PACIFIC JOURNAL OF MATHEMATICS
Vol. 153, No. 2, 1992

LUSTERNIK-SCHNIRELMANN INVARIANTS
IN PROPER HOMOTOPY THEORY

R. AYALA, E. DOMINGUEZ, A. MARQUEZ, AND A. QUINTERO

We introduce and study proper homotopy invariants of the Luster-
nik-Schnirelmann type, p-cat(-), p-Cat(-), and cate(-) in the cat-
egory of T)-locally compact spaces and proper maps. As an applica-
tion, R” (n # 3) is characterized as (i) the unique open manifold X
with p-Cat(X) = 2, or (ii) the unique open manifold with one strong
end and p-cat(x)=2.

Introduction. The category cat(X) of a space X in the sense of
Lusternik and Schnirelmann (L-S category) is the smallest number
k such that there exists an open covering {X;,..., Xz} of X for
which each inclusion X; C X is nullhomotopic in X . This concept
was introduced by the quoted authors in their studies on calculus of
variations [16] and they used it as a lower bound for the number of
critical points of a differentiable real function on a manifold. The
basic work on the homotopical significance of cat is due to Borsuk
(see [5]). Borsuk’s work was continued by Fox [10].

Here we present the definition and the basic properties of a new
numerical topological invariant for 7T)-locally compact spaces which
agrees with the notion of L-S category for 7,-compact spaces. This in-
variant, denoted p-cat(.X), is called the proper L-S category of X and
turns out to be a proper homotopy invariant of X . Hence, p-cat(X)
is a finer invariant than cat(X).

In [10] several generalizations of L-S category are suggested. More
explicitly, a general notion of L-S .o -category with respect to a class
& of spaces has been developed by Puppe and Clapp in [6]. Our work
shares some common points with [6] but does not fit into the notion
of L-S &/ -category since we entirely deal with proper maps instead of
ordinary continuous maps.

Another generalization of L-S category has been given in [1], where
L-S category for pro-objects in pro-7z. is defined. This idea is re-
lated to proper L-S category by the Edwards-Hastings embedding (see
[8]) which provides a close link between proper homotopy theory and
homotopy in pro-z. .
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We shall work entirely in the category P, of non-compact 75-
locally compact o-compact spaces and proper maps. Notice that any
T>-compact space X can be regarded in ‘B, as the wedge X vV J,
where J will stand for the half-line [0, o).

We recall that a proper map (p-map) is a continuousmap f: X — Y
such that f~!(K) is compact for each compact K C Y. Proper ho-
motopy (p-homotopy), proper deformation (p-deformation), etc. can
be defined in the natural way. The symbols “~”, “~,” and “=” stand
for homotopy equivalence, p-homotopy equivalence and homeomor-
phism respectively.

Finally we also recall the notion of end in proper homotopy. A
Freudenthal end of X €B,, is an element of the inverse limit F#(X)=
liLn mo(X —K) where K ranges over the family of compact subsets of
X and n; stands for the set of connected components. The topology
of X can be enlarged to a topology on X U.# (X) in such a way that
F (X) turns out to be homeomorphic to a closed set of the Cantor
set (see [11] for details). It is easy to check that any p-map f: X —
Y induces a continuous map f,: ¥ (X) — F(Y) such that f, is a
homeomorphism when f is a p-homotopy equivalence.

1. Basic properties. In [8] the following lemma is proven,

1.1. LEMMA ([8; 6.3.5]). Any space X in P admits a p-map
r: X — J unique up to p-homotopy.

1.2. DEeFINITION. A closed subset C C X is said to be properly
deformable to J in X if there exists a diagram in P
C —-X

commutative up to p-homotopy. Notice that we may use r as the
restriction of a p-map X — J given by Lemma 1.1.

1.3. DEerFINITION. Given a space X in P, 4 C X is said to be
properly categorical (p-categorical) in X if there is a closed neigh-
bourhood of A4 properly deformable to J in X.

An open covering {U,} of X is said to be p-categorical if each U,
is p-categorical in X (i.e. U, is properly deformable to J in X).

