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ON SURFACES IN THE 3-DIMENSIONAL
LORENTZ-MINKOWSKI SPACE

ANGEL FERRANDEZ AND PASCUAL LUCAS

Let Mj be a surface in the 3-dimensional Lorentz-Minkowski
space L3 and denote by // its mean curvature vector field. This paper
locally classifies those surfaces verifying the condition AH = λH,
where A is a real constant.

The classification is done by proving that M; has zero mean cur-
vature everywhere or it is isoparametric, i.e., its shape operator has
constant characteristic polynomial.

0. Introduction. Let x : M2 —• R3 be an isometric immersion of
a surface M2 in the 3-dimensional Euclidean space and denote by
Δ its Laplacian. A well-known result due to Takahashi states that
minimal surfaces and spheres are the only surfaces in R3 satisfying
the condition Ax = λx, for a real constant λ. From the formula
Ax = -2H, where H is the mean curvature vector field, we know
that those surfaces also verify the condition AH = λH. Thus, it is
worthwhile to explore the existence of other surfaces satisfying that
condition. The answer is given in [FGL], where the authors (jointly
with O. J. Garay), as a consequence of the main theorem there, get
the following

THEOREM 0.1. Let M2 be a surface in R 3 . Then AH = λH if and
only if M2 is minimal or an open piece of one of the following surfaces:
a sphere S2(r) or a right circular cylinder Sι(r) x R.

Now, if the ambient space is the 3-dimensional Lorentz-Minkowski
space L 3 , the surface M2 can be endowed with a Riemannian met-
ric (spacelike surface) or a Lorentzian metric (Lorentzian surface)
and then it seems natural to hope that a richer classification can be
achieved. Indeed, we state a first question:

Problem 1. Classify all surfaces in L3 satisfying the condition AH =
λH, where H is the mean curvature vector field.
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A maximal surface in L3 is a spacelike surface with zero mean
curvature everywhere. Obviously, those surfaces satisfy AH — 0.
Then, another question arises naturally:

Problem 2. Are there any other surfaces, apart from maximal ones,
satisfying AH = 0?

In this paper, see §3, we solve the above two problems.

1. The Laplacian of the mean curvature vector field. Let Mj be
a surface in L3 with index 5 = 0 , 1 . Denote by σ, A, H, V and
V the second fundamental form, the shape operator, the mean cur-
vature vector field, the Levi-Civita connection of Mj and the usual
flat connection of L 3 , respectively. Let N be a unit vector field nor-
mal to Mj and let a be the mean curvature with respect to N 9 i.e.,
H = aN.

In order to compute AH at a point p G Mj, choose a local or-
thonormal frame {E\, Eι) such that VEEj(p) = 0. From the for-
mula

= EiEι{a)N -

one has

(1.1) AH = 2A(Va) + αtr VA + {Aa + εa\A\2}N,

where trV^ = trace{(Z, Y) -> {VXA)Y} and ε = (TV, N).
To find a nice expression of tr VA, we distinguish three cases, ac-

cording to the canonical form of A.

Case 1. A is diagonalizable. Let {X\, X{\ be a local orthonor-
mal basis of eigenvectors of A, i.e., AXi — μiXi. Then from the
connection equations one has

2

(1.2) trVA= ΣeiφxAW
ί = l

ε2(μ2 - μχ)ω\{X2)}Xχ

) + «i(/ίi - μ2)ω2ι(Xι)}X2,

where ε, = (X,, X,).

Now, from the Codazzi's equation (Vx A)X2 = (Vχ2A)X\, we get

Bi(Mi ~ μj)ω'i{Xι) = εjXj(μi),
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which, jointly with (1.2), yields

(1.3) tr VA = εxXx(μx + μ2)Xx + e2X2(μ\ + μ2)X2 = 2εVα.

Case 2. A is not diagonalizable and its minimal polynomial is
(x - β)2. Now, it has to be ε = 1 and we can choose a local null
frame {Xx, X 2 }, i.e., (X!, Xx) = {X2 ,X2) = 0 and (Xx, X2) = - 1 ,
such that ΛΛTi = /?Xi + X2 and ^X 2 = β^2 Now we have

(1.4) XτVA = -{VXA)X2 - {VXA)XX = -2Xx{β)X2.

By using again the Codazzi's equation we get X2(β) = 0 and consid-
ering that β is the mean curvature, one obtains from (1.4) that

(1.5) trV.4 = -2Xχ(a)X2 = 2Vα.

