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HOMOGENEOUS DIOPHANTINE APPROXIMATION
IN ^-INTEGERS

EDWARD B. BURGER

In this paper we generalize classical results in Diophantine ap-
proximation to the setting of an arhitrary numher field in the context
of the ring of 5-integers. Specifically, we present theorems pertain-
ing to simultaneous approximations of linear forms and develop the
notion of badly approximable ^-systems. In addition, we expand the
subject of the geometry of numbers over the adele ring of a number
field by developing the concept of the adelic polar body. This theory is
then used to produce transference theorems in this general situation.

1. Introduction. Let RN denote the vector space of N x 1 column
vectors over R. For

x =

\xN/
we define

= m a x . { \ x n \ }
\<n<N

to be the supremum norm.
Suppose A is an M x N matrix over R. Dirichlet proved that if

X is a real number greater than 1 then there exist x e ZN\{6} and
yeZM satisfying

1*1 < *
and

\Ax -y\< X-N'M.

If we further assume that Ax £ QM for all x e ZN\{6}, then there
exist infinitely many pairs of vectors (x, y) e ZN x ZM with x Φ 0
and the components of x and y forming a relatively prime (M + N)-
tuple such that

(1.1) 1 * 1 ^ * - ^ < 1.

Traditionally one asks if (1.1) is sharp. That is, are there examples
where the quantity \x\N\Ax -y\M cannot be made arbitrarily small?
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The answer is yes: these are known as badly approximable systems.
Specifically, we say that the MxN matrix A is a badly approximable
system of linear forms if there exists a constant τ = τ(A) > 0 such
that

τ<\x\N\Ax-y\M

for all x e ZN\{6} and y e ZM.
We pause momentarily to make some remarks about the M = N =

1 situation. An irrational number a is badly approximable if there
is a constant τ = τ(α) > 0 such that

τ < |x| \ax — y\

for all x e Z\{0} and y eZ. It turns out that the issue of being badly
approximable is related to the subject of continued fractions. Specifi-
cally, a is badly approximable if and only if the partial quotients in its
continued fraction expansion are bounded. This implies the existence
of uncountably many badly approximable numbers and uncountably
many numbers which are not badly approximable. It is well-known
that a real number a has a periodic simple continued fraction expan-
sion if and only if a is a quadratic irrational (see, for example, [7]).
Therefore all quadratic irrationals are badly approximable numbers.
It remains an open question as to whether or not real algebraic num-
bers of degree greater than two are badly approximable. The situation
in which a is transcendental remains equally mysterious.

We return back to the badly approximable MxN matrix A. An
interesting issue which now arises is the relationship between A and
its transpose AT. By the application of a transference theorem, it fol-
lows that A is a badly approximable system of linear forms if and only
if Aτ is a badly approximable system of linear forms. A quantitative
version of this is known as Khintchine's transference principle.

Our primary objective is to recast the previous results to the more
general setting of an algebraic number field. In §2 we carefully describe
the relevant objects which will occur and define our notation. But
briefly, let k be an algebraic number field of degree d over Q. We
write kv for the completion of k with respect to the place v . Let S
be a finite collection of places of k containing all infinite places. We
write @s f° r the ring of S-integers of k. For

ί χ\\

x =

\XN/
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we define the ^-height

ves " ~

where | | v is normalized so as to satisfy the product formula. We
define the field constant

l/d

constfc i
where s is the number of complex places of k and Δ^ is the discrim-
inant of k.

We begin by proving the following generalization of Dirichlet's the-
orem.

THEOREM 1. For each v eS, let Av be an M x N matrix over ky

and let X be a real number with X > (const^)(Λ/+iV)/ΛΓ. Then there

exist x e (&s)N\{0} and ye (<?S)
M so that

hs(x) < X

and

Π \Av2-f\v < (const,0 ( M +" ) / MX-" / Λ /.
ves

Similarly, if we add an additional hypothesis we have:

THEOREM 2. For each v eS, let Av bean MxN matrix over ky .
Assume that Avx £ {k)M for all υ eS and all x e (<?s)N\{0}. Then
there exist infinitely many distinct pairs (x, y) e (<fs)N χ (&s)M over
projective space with x ψ 0 satisfying

(1.2) hs(Z, y)N Π \Av*-?\? < (constk)W+N\2Nμ({Av}veS))N,
ves

where

= Hmax{l, \Aυ\υ}.

ves

Next we show that (1.2) is sharp by demonstrating the existence of
linear forms for which the fundamental quantity,

ves



214 EDWARD B. BURGER

cannot be made arbitrarily small. Let Av be an M x N matrix over
ky for each v e S. We shall say {Av}ves is a badly approximable S-
system of linear forms (of dimension MxN) if there exists a constant
τ = τ(k,S, {Av}υeS) > 0 such that

ves

for every x e (<?s)N\{0] a n d 9 € Ψs)M We show that these S-
systems always exist.

THEOREM 3. Let k be any number field and S a finite collection of
places of k containing all infinite places. Given any integers M > 1
and N > 1 there exists a badly approximable S-system of linear forms
of dimension MxN.

Just as in the classical case, we may ask for the relationship between
the S-systems {Aυ}veS and {Aζ}υes. Toward this end in §4 we prove
a transference theorem over number fields. As a consequence of our
transference theorem we deduce:

THEOREM 4. Let Aυ be an MxN matrix over ky for each υ eS.
Then {Aυ}ves is a badly approximable S-system of linear forms if and
only if {Aζ}ves is a badly approximable S-system of linear forms.

We quantify this by proving the following generalized Khintchine's
transference principle:

THEOREM 5. Let ω be the supremum of all real numbers η > 0
such that there are infinitely many S-distinct pairs of vectors (x, y) €
(&s)N x Ψs)M with xφQ satisfying

ves

Let ω* be the supremum of all real numbers rf > 0 so that there are
infinitely many S-distinct pairs (ϋ, w) e (@s)M x {&s)N w^h u Φ 0
satisfying

hs{u, W)M(1+Ί*Ϊ J J | ^ i 7 - w\» < 1.

Then

ω* > TTT TZ —ΓT TT r
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and
CO*

ω >

Classically, theorems of this nature were proven via techniques in
geometry of numbers, in particular, using Mahler's results on polar
reciprocal bodies. We prove our generalized transference theorems
by first developing the analog of the polar body in the setting of ge-
ometry of numbers over the adeles. We believe these results to be
of independent interest with further applications outside the present
work.

We organize our paper as follows:

Section 2: Notation and normalizations.

Section 3: The adelic polar body.

Section 4: A transference theorem over number fields.

Section 5: Dirichlet's theorem over number fields.

Section 6: Badly approximable iS-systems of linear forms.

Acknowledgment. The author wishes to express his gratitude to Pro-
fessor Jeffrey D. Vaaler for several useful comments and suggestions.

2. Notation and normalizations. In this section we define the basic
terminology and notation that will be used throughout the remainder
of this paper. We remark that our notation and normalizations are
largely adopted from [1].

Let k be an algebraic number field of degree d over Q. We write
Vfr for the collection of all nontrivial places of k. Suppose v e Vk .
If υ is an archimedean place, we say v lies over infinity, denoted
by t>|oo. If v is a nonarchimedean place then there exists a finite
rational prime p such that υ extends the place of p to V^ . In this
case we say υ lies over the finite rational prime p, written as v\ oo
or v\p.