The p-category of X, p-cat(X), is the least number »n such that
X admits a p-categorical open covering with #n elements. If no finite
p-categorical covering exists then p-cat(X) = co.
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LEMMA 1.4 [4; 3.4]. Let P be a locally compact metrizable space
and Q a locally compact ANR. Suppose X is a closed subset of P and
f.,g: X — Q are p-homotopic maps. If f, g are extensions of [ and
g respectively, there exists a closed neighbourhood U of X such that
flU and g|U are p-homotopic.

Hence, if we deal with locally finite polyhedra we have

1.5. PROPOSITION. Given a locally finite polyhedron P, p-cat(P) is
the smallest number n such that P can be covered by n p-categorical
subpolyhedra.

Proof. Given a p-categorical open covering {W;} let H': W;x I —
P be a p-deformation of ;. Since P is ANR by Lemma 1.4 there is
a closed neighbourhood Q; of W; and a p-extension H : Q;xI — P.
Now by [23; 3.5] we may take a closed subpolyhedron P; such that
W; C P; C intQ; and thus {P;} is a covering of P with P; p-
categorical in P. Conversely, if P is covered by m p-categorical sub-
polyhedra we may use regular neighbourhoods to obtain a p-categorical
open covering with m elements.

The following properties of p-cat(-) are straightforwardly checked:

1.6. ProposITION. (i) cat(X) < p-cat(X). If X is compact the
equality holds.

(ii) p-cat(X) =1 ifand only if X ~, J.

(iii) Let f: X = Y and g: Y — X be p-maps such that fg ~p idy .
Then p-cat(Y) < p-cat(X). In particular, p-cat(-) is a p-homotopy
invariant.

(iv) If A is a p-retract of X then p-cat(A4) < p-cat(X).

(v) If A and B are closed and X = int AUint B, then p-cat(X) <
p-cat(A4) + p-cat(B).

The next proposition gives us an elementary relation between the
set of Freudenthal ends of X and p-cat(X).

1.7. PROPOSITION. Given a space X in B, we have card(F (X)) <
p-cat(X).

Proof. If p-cat(X) = oo there is nothing to prove. Otherwise, if
C,,Cy, ..., Cy is a p-categorical closed covering of X, the natu-
ral inclusions K;: C; — X induce continuous maps k;: & (C;) —
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& (X). Moreover, it is easy to check that & (X) = |JImk;, and since
C; is p-deformable to J we get that each Imkj, is an one-point set.
Hence card(& (X)) < p-cat(X).

1.8. EXAMPLES. (a) p-cat(R") =2 > 1 = cat(R").
(b) For any T,-compact space X,

cat(X) = p-cat(X x J) = p-cat(X v J).

(c) If S" is the space obtained from J by attaching one copy of
S" at each natural number n € J we have p-cat(§”) =2.

(d) If X is aspacein P, and r: X — J is a p-map we can define
(up to p-homotopy) the proper cone C,X of X as the push-out of

l
the diagram X x [ — X L. J and the proper mapping cone Cpf

of a p-map f is defined in the natural way (see [2] for details). If
f =r, Cpr turns to be the proper suspension Zp X of X. Asin the
ordinary case it follows from 1.6(iii) and (iv)

p-cat(C,f) < p-cat(Y) + 1.

In particular p-cat(}_, X) < 2.

(e) As a consequence of (d), p-cat(X) < dim X +1,if X isa locally
finite CW-complex with only one Freudenthal end.

(f) The notion of categorical sequence due to Fox (see [10]) can
be translated into proper terms. Namely, given a space X in P, a
sequence of open sets V; C --- C V,, = X for which each difference
V; —V;_ is p-categorical (V= @), is called a p-categorical sequence.
It is easy to check that p-cat X < » if and only if X admits a p-
categorical sequence of length n. By using this result, one shows the
inequality p-cat(X x Y) < p-cat(X) + p-cat(Y) — 1.