Case 3. A is not diagonalizable and its minimal polynomial is
(x - β)2 + γ2, γ Φ 0. Here, it must be ε = 1 and we can choose
a local orthonormal frame {X\, X2) such that 4̂Xi = βX\ - γX2,

= yX\ + βX2 . Writing e, = (Z/, ΛΓ, ), we have

(1.6) tr V = {βj^(jί) - βiyωi(JΓi) - eχyω2{Xx) + ε2X2(γ)}Xx

+ {e2X2(β) + e2γω\(X2) + e2γω2(X2) - εxXx(γ)}X2.

From the Lorentzian structure of the tangent space, one has ώ\ = ω\,
and using once more the Codazzi's equation we find

(1.7) t rV^ = 2{εxXx(β)Xx + ε2X2(β)X2} = 2Vα.

Summarizing, for a surface M2, s = 0, 1, in L3 we have got the
desired formula

(1.8) AH = 2A(Va) + εVα2 + {Δα + εa\A\2}N,

where Vα is the gradient of a and ε = (N, N).

2. Some examples of surfaces with AH = λH. We are going to
describe some examples of surfaces in L3 satisfying the condition
AH = λH for a real constant λ.

EXAMPLE 2.1. Let / : L3 —• R be a real function defined by

where <?i and δ2 belong to the set {0,1} and they do not vanish
simultaneously. Taking r > 0 and ε = ± 1 , the set f~ι(εr2) is a
surface in L3 provided that (δx, δ2, ε) Φ (0, 1, - 1 ) .
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A straightforward computation shows that the unit normal vector
field is written as N = (l/r)(δ\x9y, δ2z)\ the principal curvatures
are μ\ = —δ\/r and μ2 = —δ2/r. Then, the mean curvature is given
by a = (ε/2)(μi + μ2) = (-e/2r)(δ\ + δ2) and it is easy to show that
\A\2 = μ\ + μ\ = (l/r2)(δx + δ2). Therefore, by using formula (1.8),
we have AH = {ε/r2){δλ + δ2)H.

We have listed all possibilities in Table 1.

TABLE 1

0

1

1

1

1

δ2

1

0

0

1

1

ε

1

- 1

1

- 1

1

Equation

y2

 + z2 = r2

-x2+y2 = r2

- x

2

+ y

2

 + z

2 = -r2

Surface

LxSV)

^(r)xR

5|(r)xR

H2(r)

5f(r)

Shape operator

(0 0 \
\0 -Mr)

(-Mr 0\

\ o o)
(-Mr 0\

\ o o)
(-Mr 0 λ
V 0 -Mr)

(-Mr 0 \
V 0 -Mr)

a

~Tr

Tr

~ir

r

_l
r

AH

7H

~7H

?H

~?H

7H

EXAMPLE 2.2 (^-scroll, see [Gr]). Let x(s) be a null curve in L3

with Cartan frame {A, B, C}, i.e., A, B, C are vector fields along
x(s) satisfying the following conditions:

(A,A)=(B,B) = (A,B) = -

(C,C> = 1

and

x = A9

A = k(s)C,

B = WQC , being a non-zero constant,

If we consider the immersion Ψ: (s, u) -» x{s) + uB{s), then Ψ de-
fines a Lorentz surface that L. K. Graves calls B-scroll. An easy com-
putation leads to N(s, u) = -WQUB(S) - C(s) and 7/ = WQN . Then,
from the formula (1.8), we get AH = 2WQH .

We wish to finish this section noticing that in the Riemannian case
the sphere S2(r) and the right circular cylinder Sι(r) x R are the
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only non-minimal surfaces satisfying the condition AH = λH, but in
the Lorentzian situation we find a richer family of surfaces satisfying
that condition, as the above examples show. In particular, we would
like to point out the chief difference among the i?-scroll example and
the other ones. In fact, in the first five cases (see Table 1) the shape
operator is diagonalizable, whereas in a 2?-scroll it takes, in the usual
frame {dΨ/ds, ΘΨ/du} , the following form

ί w0 0
\k(s) w0

and its minimal polynomial is (x - w0)
2 .

3. Main results. This section is devoted to showing the following
major result.

THEOREM 3.1. Let M2, s = 0, 1, be a surface in the Lorentz-
Minkowskί space L 3 . Then M2 satisfies the equation AH = λH if
and only if one of the following statements is true:

(1) M2 has zero mean curvature everywhere.
(2) M2 is an open piece of a B-scroll.
(3) M2 is an open piece of one of the surfaces exhibited in Table 1.

