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HOMOGENEOUS DIOPHANTINE APPROXIMATION
IN S-INTEGERS

EDWARD B. BURGER

In this paper we generalize classical results in Diophantine ap-
proximation to the setting of an arbitrary number field in the context
of the ring of S-integers. Specifically, we present theorems pertain-
ing to simultaneous approximations of linear forms and develop the
notion of badly approximable S-systems. In addition, we expand the
subject of the geometry of numbers over the adéle ring of a number
field by developing the concept of the adelic polar body. This theory is
then used to produce transference theorems in this general situation.

1. Introduction. Let RY denote the vector space of N x 1 column

vectors over R. For
X1

o X1
x=|"_ |er?,
XN
we define

X| = max {|x
1% = max {lx[}

to be the supremum norm.

Suppose A4 is an M x N matrix over R. Dirichlet proved that if
X is a real number greater than 1 then there exist ¥ € ZV\{0} and
y € ZM satisfying

|X] < X
and
|A% — §| < X~N/M
If we further assume that AX ¢ QM for all ¥ € ZV\{0}, then there
exist infinitely many pairs of vectors (¥, ¥) € ZV x ZM with % # 0
and the components of X and y forming a relatively prime (M + N)-
tuple such that

(L.1) [XMax - M < 1.

Traditionally one asks if (1.1) is sharp. That is, are there examples
where the quantity |X|V|AX — J|M cannot be made arbitrarily small?
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The answer is yes: these are known as badly approximable systems.
Specifically, we say that the M x N matrix A is a badly approximable
system of linear forms if there exists a constant 7 = 7(A4) > 0 such
that
T < |X|V|AX - M

for all ¥ € ZV\{0} and y € ZM .

We pause momentarily to make some remarks about the M = N =
1 situation. An irrational number « is badly approximable if there
is a constant 7 = 7(a) > 0 such that

T < |x||ax — y|

for all x € Z\{0} and y € Z. It turns out that the issue of being badly
approximable is related to the subject of continued fractions. Specifi-
cally, a is badly approximable if and only if the partial quotients in its
continued fraction expansion are bounded. This implies the existence
of uncountably many badly approximable numbers and uncountably
many numbers which are not badly approximable. It is well-known
that a real number o has a periodic simple continued fraction expan-
sion if and only if « is a quadratic irrational (see, for example, [7]).
Therefore all quadratic irrationals are badly approximable numbers.
It remains an open question as to whether or not real algebraic num-
bers of degree greater than two are badly approximable. The situation
in which « is transcendental remains equally mysterious.

We return back to the badly approximable M x N matrix A. An
interesting issue which now arises is the relationship between 4 and
its transpose A7 . By the application of a transference theorem, it fol-
lows that A4 is a badly approximable system of linear forms if and only
if AT is a badly approximable system of linear forms. A quantitative
version of this is known as Khintchine’s transference principle.

Our primary objective is to recast the previous results to the more
general setting of an algebraic number field. In §2 we carefully describe
the relevant objects which will occur and define our notation. But
briefly, let k be an algebraic number field of degree d over Q. We
write k, for the completion of k with respect to the place v. Let S
be a finite collection of places of k containing all infinite places. We
write @s for the ring of S-integers of k. For

X1

XN
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we define the S-height

where | |, is normalized so as to satisfy the product formula. We
define the field constant

2 N l/d
consty = ((E) |Ak|‘/2) ,

where s is the number of complex places of k and A is the discrim-
inant of k.

We begin by proving the following generalization of Dirichlet’s the-
orem.

THEOREM 1. Foreach v €S, let A, be an M x N matrix over k,
and let X be a real number with X > (const,)M+N/N  Then there
exist X € (@s)V\{0} and y € (@s)M so that

hs(X) < X

and
I 140% — 7lv < (consty ) M+N/M x-N/M
vES

Similarly, if we add an additional hypothesis we have:

THEOREM 2. For each v € S, let A, be an M x N matrix over k, .
Assume that A,X ¢ (k)M forall ve S and all % € (@5)¥\{0}. Then
there exist infinitely many distinct pairs (X, y) € (@s)N x (@s)M over
projective space with X # 0 satisfying

(1.2) hs(x, MY [] 140% = 7137 < (consty) MM (2N u({ A4y }ves))™ ,
veS

where

n({Av}ves) = [ [ max{1, |4|v}.
veS

Next we show that (1.2) is sharp by demonstrating the existence of
linear forms for which the fundamental quantity,

hs(X, OV ] 140X - 1M
veS



214 EDWARD B. BURGER

cannot be made arbitrarily small. Let 4, be an M x N matrix over
k, for each v € S. We shall say {4, },cs is a badly approximable S-
system of linear forms (of dimension M x N) if there exists a constant
t=1(k, S, {Ay}yes) > 0 such that

t < hs(Z, HN [] 14u% - 711
vES

for every % € (@5)V\{0} and ¥ € (@5)™. We show that these S-
systems always exist.

THEOREM 3. Let k be any number field and S a finite collection of
places of k containing all infinite places. Given any integers M > 1
and N > 1 there exists a badly approximable S-system of linear forms
of dimension M x N .

Just as in the classical case, we may ask for the relationship between
the S-systems {Ay}yes and {A!},cs. Toward this end in §4 we prove
a transference theorem over number fields. As a consequence of our
transference theorem we deduce:

THEOREM 4. Let A, be an M x N matrix over k, foreach veES.
Then {Ay}yes is a badly approximable S-system of linear forms if and
only if {AT'},cs is a badly approximable S-system of linear forms.

We quantify this by proving the following generalized Khintchine’s
transference principle:

THEOREM 5. Let w be the supremum of all real numbers n > 0
such that there are infinitely many S-distinct pairs of vectors (X, y) €
(@s)N x (Fs)M with X # 0 satisfying

hs(X, PV I 140X - FIM < 1.
vES

Let w* be the supremum of all real numbers n* > 0 so that there are
infinitely many S-distinct pairs (i, W) € (@s)M x (@5)N with il # 0
satisfying
hs(ii, wYMHO IT 14T - w)Y < 1.
veS

Then
w

>
“N-Do+M+N-1

*

w
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and

w > Gl .
M-1)w*+M+N -1

Classically, theorems of this nature were proven via techniques in
geometry of numbers, in particular, using Mahler’s results on polar
reciprocal bodies. We prove our generalized transference theorems
by first developing the analog of the polar body in the setting of ge-
ometry of numbers over the adeles. We believe these results to be
of independent interest with further applications outside the present
work.

We organize our paper as follows:

Section 2: Notation and normalizations.

Section 3: The adelic polar body.

Section 4: A transference theorem over number fields.
Section 5: Dirichlet’s theorem over number fields.
Section 6: Badly approximable S-systems of linear forms.

Acknowledgment. The author wishes to express his gratitude to Pro-
fessor Jeffrey D. Vaaler for several useful comments and suggestions.

2. Notation and normalizations. In this section we define the basic
terminology and notation that will be used throughout the remainder
of this paper. We remark that our notation and normalizations are
largely adopted from [1].

Let k be an algebraic number field of degree d over Q. We write
Vi for the collection of all nontrivial places of k. Suppose v € V.
If v is an archimedean place, we say v lies over infinity, denoted
by v|oo. If v is a nonarchimedean place then there exists a finite
rational prime p such that v extends the place of p to ¥} . In this
case we say v lies over the finite rational prime p, written as v{oo
or v|p.

