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COMPACT OPERATIONS, MULTIPLIERS AND
RADON-NIKODYM PROPERTY IN /£*-TRIPLES

L. J. BUNCE AND C.-H. CHU

We study the (weak) compactness of certain algebraic operations
on /2?*-triples and we introduce multiplier triples. Applications to
structure theory are given and connections with the Radon-Nikodym
Property are described.

Introduction. Recently the authors [5] studied the Radon-Nikodym
property (RNP) in the dual spaces of some complex Banach spaces
known as /2?*-triples. A number of intrinsic characterisations were
obtained. One of these was that, if A is a /2?*-triρle, then A* has the
RNP if and only if A has a composition series of closed triple ideals
(i.e. M-ideals) for which successive quotients can be realised either as
spaces of compact operators from one Hubert space to another or else
are reflexive. This hints at a connection between the RNP and com-
pact, and weakly compact, operators on A itself. This paper evolves
from an investigation into the form and extent of this connection.

Thus, in a fairly systematic way, we study the (weak) compactness
of natural algebraic operations, introduce the notion of a multiplier
triple of a Ji?*-triple (which may be of independent interest), and
explain how the resulting phenomena interweave with the RNP.

/i?*-triples originate in the study of holomorphy in unspecified
(possibly infinite) dimension and can be realised as that class of com-
plex Banach spaces whose unit ball is a bounded symmetric domain
(in finite dimensions, the classical Cartan domains of complex analy-
sis) [23]. The considerable recent activity and rapid progress in JB*-
triples is due in no small part to fertile applications in, amongst other
topics (see [26, 27]), infinite dimensional Lie algebras, mathemati-
cal physics and operator spaces. Notably, the image of a contractive
projection on a C*-algebra is, while rarely a C*-algebra, always a
/£*-triple [15].

1. Preliminaries. Precisely a JB*-tήple is a complex Banach space
A with a continuous triple product {...}: A? —• A which is linear and
symmetric in the outer variables and antilinear in the middle variable,
and satisfies
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(i) the operator a —• {xxα} on A is hermitian with nonnegative
spectrum for all x in A

(ii) ||{xxx}|| = | |x | | 3;
(iii) the main identity

{αft{xyz}} = {{abx}yz} + {xy{α£z}} - {x{6αj;}z}.

For x, y eA,the linear operator a —> {xyα} is denoted by Z)(x, y)
the antilinear operator <z —> {xαy} is denoted by β ( x , y), and by
β(x) if x = y .

A /UMriple which is a dual Banach space is called a JBW*-triple,
in which case the predual is unique and the triple product is separately
weak*-continuous. If A is a /i?*-triple then A** is a JBW*-triple
in which, via the canonical embedding, A is a /2?*-subtriple [2, 10,
20]. An element w of i is called a trίpotent if {www} = w, with
which are associated the Peirce projections Pi(u): A —• A, i = 0, 1,2,
defined by P2(u) = Q(u)2, Px{u) = 2(2>(κ, K) - Q(w)2), /><,(«) = ' -
2D(u, w) + Q(w)2 . The tripotent u is said to be complete if /b(w) = 0 >
minimal if {uAu} = CM, and unitary if {uAu} = A. A subspace /
of yl is called a ίrcp/e Weα/ of ^ if {AAI} + {AIA} c / if merely
{7^4/} c / then / is called an rn/^r zVfeα/ of ^4. Elements x , j ; G
^ are orthogonal if Z)(x, y) = 0. Two triple ideals / and / are
orthogonal if D(x, y) = 0 for all x e / and y e / equivalently, if
/ π / = 0. A /J?*-triple is simple if it has no nontrivial norm closed
triple ideals.

A norm closed subspace of a C*-algebra which is also algebraically
closed under the triple product {xyz} = \{xy*z + zy*x) is a JB*-
triple. The /2?*-triples which can be realised in this way are called
J*-algebras. Other examples of /JS*-triples include the Cartan factors
d (i = 1, . . . , 6), where C4 is a complex spin factor, C5 consists
of 1 x 2 matrices over the complex Cayley division algebra © and
Cβ the hermitian 3 x 3 matrices over O. The types C\, C2, C3
are defined as follows for arbitrary Hubert spaces H and Hf: C\ =
B(H, H1) C2 = {x e B(H): x = -jx*j} C3 = {x e B(H): x =
jx*j} ? where j : H —> H is a conjugation. Correspondingly, we define
(as in [5]) the elementary /2?*-triples, Ki (i = 1, . . . , 6) as follows:
Kι = K(H, Hf) (the compact operators); Kt = Q Π K(H) for / =
2 , 3 ; Ki = Ct for / = 4, 5, 6. Each Kt is a simple /i?*-triple and
can alternatively be described as the subtriple of Q generated by the
minimal tripotents. Extensive (often tacit) use will be made of the
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polarisation identities:

3
k{x + ikyx + ik

4{xya} = ^2 ik{x + iky, x + iky, a}
k=o

3

4{axa} = ^2(-l)k{ika + x, ika + x, ika + x},
k=o

2{axb} = {a + b,x,a + b}- {axa} - {bxb}.

Further theory of /£*-triples can be found in [2, 8, 10, 11, 14-27].

REMARK 1.1. We will need the following supplementaries:
(a) If π: A —• B is a weak* continuous triple homomorphism be-

tween JBW*-tnples9 then π(A) is weak* closed (and hence a JBW*-
subtriple) in B.

(b) If π: A —• 5 is a triple homomorphism, where 4̂ is a JB*
triple and 2? is a JBW*-triple, then π has a unique extension to a
weak* continuous triple homomorphism π: A** —* 5 and π(^4**) =
π(]4)w e a k*.

It is easily seen that (a) follows from the fact [20, Theorem 4.2]
that kerπ has a complementary weak* closed triple ideal in A to-
gether with the Krein-Smulian theorem. To see (b) note that since B
is a Banach dual space, there is a (unique) weak* continuous opera-
tor φ: B** —• B whose composition with the natural map B —• B**
is the identity on B. By (separate) weak* continuity, φ is a triple
homomorphism. Then π = φ o π** is seen to fill the requirements.

For later use, we conclude this section with some ideal theory.
Given an element x in a /2?*-triple A, we write Ax for the JB*-
subtriple of A generated by x. This is the Banach subspace of
A generated by the (triple) monomials in x defined by x' 1 ' = x ,

JC(2n+i) = {xx(2n-i)xy for n > 1.

LEMMA 1.2. Let x be an element of a JB*-triple A. Then Ax = Ay

where y = χ(2n+ι), far all n>0.

Proof. Let y = χ(2n+ι). It is enough to show that x e Ay for
n > 1. ^4X can be realised as an abelian C*-algebra B in which x
is nonnegative and generates B as a C*-algebra (cf. [22]). Since in
B, χ( 2 / ί + 1) = χ 2 w + 1 , we need only observe [18, Lemma 5.7] that there
is a sequence (/\) of polynomials with zero constant term such that,
for all n > 1, xln-ιPk{x2) -• x2n~ι uniformly in B as k -• oo. So

χ(2«-i) j j e s j n ^ a n ( ^ by i n d u c t ion, so does x .
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PROPOSITION 1.3. Let I be a closed subspace of a JB*-triple A.
Then the following conditions are equivalent:

(i) / is a triple ideal of A
(ii) {AAI}cI;

(iii) {AIA}cI;
(iv)

Proof. The conditions are progressively weaker and (i) & (ii) is
proved in [11, Proposition 1.4]. So it is enough to show that (iv) =>
(ii). Suppose then that {All} c / and let x e I, a e A . Let n > 0
and note that / is a /i?*-subtriple of A. Using [25, JP1], we have

= {xa{xχ(2n+ιh}} = {x{axx{2n+ι)}x} el.

Therefore {xaA{XXX}} c / and hence {xax} e I, by Lemma 1.2.
Thus, using [25, JP10], we have

{aa{xxx}} = 2{x{axx}a} - {ax{xax}} e /,

which, by appropriate use of the polarisation identities, means that
{AA{III}} c / and hence that {AAI} c /, as required.

If X is an extremally disconnected compact space and / is a norm
closed inner ideal of C(X), then I = {f e C(X): f(Y) = 0} for
some closed subspace Y c X. Given a nonzero element g e I, the
sets Un = {x G X: \g(x)\ > ^} and En = Un are open in X with
En Π Y = 0 , so the characteristic function χE lies in /. Moreover

< ί for all Λ > 1.

LEMMA 1.4. Let A be a JBW*-triple and let I be a norm closed
inner ideal of A. For x e I, there is a sequence (un) oftripotents in
I such that {ununx} = {unxun} —• x uniformly.