For each v e V^ we write ky for the completion of k with respect
to the place v . We define the local degree as

dv = [K: Qυ]

We now normalize two absolute values. For each place v of k, we

normalize the absolute value || | | v as follows:

(i) if v\p then \\p\\v =p~\
(ii) if v\oo then for x e ky, \\x\\υ = |x| where | | is the usual

Euclidean absolute value on E or C.
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Thus || Hi; extends the usual p-adic absolute value if v\p and the
Euclidean absolute value if υ\oo. Our second normalized absolute
value I | v is defined by

\X\v — \\X\\vυ

This normalization gives rise to the product formula:

1 1 i Λ i υ " L

vevk

for all x e k, x φ 0.
We extend our absolute values to vectors as follows. Let

/ X\ \

X =

\XNJ

denote a column vector in (kv)N. We define

\x\v = max {
\<n<N

We extend the absolute value || 1̂  in a similar manner.
Let us now consider extensions to matrices. Fix a place v of k

and let A = (amn) be an M x N matrix over ky . We define

\A\υ= max. {\amn\Ό}.
\<m<M
\<n<N

Assume now that v is a finite place of k. We write ffv for the
maximal compact (open) subring of kv ,

Oυ = {xekυ: \x\υ < 1}.

A subset Rv in (kv)N is a kylattice if it is a compact open ^-module
in (λ,,)^. Clearly {0V)

N is a ^-lattice in (ik,,)^.
Let S be a finite collection of places of k containing all places lying

over infinity. We define the ring of S-integers as

<9S = {x e k : x G <9V for all t; ^ S}.

We define the multiplicative group of S-units by

^s = {xek: \x\υ = 1 for all t; ^ S} .

For x G (/c)^ and y e (k)M we define the S-height of x and y as
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Alternatively, we write hs{x) for the S-height of an individual vector,
that is,

where 0 denotes the zero vector. Of course these are the same since

h s

where (ΐ) G (k)M+N. In applications it will be convenient to use both
forms of this S-height.

For each v G S let Aυ be an M x JV matrix over kυ . As we shall
see, it will be useful to discuss all these matrices simultaneously. In
view of this, we write {Av}ves ? abbreviated as {Aυ} , for the collection
of matrices Av for υ e S. As an example of this notation, we define
the following function which is a measure of the size of the Av's:

μ ( { A W ) = μ({A}) = J |max{ l , \Aυ\υ}.
ves

Let kA denote the adele ring of k. Elements of kA shall be written
as x = (xυ) where xv is the ^-component of x for all v G Vk. We
write (k\)N for the iV-fold product of the adeles.

The additive group kA is locally compact and thus there exists a
Haar measure on k& which is unique up to a multiplicative constant.
We normalize this as follows.

(i) If i; I oo and ί ^ = l w e let βv denote ordinary Lebesgue mea-
sure on R.

(ii) If v|oo and ky = C we let βυ denote Lebesgue measure on
the complex plane multiplied by 2.

(iii) If υ\p we let βυ denote Haar measure on ky normalized so
that

βv{0v) = \3fv\i12,

where 3fv is the local different of k at υ .

We now define a Haar measure β on k\ to be the product measure
of the previously normalized local Haar measures:

β=
vevk

Technically, β determines a Haar measure on all open subgroups of
the form

Π kv x
ves
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where S is a finite collection of places of k containing all infinite
places. Therefore the Haar measure on k& is the unique measure
which agrees with the product measure on these open subgroups. For
each place v of k we let β£ denote the product measure on (kυ)

N.
Similarly we define V to be the product measure βN on (kχ)N .

Let a e k with a φ 0. By the product formula, \a\υ = 1 for
almost all v, that is a e &v for almost all υ e Vk. Therefore
(a, a, a, . . .) G kA and so we may view k c kx by the natural diag-
onal map η \k -+k\ defined by

η(a) = (a, a, a, . . . ) .

The set η(k) = k is referred to as the set of principal adeles. In fact
k is a discrete subset of kA and under the natural quotient topology,
kχ/k is a compact group having an induced Haar measure equal to 1.
In the sequence which follows, a particular field constant will naturally
arise. We define

//2 V \

const* = ( ^ - J \Ak\
1'2)

where d is the degree of k over <Q>, s is the number of complex
places of k and Δ^ is the discriminant of k.

Let x = (jcv) be an element of Λ A and a be a positive real number.
We define scalar multiplication, ax, to be the point y = (yv) in k\
determined by

axυ if v|oo,

xv if vfcx).

We shall view elements of (/CA)^ as column vectors x and extend our
notion of scalar multiplication to vectors x e (k\)N by

fOLX\ \

ax =

If Z c (k\)N then α l C (/CA)^ is obtained by applying scalar multi-
plication by α to each x e X.

We call a nonempty subset Rυ Q (kv)
N a regular set if it has the

following form.

(i) If v I oo then Rv is a bounded, convex, closed, symmetric sub-
set of {kυ)

N with nonzero volume.
(ii) If i>{oo then Rv is a kv-lattice in (kυ)

N.
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For each v e V^ let Rv be a regular set in (kv)
N. Assume that for

almost all places v ,

We now define

vevk

From our above assumption it is clear that 31 c (k&)N . We shall call
a subset ^ of (kA)

N admissible if it has the form described above.
The set 31 is the adelic analog of the convex, symmetric set K in the
classical geometry of numbers, and the role of the lattice ZN in RN

is replaced by the discrete subgroup (k)N in (kA)
N .

Let 3% be an admissible set in (k&)N. For each integer n , 1 < n <
N, we define the /ith successive minimum λn of 31 with respect to
(k)N by

An = inf{σ > 0 : [σ3l) Π(k)N contains n linearly

independent vectors over k}.

By our assumptions on 3ί,

0 < λ\ < λ2 ^ <ί A^ < oc.

We now recall the adelic successive minima theorem which was proven
independently by McFeat [6] and Bombieri and Vaaler ([1] Theo-
rem 3).

THEOREM 2.1. Let 31 be an admissible subset of (kA)
N and let

λ\, λ2, . . . , λtf be the successive minima of 3% with respect to (k)N.
Then

(2.1) {λxλ2 λN)dV{3ί)<2dN.

The following volume calculation will be quite useful. For each
v £ Vfc let Bυ be an TV x TV nonsingular matrix over ky . Let

ϊ ? / v a ( Ί s \ N . I I D -ril l < < 1 \

and assume that for almost all v , Rυ = {<fy)N. Then ^ = HveV Rυ

is an admissible subset of (/CA)^ . We now compute

2 i V | det5 l ; | -^ if v is real,

β^(Rv) = { {2n)N\dctBv\~d if v is complex,

| ^ | ^ / 2 | d e t ^ | - ^ if v too.



220

Therefore

EDWARD B. BURGER

N/2

rN(2π)sNV{β) = 2rN(2π) %\ί -d
v\v

vevk

where r is the number of real places of k. Hence

(2.2) V{β) = 2dN (ψ)SN\Ak\

follows from the identity

vevk

v\ oo

along with the fact that d = r + 2s. Here Δ^ is the discriminant of
k.

Alternatively we could report:

vevk

3. The adelic polar body. For each place v of k we define the
bilinear form

(-, •) : (kv)N x by
n=\

where

x —

\xNJ

and y =

\yNJ
are vectors in (ky)N. Now let Rυ c (ky)N be a regular set. For each
v of fc, we define the /oca/ po/ar δ o φ R* by

= {x G : \{x,y)\υ < 1 for all y e Rv}.