For each v € V), we write k, for the completion of k with respect
to the place v. We define the local degree as

dfu = [kv . Qv] .
We now normalize two absolute values. For each place v of k, we
normalize the absolute value || ||, as follows:
(i) if v|p then ||p|ly =p~!,
(ii) if v|oo then for x € ky, ||x||» = |x| where | | is the usual
Euclidean absolute value on R or C.
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Thus || ||, extends the usual p-adic absolute value if v|p and the
Euclidean absolute value if v|oo. Our second normalized absolute
value | |, is defined by

d,/d
x|y = [lx[l*"" -

This normalization gives rise to the product formula:

IT 1xlo =1

vey,

forall xek,x #0.
We extend our absolute values to vectors as follows. Let

X1
o X2
X=1 .
XN
denote a column vector in (k,)V . We define

X|p, = max {|x .
1%l = max {1z}

We extend the absolute value || ||, in a similar manner.
Let us now consider extensions to matrices. Fix a place v of k
and let 4 = (a,,,) be an M x N matrix over k,. We define

[l = max{lamsl} .
1<n<N
Assume now that v is a finite place of k. We write &, for the
maximal compact (open) subring of k,,
Oy ={x€ky:|x|ly <1}.
A subset R, in (k,)V isa k,-latticeif it is a compact open &,-module
in (ky)V. Clearly (&,)" is a ky-lattice in (k).
Let S be a finite collection of places of k£ containing all places lying
over infinity. We define the ring of S-integers as

O;={x€k:xeo, forallv ¢ S}.

We define the multiplicative group of S-units by
Us={x€ek:|x|p=1forallv ¢ S}.

For X € (k)N and y € (k)M we define the S-height of ¥ and ¥ as

hs(%, §) = [] max{|%lo, 7o}

vES
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Alternatively, we write hg(X) for the S-height of an individual vector,
that is, .
hs(¥) = hs(X, 0)

where 0 denotes the zero vector. Of course these are the same since

n(5) b0

where (;E) € (k)M*N _ In applications it will be convenient to use both
forms of this S-height.

For each v € S let 4, be an M x N matrix over k,. As we shall
see, it will be useful to discuss all these matrices simultaneously. In
view of this, we write {4, },cs , abbreviated as {4, }, for the collection
of matrices A, for v € S. As an example of this notation, we define
the following function which is a measure of the size of the A4,’s:

#({Av}ves) = u({40}) = [] max{1, |4u}o}.
vES

Let k, denote the adele ring of k. Elements of k, shall be written
as x = (x,) where Xx, is the v-component of x for all v € V. We
write (ka)V for the N-fold product of the adéles.

The additive group k, is locally compact and thus there exists a
Haar measure on ks which is unique up to a multiplicative constant.
We normalize this as follows.

(i) If v|oo and k, =R we let B, denote ordinary Lebesgue mea-
sure on R.

(ii) If v|oo and k, = C we let B, denote Lebesgue measure on
the complex plane multiplied by 2.

(iii) If v|p we let B, denote Haar measure on k, normalized so
that

Bo(@)) =123,
where 2, is the local different of k at v.

We now define a Haar measure f on ka to be the product measure

of the previously normalized local Haar measures:

ﬂ—_-Hﬂtw

VeV,
Technically, f determines a Haar measure on all open subgroups of

the form
H ky % H Oy

veS v ¢S
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where S is a finite collection of places of k containing all infinite
places. Therefore the Haar measure on k, is the unique measure
which agrees with the product measure on these open subgroups. For
each place v of k welet B denote the product measure on (k,)V .
Similarly we define V' to be the product measure SV on (ka)V.

Let a« € k with a # 0. By the product formula, |a|, = 1 for
almost all v, that is o« € &, for almost all v € V. Therefore
(a, a, a,...)€ ks and so we may view k C ka by the natural diag-
onal map n : k — ks defined by

na)=(a,a,a,...).

The set n(k) = k is referred to as the set of principal adéles. In fact
k 1is a discrete subset of k5 and under the natural quotient topology,
ka/k is a compact group having an induced Haar measure equal to 1.
In the sequence which follows, a particular field constant will naturally

arise. We define
2\* 1/d
consty, = ((E) |Ak|1/2) ,

where d is the degree of k over QQ, s is the number of complex
places of k£ and Aj is the discriminant of k.

Let x = (x,) be an element of k4 and a be a positive real number.
We define scalar multiplication, ax, to be the point y = (y,) in ku
determined by

axy if v|oo,
Yo = { Xy ifvfoo.
We shall view elements of (ka)V as column vectors X and extend our
notion of scalar multiplication to vectors X € (k)" by

aXy
o axy
axX = i
axy
If X C (ka)N then aX C (ka)V is obtained by applying scalar multi-
plication by « to each X € X .

We call a nonempty subset R, C (ky)V a regular set if it has the
following form.
(i) If v]|oo then R, is a bounded, convex, closed, symmetric sub-

set of (k,)" with nonzero volume.
(ii) If vfoo then R, isa k,-lattice in (k)N .
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For each v € V; let R, be a regular set in (k,)" . Assume that for
almost all places v,

R, = (&))"
We now define
% = H R'U .
vel,

From our above assumption it is clear that % C (k)" . We shall call
a subset # of (ky)N admissible if it has the form described above.
The set % is the adelic analog of the convex, symmetric set K in the
classical geometry of numbers, and the role of the lattice ZV in RY
is replaced by the discrete subgroup (k)" in (ka)V .

Let # be an admissible set in (ka)" . For each integer n, 1 <n <
N, we define the nth successive minimum A, of % with respect to
(k)N by

in =inf{cd > 0: (6.%) N (k)" contains ~ linearly
independent vectors over k} .
By our assumptions on %,
0</11 SAzSSAN<OO

We now recall the adelic successive minima theorem which was proven
independently by McFeat [6] and Bombieri and Vaaler ([1] Theo-
rem 3).

THEOREM 2.1. Let # be an admissible subset of (kn)N and let

A, Az, ..., Ay be the successive minima of %# with respect to (k)N .
Then
(2.1) (Ady - ANV (%) < 29V

The following volume calculation will be quite useful. For each
v €V} let B, be an N x N nonsingular matrix over k,. Let

Ry = {% € (ky)" : [|BuX[lv < 1}
and assume that for almost all v, R, = (&,)". Then % = Hver R,
is an admissible subset of (ka)" . We now compute
2| det B, |, ¢ if v is real,
BY(R,) ={ 2m)N|detB,|;¢  if v is complex,
12|22 det B, |79 if vioo.
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Therefore

N/2
V(#)=2N2n)N (H ;.ozvgg’) [1 1det B[4

v{oo veV,
where r is the number of real places of k. Hence

N
(2.2) V@) =2 (3)" 102 I] 1 det B,y
vel,

follows from the identity
IT 12018 = 1A
v{oo

along with the fact that d = r + 2s. Here A, is the discriminant of
k.
Alternatively we could report:

V() = (2(consty) " )N TT I det B[, .
vel,

3. The adelic polar body. For each place v of k we define the
bilinear form

N
{5 ): (kv)N X (ku)N —ky by (X,))= anyn

n=1

where
X1 N1
o X2 o V2
X = and y= )
XN YN

are vectors in (k,)V. Now let R, C (k,)" be a regular set. For each
v of k, we define the local polar body R} by

Ry ={X € (ky)Y : |{%, P)|v < 1 for all ¥ € R, }.

LEMMA 3.1. Let R, be a regular set and R} its polar body. Then
(i) R; C (ky)V.

(ii) R} is a regular set.

(iii) (R3)* =Ry .
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Proof. In case v is an infinite place, the lemma is a well-known
result in linear analysis ([2] Chapter I1.3, Corollary 3; I1.4). Thus we
need only prove the lemma when v is a finite place of k.

Part (i) is trivial and (ii) follows from the strong triangle inequality.
We now prove (iii). Since R, is a k,-lattice in (k,)", it follows
that R, is a finitely generated &,-module of degree N over &, ([8]
Chapter II.2, Theorem 1). Let

{wl s ,u_j23 cee s U_;N} g (kv)N
be a basis for R, over &, . Alternatively, if we let W = (w,w, - - - Wy)
be the N x N matrix with columns w;, w,, ..., Wy, then

R, ={Wa:ae@,)"}.

We now select linearly independent vectors {i;, i, ..., iy} C (ky)V
so that,
wTiu =1y

where U = (i i ---tiy) and 1y is the N x N identity matrix. We
claim that

R: ={Ua:ae€ @,)"}.
Let @, § € (&,)V, then

NU&, Wh)y = |BTWTUG|, < max {|Branl} <1.
1<n<N

So R; D {Ua:a € (&)N}. Suppose now that y € R’ . There exists
a vector Z € (ky)" sothat y=UZ. If a € (4,)" then
(3.1) (Wa, UzZ)|y < 1.

