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ON THE DENSITY OF TWISTOR ELEMENTARY STATES

M. G. EASsTwoOD AND A. M. PiLATO

U(p, q) may be represented on H”~!(P*, &(J)) where P* is
an open orbit of U(p, q) in CP,.,—; and A is a homogeneous holo-
morphic line bundle. Although it is not their definition, the twistor
elementary states turn out to be the U(p) x U(q)-finite vectors. We
show that H?~!(P*, @ (A)) has a natural Fréchet space topology in
which these states are dense. Using this, we show that a certain Her-
mitian product defined on H”~!(P+, #(A)) is positive definite and
hence complete a twistor construction of a family of unitary repre-
sentations of U(p, q), namely the ladder representations. Though
these representations are well-studied by other means, we feel that
their realization on cohomology is especially natural and merits spe-
cial investigation.

1. Introduction. Let T denote a fixed complex vector space
equipped with a non-degenerate Hermitian form & having p pos-
itive eigenvalues and g negative eigenvalues. Denote by P+ and P~
the subsets of the projective space P = PT on which ® is positive or
negative respectively (a homogeneous condition). Let V' be a GL(T)-
homogeneous vector bundle on P. Then via its actionon T, U(p, q)
is represented on the cohomologies

H'(P*,5(V)) and H'(PF,o(V)).

We will consider below only the case of a homogeneous line bundle A
though much of the analysis applies generally (cf. [16]). The study of
these representations is one of the motivations for this article.
Another motivation, which also provides some of the machinery
for studying these cohomologies is that of twistor theory and espe-
cially the Penrose transform, a key aspect of twistor theory. Classical
twistor theory [34, 35, 36, 37], as initiated and developed by Roger
Penrose, is concerned with the case p = ¢ = 2 and is based on the
4-1 covering SU(2, 2) — Cl(l, 3) where CIr(l , 3) is the identity
connected component of the group of conformal motions of confor-
mally compactified Minkowski space (see [34]). In this case the Pen-
rose transform [12] identifies H!(P+, #(A)) with solutions of certain
field equations on compactified Minkowski space called the massless
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field equations. The invariance of these equations under CIL(I , 3) is
well-known [33] but is clear from the twistor perspective (i.e. via the
Penrose transform). The construction of an invariant Hermitian prod-
uct usually called the scalar product is physically well motivated [19]
but it takes some effort to show [24] its invariance. However, once the
definition of scalar product has been transferred to H!(P!, #(1)) (ac-
complished in [35, 20, 21, 13]) its invariance is clear. Proving that the
scalar product is positive definite using the Minkowski space defini-
tion may also be indirect depending on whether the field is “Bosonic”
or “Ferminonic”. The Bosonic case is usually approached via an ex-
pansion in plane waves, i.e. by means of the Fourier transform, or via
an expansion in Grgin’s spherical harmonics [23). The latter become
an expansion in elementary states under the Penrose transform.

Many other investigations in twistor theory have been carried out
under the assumption that it is enough to consider elementary states.
This has given rise to a calculus for manipulating elementary states
known as the theory of twistor diagrams [35, 36, 27, 26]. The density
proved in this paper goes some way towards justifying this approach.

This article is organized as follows. Section 2 describes some re-
sults on pseudoconvexity which are used to investigate H'(P*, #(4)).
The elementary states are introduced in §3 and the density and con-
sequences are described in §§5, 6, and 7. As an interlude, §4 contains
a review of other approaches to the unitarization of the ladder repre-
sentations and a comparison with the twistor approach of this article.
Whilst more details can be found in §4, we should point out here that
the twistor construction is on Dolbeault cohomology and this is not
the same nor easily related to realizations on L2-cohomology (as in
the work of Rawnsley, Schmid, and Wolf [38]).

The key ingredient of the twistor method is the Penrose transform.
The details of this transform are omitted from this article. They can be
found in [14, 15, 16]. More links between the Penrose transform and
representation theory are described in [6]. Twistor theory background
may be found in [36, 27, 37].

The initial version of this paper was somewhat confused, partly
owing to our limited knowledge of representation theory. We thank
the referee for several helpful comments in this area and for suggesting
the current organization of the paper. Conversations with John Rice
were also helpful in this regard.

