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SOME INFINITE CHAINS
IN THE LATTICE OF VARIETIES
OF INVERSE SEMIGROUPS

DaAvib CowAN

The relation v defined on the lattice . (.¥) of varieties of in-
verse semigroups by Z v 7" ifandonly if Z N% = 7 N¥% and
WNE =7 VvZ, where & is the variety of groups, is a congru-
ence. It is known that varieties belonging to the first three layers
of Z(F) (those varieties belonging to the lattice .%(2%) of vari-
eties of strict inverse semigroups) possess trivial v-classes and that
there exist non-trivial v-classes in the next layer of Z(.#). We
show that there are infinitely many v-classes in the fourth layer of
Z(F), and also higher up in .Z°(_¥), that in fact contain an infinite
descending chain of varieties. To find these chains we first construct
a collection of semigroups in %!, the variety generated by the five el-
ement combinatorial Brandt semigroup with an identity adjoined. By
considering wreath products of abelian groups and these semigroups
from #', we obtain an infinite descending chain in the v-class of
% N ', for every non-trivial abelian group variety % .

1. Introduction. In [K1] Kleiman demonstrated that the relation v
defined on the lattice £ (.¥) of varieties of inverse semigroups by
#v7 ifandonlyif # N¥ =2 N% and ¥ V¥ = 7 V&, where
Z 1is the variety of groups, is a congruence. He further showed that
the lattice . (%2¥) of varieties of strict inverse semigroups is isomor-
phic to three copies of the lattice (%) of varieties of groups and
that each of the intervals [, ¥V Z] and [#, % V ], where &
is the variety of semilattices and % is the variety generated by the
five element combinatorial Brandt semigroup, is isomorphic to .# (%)
(and so, as a result, Z(#%¥) is a modular lattice). Consequently, for
any variety 7 in & (%), the v-class of 7 is trivial. #(%27) is
sometimes referred to colloquially as the first three layers of the lattice
Z(#). The “fourth” layer, [F!, #! Vv Z], where #! is the variety
generated by the five element combinatorial Brandt semigroup with an
identity adjointed, is not nearly as nice. While it is a modular lattice
(the collection of congruences on an inverse semigroup which have the
same trace forms a complete modular sublattice of the lattice of con-
gruences on that semigroup), the v-classes of its members are not all
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trivial and, as a result, .# (%! Vv £) is not modular, and hence Z(.¥)
is not modular (Reilly [R2] provides an example which demonstrates
this). In this note we show that the v-class of #!v.&7 , for any abelian
group variety .« , contains an infinite chain of varieties and so is far
from being trivial. The technique used is interesting in that we are
only required to know the structure of the Z-classes (as reflected by
their Schiitzenberger graphs) of a given collection of words with re-
spect to #! (and not the entire % !-free object on countably infinite
X)) in order to construct inverse semigroups which are then shown
to generate distinct varieties. We remark that the variety %! has
proved to be rather enigmatic. Even though it is generated by a small
(6-element) inverse semigroup and #(%#!) is just a 4-element chain,
its members are not easily characterized and, as Kleiman proved in
[K2], it is not defined by a finite set of identities.

Section 2 is devoted to preliminary material. In §3 we construct a
collection of inverse semigroups each of which belongs to the variety
Z' butnot & . From these semigroups we construct in §4 a collection
of inverse semigroups belonging to #!o.%,, n € w, but not Z'v.%,.
In the final section we use the semigroups of §4 to construct an infinite
chain of varieties in the interval [#!V .%,, & 0 %!] which is the v-
class of #!V.%, (by a theorem due to Reilly [R1]). Using this result
we can then show that a larger collection of v-classes which are also
intervals in .#(#) possess an infinite descending chain of varieties.

2. Preliminaries. We assume that the reader is familiar with the
basic notions of inverse semigroup theory for which Petrich [P] is a
standard reference. For the basic results concerning varieties we refer
the reader to [BS]. We will consistently use the following notation:

¥ — the variety of all inverse semigroups

% — the variety of groups

B,— the five element combinatorial Brandt semigroup

% — the variety generated by the five element combinatorial

Brandt semigroup B,; it is defined by the identity xyx~! =

(xyx~1)?

B}— B, with an identity adjoined
#'— the variety generated by Bj
&% — the variety of abelian groups

o, — the variety of abelian groups of exponent »
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F%(X)— the #-free object on X in the variety Z
p(%)— the fully invariant congruence on F.#(X) corresponding
to the variety Z

c(w)— for any w over X U X!, the content of w which is the set

-1

{x € X:xorx™" occurs in w}

w € E— for a word w over X U X!, the identity w = w?

Throughout this note X = {x;: i € w} is a fixed countably infinite
set.

For any congruence p on an inverse semigroup S, define the kernel
of p, ker p, and the trace of p, trp, by

ker p = {s € S: spe for some idempotent e in S}
={seS:sps?y={seS:sp=(sp)?},
trp=pN(Eg x Eg).

Every congruence p on an inverse semigroup S is completely deter-
mined by its kernel and trace, [P; III.1.5].

An inverse semigroup S is combinatorial if # = ¢ in S. The
variety 7~ is said to be combinatorial if all members of Z~ are com-
binatorial. The variety #! is a combinatorial variety. Moreover,
F! Cymax = [ = w?: w =w? is alaw in #] for all group varieties
% (see [PR]).

Let S be an inverse semigroup. A transformation p on S is a right
translation of S if, for all x,y € S, (xy)p = x(yp). Likewise, a
transformation A is a left translation if A(xy) = (Ax)y,forall x,y €
S. If, in addition, the left translation A and the right translation
p satisfy x(iy) = (xp)y, for all x,y € S, then the two are /inked
and the pair (4, p) is a bitranslation. The set of all bitranslations on
S under the operation of componentwise composition is an inverse
semigroup and is called the translational hull of S [P; V.1.4]. We
denote this semigroup by Q(S).

For any s € S, the functions A; and ps; defined by A;x = sx and
xps = xs, for all x € §, are left and right translations, respectively.
In fact, (4;, ps) is a bitranslation and so is a member of Q(S). The
mapping

n:s— (4, ps)  (SES)

is a monomorphism of S into Q(S) and is called the canonical ho-
momorphism of S into Q(S).
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If S is an ideal of the inverse semigroup ¥ then V is an ideal
extension of S (by the Rees quotient semigroup V/S).
Let V be an ideal extension of S. For each v € V', define

A’s=vs and sp’ =sV (s€S).