Select a = é,, where &, is the nth column of the N x N identity
matrix. Inequality (3.1) reveals that

(W, UD)|y = €T Z|y = |2n|ly <1 forn=1,2,...,N.

Thus Z € (6,)" and R; = {Ua:a € (6,)"}.
If ¥ € (R%)* then y = W} for some 7 € (k,)" . Moreover, for all
integers n, 1 <n < N, we have

IV, tn)ly = WTWTﬁnIU = |77Tén|v =|nlw £1,

so 7 € (@,)N and thus ¥ € R,. We have now shown (R:)* C R,.
The reverse inclusion is trivial, so we have equality. O

If we select W = U = 1y in our above proof, we have:
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COROLLARY 3.2. ((@,)N)* = (&))" .

LEMMA 3.3. Let v be any place of k and A be an N x N nonsin-
gular matrix over k,. Then for any regular set R, we have

(AR,)* = (AT)"'R;.

Proof. Clearly (X, ) = (4%, (AT)~1y) where X, y € (k,)V. Thus
y € R if and only if (47)~!y € (AR,)*. The lemma now follows. O

COROLLARY 3.4. Let v be a finite place of k and R, a k,-lattice -
in (ky)N with
where W is an N x N, nonsingular matrix over k,. Then
Ry = W)=Y (@,)".

Proof. This follows immediately from Lemma 3.3 and Corollary
3.2. O

LEMMA 3.5. Let R, be a regular set in (k,)V .
(i) If v|oo and ky =R then

(N') - v v V) = .

i > N 3N
an S A RBY (Ry) < 4.

(ii1) If vtoo then
N (Ro)BY (RY) = |2 |8V

where 2, is the local different at v .

Proof. Case (i) was proven by Mahler [5] in 1939. We remark
that this inequality has recently been sharpened by a deep result of
Bourgain and Milman [3]. Case (ii) follows immediately from (i)
once we view R, as a convex set inside R?Y (= CV) and recall the
extra factors of 2 due to our normalizations on f,. We now prove
(iii).

As before, let W be the N x N, nonsingular matrix over k, so
that

R, ={Wa:ae@)"}.
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Alternatively, we may express R, as
Ry ={X € (k)" : [W™'X|ly < 1}.
Now from Corollary 3.4 we have
R, ={% € (k)" : |[WTX||y < 1}.
Thus,

BY(R,) = /<k,,>~ 1z (%) dBY (%) = /(kv),, Koy (W12 dBY (),

where xg (X)is the characteristic function of R,. By making the
change of variables X — WX and recalling the module in &, ([8]
Chapter 1, §2, Theorem 3, Corollary 3), we obtain

» (Ry) = modj, (det W w(R)dBY (%
BY (Ry) = mod (de )/<kv>~x(‘”¥) (%)dBY (%)

= || det W“Il_d"ﬁév (@)™)
= || det W1||; % |2 || =

Similarly we compute

* dN2
Y(Ry) = [ det W% |12, o™

The equality now follows. O
We now prove the adelic version of two theorems of Mahler [5]. Let

# = [1, Ry be an admissible subset of (k)Y . We define the adelic
polar body #* by
=]]R;.
v

By Lemma 3.1 and Corollary 3.2 we see that #* is another admissible
subset of (k)" and (%£*)* = % . Below we give bounds on the size
of #* relative to the size of #.

THEOREM 3.6. Let # be an admissible subset of (ka)N and #* its
polar body. Then

4(d+s)N v 4(d+s)N
< —
PTEMEAE < VEWVED) < T

where r and s are the number of real and complex places of k respec-
tively and Ay is the discriminant of k.
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Proof. The theorem follows from Lemma 3.5 after recalling that
d=r+2s and
I 12ul7 = 1Al o
vtoo
We now demonstrate the reciprocal relationship between the suc-
cessive minima of % and #*.

THEOREM 3.7. Let A1, Ay, ..., An be the successive minima asso-
ciated with # and A%, 2}, ..., Ay the successive minima associated
with #*. For n=1,2,..., N,

(MO (2N)'T> 1A Y
4sN .

1 < (An'w\wl—n)d <

Before proving this result we shall need to consider vectors asso-
ciated with successive minima. Let @, @3, ..., @n € (k)Y be lin-
early independent vectors associated with the successive minima of
% . That is, for all integers n, 1 < n < N, and any real number
A> A, {@1s Brseor, Gu} CAZ. Let 6y, 0,, ..., 0y < (k)V be lin-
early independent vectors associated with the successive minima of
F*.

LEMMA 3.8. For any integers i, j with 1 <i< N and 1 <j<N

we have
Ak} for v|oo,

g o< {7 o

Proof. For vjoo welet A > 4; and A* > A% . Then
A"'gieR, and (A*)"'6;eR;.
Thus by definition
1A=t @5, ()71l = (A7) YK, G))llo < 1.

Letting A — 4; and A* — /1;‘. establishes the first inequality. The
second follows from the fact that when v{oco

gicR, and 6, €R;. o

Proof of Theorem 3.7. We first consider the lower bound. Fix an
index n, 1 <n < N. Define ®, an N x n matrix over k by

Q= (g102---Pn).
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Clearly, by linear independence, ® has full rank #». We now view
@7 as a linear transformation:

o7 : (k)N — (k)"
Let % C (k)V denote the kernel of ®7, that is,
F ={%ek)N:0T%=0}.
This forms an _{V —-n dimegsional subspace of (k)" . Since the N +
1—n vectors, 0y, 65, ..., On,.1_n, are linearly independent in (k)V,

there must exist an index j,with 1 < j < N+1-n, so that é} ¢ 7.
That is, there must exist an index j such that

(@i, 0,)lu #0 for1<i<n.
By Lemma 3.8 we have that if v|oo then
0 # (@i, Ol = (@i, G)llo)™/ < (Rid)%/4.

Hence, by the product formula and Lemma 3.8 we conclude that

[11@:, 6l =1 < TTaap%- ] 1.

v Voo vtoo
Recalling that 1 <i<n and 1 <j< N+ 1-n we have

1 <A < AnANyion -

Since n was arbitrary, we have shown that forall n=1,2,..., N,
(3.2) 1< (Andyvyion)?

For the upper bound, we use the adelic successive minima theorem
(2.1) to report that

(Mdy - An)?V (#) < 29N
and
(4745 --- A3V (™) < 29V
Multiplying these two inequalities and using Theorem 3.6 gives

(NP TN ALY
4sN .

N
(GnAyy1_n)? < 4NV ( @)V (2*)} ! <
+
n=1

The result now follows from (3.2). O

As an application, we state and prove an adelic general transfer
principle. Assume that N > 1. For each place v of k,let C, be the
v-adic cube:

Co ={X € (k)" : || x|}y < 1}.
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We easily compute the polar body C; to be
N
. {)Ze (k)™ > |l xnllo < 1} for v|oo,
C’U - n=1

{X e (k)N %]y < 1} for v{oo.
Let B, be an N x N nonsingular matrix over k, and define R, C

(ky)N by

Rrv = B,U_ICQ) .
Assume that for almost all v, R, = (&,)" . Define T, C (k,)" by
T, = BI'C,.

Let
‘9?=HR” and ‘7=HT”'
v v

It is clear that &% and .7 are admissible subsets of (ka)" .

THEOREM 3.9. Let # and I be as above and Ay, u; the first
successive minima of & and 9, respectively. Then

1/(N=1)
A < e (N)py/ V! (H|deth|,,)
and

—-1/(N-1)
w < e (M)A VY (Hldethlv>
v

where
ck(N) = {N(const )V }/(V=1)

Proof. From Lemma 3.3,
R; =BIC;.
We claim that
(3.3) rTCaCT.
If vfoo then & € T, if and only if there exists B € ()N with
&=BTf e R:. Thus
T, =R, forvfoo.