Proof. Let M be the weak* closure of Ax in A. Then M can be
represented as an abelian W* -algebra, W, in such a way that x > 0
in W. In this way I Γ\M corresponds to a norm closed ideal / in
W. By the preceding remarks, a sequence of projections in / , and
hence tripotents in / ΠM, can be chosen in the way required.

We note that the above proves that if / and / are norm closed
inner ideals in a JBW*-triple having the same tripotents, then I — J.

2. Multipliers. Given a /2?*-triρle B and a closed subtriple AcB,
we define

B) = {xeB: {xAA} c A}
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and call it the set of multipliers of A in B. For the special case
A c A**, we write Λ/(Λ) = M(A, ,4**).

Note that if Λt and B above are C*-algebras and x e 2? is such
that {xAA} c i?, then for each <z e A+, we have

xα2 = {xaa} + {xaι'2aι'2}a - a{xaι'2a1'2} e A.

Therefore xA c A. Similarly Ax c A. Thus Af(4, B) is the ide-
aliser of A in 5 and M(A) is the multiplier algebra of A.

THEOREM 2.1. Let A be a JB*-subtriple of a JB*-triple B. Then
M(A, B) is a JB*-subtriple of B. It is the largest JB*-subtriple of B
which contains A as a triple ideal

Proof, Since M(A, B) is clearly norm closed, the second statement
will follow from the first, by Proposition 1.2. Let x e M(A9 B) and
a e A. Then we have {axa^2n+^} = {α{xαα(2w+1)}α} e A for all
ft > 0. By Lemma 1.2, this means that {αx<z} e A and hence that
{AxA} c ^4, upon polarising. In turn, this shows that

{xx{aaa}} = 2{a{xaa}} - {{axa}ax} e A

where we have used [25, JP10]. Therefore {xx{AAA}} c A and
{xxA} c A.

In addition, the main identity and then [25, JP2] gives

{x{aaa}} = 2{{aax}ax} - {aa{xax}}

= 2{{aax}ax} - {a{axa}x} e A

which implies that {xAx} c A. Consequently,

{{xxx}aa} = 2{xx{aaa}} - {x{aax}x} e ̂ 4

from which we deduce that {{xxx}AA} c A, so that {xxx} £
Af (i4, 5 ) . Hence M(A, B) is a subtriple of B.

LEMMA 2.2. Let A be a weak" dense JB*-subtriple of a JBW*-
triple B and let I be a nonzero inner ideal (not necessarily norm
closed) of M(A, B). Then Anl^O.

Proof. Let x be a nonzero element of /. Then {xA} c In A, using
Theorem 2.1. But {xAx} φ 0 else, by separate weak* continuity of
the triple product, we would have {xxx} = 0 and hence x = 0, a
contradiction.
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LEMMA 2.3. Let A and B be JB*-triples, π: A -> B an isomor-
phism of A into B and π(A) a triple ideal of B such that π(A)nI φθ
for all nontrivial closed triple ideals I of B. Then there is an isomor-
phism β: B —• M(A) such that βπ is the identity on A.

Proof. Consider the composition A -^+ B -£+ π(A)** - ^ A** where

a is the natural isomorphism and p is the restriction of the natural
projection B** —> π(A)**. Then β = ap is injective because kerp n
n(A) = 0 implies ker/? = 0. Since A = βπ(A) is a triple ideal of
β(B), we have β(B) c

THEOREM 2.4. L^ί π: A -+ B be a triple isomorphism of a JB*~
triple A onto a weak* dense JB*-subtripleofa JBW*-triple B. Then
the weak" continuous extension π: A** —• B maps M(A) isometri-
cally onto M{π(A), B).

Proof, π is isometric on M(A) by Lemma 2.2, and πM(A) c
M(π(A), B) by Theorem 2.1. It follows from Lemma 2.2 and Lemma
2.3 that there is a triple isomorphism β: M(π(A), 5) —• M(A) such
that π/? is the identity on π(A). Thus, given x e M(π(A), B)
and y G π(-4), we have {xyy} G π(^4) and {(π/?(x) - x) , y, y} =
nβ{xyy} - {xyy} = 0. Since π(A) is weak* dense in B, this means
that {(πβ{x) - x )55} = 0 and hence that x = πβ(x) e πM(A). So
πM(A) = M(π{A), B).

COROLLARY 2.5. Let A be a JB*-triple. Then the natural projection
p: A** —• (A**)a where (A**)a is the atomic part of A**, maps M(A)
isometrically onto M{p(A), (A**)a).

Proof. This is immediate from Theorem 2.4 because p is isometric
on A by [17, Proposition 1].