(g) The inequality max{catX, catY} < cat(X x Y) holds in or-
dinary L-S category but not in proper L-S category as the following
example shows. Let X = R? and Y = J; then p-cat(X xY) =1 <
p-cat(R?).

The following definition provides a new proper L-S invariant which
is the translation of Ganea’s strong L-S category into proper homotopy
(see [15]).

DEFINITION 1.9. given a space X in ‘P, the strong L-S category
of X is the smallest integer p-Cat(X) such that there exists a space
Y in P, p-homotopically equivalent to X which can be covered
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by p-Cat(X) closed sets each with the same p-homotopy type as J .
Obviously p-cat(X) < p-Cat(X).

The relation between p-Cat(X) and the 1-LC at oo condition is
given in the following theorem. We firstly recall that a space X in
P is 1-LC at oo if given a sequence of compact subsets {L;} with
L;CintLj,; and X =JL;, the inverse sequence

(191) 7[1(X—L1,a(tl))ezl—nl(X—Lz,a([z))(_OL...

is trivial, where a: J — X is a proper map with a([t;, 00)) € X — L;

(i > 1) and 6; is the inclusion induced homomorphism followed by
the change of basepoint isomorphism given by «|[¢;, ti+1]-

THEOREM 1.10. Let X be a space in B, with one Freudenthal end.
If p-Cat(X) =2, X is 1-LC at oo if and only if the inverse sequence

(1.10.1) Hy(X-L) — H (X -Ly) — - — H (X - L) — ---

is trivial.
This theorem is an immediate corollary of

ProrosITION 1.11. Let X be as in Theorem 1.10. Assume that X
can be covered by two one-ended p-categorical closed subsets U and
V. Then X is 1- LC at oo if and only if the inverse sequence (1.10.1)
is trivial.

Proof. Let {U, V} be a p-categorical open covering with U and
V' one-ended. We claim that UNV also is one-ended or equivalently
that the inverse sequence

(1.11.1) HyUNV —Ly) — - — HyUNV = Ly) — ---

is trivial. In the commutative diagram
H((X-L,) +— H(X-L,)

J l

~ 1 ~ 2 ~
HUnv-L) —2_ Bwnv-L,) 2 HUnv-L,)

| 1

HyU-L,)®HyV - L,) ——— Hy(U~L,)®Hy(V - L,)

where the vertical arrows are provided by the respective Mayer-
Vietoris sequences. We may choose n, > n; > n such that the upper
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and lower horizontal arrows are trivial. This implies that the com-
position of the morphisms (1) and (2) is trivial and so the inverse
sequence (1.11.1) is trivial.

We have the following facts:

(i) Since U and V' are p-categorical, we may choose n3 > n such
that any loop either in U — Ly, or in V- Ly, is null-homotopic in
X-L,.

(i1) On the other hand, since U NV is one-ended there is n4 > n3
such that all the connected components of UNV — Ly, are included
in the same connected component of UNV — L,,3 . .

Given any loop f: (I, {0, 1})—(X—Ly,,, %), by Lebesgue’s Lemma
we may find a partition 0 = ¢t < t; < --- < t, = 1 such that
Slti, ti—1] is included either in U~ Ly, orin V —L, . Therefore, by
(i1), f isaloopin X —L,, that can be expressed as a product of loops
eitherin U~ L, orin V — L,, and each factor is null-homotopic in
X — L, by (1). Thus the morphism

m (X = Ly,) — 71 (X — L)

is trivial and X is 1-LC at oo.

COROLLARY 1.12. Let X be a homologically trivial open n-manifold
(n>3) with p-Cat(X)=2. Then X is 1-LC at co.

Proof. As n > 3, Poincaré-Lefschetz Duality arguments (see [7;
3.2]) show that the inverse sequence (1.10.1) is semistable (i.e. satisfies
the Mittag-Leffler condition) and its inverse limit is trivial. Then by
[18; 11.6.2.2] the inverse sequence (1.10.1) is trivial. Now the result
follows from Theorem 1.11.