Then the mapping
T(V:8): V- QS)

defined by

vt(V :8)= (A", pY) (vev)
is a homomorphism of V into Q(S) which extends #. Moreover,
(V' : S) is the unique extension of 7 to a homomorphism of V' into
Q(S) [P; 1.9.2]. We call 7(V : S) the canonical homomorphism of V
into Q(S).

Let S and T be inverse semigroups and suppose that 7 is an
inverse subsemigroup of .#(I), the symmetric inverse semigroup on
I. Let IS denote the set of functions (written on the right) from
subsets of I into S. For any w € IS, denote the domain of y by
dy . Define a multiplication on S by

i(y-y')=(iy)-(iy") [iedyndy'l

For any g €.#(I) and y €S, we define a mapping #y by

iPy)=(p)y [i€dp, ifedy].
The (right) wreath product of S and T is the set

SwrT ={(w, B)elSxT:dy =dp}
with multiplication given by

(v, B)-(v', B) =Wy, BB).
If T is an inverse subsemigroup of .#(I), we will sometimes write
(T, I) for T if we wish to emphasize the set / on which T acts.
Our definition of wreath product follows that of Houghton [H]. In

[H] the wreath product W (S, T) of inverse semigroups S and T
is, in our notation, Swr (7, T) where T is given the Wagner repre-
sentation by partial right translations. Our notation follows Petrich

[P; V.4]. It is not difficult to verify that if S and (T, I) are inverse

semigroups then Swr (7T, I) is also an inverse semigroup. In fact, if
(v, B)eSwr (T, I) then

(v, B '=w 1, g
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where ! 1S and B~! € T are defined by

A~ =y~ ={ip:icdp},
B! is the inverse of # in T and

iy =@ y)™t (iedp™h).
Equivalently, we may define w~! by
JByt=(Gw)Tt (edp).

For any (v, B) belonging to Swr (T, I), we have written (v, f)~!
as (w1, B~1) even though the definition of w~! depends upon 8.
This is not to suggest that if (v, #') is another member of Swr(7T,1),
then the first coordinate of (y, B')~! is the same as the first coordi-
nate of (w, B)~!. We use y~! to avoid notational difficulties and
simply note that when w~! is used, the member of (T, I) to which
it is paired will be understood.

Let ZZ and 7 be varieties of inverse semigroups. The Malcev
product of % and 7, denoted by # o7, is the collection of those
inverse semigroups S for which there exists a congruence p on S
with the property that ep € Z for all e € Eg and S/p € 7. In
general, Z o7  is not a variety. For example, if 7 is any nontrivial
group variety and # = . then the five element combinatorial Brandt
semigroup B, is a member of (# o7") but B, is not a member of
% o7". However, when % is a variety of groups, # o7  is a variety
(see [P; XII 8.3] or [B]). Note that, if 7~ and #  are varieties such
that 7 C 7 then, for any variety ¥ , Z o7 C# o%# and Z o% C
Vo .

Mal’cev products play an important role in our efforts here, par-
ticularly in the context of the congruence v on (). If Z is a
group variety and 7” is a combinatorial variety, then #Z 0% is the
maximum variety in the v-class of % v7 , where v is the congruence
on #(#) defined by Z{Vv# if and only if Z1N% =  N¥% and
NVE =2vZ, forall 71,7, € Z(F) (see, for eg., [P; XII.2,
XII.3]). By a result due to Reilly [R1], if % is a variety of groups and
7" is a combinatorial variety, then [# VZ , # 0c77] is the v-class of
7"V % . For further information on Mal'cev products we refer the
reader to [P] or [R1].

Define the binary operator Wr on the lattice of varieties of inverse
semigroups by

Wr#,7)=(Swi(T,I):Se% and Te?) (¥,7 € Z(F)).
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If 7 is a group variety and 7  is a variety of inverse semigroups then
Wr(%,7)=%o7" (see [C]).

We find it convenient in our investigations to make use of the graph-
ical representation of inverse semigroups introduced by Stephen [S],
which he calls the Schiitzenberger representation of an inverse semi-
group with presentation. Schiitzenberger graphs are defined as follows:

Let P = (X; R) be a fixed presentation of the inverse semigroup
S with 7 the corresponding congruence on F_#(X), the free inverse
semigroup on S. Let w € § and R, the #-class of win S. The
Schiitzenberger graph of R,, with respect to P is the labelled digraph
I'(w), where

VI(w)) = Ry,
ET(w)) ={(vi, x,v2): v, ERy, XEXUX!
and v;(x1) = v}.

The Schiitzenberger representation of w (with respect to P) is the bi-
rooted labelled digraph (ww~!, I'(w), w), where ww™! is the start
vertex and w 1is the end or terminal vertex. The Schiitzenberger
representation of the semigroup S is the family of birooted graphs
{(ww~!, I'(w), w): w € S}. Schiitzenberger graphs enjoy the fol-
lowing properties:

Let v € §,I'(v) be its Schiitzenberger graph with respect to P,
vy, U, V3 E€R, and w € (X UX)T (see [S]).

(a) if (vy, x, vy) is an edge in T'(v) then (vy, x~!, v;) is also an
edge in I'(v);

(b) if (vy, x, v,) and (v, x, v3) are edges in I'(v) then v, = v3;
¢)if (vp, x, v;) and (v3, x, v;) are edges in I'(v) then v, = vs3;
d) vi(w1) = v, if and only if w labels a v; — v, walk;

e) (wt) > v if and only if w labels an e —v walk;

f) v1 2 v, if and only if I'(v;) is isomorphic to I'(v;);

g) v; % v, if and only if there exists an isomorphism from I'(v;)
to I'(vy) such that Ulvl'l is mapped to U2U2‘1;

h) v, Z v, if and only if there exists an isomorphism from I'(v;)
to I'(v,) such that v; is mapped to v,.