LEMMA 3.1. Let Rυ be a regular set and R* its polar body. Then

(i) R*vc(kυ)
N.

(ii) i?* is a regular set.
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Proof. In case v is an infinite place, the lemma is a well-known
result in linear analysis ([2] Chapter II.3, Corollary 3; II.4). Thus we
need only prove the lemma when υ is a finite place of k.

Part (i) is trivial and (ii) follows from the strong triangle inequality.
We now prove (iii). Since Rv is a /^-lattice in {K)N, it follows
that Rv is a finitely generated ^-module of degree N over <9V ([8]
Chapter II.2, Theorem 1). Let

be a basis for Rv over #v . Alternatively, if we let W = {w\Wι
be the N x N matrix with columns W\,W2, ... , WN > then

We now select linearly independent vectors {u\,U29 ... 9 UN} <Ξ
so that,

WTU = 1N

where U = {U\U2 UN) and 1# is the N x N identity matrix. We
claim that

Let α, β e (<?V)
N, then

|(E7α, ^ ) | , = I^^C/αμ < max
l<n<N

So Rl D {Ua : α E (^ )^} . Suppose now that j? € i?; . There exists
a vector ze{h)N so that y = C/f. If a e ((?V)N then

(3.1) \(Wa,U2)\Ό<l.

Select α = en, where ^π is the «th column of the N x N identity
matrix. Inequality (3.1) reveals that

\(wn , Uz)\v = | ^ z | v = |zΛ|t, < 1 for n = 1, 2, . . . , N.

Thus f E {0υ)
N and i?; = {C/α : α E K ) ^ } .

If y E (i?^)* then y = Wy for some y E (ky)N. Moreover, for all
integers n, 1 < n < Λ ,̂ we have

so γ E (^t;)^ and thus y e Rv. We have now shown (i?*)* c Rv.
The reverse inclusion is trivial, so we have equality. D

If we select W = U = 1# in our above proof, we have:
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COROLLARY 3.2. ((&υ)
N)* = (&Ό)N.

LEMMA 3.3. Let v be any place of k and A be an N x N nonsin-
gular matrix over ky . Then for any regular set Rv we have

Proof, Clearly (j?, y) = (Ax, (AT)~ly) where jc, y e [ky)N. Thus
y G Ry if and only if {Aτ)~ιy e (^4i?^)*. The lemma now follows. D

COROLLARY 3.4. Let v be a finite place of k and Rv a ky-lattice
in (kυ)

N with
Rv = {Wa : a e {&υ)

N}

where W is an N x N, nonsingular matrix over kv . Then

Proof. This follows immediately from Lemma 3.3 and Corollary
3.2. α

LEMMA 3.5. Let Rv be a regular set in {K)N

(i) If v\oo and ky = R then

(ii) If v\oo and ky = C then

Λ3N
< βϊ(Rv)β»(R*v) <

(iii) If υ\oo then

where 2JV is the local different at v .

Proof. Case (i) was proven by Mahler [5] in 1939. We remark
that this inequality has recently been sharpened by a deep result of
Bourgain and Milman [3]. Case (ii) follows immediately from (i)
once we view Rv as a convex set inside R2N (= C^) and recall the
extra factors of 2 due to our normalizations on βv . We now prove
(iii).

As before, let W be the N x N, nonsingular matrix over ky so
that

Rυ = {Wa:ae(<*ΰ)
N}.
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Alternatively, we may express Rυ as

Rv = {xe(kv)
N:\\W-ιx\\υ<l}.

Now from Corollary 3.4 we have

Thus,

β»{Rυ) = N χ R v ( ) β % { ) J^ N

where XR (X) is the characteristic function of Rυ. By making the
change of variables x —• Wx and recalling the module in kv ([8]
Chapter 1, §2, Theorem 3, Corollary 3), we obtain

β»(Rυ) =modκ(detW)

v \\v \\-Jv\\v

Similarly we compute

β ( R

The equality now follows. D

We now prove the adelic version of two theorems of Mahler [5]. Let
31 = Ylv Rυ be an admissible subset of (/CA)^ . We define the adelic
polar body &* by

V

By Lemma 3.1 and Corollary 3.2 we see that 32* is another admissible
subset of (k\)N and {31*)* = 3ί. Below we give bounds on the size
of 3ί* relative to the size of 31.

THEOREM 3.6. Let 3ί be an admissible subset of (k&)N and 31* its
polar body. Then

Md+s)N Md+s)N

< V[β)V{β*)<

where r and s are the number of real and complex places of k respec-
tively and Δfc is the discriminant of k.
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Proof. The theorem follows from Lemma 3.5 after recalling that
d = r + 2s and

Π ι ^ ι ^ iΔi •

We now demonstrate the reciprocal relationship between the suc-
cessive minima of 3ί and ̂ * .

THEOREM 3.7. Let λ\, λ2 , . . . , λN be the successive minima asso-
ciated with 31 and λ\, λ\, . . . , λ*N the successive minima associated
with 3ί*. For n = 1, 2, . . . , N,

Before proving this result we shall need to consider vectors asso-
ciated with successive minima. Let ψ\, ψ2, . . . , ΨN ̂  (k)N be lin-
early independent vectors associated with the successive minima of
31. That is, for all integers n, 1 < n < N, and any real number
λ>λn,{φuφl9...9φn}Qλ&. Let θ{, θ2, . . . , ΘN G (A:)^ be lin-
early independent vectors associated with the successive minima of
31*.

LEMMA 3.8. For any integers /, j with 1 < / < N and 1 < j < N
we have

ιι/- axil / ί λiλ*j f°rv\°°>
\\(φi,θj)\\υ<< J

I 1 for v foo.

Proof. For t?|oo we let A > Az and A* > Ay . Then

λ-ιφieRυ and (A*)"1^,- eR*v.

Thus by definition

Letting A —• A/ and A* —• Â  establishes the first inequality. The
second follows from the fact that when t>{oo

ψi e Rv and θj e i?*. D

Proof of Theorem 3.7. We first consider the lower bound. Fix an
index n, 1 < n < N. Define Φ, an N x n matrix over k by
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Clearly, by linear independence, Φ has full rank n. We now view
Φ Γ as a linear transformation:

Φ Γ : (k)N -+ (k)n.

Let X c (k)N denote the kernel of Φτ, that is,

This forms an N - n dimensional subspace of (k)N. Since the N +
1 - n vectors, θ\, θι, . . . , #jv+i-n , are linearly independent in (λ;)^,
there must exist an index j , with 1 < j < N+1 - n, so that θj £ 3£.
That is, there must exist an index j such that

\ ( $ i , θ j ) \ Ό Ϊ O f o r 1 < i < n .

By Lemma 3.8 we have that if v|oo then

0# |<Λ, θj)\v = ( | |<^,^) | | , )^ < fax})'-".

Hence, by the product formula and Lemma 3.8 we conclude that

Recalling that 1 < / < n and l<j<N+l-n we have

Since « was arbitrary, we have shown that for all n = 1, 2, . . . , N,

(3.2) l<(W+ 1_y.

For the upper bound, we use the adelic successive minima theorem
(2.1) to report that

and

(λϊλ$ λ*N)dV(&*)<2dN.

Multiplying these two inequalities and using Theorem 3.6 gives

» < .

The result now follows from (3.2). D

As an application, we state and prove an adelic general transfer
principle. Assume that N > 1. For each place v of k, let Cv be the
f-adic cube:

Cv = {xe(kυ)
N:\\x\\υ<ί}.
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We easily compute the polar body C* to be

ί \xe(kvr:Σ\\xn\\v<ί)

( {it € (kυ)
N : \\x\\υ < 1} for u |oo.