2. Proper L-S category and L-S category in pro-Top. We recall that
cat(f) < n for a continuous map f from X to Y, if there is an open
covering {V;, ..., V,} of X such that f|V; is homotopically trivial
for 1<j<n.

In [1] a notion of L-S category for inverse systems is defined. Name-
ly, given an inverse systems x = {Xa; Dop}, the L-S category of x,
cat(x),is < n if for each a there exists B > a such that cat(p,g) <
n.

If pro-72. is the category of topological inverse systems and pro-
morphisms, Edwards and Hastings (see [8]) have proven that there
exists a natural functor &: Po, — pro-7z~, &(X) being the inverse
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system {U; < U, «— ---} where Uy, = X — C; and C; is an in-

creasing sequence of compacts with C;, CintCy,; and X =JCy. A
relation between p-cat(X) and cat(e(X)) is given by

2.1. THEOREM. If X is a space in P, p-cat(X) > cat(e(X)).

Proof. If {W,, ..., W,} is a p-categorical open covering of X,
we consider the covering {W; N Uy} of U,. Let rj: W; — J and
aj: J — X be p-maps such that there are p-homotopies H/: W ;xI —
X between o or; and the inclusion W; C X. For each k there
exists s(k) > k such that H/(W; N Uy x I) C Uy . But since J is
contractible it follows that Uy, is null-homotopic in each W;N U, .
So cat(e(X)) < p-cat(X).

2.2. REMARKS. (a) We now consider the category (pro-7z., Jz,)
whose objects are arrows f: y — 4 where x is an object in pro-7z,.
and A is a space regarded as the constant inverse system. Morphisms
are pairs (¢, h): where ¢: yx — & is a pro-morphism and A: 4 —
B is a continuous map compatible with ¢ via the bonding maps.
Edwards and Hastings proved that &: Po, — (pro-7z, z2) given
by e(X) = X « Uy « U,--- is a full embedding (see [8]). We can
also prove that cat(e(X)) < p-cat(X) in this case.

(b) There exist spaces with cat(e(.X)) < p-cat(X). Indeed, let X be
the punctured torus. Then p-cat(X) = 3 according to Corollary 3.3
but obviously cat(e(X)) = cat(S!) = 2.

2.3. PROPOSITION. If M is a compact connected triangulable man-
ifold with boundary and W = M — OM then cat(OM) < p-cat(W) <
cat(0 M)+cat(M). Furthermore, if M is contractible then p-cat(W) =
cat(0M).

Proof. The inverse system &(W) in (pro-J2., z,.2) is
W —0M x[0,00) —0M x[l,00)---.

Now we have cat[i: M x [0, c0) — W] < cat(dM x [0, 00)) =
cat(0M) and cat(e(X)) = max{cat(i), cat(d M)} = cat(OM). So,
by Remark 2.2(a) cat(dM) < p-cat(W).

On the other hand if we take a copy of M, M’ C W then p-cat(W)
< p-cat(M’ v J) + p-cat(OM’ x J) = cat(M) + cat(d M) by 1.6(viii)
and 1.8(b).
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If we assume that M is contractible, we get cat(0 M) < p-cat(W) <
cat(0 M) + 1. But actually p-cat(W) < cat(0M). Indeed, if {W}},<n
is a categorical covering of M , we may assume that W, is a sub-
polyhedron (see Proposition 1.5). By [22; 6.30] we extend the proper
deformation of W, x J into {*} x J to a proper deformation of
WixJUM. Thus {(WxJUM, WyxJ,..., Wy x J} is a p-
categorical covering of W .

The invariant cate(X) can be used to give some results on the
behaviour of the inverse sequence

(2.3.1) (X -K)—m(X-Ky) — - —m(X—-Kp) — -

where {K;} is a sequence of compact subsets with K; C intK;,;, and
X =UK;.

2.4. THEOREM. Let X be a locally finite polyhedron with one Freud-
enthal end and cate(X) = 2. Assume that the inverse sequence of
abelian groups

Hi(X = Ky) = Hy(X = Kp) = -+ = Hy(X = Ky) = -

is trivial. Then the inverse sequence (2.3.1) is pro-isomorphic in pro-Z»
to an inverse sequence of finitely generated groups.