We will only be considering Schiitzenberger graphs of the .Z!-free
inverse semigroup on (countably infinite) X with respect to the pre-
sentation P = (X; p(#')). For further properties and a detailed
discussion of Schiitzenberger graphs we refer the reader to Stephen
[S].
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3. The variety %! . In this section we construct inverse semigroups
which belong to the variety %! which, in subsequent sections, will be
used to construct inverse semigroups in Wr(% , #'), where % is a
variety of abelian groups. These semigroups will be used to define an
infinite collection of varieties in the interval [# vV #!, Wr(%, #')].
Throughout the remainder of this note p will denote the fully invari-
ant congruence on F._#(X) corresponding to ! .

Before we proceed, we require some notation. For any word w €
X UX~!, denote by w, the word obtained from w by deleting all
occurrences of variables not in 4. For example, (xxx; 1x3x2x1){xl}

is the word x;xy'x; .

LEMMA 3.1. Let w and v be words over X UX~1. Then wpv if
and only if c(w) =c(v) and for all ACc(w), A# D, wyp(F)vy.

Proof. w pv if and only if B} satisfies the equation w = v . Since
B} possesses an identity, B} satisfies the equation w = v if and only
if B, satisfies wy = v, forall 4 C c(wy) = c(v,). This is equivalent
to c(w)=c(v) and forall A Cc(w), A#T, wyp(F)v,. m]

COROLLARY 3.2. Let w and v be words over XUX~!. Then w pv
if and only if c(w) = c(v) and forall AC c(w), A# D, wypvy.

Proof. If wpv then by Lemma 3.1, c¢(w) = c(v) and for all
ACc(w), A# D, wyp(F)v,4. But then for any 4 C c(w) = c(v),
forall BC A, B#J, wgp(F)veg and so by Lemma 3.1, wypvy.
On the other hand, if c¢(w) = c(v) and for all 4 C c(w), 4 # O,
wy p Uy, then in particular, W = W) P Ve(w) = Ve(v) = U - O

LEMMA 3.3. If S€ B! then S'e B!.

Proof. Suppose that %! satisfies the equation w = v, where c¢(w)

=c()={x1,...,XxXn}. Let sy, ..., s, bearbitrarily chosen elements
of S! with repetitions allowed. Suppose that Si s ..., 8 are those
s; that are the identity of S!. Then S! satisfies wis;, ..., sn] =
v[sy, ..., sy] if S satisfies wyls;, ..., sy] = v4[s1, ..., sn], where
A= {x;,..., % 3\{xi, ..., x;}. Since § € #!, S does satisfy
WylS1, ... Sn] = vy[s1, ..., sn] by Corollary 3.2 and so, as a result,
w[sy, ..., Sn]=v[s1, ..., sy] istruein S!. Since the s; were chosen

arbitrarily, S! satisfies the equation w = v. Therefore, S! e Z!. O

We require some further notation for this section. Let w €
(XUX~1)*. We write w =v tomean w and v are identical words,
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letter for letter, over a common alphabet (in this case X UX~1). We
say that the word v is a cyclic shift of w if w =u u; and v = uyu,
for words u;, u, over the alphabet of w. For each n € w, we de-
note by 7, the equation x;x; - x,x; 'x;! - x;! € E. Observe that
if w is the word xyx; - X,x]'x;'- - x;! then any cyclic shift of w
can be written y;y;-- -ynyf‘y{ I...y-1 (where the y; all belong to
{1y s xn, X7 X7

The remainder of this section is devoted to a construction of a
family of inverse semigroups {S(7,): n € w} each of which belongs
to the variety #~!. For each n € w, S(r,) is obtained from
the #!-free inverse semigroup by first identifying the ideal consist-
ing of those elements whose Z-class does not lie above the Z-class
of x1x3++ Xux7'x; 1+ x;7'p (which results in an ideal extension of
the principal factor of the Z-class of x;x;-- -x,le‘lxz‘1 xglp,a
Brandt semigroup) and then mapping this semigroup into the trans-
lational hull of the principal factor corresponding to the Z-class of
X1X2 " XnX| Ixz‘ 'p. In order to do this we require some knowledge
of the Z-class of x1xp - xpx7 x5 x71p.

1 1

LEMMA 3.4. Let w = X1X3- - XpX| X5 --xy ! and suppose that
v=y1y2 vy vyt vt is a cyclic shift of w. Let ae XUX !,

(a) vp is an idempotent;

(b) (vap)Z(vp) ifand only if a=y, or a=y,.

Proof. (a) As we remarked in §2, %! is contained in %™ (be-
cause it has E-unitary covers over the variety .% of abelian groups
of exponent two; see [PR]). Since . satisfies the equation v = v?2,
™% and hence #! satisfies v = v2. Thus, v p 1s an idempotent.

(b) Since vp 1is an idempotent, if a = y; or a = y, then
(vap)Z(vp). On the other hand, suppose that (vap)Z#(vp). Then
vaa v~ lpvv~! and so c(va) = c(v). Thus, a € c¢(v). But
(vap)Z(vp) also implies that vaa=lpv. If a = yi‘1 for some i,
then (vaa™')gy = viy; 'y 'vip(B)y}, while vy, y = yiy;' H(B)y}
and so, by Lemma 3.2, vaa~! pv. Therefore, a = y; for some i.
If 1 <i<nthen (vaa™)gy , 3y = yivivayy'vi'vi'lyviyy! and
Uiy, v,y = V1Viva¥7 'y vyt If b is any non-idempotent element
of B,, then substituting b for y, and y, and substituting b~! for
yi, yields that (vaa™')g, ., ;) #(B)vyy, ),y ) - Asa consequence, y;
must be either y; or y,. O
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LEMMA 3.5. Let w = X1x3 -+ XuX[ ' x5 ' - x;7! and suppose that u

is a proper initial segment of w with w = uu'. Let a € X UX™1.

Then wup Z wuap if and only if a is the initial letter of ' or a™!

is the terminal letter of u in the case that u is not the empty word,

and in the case that u is the empty word, a is the initial letter of v
or a~! is the terminal letter of u'.

Proof. If u is the empty word then the statement follows immedi-
ately from Lemma 3.4, so assume that u is not the empty word.

First suppose that wup Z wuap. Then wup = u'up L v'up
since u'u is a cyclic shift of w and any cyclic shift of w is an idempo-
tent modulo p. Therefore, wup #Z wuap implies that v'up Z v'uap
(this follows from the more general result that ¢.¥s implies that
t % ta if and only if s# sa). Since u'u is a cyclic shift of w, we
have by Lemma 3.4 that a is either the initial letter of «' or a~! is
the terminal letter of u.