2. Generalities on cohomologies. Throughout this section V' is an
arbitrary complex vector bundle on P.
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It is convenient to choose coordinates (Z', Z2,...,2Z") on T
such that @ takes the form
OZ,Z)=|Z' P +|Z?P 4+ 1270~ |27~ - (2P

Let ¥ denote the positive definite Hermitian product
VYZ,Z)=|Z'P+ |2+ +|2")
and introduce the function ¢ = ®/¥ on P. Then one has the follow-

ing picture

GL(T)/ T %k %k o o o+ %
0
0
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where L ={Z'=2?=...=Z? =0}, alinearly embedded P,_;. It
is easy to compute that the complex Hessian of ¢ has p — 1 positive
eigenvalues and ¢ negative eigenvalues on Pt (related and similarly
motivated functions are to be found in [40]). Thus, using 1/¢ as an
exhaustion function for P+, it follows from [2] (see also [25] and [3])
that

H (P*,7(V))=0 forallr>p.

On P, however, ¢ has p positive eigenvalues and g — 1 negative
eigenvalues. The results on pseudoconcavity in [2] show that

H'(P—L,oWV))— H (P, oV))

is an isomorphism for r < p — 1 and injective for r = p — 1. One
can now compute H'(P— L, #(V)) using the Leray cover {Z! # 0},
..., {Z? # 0} but this is essentially the method used by Scheja [39] to
prove a cohomological version of the Riemann removable singularities
theorem which implies that

H'(P-L,o(V)) =H'(P, o))

for 0 < r <codimL-2,ie. for 0<r<p-2. H'(P,O(V))

may be computed by Bott’s theorem [7, 15] but in any case is finite

dimensional [9]. For a homogeneous line bundle A, Bott’s theorem

implies that H"(P, #(1)) = 0 except possibly for r =0 or n— 1.
To summarize these facts:

H'(P*, o(V))
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vanishes for » > p. Only for r = p — 1 is the cohomology infinite
dimensional and then

H"Y P -L,o(V))— H™'(PT,0(V))
is injective. For r < p — 2 one has
H'PT,o(V)=HP,oV)).

With rather more effort these facts may be established using the Pen-
rose transform [15, 6]. Similar conclusions apply to H'(P+, @(V)).

For an arbitrary holomorphic vector bundle V' on a complex man-
ifold X, one can always endow H"(X, Z(V)) with a topology [45,
32] by using the topology of uniform convergence on compact sets
for the Dolbeault resolution of @(V). However, since 0 need not
have closed range (a counterexample is provided in [45]), the re-
sulting topology on the cohomology need not be Hausdorff. If the
topology is Hausdorff, then H"(X, @#(V)) is a Fréchet space. When
H™(X,@(V)) is Hausdorff, Serre duality identifies the continuous
dual of H"(X,#(V)) as the compactly supported cohomology
HM="(X, Q™(V*)) where m = dimX and Q™ denotes the holo-
morphic m-forms. On the other hand, Laufer [32] shows (more than)
the converse: if H" (X, #(V)) has H" "(X, Q™(V*)) as continuous
dual then H™*!(X, #(V)) is Hausdorff. Also the topology is always
Hausdorff on a finite dimensional cohomology [45].

TueorEM 1. HP~Y(P+,&(V)) is a Fréchet space with dual
HI(P+,o(V)) where V is the vector bundle Q"~1(V*).

Proof. By the discussion above it is enough to show that
HI*Y(P+, @(V)) is the dual of HP=2(P+, #(V)). According to ear-
lier argument, however, H?~2(P*, ©(V)) = H?~%(P, ©(V)) whereas
HITY(P*, #(V)) may be identified with the aid of the exact sequence
[22]

HY(P~, 0(V)) —» HIT'(PY, o(V)) —» HTH (P, 0(V))
— HI*Y(P=, (V).
In this sequence the first and last terms vanish by previous con-
siderations of pseudoconvexity. Thus, we are required to prove that

H9+Y(P, #(V)) is the dual of HP=2(P, #(V)). This is the usual Serre
duality [45] for compact manifolds. O
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Note also that HI(P+, #(V)) may be related to H~!(P—, #(V))
by means of the exact sequence

HI\(P,0(V)) - HT\(P~, (V) — HI(P*, o(V))
— HiP,oV)).

