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ON SURFACES IN THE 3-DIMENSIONAL
LORENTZ-MINKOWSKI SPACE

ANGEL FERRANDEZ AND PAscUAL Lucas

Let M? be a surface in the 3-dimensional Lorentz-Minkowski
space > and denote by H its mean curvature vector field. This paper
locally classifies those surfaces verifying the condition AH = AH,
where J is a real constant.

The classification is done by proving that Af? has zero mean cur-
vature everywhere or it is isoparametric, i.e., its shape operator has
constant characteristic polynomial.

0. Introduction. Let x : M? — R3 be an isometric immersion of
a surface M? in the 3-dimensional Euclidean space and denote by
A its Laplacian. A well-known result due to Takahashi states that
minimal surfaces and spheres are the only surfaces in R3 satisfying
the condition Ax = Ax, for a real constant A. From the formula
Ax = —2H, where H is the mean curvature vector field, we know
that those surfaces also verify the condition AH = AH. Thus, it is
worthwhile to explore the existence of other surfaces satisfying that
condition. The answer is given in [FGL], where the authors (jointly
with O. J. Garay), as a consequence of the main theorem there, get
the following

THEOREM 0.1. Let M? be a surface in R3. Then AH = AH if and
only if M? is minimal or an open piece of one of the following surfaces:
a sphere S*(r) or a right circular cylinder S'(r) x R.

Now, if the ambient space is the 3-dimensional Lorentz-Minkowski
space L3, the surface M2 can be endowed with a Riemannian met-
ric (spacelike surface) or a Lorentzian metric (Lorentzian surface)
and then it seems natural to hope that a richer classification can be
achieved. Indeed, we state a first question:

Problem 1. Classify all surfaces in L3 satisfying the condition AH =
AH , where H is the mean curvature vector field.
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A maximal surface in L3 is a spacelike surface with zero mean
curvature everywhere. Obviously, those surfaces satisfy AH = 0.
Then, another question arises naturally:

Problem 2. Are there any other surfaces, apart from maximal ones,
satisfying AH =07?

In this paper, see §3, we solve the above two problems.

1. The Laplacian of the mean curvature vector field. Let M? be
a surface in L3 with index s = 0, 1. Denote by ¢, 4, H, V and
V the second fundamental form, the shape operator, the mean cur-
vature vector field, the Levi-Civita connection of M2 and the usual
flat connection of L3, respectively. Let N be a unit vector field nor-
mal to Ms2 and let o be the mean curvature with respect to N, i.e.,
H =aN.

In order to compute AH at a point p € Msz, choose a local or-
thonormal frame {E,;, Ey} such that Vg E;(p) = 0. From the for-
mula

VEIVEIH = EiE,(a)N - 2E,(a)AE, - OA(VEIA)E,' — aO'(AE,' , El) ,
one has
(1.1) AH =2A4(Va)+ atr VA + {Aa + ea|A[*}N,

where trV4 =trace{(X,Y)— (VxA4)Y} and ¢ = (N, N).
To find a nice expression of trVA4, we distinguish three cases, ac-
cording to the canonical form of A.

Case 1. A is diagonalizable. Let {X;, X,} be a local orthonor-
mal basis of eigenvectors of A, i.e., 4AX; = u;X;. Then from the
connection equations one has

2
(1.2) trvA= Y &(VxA4)X;

=1

= {&1X1 (1) + &2ty — 1) @3 (X2)} X,
+{e2 X (1) + &1 (11 — o) @} (X1)} X2,
where ¢; = (X;, X;).

Now, from the Codazzi’s equation (V x,A) Xz = (Vx A) Xy, we get

ei(pi — uj)wl(X,) = & X;(wi),
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which, jointly with (1.2), yields
(1.3) trVA = e Xq (1 + 1) Xq + e2Xo(uy + 1) Xo = 2eVa.

Case 2. A is not diagonalizable and its minimal polynomial is
(x — B)2. Now, it has to be ¢ = 1 and we can choose a local null
frame {Xl > XZ}a i'ew (Xl s X1> = (X2> X2) =0 and <X1 > XZ) =-1,
such that 4X, = X, + X, and AX; = fX,. Now we have
(1.4) trVA = —(Vx A) X2 — (Vx,A) X1 = -2X1(B)X> .

By using again the Codazzi’s equation we get X,(f) = 0 and consid-
ering that £ is the mean curvature, one obtains from (1.4) that

(1.5) trvA = -2X(a)X; = 2Va.