Assume now that vjoco. If & € 4T, then there exists a B e (k W
such that |||, <1 and & = lBTﬂ Since £ SN (1Bullv < 11810 <
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1, we have %B. € C} and a € R}, thus %Tv C R}, establishing

our first containment. If ¥V ||,y < 1 then ||/§||U < 1. Thus

if ﬁ € C} then B € C,, establishing the second containment and
proving the claim.
It follows from (3.3) that foreach n=1,2,..., N

(3.4) Pn < An < Ny
Again by the adelic successive minima theorem we have that
(Ady---AN)AV () < 24N,

SO
MO <2V gy ()}
From Theorem 3.7 we deduce

(3.5) MY <N v ().
A simple calculation reveals that

_ndN (TN N2 -d
(3.6) V(R) =2 (5) A~V Ivlldethlv :

So from (3.6) along with (3.4) and (3.5) we conclude that

2\ N 1/[d(N-1)] 1/(N-1)
pesomyroen(2) )™ (pamas)
v

which is the first inequality. The second follows from symmetry. O

In some applications, we are given that a certain admissible set con-
tains a non-zero point of (k)Y and we wish to conclude that there ex-
ists a non-zero point of (k)" contained inside of a related admissible
set. In light of this remark, the following corollary will be useful.

COROLLARY 3.10. If there exists a { € (k)N\{0} with { € %, then
there exists an & € (k)N \{6} satisfying:

~1/(N-1)
Ee e (N) {Hldethh,} T .

v

Proof. If feZ then ;< 1, s0 by Theorem 3.9,

—1/(N-1)
s < cx(N) {H[deth[,,} .
v

The corollary follows by the definition of u; and noting that each 7,
is closed. O
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4. A transference theorem over number fields. Transference theo-
rems in Diophantine approximation are results in which information
about a particular linear system implies information about the trans-
posed linear system.

Let S be a finite collection of places of k£ containing all infinite
places and let @ be the ring of S-integers.

THEOREM 4.1. For each v € S, let A, be an M x M matrix over
k, . Assume there exist vectors X € (@) and y € (@s)M, not both
identically zero, so that

I1Xlv < |0vlly and ||AvX — Vllv < l|&v]lv

where d,, €, € k,\{0}, for each v € S. Let

A= (H [Bulo e [3!

1/(M+N—-1)
vES )

Then there exist vectors i € (Fs)M and W € (Fs)N, not both identi-
cally zero, so that

ldllo < vollelly! and AT — Wy < wlldolly’ forallves,
where

(@.1) vy = { (M + N)A ifv|oo,

1 ifvtoo.

Proof. For each place v of k, we define an (M + N) x (M + N)
matrix B, over k, by the following rule: if v € S then

51,-11]\[ ! 0
Bo= (-2 1o ——_],

if v ¢ S then B, = 137, y) where 1y is the N x N identity matrix.
We note that for v € S,

51_)1]\[ : "61;1417;
CHREY .
0 | 81)1M
and for v ¢ S, (BI)™!' = 1yn). Now define R, and T, C

(ky)M*N by:
R,=B;'C, and T,=BIC,
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where C, is the (M + N) dimensional v-adic cube as defined in §3.
Let £ =[],Ry and F =]], Ty, . It is clear that & C (ka)M*+"N and
T C (ka)M+N | Let

£=(5) ety

From our hypothesis we have that f € % . By Corollary 3.10 we
conclude that there exists an & € (k)M*+¥\{0} satisfying:

—1/(M+N-1)
éeck(M+N){H|detBU|,,} T
v

1/(M+N-1)
} 7.

= (M + N) {H ,évlzlylevlzlzu

veS

The theorem follows once E is viewed as

> (W
e=(3): .
REMARKs. 1. Upon first examination, it appears that we may al-
ways find a # and W in (F5)M and (é’s)N , respectively, that will
satisfy the theorem by selecting # = 0 and W € (@s)V to be v-
adically small for all v € §. However in practice we view [], g |0v]o
as “large” and [],cg|év]v as “small”. In this situation, # being zero

would force W to be zero, which is impossible. For if # = 0 then we

could report that
Vv |0 forvesS,
(4.2) 151l < { vl| |5

forvegs.
Thus by (4.1) and (4.2),
4.3) [T1dl < T @olloully)~%/" = [T ()% T 160]5"

veS v]oo veS
) 1/(M+N-1)

(M + N) (1‘[ 16013 lev ]! IT1sl7!

veS vES
— (M +N) H{IavIg}l—M)/(M+N——l)IgvlvM/(M+N—l)}.
veS

Therefore, if [],cgldvlv is sufficiently large and [],cg|évlv is suffi-
ciently small then

[T1@) < 1.

v
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But by the product formula this implies that @ = 0, which is a con-
tradiction; thus # # 0. Specifically, if

[116ule >1 and J] levlw < ci(M + N)=M+N=1/M
veS veS

then from (4.3) we may conclude that i # 0.
2. Given that for each v € §,

[Xllv < ll9ullo  and  [[4pX = Fllo < ll&v]lw ,

we may deduce an upper bound for Ag(X, y) and [],cg|40X — Ylo .
For v|oo we have
Wl = 140 = 7 = Ay %]l
< 2max{||ey |y, | 4vE|lv}
< 2max{||eylly , Nl|4vllslIX]lv}
< 2N max{||&y|lv, [|4v]lv]1ov]lv}
< 2N max{1, ||dy|lv} max{||ey|v , [|Ov]lv} -

So |7y < 2N)%/dmax{1, |Ay|y} max{|e,|y, |Ov]v}-
For v € §, vtoo we have:

[¥]y < max{1, |4y|} max{|ey]y, |v]v}-

Hence

hs(X, ¥) < 2Nu({Av}) [Tyes max{|evlv , [0vlv}
(4.4) and

Hves |[4yX — Vly < HveS vl 5

where

p({4v}) = Hmax{l |y} -

veS
Similarly, from the conclusion of Theorem 4.1,

il < Pollesll;' and ||4AT @ — @]y < pyl|dull;! for each v €S,

we may report the following upper bounds.
For v|oo:

1F]ly < 2My, max{1, ||dv|lv} max{||du]ly", llevll; '}
and for v S, v{oo:

1@l < o max{1, || ullo} max{Iull;", llevlls '}
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Therefore we conclude
hs (i, W)
< 2Mc (M + N)Au({Ay}) [Tyes max{|dvl; ", levly '}
and
[lyes |AT 4 — By < (M + N)A HveS |5v|171 .

5. Dirichlet’s theorem over number fields.

(4.5)

LEMMA 5.1. For each v €S, let A, be an M x N matrix over k,
and &, € k,\{0} with |ey|, < 1. Select 6, € k,\{0} so that |6y, > 1
for each v €S and

-1 H 60| |ey |M = (const ) M+N)
ves
Then there exist X € (Fs)N\{0} and 7 € (@)™ satisfying
19 < I6ully and || 4,% = 7l < lleolls forallves.

REMARKS. We may always find d, € k,\{0} for all v € S that
satisfy (5.1) since S contains the infinite places of k. Again the
constant const; is given by

2 s 1/d
const, = ((;) IAk|‘/2> :

Proof. For each place v of k we define B,,an (M+N)x(M+N)
matrix over k, by:

51,—111\1 | 0
By=|-—-- _:__ -
e; 1 Ay | ey,

forall v €S and By =1, forall v ¢ S. Define Ry C (ky)M*+V
by

Ry ={Z € (k)N : || By 2]y < 1}
and let # = [[, Ry . Clearly # C (ka)M*" and is admissible. We
note that

(M+N)
V(F)= 9d(M+N) (2)5 + lAkl——(M+N)/2 (Hldethlv)
v

_2d(M+N)(( ) IAr|~ 1/2) (H EAE |av|{,“>d

— 9d(M+N)

-d
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Theorem 2.1 reveals that
(MAz- - Aarym) PV () < 24N
Thus given the above volume calculation and the fact that the 4,’s are
increasing, we have A; < 1. Hence there must exist a point (7;) €
(k)M+N\{0} so that
( x*) cx.
=y