The extreme terms are always finite dimensional so H{(P*, a(V))
is almost isomorphic to H9~!(P—, #(V)). In the case of a homoge-
neous line bundle A, if p > 2 and g > 2, then

HY(P,#(1)=0=HIP, (1))

so an isomorphism is obtained. As far as constructing the ladder
representations is concerned, the twistor construction when p = 1 and
q = 1 is slightly degenerate as explained in [14, 6]. This degeneracy
is exactly reflected in the finite dimensional “corrections” as above.
Thus, from now on we shall assume that p, g > 2 leaving the special
cases p =1 or ¢ =1 to the reader.

In this case Theorem 1 can be rephrased above as a duality be-
tween HP~!(P+, #(A)) and H9 (P, #(1)). One can easily check
that the pairing between these cohomologies is given as follows (cf.
[45]). For w € HI"'(P—, #(1)) choose U an open neighbourhood of
P~ so that w is represented by & € H'(U, &(4)). Now for u €
H-Y(P+, #(1)) form the cup product @ Ny e H"2(U NP+, Q" 1)
and finally take the Mayer-Vietoris connecting homomorphism for the
cover {U, Pt} of P to obtain an element of H*~ (P, Q" 1) = C.
This is the dot product w - u introduced in [13].

Laufer [32] also discusses topologies on the compactly supported co-
homology HI(X,#(V)) and proves that if HITY(X,&(V))
has a Hausdorff topology, then H™"(X,@(V)) is the continuous
dual of HI(X,Z(V)). Using this result, the argument above for
HP~1(Pt, #(V)) may be repeated for H?~!(P+, &(V)) to prove:

THEOREM 2. Utilizing the notation of the introduction, suppose that
p,q > 2, and that 2 is a homogeneous line bundle on P. Then
HI~Y(P~, @(4)) has the natural topology of the strong dual of a Fréchet
space and the dot product

HP~Y(PT, @A) HI '(P~, (1)) —» C
is a perfect pairing.

Note that the roles of P+ and P~ above may be reversed by re-
placing @ by —®. Also note that Laufer [32] provides alternative
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methods of describing these natural topologies and, in particular, it is
possible directly to use the Cech definition of cohomology. The Cech
method is commonly employed in twistor theory.

3. Elementary states. The twistor elementary states are certain co-
homology classes in H!(P—L, #(A)) as described later in this section.
As a homogeneous space for GL(T), P is the quotient

*
*
*

cOO8

X — z? det(X)b.

0

and the homogeneous line bundles are given by the representations

P q
AN

P{ * 0
J=

In line with the notation of [15], this line bundle will be denoted by
(alb, b, ..., b). Note that (—1|0, ..., 0) is the hyperplane section
bundle: #(k) = (—k|0, ..., 0). If SL(T) is used instead then only
a — b is relevant since

(alb,...,b)=(a—bl0,...,0)®(detT)’ = 2(b —a) @ (det T)°.

Following Laufer [31], it is shown in [11] how HP~1{(P — L, #(k))
may be represented in terms of Laurent series. An element in
HP~Y(P - L, @#(k)) may be written

> Aogoy(ZPHL, - 2
Na(Zz2)B ...
a,B,...,y>0 (Z ) (Z )ﬂ (ZP))’

where A4,p..., is ahomogeneous polynomial of degree a+f+---+y+k.
Each term in this expansion is included in H?~'(P — L, #(k)) as a
Cech representative with respect to the Leray cover {Z! # 0}, ...,
{ZP # 0} of P—L. Evidently, U(q) acts on each 47 according to
the totally symmetric dual representation (Sym“*X)*, where d = a +
B +---+7. The action of U(p) on the variables (Z!, ..., Z?) isless
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obvious as it involves changing the Cech cover but it is straightforward
to verify that d is preserved and that the corresponding representation
on the collection

1
{ (Zl)a(Zz)ﬂ - (ZP) }a+ﬂ+---+y=d

is the totally symmetric representation Sym?~? tensored with the de-
terminant representation. Overall, therefore the terms in the Laurent
series expansion for each fixed d provide a finite dimensional irre-
ducible representation of U(p) x U(g), namely (in the notation of
[15]) the representation

(1,...,1,1+d-p|-k-d,0,...,0) ford >max(p, —k).