Case 3. A is not diagonalizable and its minimal polynomial is
(x — B)*+ 2, y # 0. Here, it must be ¢ = 1 and we can choose
a local orthonormal frame {X;, X} such that AX; = X, — yX;,
AX; = yX; + BX,. Writing ¢; = (X;, X;), we have
(1.6) trV ={g X;(B) — eyyw}(Xy) — 1707 (X1) + £2.X(»)} Xy

+{£2X2(B) + 273 (X2) + 2701 (X7) — &1.X1 ()} Xz .
From the Lorentzian structure of the tangent space, one has w? = w},
and using once more the Codazzi’s equation we find
(1.7) trVA4 = 2{e: X1(f) X1 + e, X2(B) X3} = 2Va.
Summarizing, for a surface M2, s = 0, 1, in L3 we have got the
desired formula
(1.8) AH = 2A4(Va) + eVa? + {Aa + eal4|*}N,

where Va is the gradient of o and ¢ = (N, N).
2. Some examples of surfaces with AH = AH. We are going to

describe some examples of surfaces in L3 satisfying the condition
AH = AH for a real constant A.

ExampLE 2.1. Let f:L3 — R be a real function defined by
f(x,y,2)==6x*+y2+ 6,22,

where J; and J, belong to the set {0, 1} and they do not vanish
simultaneously. Taking r > 0 and & = +1, the set f~!(er?) is a
surface in L3 provided that (d;, 65, &) # (0, 1, —1).
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A straightforward computation shows that the unit normal vector
field is written as N = (1/r)(d,x, y, d2z); the principal curvatures
are u; = —0;/r and u; = —d,/r. Then, the mean curvature is given
by a = (e/2)(u1 + m2) = (—¢/2r)(d; + J,) and it is easy to show that
|A|? = u? + u? = (1/r*)(d, + &) . Therefore, by using formula (1.8),
we have AH = (¢/r?)(6; + 6,)H .

We have listed all possibilities in Table 1.

TABLE 1
6, (0] & Equation Surface Shape operator a AH
0|1 1 yz+22=r2 leSl(r) (8 —(l)/r) —7'; ;lz‘H
1lo|-1] —-x*+y*=-* |H'()xR (‘3/’ 8) L | -LH
1 {0} 1 ~x*+yt =/ Sll(r)xIR (—é/r g) -5 ;‘;H
L1 =t =+ +2==| HY) (‘(1)/’ _(1)/’) Ll -3n
11| —x*+y2+22=1 S2(r) (—(l)/r ——?/r) -1 r%H

EXAMPLE 2.2 (B-scroll, see [Gr]). Let x(s) be a null curve in L3
with Cartan frame {4, B, C},ie., A, B, C are vector fields along
x(s) satisfying the following conditions:

(4, A)=(B,B)=0, (4,B)=-1,
(4,C)=(B,C)=0, (C,C)=1,
and
xX=4,
A=k(s)C,
B =woC, wgbeing a non-zero constant,
C =wod + k(s)B.
If we consider the immersion ¥: (s, ¥) — x(s) + uB(s), then ¥ de-
fines a Lorentz surface that L. K. Graves calls B-scroll. An easy com-
putation leads to N(s, u) = —wouB(s) — C(s) and H = woN . Then,
from the formula (1.8), we get AH = 2wiH .

We wish to finish this section noticing that in the Riemannian case
the sphere S2(r) and the right circular cylinder S'(r) x R are the
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only non-minimal surfaces satisfying the condition AH = AH , but in
the Lorentzian situation we find a richer family of surfaces satisfying
that condition, as the above examples show. In particular, we would
like to point out the chief difference among the B-scroll example and
the other ones. In fact, in the first five cases (see Table 1) the shape
operator is diagonalizable, whereas in a B-scroll it takes, in the usual
frame {0¥/ds, 0¥/0u}, the following form

(k“(’;)) ’U?o) ’

and its minimal polynomial is (x — wg)?.

3. Main results. This section is devoted to showing the following
major result.

THEOREM 3.1. Let M?, s = 0,1, be a surface in the Lorentz-
Minkowski space 1.3. Then M? satisfies the equation AH = AH if
and only if one of the following statements is true:

(1) M? has zero mean curvature everywhere.

(2) M? is an open piece of a B-scroll.

(3) M? is an open piece of one of the surfaces exhibited in Table 1.

Proof. Take in M? the open set % = {p € M2 : Va?(p) # 0}. Our
first goal is showing that % is empty, i.e., a is constant. Otherwise,
by assumption and (1.8) we have got

(3.1) A(Va?) = —eaVa?,
and
(3.2) Ao+ (e|AP> = D)a =0

at the points of % . Therefore Va? is a principal direction with prin-
cipal curvature —ea on % . Now, we claim that the shape operator is
diagonalizable at the points of % . First, from (3.1), we see that the
minimal polynomial of 4 cannot have the form (x—f)2+y2, y #0.
On the other hand, neither does (x — f); otherwise, we would have
(1 4+ €2)a(p) = 0 and therefore Va?(p) = 0, which cannot hold on
% . Finally, a similar reasoning shows that the minimal polynomial
neither can have the form (x — 8)2.