THEOREM 2.5. Under the hypotheses of Theorem 2.4, X is 1-LC
at oo if and only if the inverse sequence (2.3.1) is semistable, i.e.
liml ﬂl(X - Kj) = *.

Proof of Theorem 2.4. We may choose the sequence {K;} with U; =
X — K; subpolyhedron of X . Up to pro-isomorphism we may replace
n (X -Kj) by G; = n{(Uj) in (2.3.1). By using the 1-skeleton of X,
it is easy to check that there is a commutative diagram

F(Ly)

F(Ly)

F(L,) . F(L,)

(2.4.1)

G, —— G, —— G G, —— -

where F(L,) denotes the corresponding free group of basis L, , the
differences L, — L, are finite, and the bonding morphisms are the
natural inclusions.
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Since the inverse sequence
Ge;b(_nghggb@_ = G

is trivial, by abelianizing (2.4.1) we readily check that G2 is finitely
generated for n > 1.
Now, since

cate(X) = sup{cat[i, : U, — U,_1]} =2
we get from [15; 7.3] that for any n > 2, there is u, such that

Un ‘ﬂ_" n—1 VUn—l

n

lin lln—l
A
Uy —— Uy X Uy
is commutative up to homotopy. This diagram induces a commutative
diagram
Gn —— Gu_1 Gy

nx

(2.4.2) l lz

Gno1 —2— Gpoy X Gy
where /,, induces the natural epimorphism ax b — (a, b).

From the Kurosh Subgroup Theorem (see [17]) the group
ln‘_‘l*Ain*(Gn) is a free group. Therefore, u,. : G, — Imuy,. is an
epimorphism onto a free group and so (Im u,,)? is a finitely gen-
erated free abelian group. Hence, Im u,, is a finitely generated free
group.

On the other hand, A is injective and so the commutativity of
(2.4.2) yields a natural epimorphism Im u,, - Imi,,. Thus, Imi,,
is a finitely generated group.

It is a well-known fact that (2.3.1) is pro-isomorphic to the inverse
sequence

(2.4.3) Imi,, —Imip, « - —Imiy — -

Proof of Theorem 2.5. If in addition lim! G; = *, we know that the
inverse sequence (2.3.1) satisfies the Mittag-Leffler condition (see [18;
p. 174]) and we may assume that the bonding morphisms in (2.4.3)
are onto. We shall denote Imi,, by H,.
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Since the sequences (2.3.1) and (2.4.3) are pro-isomorphic, the
abelianization of (2.4.3) is trivial. Furthermore, as the bonding mor-
phisms are onto we get that H, is its own commutator subgroup.
Thus, H2 =0.

On the other hand, diagram (2.4.2) induces a commutative diagram

Hy, —— Hy xH, ,

u
(2.4.4) 1(1) lz

Hn—Z ‘_A_’ Hn—2 X Hn—Z
where (1) is the natural bonding morphism and u’ = (i, *ip—1)ou:
H, — Hy >+ Hy_».

As in the proof of Theorem 2.4, Imy' is a free group and the
epimorphism H2® = 0 — (Im /)% implies that Im 4’ is trivial. Since
A is injective, the morphism on the left side of (2.4.4) is trivial. This
completes the proof.

COROLLARY 2.6. Let X be a homologically trivial open n-manifold
(n > 3) with only one strong end and cat(e(X)) =2. Then X is 1-LC
at oo.

We recall that the strong ends of X are the elements in the set of
p-homotopy classes [J; X],. It is a well-known fact that [J; X], =
lim' 7;(X — K;). Now the proof of Corollary 2.6 is similar to the
proof of Corollary 1.12.

REMARK 2.7. Notice that Theorem 2.1 and Theorem 2.4 imply that
the contractible open 3-manifolds described in [20; Theorem 1] have
p-cat > 3. These manifolds have infinitely many strong ends.