COROLLARY 2.6. Let A be a JB*-triple. Then M(A) is a JBW*-
triple if and only if A is a norm closed triple ideal in a JBW*-triple.

Proof. Let A be a norm closed triple ideal in a /2W-triple B.
We may suppose that A is weak* dense in B. Then B = M(A, B) =
M(yί) by Theorem 2.4. The converse is immediate from Theorem
2.1.

REMARK 2.7. For any elementary Ji?*-triple Ki, we have that Ki
is a triple ideal of Kf* = Ct and so M{K{) = K**. At the other
extreme, we have:
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PROPOSITION 2.8. Let A be a JB* triple with a complete tripotent.
Then M{A) = A.

Proof. Let u be a complete tripotent of A. The Peirce projections
Pi(u): A** —> A** (/ = 0, 1, 2) are weak* continuous restrict to the
corresponding Peirce projections A —• A. Since Po(u)A = 0, we have
Po(u)(A**) = 0. Since A is a triple ideal of Af(-4), we clearly have
Pi(u)M(A) c A for / = 1, 2. So JI/(Λ) = (P2(w) + Λ(w))M(^) c ,4
by Pierce decomposition.

3. Weakly compact and compact /2?*-triples. Given a /2?*-triple
A, we let K0(A) denote the Banach subspace of A generated by the
minimal tripotents of A. If x e A, then A(x) denotes the norm
closed triple ideal in A generated by x.

If T: X -+ X is antilinear, we define Γ*: X* -> X* by Γ*(/?) =
~p oT where /? is the conjugate of p in X*. Note that Γ* is also
antilinear. We employ the standard corresponding definitions and
notation for linear operators. This does not lead to conflict. For
example, if S, T: X —• X are antilinear (so that ST is linear), then

(srγ = r*s*.
DEFINITION 3.1. A /i?*-triρle is defined to be weakly compact if the

(antilinear) operator Q{x): A —• A is weakly compact for all x G A
and to be compact if Q(JC) is compact for all x in A.

LEMMA 3.2. If A is a weakly compact (respectively, compact) JB*-
triple, then so is every JB*-subtriple and every quotient of A by a
closed triple ideal

Proof. This is an elementary consequence of the definitions.

LEMMA 3.3. Let u be a minimal tripotent in a JB4-triple A. Then

(i) A(u) is the closed subspace of A generated by {AuA};
(ii) A(ύ) is elementary,

(iii) K0(A) is a triple ideal of A equal to the c^-sum of all elemen-
tary triple ideals of A.

Proof, (ii) u is a minimal tripotent of A**, so A(u)** is a Cartan
factor by [8, p. 302]. For (iii), let {A(} be the family of all elementary
triple ideals of A. The A\ are mutually orthogonal by simplicity, each
Ai is itself the closed linear span of minimal tripotents and by (ii),



256 L. J. BUNCE AND C.-H. CHU

every minimal tripotent of A is contained in one of them. Hence

o

(i) The elements of the linear space V generated by {AuA} are
linear combinations of elements of the form {ana} with a E A . We
have {uAu} = Cu c V. Given α, b eA9

D(a, b)u = 2{{tfZ>r/}ww} - {w{£αw}t/} e V

and so, from [25, JP21], we have

Q(b)Q(a)u = (4Q({bau}) + 2Q(Q(b)Q(a)u, ύ)
- G(tOQ(*)G(*) - 4Z)(ft, a)Q(u)D(a, *))w

which is in F . Therefore {AVA} c F . Hence the norm closure of
V is a triple ideal, by Proposition 1.2 (iii) =Φ> (i), which must equal
A(u).

THEOREM 3.4. The following statements are equivalent for a JB*-

triple A.

(i) A is weakly compact
(ii) D{x, JC) : A —• A is weakly compact for all x in A;

(iii) A is an inner ideal of A**
(iv) M{A) = A**\
(v) K0{A)=K0(A**);

(vi) K0(A)=A.

Proof, (i) o (iii). Given x E A, Q(x): A -^ A is weakly compact
if and only if Q(x)**A** c 4̂ [13, p. 482]. By weak* continuity,
Q(χ)** = Q(x) on A**. Thus A is weakly compact if and only if
{xA**x} c A for all x in A.

(ii) <=> (iv). In the same way (ii) holds if and only if {xxA**} c A
for all x in A. By Proposition 1.3, this is equivalent to A being a
triple ideal of A** and, by Theorem 2.1, to M(A) = ̂ 4**.