Finite linear combinations of these elements of H?~!(P— L, &(k))
are called elementary states. In other words, the elementary states are
represented by finite Laurent expansions (see [11] and [6] for further
discussion). Notice that P — L is a homogeneous space for

-1

Pt
N e

P-
L=¢1(-1
¢~ )\ _L 1

and so the cohomology H?~!(P — L, #(k)) gives a representation of
J . It is evident from the Laurent series expansion that the elementary
states are precisely the J-finite vectors of this representation.

The elementary states are usually regarded, however, as cohomology
classes in H?~!(Pt+, @(k)) where they are referred to as elementary
states based on L. This is legitimate because either by the Penrose
transform [15] or by reasoning supplied in the previous section, the
natural map

HP~Y(P-L,o(k)) - H-}(PT, @(k))

is injective. Observe that L can be any linearly embedded P,_; in-
side P~. U(p, q) acts transitively on the set of possible choices and
the stabilizer of L is the maximal compact U(p) x U(g). Conversely,
a choice of U(p) x U(g) c U(p, q) stabilizes exactly one such L.
Equivalently, U(p) x U(q) stabilizes L+ C P*, a linearly embedded
P,_; . At this stage, however, it is not at all clear that the elementary
states are the U(p) x U(g)-finite vectors inside the U(p, ¢)-module
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HP~1(P*, @(k)). Though this is true, it requires further argument
(supplied at the end of this paper).
Finally, by tensoring through with detT, note that the elementary
states for
HP-Y(P*, 6(alb, ..., b))
are grouped into the representations
b+1,...,b+1,b+14+d—-pla-d,b,...,b)

of U(p) x U(q) for d > max(p,a — b). When viewed inside
HP-Y(P-L,0o(alb, ..., b)), the lower left-hand block of J acts as
lowering operators from elementary states of “level” d to those of
level d — 1. This can be seen explicitly on Cech cocycles where the
Lie algebra of J acts as differential operators [5, 6].

4. The ladder representations. In this section we place the coho-
mologies that we have been studying in the context of general repre-
sentation theory. This is slightly jumping the gun since, as remarked
above, we do not yet know that the elementary states are the K-finite
vectors in these various cohomologies. Here K denotes the maximal
compact subgroup

K=U(p)xU(g) cU(p, q)

and it is a standard technique in the study of representations of reduc-
tive Lie groups to first restrict to such a K and see how the K-finite
vectors of the representation decompose into irreducibles. Thus, for
the purposes of this section we assume to know that the elementary
states are the K-finite vectors (as proved in §7).

As shown in the previous section, the K-types of

HP-YP*, @(1)) or HPY(P+,o(A)

are especially simple. There is a highest K-type (where d =
max(p, a — b)) and then a single ray of K-types (as d increases)
all occurring with multiplicity one. It is for this reason that these
representations are known to physicists as the /adder representations.

The K-finite parts of these representations agree—they constitute
the same Harish Chandra module. A Fréchet representation with a
particular Harish Chandra module as K-finite part is called a global-
ization of this module and it is shown in [10] that HP~1(P+, #(4))
is precisely the hyperfunction or maximal globalization [42]. This is
also a special case of a very general result of Schmid and Wolf [43, 44]
which uses geometric quantization to produce Fréchet representations
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which are the maximal globalizations of Zuckerman’s derived functor
modules. (We are grateful to the referee for drawing our attention to
this result.) More interesting, however, is the fact that these modules
are unitarizable i.e. admit a (necessarily unique) Hilbert space global-
ization. This is proved in §6 below but is already well-known. We now
review some of the relevant literature and explain why the “twistor”
method is quite different from the usual approaches.

As mentioned in the introduction, the case of SU(2, 2) is especially
interesting from the physical point of view since there are the 2-1
covers

SU(2,2)—-0l(2,4)—-Cl(1, 3)

where Cl(l , 3) is the identity component of the group of conformal
transformations of compactified Minkowski space. In this case the
ladder representations occur as the spaces of massless fields of var-
ious helicities on compactified Minkowski space and physicists have
long known how to unitarize them (though usually regarded only as
representations of the Poincaré group, a subgroup of the conformal
group). Incidently, that is why the work state is employed—from
the language of quantum mechanics. One can Fourier analyze these
fields and directly verify invariance of the physically motivated scalar
product. This approach is detailed in [28]. The calculations required
are fairly severe. This method generalizes immediately to the case of
01(2 , k) and, with more effort, to the case of SU(p, ¢q) (as in [30]).