Let Bv be an N x TV nonsingular matrix over kυ and define Rυ C

(kv)N by

Assume that for almost all v , Rυ = {&V)
N. Define Tv c (A^)^ by

v — Dv ^v

Let
^ = Y[RV and 3r = Y[Tv.

V V

It is clear that ^ and J7~ are admissible subsets of (k&)N.

THEOREM 3.9. Let 3$ and ZΓ be as above and λ\, μ\ the first
successive minima of & and SΓ, respectively. Then

I v l/(N-l)

and

μι<ck(N)λ\'{N-l) U{\tetBv

V v
where

Γi (λj\ _ /Λ7frπnςt/ ) ^

Proof. From Lemma 3.3,

We claim that

yJ,DJ AT — t >^ — *

If ffoo then a E Tv if and only if there exists β E (^V)
N with

a = Blβ E Rl. Thus

Tυ = i?* for vfoo.

Assume now that f |oc. If α e ^ Γ y then there exists a /? e (A:̂ )^

such that \\β\\υ < 1 and α = ^ ^ Γ j S . Since ^ Σ ^ L i IIAillt; < ll/||v <
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1, we have j?β e C* and a e R$, thus j^Tv c R*, establishing

our first containment. If £ ^ = 1 \\βn\\υ < 1 then \\β\\v < 1. Thus

if β e C* then β e Cυ, establishing the second containment and

proving the claim.

It follows from (3.3) that for each n = 1, 2, . . . , N

(3.4) μn<λ*n<Nμn.

Again by the adelic successive minima theorem we have that

so

From Theorem 3.7 we deduce

(3.5) λfN~x) < [λ\)d{ldN

A simple calculation reveals that

(3.6)
V

So from (3.6) along with (3.4) and (3.5) we conclude that

which is the first inequality. The second follows from symmetry. D

In some applications, we are given that a certain admissible set con-
tains a non-zero point of (k)N and we wish to conclude that there ex-
ists a non-zero point of (k)N contained inside of a related admissible
set. In light of this remark, the following corollary will be useful.

COROLLARY 3.10. If there exists a ζe(k)N\{6} with ζe&, then

there exists an ζ e (k)N\{6} satisfying:

3T.

Proof. If ζς.m then λx < 1, so by Theorem 3.9,

The corollary follows by the definition of μ\ and noting that each Tv

is closed. D
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4. A transference theorem over number fields. Transference theo-
rems in Diophantine approximation are results in which information
about a particular linear system implies information about the trans-
posed linear system.

Let S be a finite collection of places of k containing all infinite
places and let 0$ b e the ring of S-integers.

THEOREM 4.1. For each v e S, let Av be an M x M matrix over
ky . Assume there exist vectors x e (#s)N and y G {&s)M > n o t both
identically zero, so that

\\x\\υ < \\δυ\\υ and \\Avx-y\\υ < \\εv\\υ

where δυ , ev G A:̂ \{0}, for each v G S. Let

\/{M+N-\)

S \\F \M\
°Ό\V \£V\

\ves
Then there exist vectors iί G {&S)M and w ^ (&s)N * n o t both identi-
cally zero, so that

\\u\\v<yv\\ev\\vλ and \\Aξu-w\\v<γv\\δv\\-χ forallveS,

where

if v\oo,

if v\oo.

Proof. For each place v of k, we define an (M + N) x (M + JV)
matrix 5^ over kυ by the following rule: if υ G *S then

0

f

A - I ΓT \S \N\F \M

\ves

if v £ S then Bv = \(M+N) where l^r is the N x N identity matrix.
We note that for v e S,

1

and for υ ^ S, {B^)~x = 1(Λ/+ΛΓ) . Now define i?υ and Γv c

{K)M+N by:
i?v = 5^ Cv and ZJ; = 5^ Cυ
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where Cυ is the (M + N) dimensional v-adic cube as defined in §3.
Let 31 = Uv Rv and Γ = Uv Tv. It is clear that 31 c {kA)

M+N and
Γ c (kA)

M+N. Let

C== I -*) ̂  (^0 \{0}

From our hypothesis we have that ζ e 31. By Corollary 3.10 we
conclude that there exists an ξ e {k)M+N\{0} satisfying:

The theorem follows once ξ is viewed as

REMARKS. 1. Upon first examination, it appears that we may al-
ways find a u and ti; in (&s)M a n ( l (^s)^» respectively, that will
satisfy the theorem by selecting u = 6 and w e {@s)N to be v-
adically small for all v eS. However in practice we view ΠveS \δv\v

as "large" and ΠυeS \eυ\υ as "small". In this situation, u being zero
would force w to be zero, which is impossible. For if u = 5 then we
could report that

Thus by (4.1) and (4.2),

(4.3) n\w\v < π
v veS

Therefore, if Πvesl^lt; is sufficiently large and
ciently small then
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But by the product formula this implies that w = 5, which is a con-
tradiction; thus uφO. Specifically, if

\δv\v>ί and J[J[ | β v | v <
ves ves

then from (4.3) we may conclude that uφQ.

2. Given that for each v e S,

\\x\\v < \\δυ\\v and \\Avx - y\\v < \\εv\\υ ,

we may deduce an upper bound for hs{x, y) and Y[veS \Aυx - y\υ .
For ^|oo we have

„ = \\Avx - y - Aυx\\Ό

<2max{||ε ΐ ; | |,;, \\Avx\\v}

<2Nmax{\\ευ\\v,\\Av\\v\\δv\\v}

<2iVmax{l, | K I | ,

So \y\v < (27V)</^max{l, |^4tl|t,}max{|βt,|t,, \δυ\υ}.
For v G S, v foo we have:

\y\v <max{ l ? |>4t,|t,}max{|βt,|t;, \δv\v}.

Hence

ί hs(x,y)< 2Nμ({Aυ})UΌ€SmaaL{\εv\υ9 \δv\v}

(4.4) I and

I Uves \Av* - y\v < lives \*v\v ,

where

ves

Similarly, from the conclusion of Theorem 4.1,

Nit; ^ I I M ΰ 1 a n d \\Aξu-w\\v < yt II^H^"1 for each v eS,

we may report the following upper bounds.
For w|oo:

N i k <2M7 v max{ l , IIΛIIz

and for v eS,v\oo:
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Therefore we conclude

I <2Mck(M + N)Aμ({Av})Uves
m^{\^\vl, \ev\v1}

and

5. Dirichlef s theorem over number fields.

LEMMA 5.1. For each υ eS, let Aυ be an M x N matrix over ky
and εv e ky\{0} with \ev\v < 1. Select δv e kv\{0} so that \δv\v > 1
for each v eS and

ves

Then there exist x e (^s)ΛΓ\{0} and ye (tfs)
M satisfying

\\x\\υ<\\δv\\v and \\Aυx-y\\υ<\\βv\\v forallveS.