(iv) => (iii). Immediate from Theorem 2.1.
(iii) => (v). Let u be any minimal tripotent of A**. Then / =

A**(u) is an elementary triple ideal of A** by Lemma 3.3. Suppose
(iii) holds. Then I = A Π J is a nonzero triple ideal of A since
0 Φ {AuA} c / . Now /** is a weak* closed triple ideal of the Cartan
factor Jw . Hence /** = Jw . Therefore / is elementary by [5,
Lemma 3.2]. In particular, / is a triple ideal of /** and hence of / ,
and so it is equal to / , by simplicity. So ue A.

(v) => (vi). Suppose (v) holds. Then KQ(A)** is the atomic
part of A**. Therefore (A/KQ(A))** which can be identified with
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A**/K0(A)**, has no nonzero minimal tripotents and so must be triv-
ial. Hence A = KQ(A) .

(vi) => (iv). Suppose that A is the Co-sum of a family of elemen-
tary /2?*-triρles At. Then At is a triple ideal of A]* for each i.
Hence A is a triple ideal of A** = ( E / ^ * * ) ^ a n d s o M(A) = ^**
by Theorem 2.1. The proof is complete.

If A is a weakly compact JB*-triple, we will call the elementary
triple ideals of A the components of A. In this way A is the cg-sum
of its components.

COROLLARY 3.5. Let A be a JB*-tήple. Then K0(A) = K0(A**)nA
and is the largest inner ideal of A which is also an inner ideal of A**.
It is also the largest weakly compact (closed) inner ideal of A. Further
K0(J) = KQ(A) ΠJ for every norm closed inner ideal J of A.

Proof. By Theorem 3.4 (vi) => (i) and Lemma 3.3 (iii), KQ(A) is
a weakly compact triple (hence inner) ideal of A. So by Theorem
2.1 together with Theorem 3.4 (iv) => (i), K0(A) is a triple ideal of
K0(A)** and hence of ^4**. The same citations show that if / is a
norm closed inner ideal of A, then it is weakly compact if and only if
it is an inner ideal of A** in which case, since minimal tripotents of
/ are also minimal tripotents of A, I = K0(I) c KQ(A) . It follows
from this, together with Lemma 3.1, that K0(A) = K0(A**) Π A. The
last claim in the statement is similarly proved.

THEOREM 3.6. Let A be a JB4"-triple. Then the following are equiv-
alent'.

(i) A is compact
(ii) A is weakly compact with no infinite dimensional C4 compo-

nents
(iii) A is isomorphic to a subtriple of K(H) φ Co(S, C^) for some

complex Hubert space H and discrete topological space S.

Proof, (i) => (ii). Let A be compact. Then it is weakly compact.
If / is a C4 component of A, then it contains a unitary tripotent
u. But then Q(u)2:1 —> / is both compact and the identity operator.
Hence / is finite-dimensional.

(ii) => (iii). The components of A of type Kt (1 = 1,2,3) can
each be realised as a subtriple of compact operators on a Hubert space,
and the same is clearly true for any finite dimensional C4 component.
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Since C5 c C$, we see that (iii) follows from (ii) by Theorem 3.4
(i) => (vi).

(iii) => (i). Assume (iii). For each x e K(H), the linear operator
a —• xax is compact on K(H) (cf. [3, p. 174]). So α —> xα*x = Q(x)a
is a compact antilinear operator on K(H). In other words K(H) is a
compact /5*-triple. But so is Co(S, CG), as follows easily from the
finite dimensionality of Cβ and the discreteness of S. Since the 1^-
sum of two compact /2?*-triples is clearly compact, (i) follows from
Lemma 3.1.

THEOREM 3.7. Let A be a JB*-triple. Then D(x, x): A -+ A is
compact for all x e A if and only if A is a CQ-sum of finite-dimensional
JB*-triples.