Since then, much progress has been made in unitarizing these and
other modules. The simple pattern of K-types shows that the ladder
representations are examples of highest weight modules i.e. they are
generated by lowering a single weight vector. It is now known precisely
which such modules are unitarizable [18, 29] and there are several
methods of proving unitarity (e.g. [47, 1]). These methods are usually
algebraic.

More closely related to the twistor method, however, is the construc-
tion of representations on L2-cohomology. This was very successful
for the discrete series [41, 4] and this approach has since been adapted
[38] to deal with certain singular representations (of which the ladder
representations are examples). However, we should point out that,
although there is always a mapping from L2-cohomology to ordinary
Dolbeault cohomology, they are not usually well-related.

There is always a difficulty in establishing the unitary structure. For
L2-cohomology this difficulty lies in showing that the answer is non-
trivial either from Harish Chandra’s original proof of the existence of

el



210 M. G. EASTWOOD AND A. M. PILATO

the discrete series as in [41] or from an LZ?-index theorem as in [4].
What is clear in this approach, however, is the existence and invariance
of the Hilbert space inner product. These difficulties are compounded
for the singular representations [38] when the inner product is not so
clear. For realizations such as those on massless fields the existence
of the Hilbert space is straightforward but work is needed to check
invariance of the inner product under the action of the group. Indeed,
sometimes it is not so clear that the group acts at all—this involves
checking that the field equations are conformally invariant [24, 8, 17].

With the twistor approach, however, the existence of the represen--
tation (without the unitary structure) is elementary since Dolbeault
cohomology is well-understood (cf. Schmid’s original approach to the
discrete series [40]). The construction of an invariant Hermitian form
requires some work but is straightforward once the twistor transform
used in its construction is under control. The place where the twistor
construction has its difficulties is in showing that the scalar product is
positive definite. This is where the elementary states are so useful (as
in §§6 and 7 below).

The twistor construction of the scalar product for the case of mass-
less fields first appears in [35, pp. 277-278] where it is couched in
the language of twistor diagrams. It is obtained by transferring the
spacetime definition over to twistor space. At this time the Penrose
transform was in an early stage of development. Penrose had not yet
recast it in terms of cohomology. Some cohomological implications
of the twistor construction were worked out in [20, 21, 13]. The work
of Rawnsley, Schmid, and Wolf [38] was also inspired in part by Pen-
rose’s results though their conclusions are rather different than ours.

Finally, we should note that the invariance of the massless field
equations and their relatives under the group of conformal transforma-
tions is a special case of a much stronger invariance, namely invariance
under local conformal rescalings of the metric. Further discussion on
this aspect can be found in [8, 17].

5. Proof of density.

THEOREM 3. For a fixed L C P~ the elementary states based on L
are dense in HP~1(Pt, @(1)).

Proof. By the Hahn-Banach theorem and Theorem 2, we must show
that if F € HI"1(P-, @(4)) and e-F = 0 for all elementary states
e, then F = 0. Suppose A = (alb, ..., b). According to §1, the
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simplest (d = max(p, a—b)) elementary states based on L comprise
a finite dimensional representation Ry of U(p) x U(g), namely:

b+1,...,b+1,b+1la-p,db,...,b) ifp>a->b,
b+1,...,b+1,a+1-plb,b,...,b) ifp<a-b.

Taking the dot product with these states gives

Ry® H*™'(P~,0(1)) = C
or, equivalently, a natural map
HI"Y(P=, (1)) — R},

The (q — 1)-plane L in P~ may be regarded as a point in the
Grassmannian Gr,(T). Choosing different L in P~ sweeps out an
open subset M~ of Gr,(T). The generalized Penrose transform [15]
interprets H9-1(P—, ©(4)) as holomorphic solutions of certain linear
holomorphic differential equations on M~ . Details of this transform
are explained in [14, 15, 6] and shall be omitted here. It is shown in

[14] that the map H9~!(P—, @#(4)) — R}, is exactly the evaluation of
the Penrose transform at L € M~ . Similarly, the elementary states in

Ri=b+1,...,b+1,b+2la-p-1,b,...,b) ifp>a->,

Ri=b+1,...,b+1,a+2p—-|b-1,b,...,b) ifp<a->,
define a homomorphism

H™\(P~,0(A) — Ry

which coincides with the derivative of the Penrose transform at L (see
[13] for the case p = ¢ = 2). Higher elementary states give higher
derivatives. Thus e - F = 0 for all e based on L if and only if the
Penrose transform of F vanishes together with all its derivatives at

L € M~ . By analyticity, this means that the Penrose transform of F
is identically zero and hence F itself vanishes, as required. O

REMARKS. 1. A similar proof applies for the elementary states in
HI"Y(P+, 6(2)).