REMARKS. We may always find δυ e ^\{0} for all v e S that
satisfy (5.1) since S contains the infinite places of k. Again the
constant const^ is given by

α 9

Proof. For each place v of k we define Bv , an (M+N)x (M+N)
matrix over ky by:

-ΊN I 0

for all v e S and Bv = 1{M+N) for all υ <£ S. Define Rυ C (kv)
M+N

by

and let 31 = Uυ Rv . Clearly m C (kA)
M+N and is admissible. We

note that
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Theorem 2.1 reveals that

Thus given the above volume calculation and the fact that the λn

9s are
increasing, we have λ\ < 1. Hence there must exist a point (j^) e

{k)M+N\{0} so that

By our definition of Rv for « ^ 5 we see that

In addition, for ^ G 5 we have

11*11* < ll^llt, and \\Avx - y\\v < \\ev\\v .

Now if x = 0 then the previous inequality reduces to \\y\\v < \\ev\\v <
1 for all v e S, so As(jO < 1. Since y E (^s) M , the product formula
implies that y = 0, which is impossible. Therefore we must have

THEOREM 5.2. For each v e S, let Aυ be an M x iV matrix over

K and let X be a real number with X> (com\k)(M+NVN. Then there

exist x e (&s)N\{0} and ye {@S)
M so that

hs(x) < X

and

ves

Proof. For each υ e S, select ev € kυ\{0} so that |£v|t; < 1 and

(5.2)
υeS

By Lemma 5.1, there exist x e (0s)N\$} and y e ψs)M so that
\x\v < \δv\v and \Aυx-y\v < \εv\v for each υ eS. Thus,

hs(x) < Π \Sv\v and JJ \Avx - y\v < JJ \εv\v .
ves ves ves

The theorem now follows from (5.1) and (5.2).
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COROLLARY 5.3. Let av e kv for each υ eS and let X > (const^)2.
Then there exist x e ^s\{0} and y e&s satisfying

hs(x) < X

and
. (const^)2

I I \otv
X 1 I xy e s . .. „ - Xhs(x) *

Proof. This follows immediately from Theorem 5.2 with M = N =

1. D

The following two results are actually theorems about points in pro-
jective space over k. We shall phrase this in the following manner.
Let (xt, yt) e {@S)

N x {&s)M with χt φ 0 for t = 1, 2. We shall say
that (xι, y\) is equivalent to (x2, y2), ( ί i , Λ) ~ (*2, yi), if there
exists a constant a e k such that (x\, j?i) = (α^2, ̂ 2 ) If (-̂ l > Λ)
and (j?2 5/2)5 are not equivalent we say they are nonequivalent or rel-
atively prime. In addition, we shall say that (x\, y\) is S-equivalent
to (j?2 5/2)? Ĉ i > Λ) ~s ( *2»3^2) ? if there exists a constant u e %
such that (xi, j?i) = (ux2, W3T2). If two vectors are not ^-equivalent
we say that they are non S-equivalent or S-distinct. Clearly both ~
and ~s are equivalence relations on (#s)N x {&s)M

THEOREM 5.4. For each υ eS, let Av bean MxN matrix over ky .
Assume that Aυx £ (k)M for all veS and all x e (&s)N\{0} - Then
there exist infinitely many relatively prime pairs (jc, y) e (^s)Nχ(^s)M

with x φθ satisfying

(5.3) hs(x, y)N Π \Av* -y\v < (constk)W+N\2Nμ({Av}))N,

= JJ max{l,

Proof. Assume that there are only finitely many nonequivalent pairs
of vectors (x\, y\), (j?2, fi), . ? (XT» yr) which satisfy the above
conditions. For each integer t, 1 < ί < Γ, let zr G (^s)M+ΛΓ\{0} be
defined by:

For f € (^s)Λ/+iV\{0} define the set E[z] Qk by setting

E[z] = { α e fc\{0} : α f €
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We now claim that for each 1 < t < T,

inf \T\\Av(aXt)-(ayt)\v\>0.
£E[zt] I I

To prove this, let a G E[zt]. Clearly

\Aυ(axt) - (ayt)\υ = hs{a) f j \Aυxt - yt\υ

ves ves

and by our hypothesis, ΠυeS \Avxt - yt\υ ^ 0. Thus it is enough to
show that

(5.4) inf {hs(a)}>0.
<*eE[zt)

We observe that a G E[zt] implies that

\<Av\Zt\v < 1

or

By the product formula, since a φ 0

i = Π lαl^= Π iαl̂  Π M* ̂  Π lαl̂  Π l
v υeS υ<£S υeS υ <£ S

Hence

o<

SO

0 < Π \zt\υ < inf
vis aeEiz'

which establishes our claim.
Let

From the claim above, ί > 0. For each v e S, select ευ e /^\{0} so
that \ευ\υ < 1 and

0< Yl \eυ\v <δ.

We apply Lemma 5.1 with this choice of {εv}ves Therefore there
exist x G (^)ΛΓ\{0} and y G (^s)M satisfying

\\x\\v < ll̂ υIk and | | A ^ - ĵH-y < ||^\\v for each ^ G 5 .
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By (4.4) we conclude that

hs(x,y)<2Nμ({Aυ})l[\δυ\v

ves

and

ves ves
since \ευ\v < 1 < \δv\υ for all υ e S. It follows from (5.1) that
(x, y) satisfies (5.3), and thus must be equivalent to one of the pairs
of vectors from our finite collection. That is, there exists an integer
j , 1 < j < T, so that (x,y) ~ {Xj, yj), hence there exists an a € k
such that

Clearly ae E[ZJ] so

\Aυ(aXj) - (ayj)\v = ]\ \Avx - y\v

ves ves

< Π \eυ\υ < δ < Yl \Av(aXj) - (ayj)\υ

υeS υeS

which is impossible. Thus (x, y) satisfies (5.3) but is not equivalent
to any member of our finite set. Therefore there must be infinitely
many relatively prime pairs of vectors in {&s)N x {&s)M which satisfy
(5.3). D

COROLLARY 5.5. For each v e S, let aυ e kυ\k. Then there ex-
ist infinitely many relatively prime pairs (x9y) £ (@s)2 with χ Φ 0
satisfying

, y) Π \aυX ~ y\v -
υeS

Proof. This follows immediately from Theorem 5.4 with M — N
= l . α

REMARK. In the proof of Theorem 5.4 we saw that

inf {hs(a)} > 0
a£E[z]

(see inequality (5.4)). Here we remark that the infimum is actually
attained, that is, there exists an a1 e E[z ] such that

0<hs(a')= inf {hs(a)}.
aeE[z]
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We prove this below.
Since z G {&s)M+N\{Q} > \z\υ = 1 for almost all v G Vk. Let

V\9V2, ... ,vj be the set of all nonarchimedean places of k such
that \z\υ Φ 1. For each Vj let z7 be the component of z such that

\zj\vj — \z\vj

Let
ε = min {Izjl^"1}

and select ϋ G S such that τ)|oo. Clearly ε > 0 and thus by the strong
approximation theorem, there exists a β e k\{0} such that \β\v < 1
for each υ £ {v ,v\, V2, ... , vj} and

(5.5) \zJι-β\Vj<e<\zj\-1

for 7 = 1, 2, . . . , / . Now select ζ e k so that IC/?^ = 1 for all
v φ Su{vι9v2, ... ,vj} a n d \ζ\Vj = 1 f o r a l l j = 1 , 2 , . . . , / .
From (5.5) we have equality in the strong triangle inequality:

Vj = \ζ(zJι-β)-ζzJι\Vj

= max{\ζ(zJι-β)\Vj,\ζzJι\Vj}

for all j = 1, 2 , . . . , / . We now claim that Cβ G £ [ f ] . Let υ <£ S
and assume υ φ {v\,V29 ... , vj}. Then \ζβ\υ = 1 and |z | v = 1 so
(Cjβ)z G ( ^ ) M + 7 V . Assume now that v = ^ for some 1 < 7 < / .
Then

so (C^)^G ( ^ ) M + Λ Γ . Thus, (ζβ)ze {@s)M+N and therefore ζβ e
E[z]. We claim that

If not, then there exists a γ eE[z] such that

Thus by the product formula there must exist a place ϋ <£ S so that
|y|«>|ίjί |f,. Hence

\γz\ϋ > \{ζβ)z\ϋ = 1
and so γ £ E[z]9 a contradiction. Thus,

hs(ζβ)= inf {hs(α)}. D
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6. Badly approximable S-systems of linear forms. We now show
that Theorems 5.4 and 5.5 are sharp by demonstrating the existence
of linear forms for which the fundamental quantity

ves
cannot be made arbitrarily small. In this section we define such forms
and use Theorem 4.1 to prove some transference results.