Proof Suppose that D(x ,x):A->A is compact for all x in A.
Then A is weakly compact, by Theorem 3.4, and we may suppose it to
be a /*-algebra contained in B{H), say. Given a minimal tripotent
u of A, the operator S: A —• B{H) defined by

S(x) = uu*x = 2uu*D(u, u)x - Q(u)2(x)

is compact. But the subspace of B(H), uu*A, is norm closed. In-
deed, suppose (bn) is a sequence in A such that uu*bn —• b e
B(H). By the compactness of D{u, u), we may suppose that ww*^ +
bnu*u -> a e A. So ww*Z?w + uu*bnu*u —• ww*#. Since uu*bnu*u =

uu*(uu*bnu*u) G uu*A, it follows that ww*Z>M e uu*A. Now ob-
serve that the identity operator on wwM, which is multiplication on
the left by uu*, is compact because S is. Hence uu*A is finite-
dimensional as, similarly, is Au*u. It follows that the linear span of
Au*A = Au*uu*A has finite dimension as therefore does the subspace
of A generated by {AuA}. Therefore A(ύ) is finite dimensional by
Lemma 3.3 (i) and, since all components of A are of this form for
some minimal tripotent u, the proof is complete.

4. The RNP and compact elements. Given a JB*-triple A, a nec-
essary and sufficient condition for A* to have the RNP is that A** be
atomic [6, Theorem 2], whereas A has the RNP if, and only if, A is
reflexive [7, Theorem 6]. So the implications

A has the RNP => A is weakly compact =>• A* has the RNP

are clear from the results of §3, for example. We will examine the
relationship more closely. In addition, we will exploit the global results
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of §3 in order to study the effect of the (weak) compactness of the
operators Q(x) and D(x, x) for individual elements x.

Recall that as well as having a largest weakly compact triple ideal
KQ(A) , A also has a largest closed triple ideal / with the property
that /* has the RNP [5, Proposition 3.7].

PROPOSITION 4.1. Let A be a JB*-triple. The following are equiv-
alent :

(i) A is weakly compact \
(ii) A* has the RNP and M\A) is a JBW*-triple;

(iii) P2{u)A has the RNP for all tripotents u of A and M(A) is a
JBW*-triple.

Proof, (i) =>* (ii). This follows from Theorem 3.4 and the above
remarks, (ii) =>> (iii). Suppose (ii) holds and let u be a tripotent of
A. Then Pι{u)A = {uAu} = {uM(A)u} because A is a triple ideal
of M{A). Therefore by assumption {uAu} is a JBW*-tuple. But
{uAu}* has the RNP because A* does. Hence {uAu} is reflexive by
[7, Theorem 6].

(iii) =*> (i). Assume (iii). Let u be a tripotent in A. Having
the RNP, and hence being reflexive, the closed inner ideal {uAu} is
weakly compact. So {uAu} c KQ(A) by Corollary 3.5. But by Lemma
1.4 and the assumption, given x e A, there is a sequence (un) of
tripotents of A such that x = \imn{unxun} e KQ(A) . Condition (i)
now follows from Theorem 3.4 (vi) =>• (i).

COROLLARY 4.2. If A is a JBW*-triple, then KQ(A) is the largest
closed triple ideal I of A for which Γ has the RNP.

COROLLARY 4.3. Let A be a norm separable JB*-triple. Then A
is weakly compact if and only if M{A) is a JBW*-triple.

Proof. The necessity being obvious (from Theorem 3.4). Suppose
that M(A) is a /2?W*-triple, and let u be any tripotent in A. From
the proof of Proposition 4.1, we see that {uAu} is norm separable
and is the dual of a Banach space, which means that it has the RNP
(cf. [9]). So A is weakly compact by Proposition 4.1.

The following should be compared with Corollary 2.5 and Theorem
3.4.



260 L. J. BUNCE AND C.-H. CHU

PROPOSITION 4.4. Let A be a JB*-triple such that A* has the
RNP and let p0: A** -+ K0(A)** be the natural projection. Then
Po is the identity on K0(A) and maps M(A) isometrically onto
M(po(A),Ko(A)**).

Proof. Let / be any nonzero norm closed triple ideal of M(A).
Then / = / ΓiA Φ 0 by Lemma 2.2, and, since /* has the RNP,
contains a nonzero minimal tripotent [5, Theorem 3.4]. Therefore
InKo(A) Φ 0. Thus applying Lemma 2.3 and its proof to the inclusion
K0(A) c M(A), we see that p0: M(A) -» KQ(A)** is isometric and
is the identity on KQ(A) . Now applying Theorem 2.4 to p$\ A —>
K0(A)**, we have p0M(A) = M(po(A), Ko(A)**).

Recall [22, 23] that for each element x of a /2?*-triple A, there
is a locally compact subspace Sx of (0, oo) such that Sx U {0} is
compact and there is a surjective triple isomorphism φ: Ax —• Co(Sx)
with φ(x) the identity on Sx. Moreover Sx and φ are unique with
these properties. Spectral theory provides a sharp comparison of the
RNP phenomena with weak compactness.