For the converse, first note that if a is the initial letter of «’
then wua is an initial segment of w and so, since wp is an idem-
potent, wup Z wuap. If a~! is the terminal letter of u then letting
u = u*a~' we obtain that wua = wu*a='a = u*a~"w'u*a~'a. Since
a~'w'u* is a cyclic shift of w, a~'#'u*p is an idempotent by Lemma
3.4(a) and as a result,

1, ,=1,,0,,% * =11, %

-1 *a lw'ura! aa" W' pura~'v'u

a=ua ‘vua ‘aputa”
= wlu* = wu*.

wua =wu*a

It is now immediate that wup Z wu*p = wuap . O

LEMMA 3.6. Let w = X1x3-+ XuX] ' x5 - x;71. For any word v
over XUX~Y, wpZvp ifand only if v pwu for some initial segment
uof w.

Proof. Suppose that wp Zvp, say way---a; pv, where ay, ...,
a, € X UX~!. We prove by induction on k that wa;---aypZwp
implies that wa;---aq; pwu for some initial segment u of w. If
k =1 then wa;p%Z wp implies by Lemma 3.4 that a; = x; or Xx,.
If a = x; then q; is an initial segment of w already. If a; = x,
then wa; pwwx,. Now

— -1 -1 -1 -1 -1 -~
wwxn=x1...xnx1 ...xn_l[xn xl...xnx] “.’xn-l]xnlxn

-1 -1 -1 -1 -1
pxl...xnxl ”'xn-l[xn _xl...xnxl ...xn_l]
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since [x;lx; - xaxptoo-xl] is a cyclic shift of w and so
[x7 %1 xpx7!-x 1 1p is an idempotent.
But
-1 1 -1

-1 -1 -1 -1 — -
xl...xn_xl ...xn_l[xn xl...xnxl ...xn_l =fwx1...xn_xl ...xn—l

and so as a consequence, v pwWxy - XpX; Lo x L

Now suppose that £k > 1. wa,---qpZ wp implies that
wpZwa,---a,_;p and so, by the induction hypothesis, waj---
a1 pwu for some initial segment u of w = uw'. If u is the empty
word, then way - - g pwa, £ wp and this is the same as the case
k = 1. Otherwise, by Lemma 3.5, wup %Z wua;p implies that ay
is the initial letter of #' or a,:‘ is the terminal letter of u. If a
is the initial letter of «' then v pwa,---a; pwua, and ua; is an
initial segment of w . If a,:l is the terminal letter of u then setting
u=b; b, we obtain that v pwa, ---a; pwua;, and

wuay = why - - - byb;,!
=b; b1 [bmt' b1 - - b1 16,y
pby-- by i[bmtd'by - by_]

since [bp,u'by - --b,,_1] is a cyclic shift of w and so must b~ an idem-

potent modulo p. But by by_1[buu'by---by_1] = why--- by

and so v pwb,---by_y and by ---b,_; is an initial segment of w.
Since wp is an idempotent, the converse is immediate. o

Schiitzenberger graphs provide a concise, visual representation of
a Z-class. Because of this, in the following theorem we describe the
Z-classes of the words {xx;-- -xnxl‘lx{ " new,n>1} relative to
the variety #! in this way.

THEOREM 3.7. Let w = xlxz---xnxl'lxz‘1 <. x;Y. The following
graph is isomorphic to the Schiitzenberger graph of w relative to &',
where vy is both the start and end vertex.

v V. v, v v
1 2 3 4 -2 -1
x, X, X, TE Xy T
O >O- 30 @ — — —
xﬂ x’l
O— —0 — — — O —C 71
X X X X
—1 -2 2 1
VZn " UZn-— " ’/Zn-z Vn+2 Un+l Vn
FiGuUrEe 3.1

The Schiitzenberger graph of w = x,X,---X, X ' x; -+~ x
with respect to B



VARIETIES OF INVERSE SEMIGROUPS 31

Proof. By Lemma 3.6 there are at most 2» vertices in the Schiitzen-
berger graph ' of w relative to ! as there are 2n initial segments
of w not identical to w. It is a simple exercise to verify, using
Lemma 3.1, that if ¥ and ' are two proper initial segments of w
(that is, neither u nor ' is identical to w ) then wu pwu' implies
that u = «'. By Lemma 3.5, (wu,p, x, wu,p) is an edge of I' if
and only if x~! is the terminal letter of u; or x is the initial letter of
u}, where uju) = w. If x is the initial letter of #}, then wu, and
wux are p-equivalent with both u;x and u, initial segments of w .
Thus, u;x = uy. If x~! is the terminal letter of u; then writing u; =
ujx~1 we have wujx~!x pwu,. Since wujp Z wu; = wuijx~1p, we
have that wu} pwujx~!x pwu,. Since both u} and u, are initial
segments of w, wu} = wu, and so wupx~! = wu, . Finally, if u;
is the empty word and x~! is the terminal letter of w then x~! is
the terminal letter of ww = ww*x~! pw and ww*x~'x pwu,. But,
ww*x~!x pww* and both w* and u, are initial segments of w, so
wuy = ww*, whence wurx~! = ww.

It follows from these remarks that I" is isomorphic to the graph
described above via the map which sends wup to vj,41 , for all proper
initial segments u of w. O

DEFINITION 3.8. Let F be the % !-free inverse semigroup on X =
{xi:i € w}. Let w, be the word X;---x,x;'---x;! for each n €
w. Denote the ideal {v € F: J, # Jy ,} of F by I(t,) and let
J(tn) = F/I(t,). Now J(t,) is an ideal extension of Jgn,, which is

isomorphic to B({1}, 2n). Let S(z,) be the image of J(7,) under
the canonical homomorphism into the translational hull Q(JS;" p) of

0
9 ,.

LEMMA 3.9. The semigroups S(t,) and S(t,)! belong to &', for
al new, n>2.

Proof. The semigroup S(t,) is a homomorphic image of the #!-
free inverse semigroup on X and so is an element of #!. The semi-
group S(t,)! € Z! by Lemma 3.3. O

In the following section we will use the S(7,) to construct a family
of inverse semigroups which belong to Wr(%, , #!) but not to %, Vv
&', for m € w. Before we do so, we describe the S(z,).