By our definition of R, for v ¢ S we see that
X
.)e(@@ M+N.
(%) <@

In addition, for v € S we have
[Xlle < ll6llv and [|4uX = Fllv < [lev]lo -

Now if X =0 then the previous inequality reduces to ||7]jy < [lev]lo <

1 forall v €S, so hg(¥) < 1. Since y € (@5)M , the product formula

implies that y = 0, which is impossible. Therefore we must have
Z#0. a)

THEOREM 5.2. For each v € S, let A, be an M x N matrix over
k, andlet X be areal number with X > (const,)M+N)/N _ Then there

exist % € (@5)N\{0} and y € (@s)M so that
hs(X) < X
and

T 140X = 7lu < (consty ) M+N/M x=N/M
ves

Proof. For each v € S, select ¢, € k,\{0} so that |ey|, <1 and

(5.2) IT leols™ = (consty)~M+M x ™
veS

By Lemma 5.1, there exist ¥ € (@5)¥\{0} and ¥ € (@)™ so that
|X|y < |dvlv and |[4yX — V]y < |€y|» for each v € S. Thus,

hs(X) <[] 16s)v and J]|4u% -5l < [] levls-
vES vES veS
The theorem now follows from (5.1) and (5.2). O
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COROLLARY 5.3. Let a, € ky, foreachv € S and let X > (const;)?.
Then there exist x € @s\{0} and y € &g satisfying

hs(X) S X

[T]es -5

vES

and
< (consty )2

v th(X) )

Proof. This follows immediately from Theorem 5.2 with M = N =
1. |

The following two results are actually theorems about points in pro-
jective space over k. We shall phrase this in the following manner.
Let (%, 7:) € (F5)N x (@)™ with %, #0 for =1, 2. We shall say
that (X, y1) is equivalent to (X, ¥2), (X1, V1) ~ (X2, ¥2), if there
exists a constant a € k such that (X, J|) = (aX;, ay). If (X1, 1)
and (X,, J,), are not equivalent we say they are nonequivalent or rel-
atively prime. In addition, we shall say that (X, y;) is S-equivalent
to (X2, J2), (X1, V1) ~s (X2, y>), if there exists a constant ¥ € %
such that (X, y|) = (uX,, uy,). If two vectors are not S-equivalent
we say that they are non S-equivalent or S-distinct. Clearly both ~
and ~g are equivalence relations on (Fs)N x (@)™ .

THEOREM 5.4. Foreach v € S, let Ay, bean M xN matrix over k.
Assume that Ay,% ¢ (k)M forall v € S and all X € (F5)N\{0}. Then
there exist infinitely many relatively prime pairs (%, y) € (@s)N x(@s)M
with % # 0 satisfying
(5.3)  hs(X, NV [] 140% - 713 < (consty) MM 2Nu({4:})",

veS
where

u({4v}) = H max{l, [Ay[y}.

vES

Proof. Assume that there are only finitely many nonequivalent pairs
of vectors (X1, 1), (X2, 32), ..., (Xr, yr) which satisfy the above
conditions. For each integer ¢, 1 <t < T, let Z; € (G5)M+N\{0} be

defined by: .
ft = ().C.t) .
Ve

For 7 € (@5)M+N\{0} define the set E[Z] C k by setting
E[Z] = {a € k\{0} : aZ € (5)M*N}.
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We now claim that foreach 1 <t< T,

inf {H |4, (aX) — (aft)|v} >0.

a€klZ] vES
To prove this, let a € E[Z;]. Clearly
I] 14v(ef) — (¥l = hs(e) [ 14v% — il
vES veS

and by our hypothesis, [],cs|4vX; — Vil # 0. Thus it is enough to
show that

(5.4) aég[ffl]{hs(a)} > 0.

We observe that « € E[Z;] implies that

[T ledolZido < 1

v¢gS
or
IT lebs < TT 12457
vgsS vgsS

By the product formula, since a # 0

1=Hla|v= H’alv‘ H lafy < H|a|v' H lft|;1-

v vesS vgsS veS vgsS
Hence
0< H |Ztlv < H ,aIUs
v¢sS veES
SO
0< Zilp < inf {hg(a
vl;lsl zlv _aeE[z",]{ S( )}

which establishes our claim.

Let
5= {1 { T - e
From the claim above, § > 0. For each v € S, select ¢, € k,\{0} so
that |ey|y < 1 and
0< [ lewls < 6.
ves
We apply Lemma 5.1 with this choice of {&,},cs. Therefore there

exist X € (@5)M\{0} and 7 € (@5)M satisfying
X/l < |0v]lv and ||4yX — Fllo < |l&v]ly foreach v e S.
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By (4.4) we conclude that
hs(%, ¥) < 2Nu({40}) [T I6ulo

vES

[T 140% = 7l < ] lewlo

vES vES
since |eyly < 1 < |dy|y for all v € §. It follows from (5.1) that
(X, y) satisfies (5.3), and thus must be equivalent to one of the pairs
of vectors from our finite collection. That is, there exists an integer
j, 1<j<T,sothat (X, y)~ (X;,¥;), hence there exists an a € k
such that

and

(fsf):'(afj’ aij)’
Clearly o € E[Z]] so

T 140 (a%)) = (@F)lo = [] 140X = 7

veS veS
< [1levlo <6 < [T 14u(aX)) — (@7l
veS veS

which is impossible. Thus (X, y) satisfies (5.3) but is not equivalent
to any member of our finite set. Therefore there must be infinitely
many relatively prime pairs of vectors in (Zs)N x (@5)M which satisfy
(5.3). ]

COROLLARY 5.5. For each v € S, let a, € ky,\k. Then there ex-
ist infinitely many relatively prime pairs (x,y) € (@s)* with x # 0
satisfying

hs(x, y) H lowx —yly £ 2(C0n5tk)2.u({av}) .
veS

Proof. This follows immediately from Theorem 5.4 with M = N
=1. O

REMARK. In the proof of Theorem 5.4 we saw that
inf {A >0
a&}gm{ s(a)}
(see inequality (5.4)). Here we remark that the infimum is actually

attained, that is, there exists an o’ € E[Z] such that
0< hg(d) = inf {h .
s(a’) aé%m{ s(a)}
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We prove this below.

Since Z € (g5)M+N\{0}, |Z], = 1 for almost all v € V;. Let
vy, U2, ..., Uy be the set of all nonarchimedean places of k such
that |Z], # 1. For each v; let z; be the component of Z such that

|Zj|v, = ‘Zlv,»

Let

= mi -1
e= min {|zj[, '}

and select ¥ € S such that @|oo. Clearly ¢ > 0 and thus by the strong
approximation theorem, there exists a # € k\{0} such that ||, <1

for each v ¢ {9, vy, v3,..., vy} and

(5.5) |27 = Blu, < e <zl

for j =1,2,...,J. Now select { € k so that |(f], = 1 for all
v ¢ Su{vi,vy,...,vs} and |C|UJ =1 foral j=1,2,...,J.

From (5.5) we have equality in the strong triangle inequality:
1CBlo, = 1L(z7" = B) = {23y,
= max{|{(z;" = B)ly » 1£27 1o }
= ch}—ll’Uj — 'Zj[';-]l
forall j=1,2,...,J. We now claim that {f € E[Z]. Let v ¢ S
and assume v ¢ {v;, v3,...,v;s}. Then |{B|, =1 and |Z|, =1 so
((B)Z € (@,)M+N . Assume now that v = v; for some 1 < j < J.
Then
I(Cﬁ)glv = Mﬂlvjlzlvj = Izjlzjjllzjlvj =1,
so ((B)Z € (@y,)M+N | Thus, ({B)Z € (@5)M+N and therefore (f €
E[Z]. We claim that

hs(EB) = inf {hs(a)}.

acE[Z]
If not, then there exists a y € E[Z] such that

hs(v) < hs(CB).

Thus by the product formula there must exist a place ¥ ¢ S so that
7l > |{Bls . Hence

[7Zl5 > [({B)Z]s = 1
and so y ¢ E[Z], a contradiction. Thus,

hs({B) = aei%[fﬂ{hS(a)} : o
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6. Badly approximable S-systems of linear forms. We now show
that Theorems 5.4 and 5.5 are sharp by demonstrating the existence
of linear forms for which the fundamental quantity

hs(, M TT 1405 = 713
vES
cannot be made arbitrarily small. In this section we define such forms
and use Theorem 4.1 to prove some transference results.

