer
is 46 = ad - a(a + 3)/2 with a = 4 (see 5.1).
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Note however that 46 e Sc for some curve C of degree 15 (see
Proposition 4.3).

(iii) If for d > 0 the LS of a curve of degree d is not independent
on d, it is natural to ask for the structure of SQ where C is a general
curve of degree d. This makes sense because almost all the curves in
an irreducible family have the same LS, see [G].

(iv) It is reasonable to believe, as suggested to us by A. Hirschowitz,
that for a general curve C of degree d the integers of the form ad -
a(a + 3)/2 belong to Sc . Some intuitive evidence for this to be ture
is given by our proof of 4.1.

Added in Proof. We have recently found out that the interesting
preprint (to appear in J. Algebra) Free linear systems on integral Goren-
stein curves by Marc Coppens contains a proof of our Theorem 3.1
for arbitrary integral plane curves, in the context of Hartshorne's the-
ory of generalized divisors (R. Hartshorne, Generalized divisors on
Gorenstein curves and a theorem ofNoether, J. Math. Kyoto Univ.,
26 (1986), 375-386). Coppens' result clearly implies ours, but his ap-
proach to the problem is completely different. It might be interesting
to know what happens if one considers Cartier divisors instead.
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