The inverse semigroup S(t,) is isomorphic to the Wagner repre-
sentation of the #!-free inverse semigroup on X restricted to Ry, 5.
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That is, if oy, is the element of 7 (F%!(X)) corresponding to wp
in the Wagner representation of F.%!(X), then in the restricted (to
anp) Wagner representation, «), corresponds to wp, where do, =
{up € day: upZ wyp and (up)ay £ w,p} and for all up € da),,
(up)oy, = (up)ow -

An added advantage to using the Schiitzenberger graph description
in Theorem 3.7 is that we can read directly from the graph the im-
age of any word of J(7,) under the canonical homomorphism into
QJY p) = F(Ry p). The inverse semigroup S(t,) is generated by
the iﬁ1age of the x; under the canonical homomorphism and, for
each i =1, ..., n, the domain of the image of x; is the set of ver-
tices v for which there is an edge labelled by x; starting at v and
v is mapped to the terminal vertex of that edge. It is straightforward
to verify that S(t,) is (isomorphic to) the inverse subsemigroup of
F (Ry p) generated by {a;: i=1,..., n} where for each i,

—1 —1
do; = {WnXy - Xi—1p, WpXy - XpX[ - X] P}
and

WpXy - Xj—1p0; = WXy - XipP,

-1 -1
WpX| - XpXy oo X; pay

1 -1

- -1 ~1
= WpX1 - XpX] X[ X; PWpXy o X X[ e X

4. Inverse semigroups in Wr(/, , %#!). The semigroups constructed
in §3 can be used to construct semigroups in Wr(.%, , #!) for m € w.
Since S(7,) is isomorphic to the Wagner representation of F.Z!(X)
restricted to Ry ,, it can be represented as an inverse subsemigroup
of #(Ry p) forall n € w. Thus, for any group G belonging to
A, m € @, Gwr(S(t,), Ry ) € Wr(sy, Z'). The semigroups we
construct in this section are inverse subsemigroups of semigroups of
this form and so belong to Wr(%, , Z!).

Foreach n € w, n > 2, let C, denote the cyclic group of order n.

DEFINITION 4.1. Let m,ne€ w, m, n > 2. Let 1 denote the iden-
tity of C,, and let g be a generator of C,,. Let

Am.n € Crwr (S(Ta), an)

be defined as follows:

Let {a;:i=1, ..., n} be the generators of S(t,) as described at
the end of the previous section. For i =1, ..., n—1, define the map
¢; from R, into Cp by setting

~1 -1
d¢i=dai={wnxl"'xi—lpawnxl“'xn-x1 e x; P}
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and defining (wWnx1 - Xi—19)$i =1, (Wpx1 -+ Xpx7' - x71p)gi = 1.
Define the map ¢, from R, into C,, by setting d¢, = da, =
{wnxy - Xp_1p, wnp} and defining (WpXy - Xp—19)Pn= 1, (WnP)Pn
= g. Then (¢;, a;) € Cpwr(S(tn), Ry ) for i=1,...,n.
Let
Am,n={(¥, B) € Cnwr(S(n), an): ldy|=|dB| < 1}
U{((ﬁ,’, a,')l i=1,..., n}.

Define T, , to be the inverse subsemigroup of C,, wr(S(t,), Rw")
generated by A4,, ,. Observe that T,, , is an ideal extension of a
Brandt semigroup over the group C, . It is not difficult to see that
Tin,n is in fact the following:

{(v, B) € Cnwr(S(tn), Ry,): [dy|=dB| < 1}
U{(i, i), (Bi5 a)™t, (¢, @i)(Bi, )7t
($is i) N, ai)ri=1,...,n}.

LeEMMA 4.2. Foreach m,new, m,n > 2,
(@) Tm,n € Wr(tpy, B) but Tpy,n ¢ B,
(b) T}, € Wr(bn, B) but T), , ¢ B';
(€) Hm VB! C (T n) C Wr(y, B);

(d) VB C(T) ) C Wi, B).

Proof. T,, , is an inverse subsemigroup of Cywr(S(7)!, Ry )
and S(t,)! € #! by Lemma 3.9. Thus, T} , € Wr(%4,, Z') by the
definition of the Wr operator. As a consequence, Ty, , € Wr(%, , &)
since Ty, is an inverse subsemigroup of 7, ,. On the other hand,
Tm.n is an ideal extension of a Brandt semigroup over C, and so
contains a subgroup isomorphic to Cy,. Thus, Ty, , ¢ &' since B!
is a combinatorial variety. Since T,, , is an inverse subsemigroup of
T, , we also have that T, , ¢ &#!. This proves both (a) and (b).

Both T,},,,, and T,, , contain subgroups isomorphic to C, and so
S C(TY ) and %, C (T, ) since o4, is generated by C,. The
natural homomorphism onto the second coordinate maps 7,, , onto
an inverse semigroup isomorphic to S(t,) € £!, and maps T, ,},’n
onto an inverse semigroup isomorphic to S(t,)! € #!. Since both
S(tx) and S(t,)! contain copies of B}, it follows that &' C (T}, ,)
and #' C (T, n). Consequently, we have that %4, V. B' C (Tp »)
and &, VZ! C (T} ,). It is immediate from parts (a) and (b) that
(Tm,n) C Wr(py, Z') and (T}, ,) C Wr(%,, Z'). This completes
the proofs of (c) and (d). ]
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LEMMA 4.3. Let m,n € w, m,n > 2. Neither Ty n nor T} ,
satisfies the equation T .

Proof. Substitute (¢;, ;) for x;, i=1,...,n. O

In the following lemma we use the term kernel to mean the mini-
mum nonzero ideal of an inverse semigroup, if it exists.

LEMMA 44. Let m,new, m,n>2. T, , satisfies the equation
T, for k <n.

Proof. Towards a contradiction, suppose that 7, , does not satisfy
7, for some k < n. Assume that k is the least such integer and let

(‘//1 s ﬂl)a ooy (Wk: ﬂk) € Tm,n be such that

xp ey x T ws By s (ks BT = (v, B)

is not an idempotent in 75, ,.

We first make a few observations.