Before we develop the theory of badly approximable S-systems, we
consider the classical situation. Let A be an M x N matrix over R.
The linear system A is said to be badly approximable if there exists
a constant τ = τ(A, M , N) > 0 so that

(6.1) τ<\x\N\Ax-y\M

for all x e ZN\{6} and all yeZM. Alternatively, it is easy to show
that the linear system A is badly approximable if and only if there
exists a constant τ' = τ'(A, M, N) > 0 so that

(6.2) τf<max{\x\,\y\}N\Ax-y\M

for all x e ZN\{6} and yeZM.
This leads us to the following definition. Let Aυ be an M x N

matrix over kυ for each υ e S. We say {Av}veS is a badly approx-
imable S-system of linear forms (of dimension M x N) if there exists
a constant τ = τ(k, S9 {Av}) > 0 such that

υeS

for every x e (#s)N\{6} and y e (@$)M.
In view of our transference theorem of §4 we prove the following.

THEOREM 6.2. Let Aυ bean MxN matrix over kv for each v e S.
Then {Av}veS is a badly approximable S-system of linear forms if and
only if {Ay}veS is a badly approximable S-system of linear forms.

Proof. Assume that {Ay}υes is a badly approximable S-system of
linear forms. Let τ' > 0 be a constant so that

(6.3) hs{u, w)M H \AT

vu - w\ξ
ves

for all u e (^)M\{0} and w e (&S)
N - Let x e (^)^\{0} and

y e (@s)M - We claim that, for all υ e S, Avx -y φ 0. If there
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were to exist a ϋ in S so that A^x — y = 0 then we could select an
βv G ky\{0} so ί-adically small that Theorem 4.1 along with (4.5)
would contradict (6.3).

We wish to find a τ > 0 so that

(6.4) hs(x,y)NH\Avx-y\M>τ.
ves

Select δv , εv G kv so that

(6.5) \\δυ\\v = m a x { | | j c | | t ; , \\y\\v} a n d \\εv\\v = | | ^ x — y\\υ

for each v G S. From our above claim, \\εv\\v > 0 for all v e S.
Since x Φ 0, hs(x, y) > 1 and so we may assume that

(6.6) J ] ̂ v < ck(M + Nr{M+N-l)

ves

otherwise (6.4) is trivial: select τ = c^iM + N)~(M+N~^ . We apply
Theorem 4.1 with x, y, {εv}, {δv} as above and conclude that there
exist u € (^s)M\{0} and w G (<?S)

N satisfying

(6.7) \\u\\v < γv\\εv\\~ι and \\Aξu - w\\υ < γv\\Sv\\vl

for all v e S. The fact that u Φ 0 follows from (6.6) and the first
remark after Theorem 4.1. We now compute upper bounds for \w\υ .

For v\oo:

\w\\v = \\Aξu-w -Aξu\\υ

However,

llβt llt; = \\Avx-y\\v <2vaax{\\Avx\\v, \\y\\v}

|x | |«, \\y\\υ}

Therefore putting these two inequalities together we conclude that

NI., < 2Λ/yt,max|2JVmax{l, \\Aυ\\v}, \\AI\\V\\\BV\\-

So for w|oo, \w\v < {4MNγυ)
dv/dmax{\, \Av\v}\sv\~l. Similarly, for

•υfoo, υ &S:

\w v <
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Hence from (6.7) we have

hs(u, w) < 4MNck(M+B)Aμ({Av})

ves

and

ves ves
where we recall Λ = (UυeS \δv\ξ\εv\^ )WM+N-D . Thus,

υeS

M (M+N) (M+N)(TΊ N MY'

\ves /

= {4MNμ({Aυ}))Mck(M + ΛO(Λ/+Λ°Λ.

Since u e (<^s)M\{0} and w e {@S)
N, (6.3) is satisfied, and so

N (Af+Λ

τ'(4MNμ{{Av}))-Mck(M + N)^M+N^> \

Therefore from (6.5) we conclude that

hs(x,y)NH\Avx-y\ξ>τ..
ves

where

τ = mmί{τ'(4MNμ({Aυ}))-Mck(M + N)

ck(M

Since x and y were arbitrary, we have that {Av}ves is a badly ap-
proximable 5-system of linear forms. The reverse implication follows
from symmetry. D

We now give a quantitative version of Theorem 6.2 by proving the
generalized "Khintchine's transference principle" (see [7] Chapter IV,
§5).

THEOREM 6.3. Let ω be the supremum of all real numbers η > 0
such that there are infinitely many S-distinct pairs of vectors (x, y) e

) N χ (&s)M with x Φ 0 satisfying

(6.8) hs(X9

ves
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Let ω* be the supremum of all real numbers η* >0 so that there are
infinitely many S-distinct pairs (u, w) e {&s)M x (&s)N with ύ Φ 0
satisfying

(6.9) hs(u, Ί

< 6 1 0 >

(6.11) ω> ω

(Λf—

Proof. We shall first prove inequality (6.10). Clearly if ω = 0 then
(6.10) is satisfied. We now assume that ω > 0. We further assume
that if TV > 1 then ω* < j ^ (otherwise (6.10) follows immediately).
Suppose that 0 < η < ω, η* > ω* and similarly if TV > 1 then

Since η < ω, (6.8) is satisfied for infinitely many ^-distinct pairs
{x,y)e {&s)N x (&s)M with x Φ 6. For each such pair (x, y) and
υ e S, select γv = γv(χ, y) e kv so that if

ll^H^maxdlxll^llyll,}
(6.12) { and

then | |e υ | | υ > 0 and

(6.13)
ves

Since (6.8) is satisfied for infinitely many S-distinct (x, y), we may
force HveS \ev\v to be small by making UveS \δv\v sufficiently large.
By Theorem 4.1 and the remarks which follow it, we may find il e

and w e (<?S)
N w i t h w Φ 0 satisfying

hs(u9 w) < 4MNck(M

(6.14) i and

I
where

1/CΛ/+/I-1)
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Now since rf > ω*, (6.9) is satisfied for only finitely many (ϋ, w) e
{@s)M x Ψs)N with u Φ 0, say [ux, ^ 0 , (u2, w2), . . . , («/,
Let

We claim that Γ > 0. If Γ = 0 then there would exist an integer
/, 1 < / < / , and a place v e S such that A Ttίi - wι = 0. Se-
lect an infinite sequence of S-distinct points {oίn}^^ in <?s - Then
{{anuι, (*nWi)}%L\ is an infinite collection of ^-distinct vectors in
ifs)N x (&s)M, a 1 1 of which satisfy