Let us take, at a point of %, alocal orthonormal frame {E, , E,, E3}
such that £3 = N and {E,, E,} are eigenvectors of 4 and E; is
parallel to Va?. Then eigenvalues of A are given by —ea and 3ea.
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Let {®', w?, ®} and {w!} be the dual frame and the connection
forms, respectively. It is easy to see that

1

(3.3) ) = caw!,
(3.4) w3 = —3eaw?,
(3.5) do = E|(0)o'.

Taking exterior differentiation in (3.3) and using the structure equa-
tions we obtain dw! = 0. Therefore, one locally has w! = dv, for
some function v, that jointly with (3.5) yields da A dv = 0. Then,
a depends on v, a = a(v), and therefore do = o/ dv = o/w! and
E 1 (a) =a.

Now, by exterior differentiation in (3.5) and using again the struc-
ture equations, one gets

(3.6) daw) = 3e620' ?,

where ¢; = (E;, E;). Then a direct computation from (3.6) allows us
to write down the following differential equation

(3.7) daa” — 7(a’)? + 16ee10* = 0.
It is easy to see that a first integral is given by
(3.8) () = Ca'l? — 16ee1a*,

where C is a constant.
From the fact that E; is parallel to Va? and equation (3.6) we find

(3.9) doAa = —4e ad” + 3e (d/)?.

On the other hand, since |4|?> = 10a?, by using equations (3.2) and
(3.9) we have

—4aa” + 3(a/)? = 4e,{A — 10ea’}a?,
that jointly with (3.7) gives
(3.10) ()? = —g14a? + ldeea®.

We deduce, by using (3.8) and (3.10), that « is locally a constant
on % , which is a contradiction with the definition of the set % . As
a consequence, o is a constant on M?. Then, again from (3.2),
we deduce that either M2 has zero mean curvature everywhere or
|4]> = &4 and therefore |A|*> is also a constant. That implies that
the characteristic polynomial of 4 is constant and therefore M? is
isoparametric. Then, if s = 0, M{ is an open piece of H?(r) or
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H'(r) x R. When s = 1, it follows from [Ma] that M? is an open
piece of one of the following surfaces: S?(r), Si(r) x R, L x S(r)
and the B-scroll of Example 2.

Theorem 3.1 gives the best solution to the stated Problem 1, so that
additional hypothesis should be given in order to characterize those
surfaces with zero mean curvature everywhere.

The following results can be deduced from Theorem 3.1.

COROLLARY 3.2. Let M} be a surface in L?. Then AH =0 if and
only if M? has zero mean curvature everywhere.

This is the solution of the Problem 2. It is worth noticing that
this solution is quite similar from that given for surfaces in the 3-
dimensional Euclidean space, because according to Theorem 0.1 min-
imal surfaces in R> are the only ones satisfying the condition AH = 0.

COROLLARY 3.3. Let M? be a surface in L3 with non-zero mean
curvature. Then AH = AH, 1> 0, if and only if M? is an open piece
of a Lorentzian cylinder, a De Sitter space Slz(r) or a B-scroll.

COROLLARY 3.4. Let M? be a spacelike surface in L3. Then AH =
AH if and only if one of the following statements holds:

(a) M? is maximal.

(b) M? is an open piece of the hyperbolic plane H?*(r).

(c) M? is an open piece of the hyperbolic cylinder H'(r) x R.
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Added in proof. We have known from Professor B. Y. Chen that
Problem 2 has also been studied for Euclidean submanifolds by I
Dimitric in his thesis (MSU).

REFERENCES

[FGL] A. Ferrandez, O. J. Garay and P. Lucas, On a certain class of conformally flat
Euclidean hypersurfaces, to appear in the Proceedings of the Conference in
Global Analysis and Global Differential Geometry, Berlin, June 1990.

[Gr] L. K. Graves, Codimension one isometric immersions between Lorentz spaces,
Trans. Amer. Math. Soc., 252 (1979), 367-392.



100 ANGEL FERRANDEZ AND PASCUAL LUCAS

[Ma] M. A. Magid, Lorentzian isoparametric hypersurfaces, Pacific J. Math., 118
(1985), 165-197.

Received August 10, 1990 and in revised form October 12, 1990. The first author was
partially supported by a DGICYT Grant No. PS87-0115-C03-03. The second author
was supported by a FPPI Grant, Program PG, Ministerio de Educacién y Ciencia.

UNIVERSIDAD DE MURCIA
30100 ESPINARDO, MURCIA, SPAIN