(1) |[dB| =1: If |dB| = 0 then we immediately have that (v, f) is
an idempotent. If |df| = 2 then the (y;, ;) all belong to the same
Z-class, namely, the D-class D of (y, ). [This is because T, , is
completely semisimple and so & = _# . Thus, the Z-class of (¥, )
is contained in the Z-class of (y;, f;) forall i. Butif |[df| =2, then
the Z-classof (v, B) isamaximal Z-classin 7,, , andso (v, B) is
Z-related to (y;, f;) forall i.] But D? is a Brandt semigroup and as
such satisfies 7. Since xy -+ xex] - X7 Wiy B1)s e s (Wks Bi)]
= (w, B) in D° and (v, B) # 0, we conclude that, in this case,
(v, B) is an idempotent. The only remaining possibility is that
ldg|=1.

(i) If dp = {v} then vf = v and vy is not an idempotent.
We know that B is an idempotent of (S(7,), Ry ) since the nat-
ural homomorphism of 7,, , onto its second coordinate has image
S(t,) which, by Lemma 3.9, is a member of #! and #! satisfies
the equation 7. Thus, v =v. Also, vy is not an idempotent lest
(v, B)= (v, B)*.

(iii) If (w, B) is not an idempotent then for any cyclic shift
yiooynyitooyitof xi-xx ! x;! wehave that yy - yupt
yill(wi, B1), ..., (Wi, Bx)] is not an idempotent. To see this
note that if y;---y,y;' -+ y;! is a cyclic shift of x; - xex; !+ x7!
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then yi--yuyi' v (v, Br)s oy (Wi, Bk)] = (W', B') can be
expressed as (@1, 71)(92, 72) where (v, B)=(92,72)(¢1, 7). If {v}
= df then vy, € df’ and vy, = vy, because vVy,y172 = vV,
since vy,y; =vf =v. Then

vy’ = (V201)(Vy271902) = (V7201)(Ve2) = (Ve2)(Vy201)

since C,, is abelian. But (vg;)(vy,9() = vy which is not an idem-
potent and so, as a result, (¥, ) is not an idempotent.

(iv) For some i€ {l, ..., k}, (Wi, B:) = (¢n, an) Or (¢, )~ L.
By (ii), if df = {v} then vf = v. Therefore, if (¥, f) is not an
idempotent then vy is not the identity of C,,. The only elements
of T, , which can contribute non-identity elements to vy are those
(v, B) for which |[dB| =1, (¢u, an) and (¢, !, a;;!). Now

vy = (V) (WBW) - (VB B W) (VB Brwt)
B BB wy ) (B BB B v D).

If (y;, B;) is such that |df;| = 1, then in this factorization of vy , y;
contributes vf;--- Bi_1¥; = g, say, and vﬂl---ﬂkﬂl‘l---ﬂi‘_llt//i" =
g~!, since g~! is the only element of ry!. Thus, the contributions
to this factorization of vy by w; cancel and so, if (¥, ) is not an
idempotent, one of the (w;, B;) must be (¢, ay) or (¢n, an)~'.

(v) None of the (y;, ;) is an idempotent. This follows from the
general observation that if e = e and aebec is not an idempotent
then aebec = aea™!(abc)c~lec and so abc cannot be an idempotent.
Thus, (y;, f;) an idempotent contradicts the minimality of k.

As a consequence of the aforementioned observations, the following
assumptions concerning the (y;, 8;) can be made. First of all, by
(iii) and (iv) we may assume that (y, 1) = (¢n, @n). Secondly,
assume that the k-tuple ((w, B1), ..., (Wx, Bx)) contains a maximal
number of elements from the kernel of 7}, , among the collection of
k-tuples from 7, , whose first element is (¢, , a,) and which witness
that 75, , does not satisfy 7.

There are two stages to the remainder of the proof. The first stage
is showing that exactly one of the (y;, B;) is a member of the kernel
of T,, ,. We do this in four parts.

(1)Forany i € {1, ..., k},both (y;, B;) and (¥4, Bi+1) do not
belong to the kernel of 75, ,.

Suppose that both (y;, ;) and (w1, Bi+1) belong to the kernel
of Ty, n. If df; = {v;} and df;,| = {v;y,} then v;B; = v,y since
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BiBir1 # 0 and vy Bir1 =v; since B! B} # 0. It follows that
ViBiBiv1i=v; and v Bi1Bi = Vs
and
i1 D BT W) = WiBiw ) (viv )
= (Vi) T (WiBL wir) !
= (W) (Vip 1 Wigr) ™!
= (Vir1¥Wir1) " Hviw) ™!
= [(Vivs) (Vi1 Wi 1)1
As a consequence of this we have that

(since Cy, is abelian)

-1 -1 ,-1 -1
X1 Xim1Xig2 s Xg Xy “.xi—lxi+2.”'xk

(w1, B1)s oo s (Wizts Bic)s (Wisas Bix2)s oo s (Wies Bi)]

is equal to (v, f), which is not an idempotent by assumption. Thus,
Tn,n does not satisfy the equation 7;_;, contrary to our choice of k.
Note that under these conditions, k > 3, by observation (iv). In the
case k = 3, the conclusion is that T,, , does not satisfy 7, which is
absurd since all inverse semigroups satisfy the equation xx~! € E.
(2) If (y;, Bi) is an element of the kernel then
(i) if dB; = {wx;---x;p}, then wxy - X;pB; = wxy -+ Xpx[ ' -+
x;i'ps
(i) if dp;, = {wxl--'xnxl’l---xj‘lp}, then wx1-~-xnx1"‘~~-
X7 pBi=wxi - x;p.

(i) We have assumed that (y;, f1) = (¢n, Bn) and so i # 1. Let
dBi_1 = {v1, va} (by (1) |[dBi—1| = 2), and suppose that v;f;_| = u,
and vyf8;_; = uy. Now, B;_18; # 0 so one of u; and u, must
be wx;---xjp, say u; = wx;---x;p. Also, ﬂi"_llﬂi'l # 0 so one
of vy and v, must be wx;---x;pf;. If vi = wx;---x;pp; then
(wi—1, Bi—1) can be replaced by (7, B) where df = {v;} and v, =
u; and vy = vyy;_;. This new substitution witnesses that 75, ,
does not satisfy 7, . Following the argument in (1) above, we obtain
that 7, , does not satisfy 7,_,, contradicting the minimality of k.
Thus, v; = wx; --- x;jpf;. By observation (v), f;_; is oy or a,! for
some pe{l,...,n}.