Indeed, the inverse sequence of 7;’s of those manifolds are of the
type

y={;o'Gi*—‘o:'Gi<—"'<—;o'Gi"'}
0 1 n

where “%” stands for the free product of groups and the bonding
morphisms are the natural inclusions (see [24] and [20]). The sequence
& 1is not pro-isomorphic to a sequence of finitely generated groups
since the existence of such an isomorphism would yield an inclusion
*°G; € F C %G, for some finitely generated group F, if n > ng
for some ng.

REMARK 2.8. The following simple example shows that Theorem
2.4 does not imply the condition 1-LC at co.
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Let F(x,y) be the free group with generators x and y, and let
f:81v S — S1vS! be a continuous realization of the morphism
¢: F(x,y) — F(x,y) given by ¢(x) =[x, y] and ¢(y) = [x~', y],
with [x, y] = xyx~1y~1,

We now define T as the telescope

T=Xx[0,11Ur Xx[1,2]Uf---Ur X x[n,n+1]---

with X = S!'v S!. It is clear that T is under the hypotheses of
Theorem 2.4 but the inverse sequence (2.3.1) agrees with

é ¢ P
Fx,y)— F(x,y)«— F(x,y) «— ---

whose lim! is not trivial.

3. Cohomology and p-category. Several p-homotopy invariant coho-
mologies have appeared in the literature. We next give some examples.

3.1. ExAMPLEs. (a) Various cohomologies with compact supports
(singular, Cech type, Alexander-Spanier, etc.). See [19] for details.

(b) Cohomology of the end of X, H}(X). Namely, H;(X) is de-
fined as the cohomology of the cochain complex C*(X)/Cx(X) where
CX(X) stands for the subgroup of singular cochains with compact sup-
ports. Alternatively, H;(X) = lim{H*(U;)} where {U;} is a system
of oo-neighbourhoods of X . See [13] for details.

(c) Pro-cohomology of X with coefficients in the inverse system .~ .
Given {U;} as above, Z*(X ;) is the cohomology of the cochain
complex C*(X; %) = (pro- , £ )(%.(X); F), where %.(X) de-
notes the inverse system {C.(X) « Ci(U;) — ---}. Here & stands
for the category of abelian groups and (pro-27 , &) is constructed
from &7 as (pro-J2., J2.) is constructed from Jz. in §3. See
[14] for detalils.

If $* is any of the above cohomologies, relative groups $H*(X, 4)
are easily defined and restricted morphisms p: $*(X, 4) — $*(X, B)
are natural when B C 4. If A4 is closed there is an exact sequence

o X, A) D (X)) LS () S 5, A) - -

where i: A C X is the inclusion. Also cup-products can be defined
for H*.

As in the ordinary case, p-invariant cohomologies provide a lower
bound for proper L-S category. Namely,
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3.2. PROPOSITION. Given X in P, let [(H*(X)) be sup{n € N;
oy, a, ..., ay € H*(X) with aUayU- - -Ua, # 0}. Then p-cat(X) >
[(H*(X)+1.

Proof. Let Ay, Ay, ..., A, be a p-categorical open covering of
X . Since i*: H*(X) — 9H*(4y) is trivial for each k < n, given
ai, az, ..., o, € H*(X), there are elements o) € H*(X, 4;) with
pla)) = o (k < n) in the diagram

l———ﬁl(XAk

(X, Ap) —2— 97 (X) =5 §7(4y)
Now the commutative diagram
H(X, 4)®H (X, 4,)® - @ H°(X, 4,) ——— H"(X, 4,Ud,U---U4,)=0

Js g Js g
X ® HXN®---®HX) —_— H7(X)
yields o Uy U---Ua, =0.

3.3. CoRrROLLARY. If W is a non-compact surface with only one
Freudenthal end then

2 ifW=R?,

p-cat(W) = { f

3 otherwise.

Proof. If W 2% R? we can find elements «, § € H! (W ; Z,) with
aUp # 0 and then p-cat(W) > 3. By 1.8(e) we conclude p-cat(W) =
3.