Before we develop the theory of badly approximable S-systems, we
consider the classical situation. Let 4 be an M x N matrix over R.
The linear system A is said to be badly approximable if there exists
a constant Tt =1(4, M, N) > 0 so that

(6.1) T < |%|V|Ax - M

for all ¥ € ZV\{0} and all ¥ € ZM . Alternatively, it is easy to show
that the linear system A4 is badly approximable if and only if there
exists a constant v/ = t/(4, M, N) > 0 so that

(6.2) v < max{|%|, |7}V 4% — y1¥

for all X € ZM\{0} and e ZM.

This leads us to the following definition. Let A4, be an M x N
matrix over k, for each v € S§. We say {4, },cs is a badly approx-
imable S-system of linear forms (of dimension M x N) if there exists
a constant 7 =1(k, S, {4y}) > 0 such that

T < hs(x, )V [T 1407 = 71
veS
for every X € (@5)V\{0} and y e (&5)M .
In view of our transference theorem of §4 we prove the following.

THEOREM 6.2. Let A, bean M x N matrix over k, foreach v €S.
Then {Ay}yes is a badly approximable S-system of linear forms if and
only if {Al'}yes is a badly approximable S-system of linear forms.

Proof. Assume that {41}, cs is a badly approximable S-system of
linear forms. Let 7/ > 0 be a constant so that
(6.3) ho(it, )M T] |4l - il > ¢
vES
for all i € (@5)\{0} and W € (@5)¥. Let X € (&5)¥\{0} and
y € (@s)M . We claim that, for all v € S, 4,X — ¥ # 0. If there
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were to exist a © in S so that AzX — 7 = 0 then we could select an
&y € ky\{0} so v-adically small that Theorem 4.1 along with (4.5)
would contradict (6.3).

We wish to find a 7 > 0 so that

(6.4) hs(X, HN I 140X =71} > =.
vES

Select J,, &, € k, so that
(6.5) 0vllv = max{||X|lv, |¥]lv} and |leylly = ||4vX = Vv

for each v € §. From our above claim, |||, > 0 forall v € §.
Since X # 0, hg(X, y) > 1 and so we may assume that

(6.6) [T leold < ci(p + N)=MFN=1)

veS
otherwise (6.4) is trivial: select 7 = ¢;(M + N)~(M+N-1)  We apply
Theorem 4.1 with X, y, {¢,}, {6y} as above and conclude that there
exist i € (F5)M\{0} and W € (Fs)" satisfying
(6.7) Il < volleolly" and |4y @ = @llo < 2olidully’
for all v € S. The fact that i # 0 follows from (6.6) and the first

remark after Theorem 4.1. We now compute upper bounds for ||, .
For v|oo:

@]y = 4T — & — AT,
< 2M max{y||6s]l;", 7ol AT lvlleoll5 '}
However,

lleullo = |4 X — Vllv < 2max{||4y Xy, ||V}

< 2N max{1, |[4yllo} max{[|X]l, , | V]lv}
= 2N max{1, [[4[lv}dv]lv -

Therefore putting these two inequalities together we conclude that

1l < 2M7, max{szax{l, 14ull}, 14T uv}naun;‘

< 4AM Ny, max{1, [[4vllo}levlly " -

So for v|oo, ||y, < (AMNy,)%/? max{1, |Ay|y}|ey];! . Similarly, for
vioo,v ES':

[y < (Yv)d”/d max{1, IAU|U}|8’0|171 .
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Hence from (6.7) we have
hs(il, @) < AMNep(M + B)Ap({4u}) ] leol;!
veS

and
H |47 i — @]y < (M + N)A H 160157,
vES vES

where we recall A = ([],cs |[0v]}) |ey M)/ (M+N=1) | Thus,

hs(it, B)M || 145 i - @]
veS

-1
< (AMNp({ A )M e (M + N)MFEN AMEN) (H lévlﬂ'lsvlﬂ‘)

veS
= (4MNu({Au}))Mcr (M + N)MHNA,

Since i € (@5)M\{0} and W € (&)V, (6.3) is satisfied, and so
(M+N-1)
{r'(4MN,u({A,,}))—Mck(M+ N)—(M+N)} < AM+N-1)

Therefore from (6.5) we conclude that
hs(®, DY ] 140% - 712 > 7,
veS
where

= min{ (F4MN (L, ) e (M + Ny DN,

ck(M+N)—(M+N-‘>}.

Since X and y were arbitrary, we have that {4,},cs is a badly ap-
proximable S-system of linear forms. The reverse implication follows
from symmetry. a

We now give a quantitative version of Theorem 6.2 by proving the
generalized “Khintchine’s transference principle” (see [7] Chapter IV,

§5).

THEOREM 6.3. Let w be the supremum of all real numbers n > 0
such that there are infinitely many S-distinct pairs of vectors (X, y) €
(@)N x (@s)M with X # 0 satisfying

(6.8) hs(X, NI T |4u% - 7IM < 1.
vES
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Let w* be the supremum of all real numbers n* > 0 so that there are
infinitely many S-distinct pairs (i, W) € (@s)M x (Gs)N with @i # 0
satisfying

(6.9) hs (i, GYMO+O TT 14T d - @] < 1.
vVES
Then
w
(6.10) w*Z(N—l)w+M+N—1
and
(6.11) w> @

" M-1)w*+M+N-1"

Proof. We shall first prove inequality (6.10). Clearly if @ = 0 then
(6.10) is satisfied. We now assume that w > 0. We further assume
thatif N > 1 then w* < ﬁ (otherwise (6.10) follows immediately).
Suppose that 0 < 1 < w, n* > w* and similarly if N > 1 then

"' < §eT-

Since n < w, (6.8) is satisfied for infinitely many S-distinct pairs
(X, 7) € (@s)N x (@)™ with X # 0. For each such pair (X, y) and
v eS, select y, = (X, ¥) € ky so that if

16vllv = max{[[X[l,, [I¥]lo}
(6.12) and
llevllv = max{||4vX = Vv, I7ollo}
then ||&y|ly > 0 and
(6.13) [Ta6u P len ) < 1.
veS
Since (6.8) is satisfied for infinitely many S-distinct (X, y), we may
force [],cslévlv to be small by making [],cgs|dv|v sufficiently large.
By Theorem 4.1 and the remarksﬁwhich follow it, we may find # €
(@s)M and W € (@)Y with i # 0 satisfying
hs(id, W) < AMNe (M + N)Ap({Av}) [Tyes leoly!
(6.14) and
HUGS lA{ﬁ— "I}'{v S ck(M + N)A HUES I6Ul171 )
where

1/(M+n—1)
A= (H |5v|1];vlgv|z/}{) .

vES
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) €

Now since n* > w*, (6.9) is satisfied for only finitely many (i,
iy, Wy).