If iy = ap then v;f;_; = wx;---x;jp implies that v;x,p =
wx;---Xjp and hence that either p = j and v, pwx;---x;_; or
j=n,p=1 and vy pwx;---xpx;'. Thus, wx; - x;phi = v =
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wxy - XpX{ '+ x;'p, by the definition of a, or wx;---Xnpf; =

v, = wp , which is what we want to prove.

If ;-1 = a;l then vif;,_; = wx;---x;p implies that lep“p =
wxy---Xjp and hence that v;pwx;---x, and p = j+ 1. Note
that in this case j # n since if u is an initial segment of w,
then wuxp‘1 pwx;---Xx, is impossible by Lemma 3.5. Therefore,
wxl...xjpﬂi = vy = wxl...xn_xl_l...xp__llpwxl...xnxi_l...x‘;'l’
by the definition of o'

(ii) As in (i) we can assume that df;_; = {v;, wx; - - X,x]"'
x7'pB;} and that vifi 1 = wx; -~ XxX7 '+ x;'p. Again, by obser-
vation (v), we may assume that 8;_; = a, or o'

If Bi_1 = ap then vyx,p = wxl ~XpX{'---x7!p and hence p =
j+1 and vy pwxy - xpxyt - X7+ Note that if j=n, wx; - c XXy

‘-xj'l pw and so for any initial segment u of w, wux,pw is
impossible, by Lemma 3.5. Therefore, by the definition of o,
WXy XXy X7 B = WXy Xp

If iy = o, then vyx;'p=wx; - xpxy'---x7'p and so p = j
and vy pwxy - XpX[ ' xpxy e xj‘lI orj=n,p=1, vypwx;.
By the definition of a;‘ , WXy - x,,xl xj“lpﬂ, =wx;---x;p and
if j=n,p=1, wpﬂi=vz=wx1---xnp.

(3) At most one of the (y;, B;) belongs to the kernel of T}, .

Suppose that (y;, B;) and (y;;,, Bj+p) are two members of the
kernel of T,,,, and they are the first two such elements appearing in
the sequence {(w1, B1). ..., (Wi, B)}. Let df; = {v1}, dBj., =
{w1}, viB;=vy and v1y; = g1, and u B4, = uy and U Y4, = &
The claim is that if (y, #) is not an idempotent then neither is the
following:

-1 -1
XU X1 Xy X Xl XX
-1 -1 -
XX Xjap—1 Xy X
when (y;, B;) is substituted for x; for all x; appearing in the expres-
sion. Call this element (y’, f’). If the claim is correct then T}, ,

does not satisfy 74_,, contrary to our assumptions. We first show that
dp’ ©>dp and f’ equals f on df. Now, with df = {v},

v P "'ﬂj-l =Ul;
-1
v € dxj+1 : }+p 1[(W]+1 ) ﬁ]+l)a ey ('//j+p—1 ) ﬂj+p—l)] and
-1 -1 _ .
VB Pippo = U2
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Uy € Axjipr XXy X [(Wkpats Biaps)s o s (Wies Bi) s
(Wi, B1)s s (Wi, Bj—1)]

urfiiprr- BBt Bt = vas

vy €dxjyr - Xjup—1[(Wis1s Bix1)s -+ s (Wjgp—15 Bjrp-1)] and

VaBjs1 Bjsp—1 = Ur;

ur e dxi X (Wiapers Bispn)s -+ (Wi Bk)] and

-1 —1
Ui j+p+1”.ﬂk =’Uﬂ=’[),

Thus, v € df’ and vp’ = v = v. By calculation one sees that
vy must be equal to vy’ g1 8,87 g, ", since Cy, is abelian, and thus,
vy = vy'. Therefore, if (y, f) is not an idempotent, then neither
is (', B'). It now follows that at most one of the (y;, B;) belongs
to the kernel of T3, » .

(4) Exactly one of the (y;, ;) is a member of the kernel of 7}, ,.

First of all, observe that if none of the (y;, 8;) belongs to the
kernel then each (y;, B;) is (¢p, ap) oOr (¢p, ap)“1 for some p. By
the definition of the ap, if vf;--- B € dB;! then vB; - B! =
v. This is because if v = wup for some initial segment u of w
then vf; - B = wu'p for some initial segment u' of w and the
difference between the lengths of # and ' is not greater than k
and hence strictly less than n. It follows that vf;--- £, must be
vf;. By the same reasoning we can conclude that, for all 1 < i <
k, vBr- BByt Bt = vpy---Bioy. Since df = {v}, we can
replace each (y;, f;) with an element of the kernel and conclude that
if (y, B) is not an idempotent then neither is the result of this new
substitution. But this cannot be since the kernel of T}, , is a Brandt
semigroup over an abelian group and so satisfies the equation 7.
Therefore, exactly one of the (y;, ;) belongs to the kernel of T, ,.
This completes the first stage of the proof.

Let (w;, B;) be the only member of {(v;, B1), ..., (W, Br)}
which belongs to the kernel of Ty, . Let df; = {v;}, v;8; = v, and
v1y; = g . We consider the following two cases: (i) v pwXxy---Xp3,
and (ii) vy pwxy - Xpx7 x5t '

(i) If vy pwx;---x, then vy = wxy - Xux7 ' - x; ! p by the first
stage, part (2). Since (y1, B1) = (én, @n) and k < n, by the con-
straints on the (y;, B;) discussed thus far, for some 1 < g < J,
(Wq» Bg) = (én, an)~!. [That is, because for i = 1,...,j—1,
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(wi, Bi) is either (¢y, o) or (¢p, ay)~!, for some A, and the pro-
jection map of T,, , onto its second coordinate has image S(7,), we
have that vff,---B;-1 = VX Xiy X P for some Xi s Xiys eees
xi  €EXUX ~1, and that x; x; - -x; _, labels a path in the Schiitzen-

berger graph of Xx; ---x,,xl‘1 ~-xylp from v to wx;---xpp. Since

j—1 < k < n, this path must traverse the edge labelled x;!
with terminal vertex v. Thus, for some 1 < g < j, (¥, By) =
(bn,an)"'.] Assume that g is the least such integer. Because
k < n and each of the (y;, ;) is either (¢, ay) or (d, ay)~ !,
for some A, for 1 < i < g, as a consequence of the definitions
of the (¢, o), we have that vp;--- B, = v and (vyy)(vBiy2)- -
(vBi--- Bg-1w,) = 1. In a likewise manner we obtain that

WB1 -+ BB - By = VB Br

and
[(B1 - B wi ' M(wBy - BBy w5 ']
LB BB B = 1.
As aresult, x,.1 - 'xk‘xq_.:l o ‘xk_l[(‘//qﬂ s Bg+1)» -+ » (Wi » Bi)] is not

an idempotent if (y, B) is not an idempotent, contrary to our choice
of k.