Also we may use the cohomology with compact supports in the
following

3.4. ExaMPLE. There are contractible spaces with only one Freuden-
thal end and infinite proper L-S category. Let 7" be the n-dimen-
sional torus (n > 0, 7° = %) and =,: T" — T""! (n > 1) the
natural projection. Then X = [JX,, where X, is the mapping
cylinder of 7,, is a contractible space and H}(X; Z) is the exte-
rior algebra A(x;, ..., X, ...) with infinitely many generators. Then
p-cat(X) = oo.

Now we characterize R"” among all the manifolds by using proper
L-S category. Namely,
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THEOREM 3.5. Let X be a connected open manifold (n > 1). Then
X =~ R" if and only if one of the following statements holds:
(i) p-Cat(X) =2
(ii) p-cat(X) =2 and X has only one strong end.

Proof. Since cat(X) < p-cat(X) = 2, it follows that 7;(X) is a free
group (see [15, §4]) and so X is orientable.
For any Z, with p prime we have the isomorphisms

D
HI(X; Zp) = Hp—q(X ; Zp) = H" (X ; Zp)

given by the Poincaré Duality (see [19; 11.2]) and the ordinary al-
gebraic duality respectively. Then, if ¢ # 0 € H!(X; Z,) and ux €
HI(X; Z,) is the fundamental class of X in the homology of “infinite
chains”, we get

0 =uxn(eUa(D(e))) = D(e) Na(D(e)) = 1

where “N” and “U” are the natural cap and cup products H},’ ® Hl —
H,_, and H! ® H" — H{"" respectively (see [19; 10.4] for details).

Therefore, H,_4(X; Zp) = H!(X ; Z,) = 0 for all ¢ and the Uni-
versal Coefficient Theorem proves that X is homologically trivial. In
particular 7;(X) =1 and X is contractible by the Whitehead Theo-
rem. Then X=R" if n=1, 2.

On the other hand, if n > 3 we have the Poincaré Duality HJ'(X ; Z)
= H"9(X;Z)=0 (see[19; 11.4]). Since X is properly 1-connected
at infinity by Corollary 1.12 or Corollary 2.6, a convenient proper
Hurewicz Theorem (see [3; 3.4]) yields that HIY(X; Z) = [R*; X],
and the fundamental class ux can be represented by a p-map f: R” —
X . It is easily checked that f,: HI(R”) — HI(X) is an isomorphism
and again by [19; 11.4], f*: H¥*(X) — H}(R") is an isomorphism.
Now, f is a p-homotopy equivalence by [9; 4.9].

By using the results of Siebenmann [21] and Freedman [12] we get

THEOREM 3.6. If X is a connected open n-manifold (n # 3), then
X is homeomorphic to R" if and only if 3.5(i) or 3.5(ii) holds.

REMARK 3.7. We do not know whether Theorem 3.5(ii) is true with-
out the condition on strong ends.

Given an embedding i: J — X, we can define a new L-S type
proper invariant hp-cat(X, i) as follows (cf. [15; §4 and §5]).
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We define the nth canonical proper fat wedge of (X, i) as the

union
Ty(X, i) = {4k, i<k <n}

where A; is the product of (n—1) copies of X with J, where J is
placed in the kth factor. Then hp-cat(X, i) < n if there is a diagram
in Peo

x L.y

l" lw(i)
(X, i)

commutative up to the p-homotopy. Here A is the diagonal map and
@ (i) is the natural embedding induced by i.
In contrast with Theorem 3.6, the following result holds.

3.7. PROPOSITION. For any contractible open manifold W, and any
embedding i: J — W, hp-cat(W,i)=2.

Proof. 1t is clear that hp-cat(W) > 2 and hp-cat(R) = 2. For
dim(W) =n > 2, it is known that W x W is 1-connected at infinity

(see [13; 1.8]). And by [12] and [21] W x W L R?" . Finally we
apply the Proper Cellular Approximation Theorem (see [9]) to deform
hoA: W — R?" onto the n-skeleton of R?" which may be regarded
as J since R?" is properly (27 — 2)-connected. So, hp-cat(W) < 2.
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