(@S)M X (ﬁS)N with % # 69 say (ﬁl: 'LB]), (ﬁ29 w2)> ey ( J >
Let

w
w

I' = min AT — Wiy & .
1§j1§J{H| vUj ]IU}
vES

We claim that I' > 0. If I’ = O then there would exist an integer
I, 1<1<J,andaplace 9 € S such that AT, — @, = 0. Se-
lect an infinite sequence of S-distinct points {a,}52; in &ds. Then
{(antiy, anw;)}52, is an infinite collection of S-distinct vectors in
(@5)N x (@s)M , all of which satisfy

H |A1;T(anﬁl) — (anWy)ly =0
ves
and thus trivially satisfy (6.9), a contradiction. Therefore I' > 0. We
now make [],cs|dv|y so large that
(M + N)AT] 16s1," <T.
veS

Thus since I" was the minimum, the (i, w) which satisfies (6.14) is
not S-equivalent to any pair from our finite collection. Therefore it
does not satisfy (6.9) so

(H |y i — wlv) hs(ii, W)FIH1) > 1.

vES
By the upper bounds of (6.14), the above inequality reveals that

(M + N)A ] 16015
vVES

Y(1+1")
: <4Mch(M+ NAu{4:) [] Isvl;‘) >1.
veS

Raising both sides to the (N(M + N — 1))th power and recalling the
definition of A yields

N+MNn" M-M(N-1)n"
) (H l5vlv) (H |ev|v> >1,

vES vES

where

0=c.(M+ N)(M+N—1)(N+M(1+77'))(4MN#({A0}))(M+N—1)(l+rf)M.
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Since n* < yy, M —M(N —1)n* > 0. Taking (M — M(N - 1)7*)th
roots of both sides reveals that

(N/M)((1+Mn”)/(1-(N=1)n"))
o H |&v v {H ldvlv}

veS vES

>1

b

where

Q= Ql/(M—M(N—l)'r') .
Since we may choose [],cs|0v|v to be large, the previous inequality
along with (6.13) leads us to conclude that

1+ Mn*
<L mm—
B gy Ty e

or
n

* > .
T=N-Dn+M+N-1
Letting #* — w* from above and n — w from below gives (6.10).
Inequality (6.11) follows from symmetry. O

Below we demonstrate the existence of badly approximable S-
system of linear forms of arbitrary dimension. We begin with the
following

THEOREM 6.4. Suppose {1, ay, a;, ..., ay} is a basis for the al-
gebraic number field K of degree N + 1 over k. Let us further
assume that K may be embedded into k, for each v € S. Let
al' = (ajay---ay), so @ may be viewed as a vector in (k,)N for
each v € S. Then {aT},cs is a badly approximable S-system of
linear forms of dimension 1 x N .

Proof. For any place v of k, let
Vk.v ={w € Vg : wlv}.

By our hypothesis, for each v € §, K may be embedded into %, ,
therefore there exists a w = W(v) € Vk,y, so that [Ky @ k] = 1.
Thus || ||z = |lv and so

[K, : kK, : Q/IK : k][k : Q] 1/[K : k
6.15) |lo=] X / = | IR

Let X € (Fs)V\{0} and y € F5. Let B = TN anx, —y € K.
From (6.15) we conclude

(6.16) [I118=TI 1815+

vVES u”JEVK,v
vES
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By linear independence, f # 0, so by the product formula

1= 11 18lw= ]I { I1 lﬁlw}NH.

veVy veV, \wevy ,

We now conclude

(6.17) 1= H{ I1 Iﬁlw}NHH{ I1 lmw}NH

veS (wev , vgS \weby ,

N+1
= I1 183 11 wﬁ“H{ 11 ww} :

weVK,v wéVK,v U¢S weVK,v
vES vES
w#W

Since X € (@5)" and y € d5 we easily have:

H{ H |ﬂ|w} + < H{ H max{l,Id’lw}} + .

vgS (wev, vgS (weV,

Define the constant B; = B(K, k, S, a) as

N+l
B, = H { H max{1, léilw}} .

vgS (wev,

Therefore from (6.16), (6.17) and the previous bound:

(6.18) 1<I[18l- I 1BI4*'-By.
vES weVy
vVES
w#W

It is easy to check that

N+1
H ‘ﬂl'L]X+ISB2{ H max{‘flw’lyW}} >

weVK,v weVK,v

vES vES
w#AW w#W

where

N+1
BZ=B2(K,k,S,o7)={ 1T 2Nmax{1,ld’|w}} )

weVK,v
ves
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So from (6.18) and the above inequality we conclude

N+1
(6.19) ISHIﬂIv{ [I max{i%lu, IJ’lw}} BB,.

vES wevy ,
vES
wH#W

We note that for z € k and wjv,
lzllw = llzlv
and by (6.15)
K :k]l/[K:k
|2k = [zl eI
Since X € (k)Y and y € k, (6.19) reveals

N+l

1< 11 lﬂlv{ [ max(isl. |y|v}v<w=kul}"“ .

vES weVy ,
ves
w#W
= H | Blv {H max{|X|y , |y|v}zw,lew :kv]—[Ku.,:kv]}Ble
veS vES
= T 18lo [] max{|zls, v]o}¥ ¥-1. B, B,
vES vES
= 1 18lo TT max{|%l,, [ylo}" - B1B,
vVES veES
N
= [1(3 anxe—y| -hs(X,»)VBiB,.
vES In=1 v
Hence
N
hs(X,y N anXp — Y| > =—=——
s(X, ») g ; nXn 35,5,
- v

and therefore {a”},cs is a badly approximable S-system of linear
forms. O

We proceed now to show the existence of badly approximable S-
systems of linear forms of dimension M x N .

Let {a;, a2, ..., ar} be a complete set of distinct conjugates con-
tained in some splitting field of k. Let

L
f(x) =" axteklx]

=0
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be the monic irreducible polynomial associated with {a,}le1 . That is,
L

£ =Tl -ap.

I=1
We now recall that the coefficients ¢; € k are the elementary symmet-

ric polynomials of a;, a5, ..., ar . Write
X1
o X2
X=1 .
XL
and let

L-1
P(y) = leﬂyl-

Define the polynomial F(X) = [[~, P(a;) . Trivially the coefficients of
F are symmetric polynomials of a;, ay, ..., ar . By the Fundamen-
tal Theorem on Symmetric Functions, every symmetric polynomial of
a,ay,...,ar isapolynomial in ¢y, ¢, ..., cr—; . We have already
noted that the elementary symmetric polynomials of a;, a;, ..., ar
are elements of k. Therefore the coefficients of F(X) are also in k.
Thus we have just discovered that

F(f) e klxy,x3,...,xr].

Alternatively, we may describe F(X) in the following manner. For
each integer /, /=1, 2, ..., L, we define the L dimension column
vector

1
a
4 2
a = a;
al~!
Hence
L
)_(" =H ekal,az,...,aL)[xl,xz,...,xL].

I=1

We remark that F(X) is a norm form. From our previous observa-
tions we have seen that
L

H(&’,T)'c') e k[xy, x3, ..., x].
I=1
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It now follows that we may always find an element y € k\{0} so that
if we consider the complete set of distinct conjugates

oy, @2, ..., 01,

where o; = ya; foreach /=1,2,..., L, then

This inspires the definition below.

A set {a;, as,...,ar} contained in some splitting field of k is
called a set of S-algebraic integers if the following three conditions
hold.

(1) {a1,az,...,ar} is a complete set of distinct conjugates.

(ii) The field k(ay, a3, ..., ar) may be embedded into k, for
each v € S.

(iii) The polynomial G(X) = l'[,L=1(d'IT5c') is an element of
Oslx1, X2, ..., xL].

From our above remarks we conclude that any set {a;, a3, ..., ar}
which satisfies conditions (i) and (ii) may be multiplied by a suitable
constant of k so as to produce a set of S-algebraic integers.

Suppose {ai, a3, ..., ayyn} is a set of S-algebraic integers. We
define the following two matrices:

1 o a% . o/lu_1
1 oy ao% - o!
D = 2 g
2 M-1
and MaN-1
of a/11{+1 o +N—-
M M+l M+N-1
O = oy @ @
12= .
MM+l MiN-1
aQy X 3%
Clearly ®;; is a nonsingular M x M matrix. For each v € S we
define the M x N matrix A4,(a;, az, ..., ay) over k, as

Ay(ar, ez, ..., ap) = —(@g) "1 (D@12).

We now prove that badly approximable S-systems of linear forms of
dimension M x N exist.
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THEOREM 6.5. Let {a;, a3, ..., ayin} be a set of S-algebraic in-
tegers. For each v € S let A, be the M x N matrix over k, defined
by

Ay = Ap(ay, az, ..., ay).
Then {Ay}yes is a badly approximable S-system of linear forms of
dimension M x N .