Proof. Take in M2 the open set % = {p e M2 : Va2(p) φ 0} . Our
first goal is showing that ^ is empty, i.e., a is constant. Otherwise,
by assumption and (1.8) we have got

(3.1) A(Va2) = -εαVα 2 ,

and

(3.2) Δα + (ε\A\2 - λ)a = 0

at the points of %. Therefore Vα2 is a principal direction with prin-
cipal curvature -ea on ^ . Now, we claim that the shape operator is
diagonalizable at the points of ^ . First, from (3.1), we see that the
minimal polynomial of A cannot have the form (x - β)2 + y2, y φ 0.
On the other hand, neither does (x - β) otherwise, we would have
(1 + ε2)a(p) = 0 and therefore Va2(p) = 0, which cannot hold on
%. Finally, a similar reasoning shows that the minimal polynomial
neither can have the form (x - β)2 .

Let us take, at a point of %, a local orthonormal frame {E\, E2, £3}
such that £3 = N and {E\, E2} are eigenvectors of A and E\ is
parallel to Vα2 . Then eigenvalues of A are given by — ea and 3ea.
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Let {ω1, ω 2 , ω3} and {ω\} be the dual frame and the connection
forms, respectively. It is easy to see that

(3.3) ω\ = εaω1,

(3.4) ω2

3 = -3εaω2,

(3.5) da = Eι(a)ωι.

Taking exterior differentiation in (3.3) and using the structure equa-
tions we obtain dωι — 0. Therefore, one locally has ω 1 = dv, for
some function υ , that jointly with (3.5) yields da Λ dv = 0. Then,
a depends on v , a = a(v), and therefore da = a! dv — a'ω1 and
E{(a) = a'.

Now, by exterior differentiation in (3.5) and using again the struc-
ture equations, one gets

(3.6) 4αα>2 = ^x^iot'ω1,

where ε, — {Ej, Ej). Then a direct computation from (3.6) allows us
to write down the following differential equation

(3.7) 4αα" - 7(c/)2 + l ό ε ε ^ 4 - 0.

It is easy to see that a first integral is given by

(3.8) {af)2 = Ca]l2-\6εειa\

where C is a constant.

From the fact that Ex is parallel to Vα2 and equation (3.6) we find

(3.9) 4aAa = -4ε{aa" + 3εx(af)2 .

On the other hand, since \A\2 = 10α2, by using equations (3.2) and

(3.9) we have

-4aa" + 3(αO2 = 4εx {λ - 10εα2}α2 ,

that jointly with (3.7) gives

(3.10) {a')2 = -εxλa2 + I4εε{a
4 .

We deduce, by using (3.8) and (3.10), that a is locally a constant
on %, which is a contradiction with the definition of the set %. As
a consequence, a is a constant on M2. Then, again from (3.2),
we deduce that either M2 has zero mean curvature everywhere or
\A|2 = ελ and therefore \A\2 is also a constant. That implies that
the characteristic polynomial of A is constant and therefore M2 is
isoparametric. Then, if s = 0, M% is an open piece of H2{r) or
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Hι(r)xR. When s = 1, it follows from [Ma] that M\ is an open
piece of one of the following surfaces: 5f(r), S\(r) x R, L x Sι(r)
and the 5-scroll of Example 2.

Theorem 3.1 gives the best solution to the stated Problem 1, so that
additional hypothesis should be given in order to characterize those
surfaces with zero mean curvature everywhere.

The following results can be deduced from Theorem 3.1.

COROLLARY 3.2. Let Mj be a surface in L 3 . Then AH = 0 if and
only if Mj has zero mean curvature everywhere.

This is the solution of the Problem 2. It is worth noticing that
this solution is quite similar from that given for surfaces in the 3-
dimensional Euclidean space, because according to Theorem 0.1 min-
imal surfaces in R3 are the only ones satisfying the condition AH = 0.

COROLLARY 3.3. Let Mj be a surface in L3 with non-zero mean
curvature. Then AH — λH, λ > 0, if and only if Mj is an open piece
of a Lorentzian cylinder, a De Sitter space S2(r) or a Bscroll.

COROLLARY 3.4. Let M2 be a spacelike surface in L 3 . Then Δ// =
λH if and only if one of the following statements holds:

(a) M2 is maximal.
(b) M2 is an open piece of the hyperbolic plane H2(r).
(c) M2 is an open piece of the hyperbolic cylinder Hι(r) x R.
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try.

Added in proof. We have known from Professor B. Y. Chen that
Problem 2 has also been studied for Euclidean submanifolds by I.
Dimitric in his thesis (MSU).
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