(i1) If v, pwxl---x,,xl"l---xp‘1 then v, pwx; --- X, . Using a sim-
ilar argument to that used in (i) above, we can assume that (v, f;)
is the only (y;, B;) equalto (¢,, a,) for i < j. Moreover, the same
argument can be used to show that at most one of the (y;, ;) is
equal to (¢,, a,) for j < i < k. In this case, by the constraints on
the (y;, B;) and the definitions of the (¢;, a;) and their inverses,
(W, Br) 1s equal to (¢, a,). Thus, the only (y;, f;) equal to
(én, an) are (yy, 1) and (¥, Bi). But for any inverse semigroup,
axaa~'ya~! is not an idempotent implies that xy is not an idem-
potent. It would then follow that 7}, , does not satisfy the equation
Tix—2 , a contradiction.

Since every inverse semigroup satisfies 7;, the proof is complete
if we can show that, for n > 2, T, , satisfies 7,. This is not dif-
ficult to verify directly: Suppose that (y, f) € T,,,, is such that
(ns an)(w, B)(én, an)~ (v, B)~! is not an idempotent. Since !
does satisfy 7,, we have that o,Ba; !~ is an idempotent. Thus,
for all v € dapfa, !B~ ! C day,, vayBa;'B~! = v. Therefore, both
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v and va, (which are not equal) are in the domain of £. For either
v in the domain of a,, there is no pair (v, ) in T,, , such that
= {v, va,}. It follows that T}, , must satisfy 7,. O

LEMMA 4.5. Let m,n€ w, m,n >2. T, , satisfies the equation
T for k < n, but T\, , does not satisfy the equation 1, for k > n.
m,n

Proof. This is an immediate consequence of Lemmas 4.4 and
4.3. O

REMARK. The only property of the varieties ., that we used in the
construction of the 7}, ,’s was that they each satisfied the equations
T,, n € w. This is also true of the variety % , the variety of abelian
groups. Thus, in a similar way, we can construct a family of inverse
semigroups {7}}} such that, for each n, T, satisfies the equations
7, for k < n,but T} does not satisfy the equations 7, for k > n.
Moreover, for each n € w, % v F! C(T})) CaZ 0B .

5. A class of varieties in the interval [.</,, %#!]. The inverse semi-
groups defined in the previous section can be used to define an infinite
collection of varieties in the interval [.%,, #']. Once it is established
that the interval [.%,, %] is infinite, it can then be shown that other
intervals which coincide with v-classes are infinite.

NoTATION 5.1. Let m € . For each n € w, define the variety
Zm n 10 be the variety of inverse semigroups generated by {7 ,711 wi k>

n}.

PROPOSITION 5.2. Let m, ne w, with m,n > 1.
(@) Zm,n satisfies t; for j<n;

(b) Zm n does not satisfy t; for j > n;

(€) Zm,n D Zm n+1 (the containment is proper).

Proof. (a) By Lemma 4.5, T , satisfies 7; for j < k. There-
fore, each generator of 75, , satisfies T ; for j < n,and hence 75,
satisfies 7; for j < n.

(b) By Lemma 4.3, T} ; does not satisfy ;. Since 7, ;, j>n,
is a generator of 75, ,, the equation 7; is not satisfied by 7 s for‘
all j>n.

(©) {Ty (k2nyD{T, k2n+1} andso i, n = (T, k2
n) O (T,}Lk: k > n+1) = 7, »y1. That the containment is proper
follows from parts (a) and (b). O
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As a consequence of Proposition 5.2, the collection of varieties of
inverse semigroups {7 ,: n > 1} forms an infinite chain in the lat-
tice of varieties of inverse semigroups. Furthermore, by Lemma 4.2,
Ay VB C Vy.y C Wr(y, B'). Since Wr(s4,, B) = &,0%!,
and the v-class of %4, V. Z! is the interval [+, V. Z!, &, 0F!], we
have the following result.

THEOREM 5.3. The v-class of the variety 4, V B' possesses an
infinite descending chain of varieties.

Using Theorem 5.3, we can show that other intervals in & (.#) are
infinite.

LEMMA 5.4. Let 7 € [, VR, o, 0 F '], where 54, is the variety
of abelian groups of exponent m, and let % € Gy N B, Z4P>]. Then
kerp( v 7 )=kerp(Z7") and trp(X N7 )=trp(¥).

Proof. o4, C 7" and so &3 C 7'Max  Therefore,
7 CUNY CAyB¥ Ny CymN Yy =7

Since ker p(7") = ker p(Zz'™2), it follows that kerp(% v 7°) =
kerp(77).
Also,

UCUNY CUNI NG =UN (I NBYVE =%V Z.
Since trp(#)=trp(% V%), we have that trp( VZ ) =trp(%). O

THEOREM 5.5. Let % € [y V B, %3], Then the interval
(%, (o) V#] contains an infinite descending chain.

Proof. The function 6: [%, VB, %, 0 B — ¥, (4no B ) V]
defined by 0 = 2"V # is one-to-one on [, V.Z!, o4,0%!] by
Lemma 5.4 and the fact that all varieties 7” in this interval are such
that tr p(7°) = tr p(%4, V. %!). Clearly 6 is order-preserving, and the
result follows from Theorem 5.3. a

COROLLARY 5.6. Let % be a combinatorial variety contained in
0 and containing F'. Then the v-class of # V s4,, that is,
%V Ay, o], contains an infinite descending chain.

Proof. By Theorem 5.5, since % V %, € [, V Z!, £M¥] and
(Lo BNV Y C Ao . O
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REMARK. The results of this section are true for the variety &
as well. That is, if 7; denotes the variety of inverse semigroups
generated by {7,!: k > n}, the analogous results to Proposition 5.2
hold and the remaining results of this section are true when we replace
Sy, by A2

(B]
[BS]

[C]
(H]

(K1]
[K2]

(P]
[PR]

[R1]
[R2]

8]
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