Proof. Since there is an embedding of k(a;, az, ..., ay4y) into

k, , we may view
1

Q
- 2
a) = ap
a;ll+N—1
as a vector in (k,)M*N for each integer / = 1,2,..., M + N and

each v eSs.
Suppose K = k(a;) = {ali : i € (k)M*N}. Then clearly by
condition (iii),

NormK/k(&,Tﬁ) = H &ITﬁ c ﬁs[ul s Uy eut uM+N] .
I=1

Thus for all @ € (s)M+¥\{0},

(6.20) 1<TT|I] &4

veS | I=1 v
We now define the (M + N) x (M + N) Vandermonde matrix @
by:

M+N
=T -

2 .. M-1 M M+N-1
( 1 ay aj aj a; aj \
. M1 ) MAN-1
¢ _ 1 aM 3%[ o .. a% 1 3{% o s a%-‘-N 1
1 om0 Oy Oy O
! 2 GMol oM MEN-1 )
\ 1 amin oy CM+N  EM4AN CMiN
From our above notation, we could write
=T
ol
@

d=
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In addition, it will be useful to partition ® in the following manner:

D | Py
b= ———:——— ,
' Dy | P

where ®;; is M x M, @, is M x N, @, is N x M and Dy, is
N xN.
It shall also be convenient to define the function ¢: V;, — Q* by

dy/d if v|oo,
ev) = { 0  ifvfoo.
We are now in a position to show that {4, }yes = {—(P11) 1 (P12) }ves
is a badly approximable S-system of hnear forms of dimension
M x N. Suppose that ¥ € (@5)V\{0} and 7 € (@5)M. We argue
that (6.20) and our previous notation give
veS | I=1
ves { v}

M+N J-;
=T
v< T T4 (3)
{|¢uy*+<1>uf|ﬁf |<1>21y*+<1>2m5}

v

M (7
11 dﬁ(f)

m=1

M+N J—)o
Il & (x)

n=M+1

v

IA

vES

TT{1011(4,% - 7110017 + @51 }

IA

veS
{max{M N}M+NE®) max{1, |@q|y}7
veS

- |4pX — PIM max{1, | @]y} max{1, |®p|,}V
- max{|%]s. |y"|v}N}

= max{M, N} N y({(®& WM u({®2: )V u({®@n})"
. H |4pX — F|M hs(X, PV,
vES
where

u({Bv}) = H max{1l, |By|v} .

VES

v <hs(X, PV [T 14X — 71

veS

Therefore
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where

7= {2 max{M , N}u({®1})u({P2}) u({P22})

Hence {Ay}yecs is a badly approximable S-system of linear forms of
dimension M x N . O

}—(M+N)

We end this section with two examples. Towards this end we shall
need two auxiliary polynomials. We describe our first polynomial
f(x) € k[x] below. Fix a place ¥ ¢ S such that there exists a point
b € k so that

16lls = ll7sllo

where 7; is the generator of the maximal ideal of @}, and
Ibllv =1 forallvesS, vtoo.

Choose an a € k so that
llalls <1

and

max{1, |N|y} forvesS,vioo,
621)  [all, > { ’

1+W for v|oo.
We define f(x) =xY —abx+b.

LEMMA 6.6. (i) The polynomial f(x) is irreducible over k.
(i) For each v € S there exists an oy € ky such that f(ay) =0.

Proof. The irreducibility of f(x) follows immediately from the p-
adic version of Eisenstein’s theorem with the specified place being o
(see [4], Chapter 6).

It thus remains for us to demonstrate the existence of a root of f(x)
in k, for each v € §. First we consider the case when v is a finite
place in S. Let

h(x) = 2 f(x)

We immediately compute

1 1 /1\ N
h(5)=a—m and h(a>=—a—ﬁ—b.

From (6.21), |f’ﬁ|v < 1, thus we have equality in the strong triangle

inequality:
w(l
a

1y b
—Ex bx+aeé’v[x].

=Ib|1)=1.

v
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To summarize, we have just found an element }l € @, which satisfies
<l=

s(@) <=l ()

Therefore by Hensel’s lemma there exists an oy, € k, such that A(ay)
=0. Clearly f(ay)=0

Now suppose v|oo. If k, = C then it is clear that there is a root
ay of f(x) in k,. If k, = R then we may view a and b as real
nonzero numbers. If a > 0 then (6.21) reveals

f0)f(1) =(b)(1 —ab+b) <0,

so by the intermediate value theorem there exists an o, € k, with
f(ay) =0. If a <0 then by (6.21)

FO)f(=1) = B)N((-1)Y +ab+b) <0,
and thus there exists a root o, of f(x) in k. 0

We now describe our second, slightly more complicated, auxiliary
polynomial. Select N distinct elements a;, @y, ..., ay of k satis-
fying

lanllo <1 foreachn=1,2,..., N and each
veS,vtooand forv =7,
and
(6.22) 1< min {||am anlly} for all vjoco.

1<m<n
Select B € k so that
I1Blls = s lo

and

1<m<N

min { IT ||am—-an||v} forvesS,vioo,
=l
m

623 1Bl < min {INI
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LEMMA 6.7. (i) The polynomial g(x) is irreducible over k.
(ii) The polynomial g(x) splits completely in k, for each v € S.

Proof. Write g(x) = YN ocpx™. Thus cy =1, |lcalls < 1 for all
n=1,2,..., N—1 and since we have equality in the strong triangle
inequality if N > 1,

llcollo =

N
(_I)N H an + B
n=1

= 1Blls = lImslls -
17
Thus by Eisenstein’s theorem, g(x) is irreducible over k.

Suppose now that v is a finite place in S'. For any a,, we see that
an € @, satisfies

N
glam)=pB and g'(am)= H (am — an).
nm
From (6.23):
N 2
|g(am)lv = |Blv < lénmigN{ }:Il lam — an|v} <|g'(am)ls -
n#m

Therefore Hensel’s lemma gives the existence of a unique o, € k,
such that g(a,,) =0 and

|g(am)|v
am — < .
[am =2l < 1@,
Thus a;, az,...,ay are N distinct zeros of g(x). Since the de-

gree of g(x) is N, this must be all the zeros and hence g(x) splits
completely in k, .

Now suppose v|oo. If k, = C then trivially g(x) splits completely
in k,. If k, =R then by (6.22) and (6.23) it is easy to verify that

(-1)%g(an +3)>0; (-Dglany-1 + 1) >0;
(-1)?glay—2+3)>0; - 5 (=-1)¥g(a, + 1) > 0;
(-1)Vg(a; - ) > 0.

So g(x) has N distinct real zeros, thus g(x) splits completely in

ky . O

Our first example may be phrased as follows.
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THEOREM 6.8. Let k be any algebraic number field and S any finite
collection of places of k containing all infinite places. Then for any
integer N > 1, there exists a badly approximable S-system of linear
Jorms of dimension 1 x N .

Proof. Let f(x) = xN¥*! —abx + b be the irreducible polynomial
of Lemma 6.6. Factor f(x) over some algebraic closure:

N+1

Sy =T (x—an)
n=1

where oy, ay, ..., ayy; are the distinct roots of f(x). Clearly
k(o) = k(az) = --- = k(ay1)

and [k(ap) : k] = N+ 1 foreach n = 1,2,..., N+ 1. Let
a = a; and define K = k(a). Of course [K : k] = N+ 1 and
{1,a,a?,...,a"} form a basis for K over k. For each v € S,
there exists a root, say a,, of f(x) such that a, € k,. That is,
k(ay) C ky . Since

K =k(a)=Zk(ay) Cky,
K may be embedded into k, for each v € S. Let

2

Therefore by Theorem 6.4 we conclude that {a”},cs is a badly ap-
proximable S-system of linear forms of dimension 1 x N. o

We now construct an example in the most general setting.

THEOREM 6.9. Let k be any algebraic number field and S any finite
collection of places of k containing all infinite places. Then for any
integers M > 1 and N > 1, there exists a badly approximable S-
system of linear forms of dimension M x N .

Proof. Let g(x) = nM;}N (x —an)+ B be the irreducible polynomial
of Lemma 6.7. Let a;, as, ..., ay+ny be the distinct zeros of g(x)
over some algebraic closure of k. From Lemma 6.7 we have

{al,a29'~-aaM+N}g]cU
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for each v € S. Thus, multiplying the above set by a suitable constant
of k if necessary, we may assume that {a;, az, ..., ayyn} is a set
of S-algebraic integers. Therefore by Theorem 6.5, there exists a badly
approximable S-system of linear forms of dimension M x N. O
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