PROPOSITION 4.5. Let A be a JB*-triple.

(i) A* has the RNP & Sx is countable for all x in A.
(ii) A is weakly compact & Sx is discrete for all x in A.

(iii) A has the RNP&SX is finite for all x in A.

Proof, (i) This was proved in [5, Theorem 3.4].
(ii) If A is weakly compact then, given x e A, so is Ax = Co(Sx),

by Lemma 3.1. Since each component of the latter can only be a
copy of C, Sx must be discrete. Conversely suppose that the spectral
condition is satisfied by A. Let u be any tripotent of A. Recall
that {uAu} can be realised as a /2?*-algebra. By spectral theory,
Sx = σ(x)\{0} for every x e {uAu}+. It follows from [4, Theorem
3.3] that {uAu}sa is a unital dual /2?-algebra, so that u is a finite
sum of orthogonal minimal projections of {uAu}sa. Therefore u is
a finite sum of minimal tripotents of A. In particular, u e KQ(A) .
But by hypothesis every element x of A can be written as a norm
convergent sum x = J2nLi ̂ nUn where λn > 0 and un is a tripotent
of Ax = CQ(SX) . Hence x e K0(A) and 4̂ is weakly compact by
Theorem 3.4.

(iii) If A has the RNP, and so is reflexive [7], then Ax = CO(SX)
is reflexive and hence Sx is finite, for all x in A. If on the other
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hand Sx is finite for all x in A, then A is weakly compact by (ii).
Suppose that (un) is an infinite sequence of orthogonal tripotents in
A. Then x = γ%Li Un/n2 e A and the monomials χ(2k+ι), k > 0,
are clearly linearly independent, implying that Ax is infinite dimen-
sional, a contradiction. Thus A must be a finite sum of elementary
triples drawn from the following types: K(H, H') with dim/ϊ7 < oo
finite dimensional K2 and AΓ3 arbitrary K4, AΓ5 and K^. Hence ̂ 4
is reflexive.

REMARK 4.6. We note from the above proof that if A is weakly
compact, then each nonzero element x of A can be written as a norm
convergent (possibly finite) sum x = Σλnun , where ww are mutually
orthogonal minimal tripotents of A and {λn} = Sx c{0, 00) (cf. [18,
Theorem 3.3]).

We say that an element x of a /2?*-triple A is a weakly compact
(respectively, compact) element of A if Q(x): A^ A is weakly com-
pact (respectively, compact).

PROPOSITION 4.7. The set of all weakly compact elements of a JB*~
triple A is the triple ideal KQ(A) .

Proof. Let x e A be a weakly compact element and consider the
norm closed inner ideal / = Q(x)A, which contains x by Lemma
1.2, for instance. Given y e / , we have \\y - yn\\ —• 0 for some
yΛ = Q(x)<*n where αn G Λ. Since \\Q(y) - Q(yn)\\ -> 0 and β(yπ) =
Q(x)Q(an)Q(x): A -+ A is weakly compact, Q(y): I —• / must be
weakly compact. Hence x e / c KQ(A) by Corollary 3.5. On the
other hand, let x e KQ(A) . By Corollary 3.5 and Remark 4.6, we have
x = Σλnun where un are mutually orthogonal minimal tripotents.
With xn = λ\U\ Λ Yλnun and vn = u\-\ h un , we have Q(xM) =
β(v Λ )β(*ι ι)β(tΊι) and | |β(x π ) - Q(x)\\ ^ 0 . But ^ is a weakly
compact element of KQ(A) , by Theorem 3.4, and hence of 4̂ since
Q(vn)

3 = <2(vπ) and AΓ0(̂ 4) is a triple ideal. Therefore x is a weakly
compact element of A.

COROLLARY 4.8. An element x of a JB*-triple A is weakly compact
if and only if D{x,x)\ A—> A is weakly compact.

Proof. Let x be a weakly compact element of A. Using Proposition
4.7 and viewing Ax = CO(SX) c A:O(^4) , we see that x = y ( 3 ) for some
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y E KQ(A) . Now D(y, y)\ K0(A) -» KQ(A) is weakly compact by
Theorem 3.4. So, using [25, JP13],

D(x, x) + Q(y)Q(y, x) = 2D(y, y)D(y ,x):A~+A

is weakly compact since D(y, x)^4 c ^o(^4) But Q(y): A -+ A is
weakly compact by Proposition 4.7 and hence so is D(x, x).