2. The method of proof shows slightly more than just density and
this will be used in the next section.

6. The scalar product. The main result of [14] (also proved in [6])
is that there is a canonical isomorphism of topological vector spaces,
the twistor transform

T HPY(PF, 6(h) — HI Y (P, o(d))
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where, if A = (alb, ..., b) then A=(-a+n-1]-b-1,..., -b-1).
It is obtained through Penrose transforming these two cohomologies
and should be regarded as a complex version of the Fourier transform,
the Penrose transform being a complex version of the Radon trans-
form. In particular, this isomorphism is U(p, g)-equivariant. The
Hermitian form ® on T induces a conjugate linear isomorphism

HIY (P, ¢(1) S HI (P, ()

by f(Z) = f(Z) on Cech cocycles. Combining this with the dot
product gives an Hermitian product, the scalar product, ( | ), on"
HP=1(P+, #(2)) by

(wlp) =w-Tu.

This product is manifestly U(p, ¢g)-invariant and we shall now show
that it is positive definite.

By direct calculation [35, 13, 14], the elementary states in
HP~1(P+, #(A)) based on L Cc P~ are mapped isomorphically by the
twistor transform to the elementary states in H9~!(P*—, #(1)) based
on LT c P**. It is then straightforward to verify that these finite di-
mensional representations of U(p)xU(gq) are mutually orthogonal for
(|) and that (|) is positive definite on each. It is also clear that (| )
is continuous for the natural topology on H?~!(P*#(4)). Thus, from
the density shown in §3, it follows that ( | ) is non-negative definite.
However, it is actually positive definite for suppose that (u|u) = 0.
Then for any ¢t € C and e an elementary state based on L

0 < (tu+eltu+e)=2Re(t{ule)) + (ele).

Thus, (ule) = 0 for all elementary states based on L. Since the
twistor transform preserves elementary states, this is equivalent to
saying that - f = 0 for all elementary states f based on L1. Ac-
cording to the proof of the previous theorem, this implies that u =0
as required.

7. The K-finite states are elementary. We conclude with the fol-
lowing remarks:

1. The L?-completion of H?~!(P+, #(4)) with respect to (| )
is called the space of normalizable states and lies between
HP~Y(P+,0(A)) and HI"!(P+, #(A)) as a cohomological generaliza-
tion of L2-functions between real analytic functions and hyperfunc-
tions.

2. Using (| ) allows one to expand an element of H?~1(P+, # (1))
as a series in elementary states. This is a stronger statement than
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just density. When p = 1 this reduces to expanding a function as
a power series about a chosen point (whereas density is merely the
Runge approximation theorem).

3. By viewing elements of H?~!(P+, #(1)) as such series, one
can directly compare HP~!(P+,# (X)) and H?"Y(P - L,&Z(A)). A
similar expansion is possible for elements of H?~!(P*, #(A)) since
one can calculate coefficients by pairing with the elementary states in
H®Y(P-LL, #(1)). Thus, all of these cohomologies may be regarded
as Laurent series as in §3. They differ merely because their notions of
convergence are different. In all cases, however, it is now clear that the
U(p) x U(q)-finite vectors are those with finite Laurent expansions. In
other words, the elementary states are precisely the U(p) x U(q)-finite
vectors.

4. Had we known this already, the density of Theorem 3 would have
followed from general arguments—the K-finite vectors in a Fréchet
module are always dense [46].

5. It is easy to see that U(p, ¢) acts irreducibly on the elementary
states. Now that we know that these coincide with the U(p) x U(q)-
finite vectors, it follows that HP~1(P+, #(A)) or the Hilbert space
completion of H?~1(P+, #(A)) are irreducible U(p, q)-modules.
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