Yl \Aξ{anUι) - {anwι)\v = 0
ves

and thus trivially satisfy (6.9), a contradiction. Therefore Γ > 0. We
now make HveS \δv\v so large that

ves

Thus since Γ was the minimum, the (u, w) which satisfies (6.14) is
not S-equivalent to any pair from our finite collection. Therefore it
does not satisfy (6.9) so

( \Aτ

vu - w\Λ hs(u, w)^+nΊ > γ.
\ves J

By the upper bounds of (6.14), the above inequality reveals that

ves

H
V ves J

Raising both sides to the (N(M + N — l))th power and recalling the
definition of Λ yields

(
\ N+MNη* i \M-M{N-\)η*

\{\δv\v) (Πi^H ^ ^
ves J \ves /

where
Q = ck(M ^ Ί
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Since η* < jfa , M-M(N- l)η* > 0. Taking (M-M(N- l)//*)th
roots of both sides reveals that

ves

where
Q> = Ql/(M-M(N-l)η*) ̂

Since we may choose HveS \^v\υ to be large, the previous inequality
along with (6.13) leads us to conclude that

i , - ^ l+Mη*

or

' " (ΛΓ — l)f| H- AT H- i\Γ — 1 '
Letting rf —* ω* from above and η -+ ω from below gives (6.10).
Inequality (6.11) follows from symmetry. D

Below we demonstrate the existence of badly approximable S-
system of linear forms of arbitrary dimension. We begin with the
following

THEOREM 6.4. Suppose {1, aγ, aι, . . . , α#} w α basis for the al-
gebraic number field K of degree N + 1 over A:. Let us further
assume that K may be embedded into ky for each v G S. Let
aτ = (a\a2' 'θLN)> so a may be viewed as a vector in {K)N for
each v e S. Then {aτ}veS is a badly approximable S-system of
linear forms of dimension 1 x N.

Proof. For any place v of k, let

VKfV = {w € Vκ : w\υ}.

By our hypothesis, for each v € S, K may be embedded into ky ,
therefore there exists & w = w(υ) e Vχ;yV, so that [K& : ky] = 1.
Thus || \\w = || lit, and so

(6.15) I \yj = || \\y^w v = I \y

Let x e ( ^ A t f } and y € <9S. het β = Σ,Li<*nXn-y € AT.
From (6.15) we conclude

(6.16) Π l ^ = Π U
ves"
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By linear independence, β Φ 0, so by the product formula

N+l

i = Π \β\w = Π { Π Mi '
vevκ vevκ

We now conclude
f \ N+l , \ N+l

(6 17) i = Π \ Π i^u [ Π I Π ι/»u

wΠ \ O\N+l 1 I ι/?|JV+l 1 I J 1 I I Q\\β\w 11 I P L 11 < 11 \β\
W^VK^V WeVK,v VίS l ^ E ί

ves υes[

S i n c e x G ( ^ s ) ^ a n d y G ^ w e easi ly h a v e :

ί Γ+ 1 ί
Π S Π I^U[ ^ Π { Π max{l,|5U>

Define the constant Bγ — B\(K,k, S, a) as
( ΛN+ι

* = π l π
Therefore from (6.16), (6.17) and the previous bound:

(6.18) l<Πl/^ Π
υeS w^vκ,v

ves'
wφw

It is easy to check that

where

IΛ^maxIl, \a\w}
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So from (6.18) and the above inequality we conclude

(6.19) l<Πl^i Π

ves'
wφw

We note that for z ek and w\v,

= 11*1
and by (6.15)

Z\w —

Since JC e (k)N and j efc, (6.19) reveals

ω6Fr

G
wφw

ves ves

= π anxn - y
n=\

hs{x,y)NBxB2.

Hence

ves

N

B{B2

2fi,β2

and therefore {aτ}ves is a badly approximable S-system of linear
forms. D

We proceed now to show the existence of badly approximable S-
systems of linear forms of dimension M x N.

Let {a\, #2, , CLL) be a complete set of distinct conjugates con-
tained in some splitting field of k. Let

L

1=0
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be the monic irreducible polynomial associated with {ciι}^x. That is,

L

1=1

We now recall that the coefficients q G k are the elementary symmet-
ric polynomials of a\, a^, ... , #L . Write

X =

X2

and let

1=0

Define the polynomial F(x) = Π/Li P{aι) Trivially the coefficients of
F are symmetric polynomials of a\, ai, ... , a^ . By the Fundamen-
tal Theorem on Symmetric Functions, every symmetric polynomial of
a\, d2, ... , CLL is a polynomial in Co, C\, ... , CL-\ . We have already
noted that the elementary symmetric polynomials of a\, a^, ... , C*L
are elements of k. Therefore the coefficients of F(x) are also in k.
Thus we have just discovered that

F(x)ek[xι,x2,

Alternatively, we may describe F(x) in the following manner. For
each integer /, / = 1, 2, ... , L, we define the L dimension column
vector

1 \

Hence

e k{ax ,a2, ... , aL)[xx ,

We remark that F(jc) is a norm form. From our previous observa-
tions we have seen that

L

Yl(afx) e k[xχ ,X2,...

ι=ι



246 EDWARD B. BURGER

It now follows that we may always find an element γ e k\{0} so that
if we consider the complete set of distinct conjugates

L, thenwhere α/ = ya\ for each / = 1 , 2 ,

L

G(x) = l[(afx)
1=1

This inspires the definition below.
A set {a\, OL2 , . . . , OLL} contained in some splitting field of k is

called a set of S-algebraic integers if the following three conditions
hold.

(i) {αi, #2, . . . , aι} is a complete set of distinct conjugates.
(ii) The field k(a\, a2, . . . , α^) may be embedded into ky for

each v e S.
(iii) The polynomial G(x) = ΠΪ=\(άfx) is an element of

From our above remarks we conclude that any set
which satisfies conditions (i) and (ii) may be multiplied by a suitable
constant of k so as to produce a set of ^-algebraic integers.

Suppose {αi, Q2, .. - , OLM+N} is a set of ^-algebraic integers. We
define the following two matrices:

Φn =

/I

1
Oil

Oil
2a2 a

1

\ 1 <*Af α #
M

a M

and

Φ 1 2 =
a

M
1
M+l

a

a

M+N-l

Af+N-\

a
Af+N-l

Clearly Φπ is a nonsingular M x M matrix. For each υ E S we
define the M x N matrix Aυ(a\, a2, ... , % ) over ky as

\-l/

We now prove that badly approximable S-systems of linear forms of
dimension M x N exist.
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THEOREM 6.5. Let {aγ, aι, . . . , CXM+N} be a set of S-algebraic in-
tegers. For each v e S let Av be the M x N matrix over kv defined
by

Aυ = Aυ{a\, OL2, . . . , α j f ) .

!Γλe/ι {AWs ^ α fod/y approximable S-system of linear forms of
dimension M x N.

Proof. Since there is an embedding of k(a\, c*2, . . . ,
, we may view

/ 1 \

into

α/ =

A f + Λ Γ - l

as a vector in (/^)M + 7 V for each integer / = 1,2, ... , M + N and
each v eS.

Suppose K = k(aχ) = {ά\u : u e (k)M+N}. Then clearly by
condition (iii),

M+N

(a{u) = J J αfw e ^y[«i ,u2,..., UM+N] .