Conversely, suppose that Z)(x, x) is weakly compact on A for
some nonzero element x in A. Identifying Ax = CQ(SX) , we have
Z)(x, x): CQ(SX) —• Q^jc) (y -> x2y) is weakly compact. It follows
that all left multiplications on Co(Sx) are weakly compact (x > 0 and
it generates CQ(SX)) . Hence 5X is discrete by [12, 4.7.20]. Hence we
can write, as a norm-convergent sum, x = Σλnun where λn > 0
and un are mutually orthogonal tripotents of Co(Sx). Using [25,
JP4], <2(;c{;cxx}) = J5(x, x)Q(x): ^ —• A is weakly compact. By the
rule that Q(u)Q(u, v)Q(u) = 0, whenever u and v are orthogonal
tripotents, we see that, for each n ,

λ4

nQ(Un) = Q(Un)Q(x , {xXX})Q{Un) : A -+A

is weakly compact. Hence x is a weakly compact element of A by
Proposition 4.7.

COROLLARY 4.9. Let V be the set of compact elements of a JB*-
triple A. The following conditions are equivalent:

(i) V is a linear subspace of A
(ϋ) V = K0{A);

(iii) KQ(A) is a compact JB*-triple.

Proof, (iii) => (ii) is proved as in the second half of Proposition
4.4, and (ii) => (i) is trivial. Note that V c KQ(A) , by Proposition
4.7. If KQ(A) is not compact, then by Theorem 3.6, it has an infinite
dimensional C4 component B, say. We have u = U\ + U2 where
u is the unitary element of B and U\, Uι are minimal tripotents.
Obviously U\ and u^ are compact elements of A, but u is not, else
B is finite dimensional. Hence V is not a linear space. This proves
(i) => (iii).

COROLLARY 4.10. L ^ yl />6>α JB*-triple. The set {xeA: D(x, JC)

w compact} is equal to the norm closed triple ideal I of A generated
by the class of all finite dimensional triple ideals of A.

Proof. We note that / is the Co-sum of all finite dimensional com-
ponents of KQ(A) . Thus given x e / , Q(x) and D(x,x): I ->
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/ are compact by Theorem 3.6 and Theorem 3.7. The argument
in the first half of Corollary 4.8, transparently adapted, proves that
D{x, x): A-^> A is compact.

Conversely, suppose that D(x, JC) is compact on A where x e
^4\{0}. Then by Proposition 4.7, the closed triple ideal A(x) is
contained in KQ(A) and it is weakly compact by Lemma 3.1. Thus
A(x) = (Σ-4i)c0 where each A\ is an elementary triple ideal of A.

Writing x = Σχi w i t h χi ^ ^/> ^ e m a P D(xi> χi): ^i ""* ^i *s

compact for each /. It is enough to show that each At is finite di-
mensional. We may suppose therefore that A(x) is an elementary
/*-algebra in B(H), say. Observe that the argument used in the sec-
ond half of Corollary 4.8 shows Q(x): A(x) -> A(x) to be compact.
Consider the spectral decomposition x = Y^λnun in A(x) where the
λn > 0 and the un are mutually orthogonal minimal tripotents. Now
with y = λ~[xx, we see that the map S: A(x) —> B(H) defined by

S(a) = uxu\a = uιu*x(yy*a + ay*y) - uχy\{yy*ay*y)

is compact. Hence A(x) = A(ut) is finite dimensional as in the proof
of Theorem 3.7, and the proof is complete.

We conclude with the following relationship between the RNP and
the (weak) compact operations.

THEOREM 4.11. Let A be a JB*-triple. The following are equiva-
lent:

(i) A* has the RNP'
(ii) A has a composition series {Ip}o<p<β such that Ip+\/Ip is

weakly compact for each p < β
(iii) Every JB*-triple quotient of A contains a nonzero weakly com-

pact element
(iv) Every JB*-triple quotient of A contains a nonzero compact

element.

Proof. The implications (i) =» (ii) =>> (iii) follow from [5, Theorem
3.4] and Theorem 3.4, whereas (iii) =* (iv) is trivial. Assume that (iv)
holds. Let / be the largest closed triple ideal of A for which /* has
the RNP. If A* does not have the RNP, then IφA and it follows [5,
Corollary 3.7] that K0(A/I) = 0. By Proposition 4.7 and Corollary
4.8, this means that A/I cannot contain a nonzero compact element,
a contradiction. Hence A* has the RNP.
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