Thus for all w e

(6.20)
M+N

We now define the (M + N) x (M + N) Vandermonde matrix Φ

by:

Φ =

/ I OLΪ a
M-\ M

aM a M

a•Af+l

M-l
M

\l aM+N α
From our above notation, we could write

a

aM

*M+l

M - l M
M+N aM+N

Φ =

M+N-1
M
M+N-l
M+l

aM+N •
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In addition, it will be useful to partition Φ in the following manner:
/ Φ π I Φ 1 2

φ = - - - - - - -
V Φ21 1 Φ22

where Φπ is M x M, Φ12 is M x N, Φ2i is N x M and Φ22 is
NxN.

It shall also be convenient to define the function ε : Vk —• Q+ by

dv/d ift;|oo,

0 ifi foo.

We are now in a position to show that {Av}veS = {^(ΦH)~1(ΦI2)}Ϊ;€*S

is a badly approximate ^-system of linear forms of dimension
M x N. Suppose that x e (&s)N\{Q} and y e {@s)M We argue
that (6.20) and our previous notation give

ε(v) =

max{\x\υ,\y\υ}
N}

= max{Λ/,

ves
where

Therefore
ves

x<hs{x,y)Nγ[\Aυx-y\ξ,
υeS



DIOPHANTINE APPROXIMATION IN ^-INTEGERS 249

where

τ = J2max{M, N}μ({Φn})μ({Φ2ι})μ({Φ22})>

Hence {Av}ve$ is a badly approximable *S-system of linear forms of
dimension M x N. D

We end this section with two examples. Towards this end we shall
need two auxiliary polynomials. We describe our first polynomial
f{x) E k[x] below. Fix a place ϋ £ S such that there exists a point
b G k so that

where π# is the generator of the maximal ideal of <fy , and

| |ύ | | v = 1 for all υ eS, v\oo.

Choose an a e k so that

\\a\\v < 1

and

Γ max{l3 HiViμ} for v e 5 , vfoo,
(6.21) \\a\\Ό > < Λ j . .

1 1 + forι;|oo

We define /(JC) = xN -abx + b.

LEMMA 6.6. (i) The polynomial f(x) is irreducible over k.
(ii) ifar eαcA v eS there exists an aυ eky such that f(av) = 0.

Proof. The irreducibility of f{x) follows immediately from the p-
adic version of Eisenstein's theorem with the specified place being ϋ
(see [4], Chapter 6).

It thus remains for us to demonstrate the existence of a root of f(x)
in ky for each v € S. First we consider the case when υ is a finite
place in S. Let

h(χ) = -f(χ) = -χN -bx + -e&v[x].

We immediately compute

- = —rr— and n - = - ^ - b.

From (6.21), \^\υ < 1, thus we have equality in the strong triangle
inequality:
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To summarize, we have just found an element \ e 0V which satisfies

h(ι-

Therefore by HenseΓs lemma there exists an av eky such that h(αv)
= 0. Clearly /(α v) = 0.

Now suppose v|oo. If K = C then it is clear that there is a root
αv of /(x) in ky. If ky = R then we may view α and b as real
nonzero numbers. If α > 0 then (6.21) reveals

so by the intermediate value theorem there exists an αv e kv with
f(αv) = 0. If α < 0 then by (6.21)

and thus there exists a root α v of f(x) in ky . D

We now describe our second, slightly more complicated, auxiliary
polynomial. Select N distinct elements α\, αi, ... , α^ of k satis-
fying

\αn\v < 1 for each n = 1, 2, ... , N and each

v e S, v \ oo and for t; = ί),

and

(6.22) 1< min { | |α m -αJL} forallvlcx).
l<m<«<Λ^

Select β e k so that

and

\\β\\v = \\nϋ\\ϋ

(6.23) \\β\\υ <

ί N Ϋ
in < Π | | α m - α w | | v > for v eS, υ{oo,
ι<N X J ;

V n=l )

mm
\<m<N

m m <
\<m<N

nφm
' N

π
N

π 2 ) for v|oc.

We define ^(x) e λ:[x] by
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LEMMA 6.7. (i) The polynomial g{x) is irreducible over k.
(ii) The polynomial g(x) splits completely in ky for each v e S.

Proof Write g(x) = Σn=ocn*n Thus cN = 1, \\cn\\ϋ < 1 for all
n = l , 2 , . . . , J V - l and since we have equality in the strong triangle
inequality if N > 1,

N

(-l)»l[an + β =\\β\\ϋ = \\πϋ\\ϋ.
Π = \ y

Thus by Eisenstein's theorem, g(x) is irreducible over k.
Suppose now that υ is a finite place in S. For any am we see that

dm € &υ satisfies

N

g(am) = β and g'{am) = J J (am - an).
n=\
nφm

From (6.23):

ί Λ I2

\g(am)\v = \β\υ < minj Π l f l«- f l»l4 <l^(β«)l2
~ \ n=\ )

nφm

Therefore HenseΓs lemma gives the existence of a unique am e
such that g(am) = 0 and

^ \g(dm)\v

Thus αi , Q2, ... , αjv are N distinct zeros of g(x). Since the de-
gree of g(x) is N, this must be all the zeros and hence g(x) splits
completely in ky.

Now suppose v|oo. If fcy = C then trivially g(x) splits completely
in ^ . If ky = R then by (6.22) and (6.23) it is easy to verify that

{-lfg{aN + \) > 0; (-l)s(fltf-i + i) > 0;

(-l) 2 g(α^2 + i) > 0; (-l)N-ιg(aλ + i) > 0;

So g(x) has N distinct real zeros, thus g(x) splits completely in
ky. Π

Our first example may be phrased as follows.
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THEOREM 6.8. Let k be any algebraic number field and S any finite
collection of places of k containing all infinite places. Then for any
integer N > 1, there exists a badly approximable S-system of linear
forms of dimension 1 x N.

Proof. Let f{x) = xN+ι - abx + b be the irreducible polynomial
of Lemma 6.6. Factor f(x) over some algebraic closure:

N+l

f(χ)=H(χ-an)
n=l

where c*i, e*2 , <*N+I are the distinct roots of f(x). Clearly

k(ax) = k(a2) = - - = k(aN+1)

and [k(an) : k] = N + 1 for each n = 1, 2, . . . , N + 1. Let
a = a\ and define Γ̂ = k(a). Of course [K : k] = N + 1 and
{1, a, α 2 , . . . , aN} form a basis for J^ over k. For each Ϊ G S ,
there exists a root, say aυ, of /(x) such that aυ e ky. That is,

Q ky . Since

K may be embedded into K for each . Let

a =

/ a \

Therefore by Theorem 6.4 we conclude that {cίτ}υeS is a badly ap-
proximable S-system of linear forms of dimension 1 x N. D

We now construct an example in the most general setting.

THEOREM 6.9. Let k be any algebraic number field and S any finite
collection of places of k containing all infinite places. Then for any
integers M > 1 and N > 1, there exists a badly approximable S-
system of linear forms of dimension M x N.

Proof. Let g(x) = Π^ίΐ i V \ x ~~an) + β be the irreducible polynomial
of Lemma 6.7. Let α i , ai, . . . , OLM+~N be the distinct zeros of g(x)
over some algebraic closure of k. From Lemma 6.7 we have

, α 2 , . . . , &M+N} Q kv
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for each v E S. Thus, multiplying the above set by a suitable constant
of k if necessary, we may assume that {a\, a.2, . . . , OLM+N} is a set
of S-algebraic integers. Therefore by Theorem 6.5, there exists a badly
approximable S-system of linear forms of dimension M x N. π
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