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LUSTERNIK-SCHNIRELMANN INVARIANTS
IN PROPER HOMOTOPY THEORY

R. AYALA, E. D O M I N G U E Z , A. M A R Q U E Z , A N D A. Q U I N T E R O

We introduce and study proper homotopy invariants of the Luster-
nik-Schnirelmann type, p-cat (-), p-Cat(-), and cat e(-) in the cat-
egory of Γ2-locally compact spaces and proper maps. As an applica-
tion, Rn (n Φ 3) is characterized as (i) the unique open manifold X
with p-Cat(ΛΓ) = 2, or (ii) the unique open manifold with one strong
end and p-cat( c) = 2.

Introduction. The category cat(JΓ) of a space X in the sense of
Lusternik and Schnirelmann (L-S category) is the smallest number
k such that there exists an open covering {X\, ... , Xk} of X for
which each inclusion Xj c X is nullhomotopic in X. This concept
was introduced by the quoted authors in their studies on calculus of
variations [16] and they used it as a lower bound for the number of
critical points of a differentiable real function on a manifold. The
basic work on the homotopical significance of cat is due to Borsuk
(see [5]). Borsuk's work was continued by Fox [10].

Here we present the definition and the basic properties of a new
numerical topological invariant for Γ2-locally compact spaces which
agrees with the notion of L-S category for ^-compact spaces. This in-
variant, denoted p-cat(X), is called the proper L-S category of X and
turns out to be a proper homotopy invariant of X. Hence, p-cat(X)
is a finer invariant than cat(X).

In [10] several generalizations of L-S category are suggested. More
explicitly, a general notion of L-S si -category with respect to a class
si of spaces has been developed by Puppe and Clapp in [6]. Our work
shares some common points with [6] but does not fit into the notion
of L-S si -category since we entirely deal with proper maps instead of
ordinary continuous maps.

Another generalization of L-S category has been given in [1], where
L-S category for pro-objects in pro-c%/* is defined. This idea is re-
lated to proper L-S category by the Edwards-Hastings embedding (see
[8]) which provides a close link between proper homotopy theory and
homotopy in
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We shall work entirely in the category <Poo of non-compact T2-
locally compact σ-compact spaces and proper maps. Notice that any
^-compact space X can be regarded in ^oo as the wedge I v / ,
where / will stand for the half-line [0, oo).

We recall that a proper map (p-map) is a continuous map / : X —• Y
such that f~ι(K) is compact for each compact K c Y. Proper ho-
motopy (p-homotopy), proper deformation (p-deformation), etc. can
be defined in the natural way. The symbols "~", " ~ p " and " = " stand
for homotopy equivalence, p-homotopy equivalence and homeomor-
phism respectively.

Finally we also recall the notion of end in proper homotopy. A
Freudenthal end of X e^oo is an element of the inverse limit ^(X) =
lim πo(X-K) where K ranges over the family of compact subsets of
X and πo stands for the set of connected components. The topology
of X can be enlarged to a topology on I u F ( I ) in such a way that
^(X) turns out to be homeomorphic to a closed set of the Cantor
set (see [11] for details). It is easy to check that any p-map / : X —•
Y induces a continuous map f*: ^(X) —• &~(Y) such that /j= is a
homeomorphism when / is a p-homotopy equivalence.

1. Basic properties. In [8] the following lemma is proven,

1.1. LEMMA ([8; 6.3.5]). Any space X in φoo admits a p-map
r: X —• / unique up to p-homotopy.

1.2. DEFINITION. A closed subset C C X is said to be properly
deformable to / in X if there exists a diagram in φoo

C ^X

commutative up to p-homotopy. Notice that we may use r as the
restriction of a p-map X —• / given by Lemma 1.1.

1.3. DEFINITION. Given a space X in φoo, A c X is said to be
properly categorical (p-categorical) in X if there is a closed neigh-
bourhood of A properly deformable to / in X.

An open covering {Ua} of X is said to be p-categorical if each Ua

is p-categorical in X (i.e. Ua is properly deformable to / in X).
The p-category of X, p-cat(X), is the least number n such that

X admits a p-categorical open covering with n elements. If no finite
p-categorical covering exists then ρ-cat(Z) = oo.
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LEMMA 1.4 [4; 3.4]. Let P be a locally compact metrizable space
and Q a locally compact ANR. Suppose X is a closed subset of P and
f ' , g: X —• Q are p-homotopic maps. If f ,~g are extensions off and
g respectively, there exists a closed neighbourhood U of X such that
f\U and ~g\U are p-homotopic.

Hence, if we deal with locally finite polyhedra we have

1.5. PROPOSITION. Given a locally finite polyhedron P, ρ-cat(P) is
the smallest number n such that P can be covered by n p-categorical
subpolyhedra.

Proof. Given a p-categorical open covering {Wi} let Hι: TFZ x / -*
P be a p-deformation of Wi. Since P is ANR by Lemma 1.4 there is
a closed neighbourhood Ω; of Wι and a p-extension Hι: Ω; xl —• P.
Now by [23; 3.5] we may take a closed subpolyhedron P/ such that
Wi C Pi C intΩ/ and thus {Pi} is a covering of P with P/ p-
categorical in P. Conversely, if P is covered by m p-categorical sub-
polyhedra we may use regular neighbourhoods to obtain a p-categorical
open covering with m elements.

The following properties of p-cat(-) are straightforwardly checked:

1.6. PROPOSITION, (i) cat(X) < ρ-cat(X). If X is compact the
equality holds.

(ii) p-cat(X) = 1 if and only if X ~p J.
(iii) Let f: X —>Y and g\Y-*X bep-mapssuch that fg ~ p idy.

Then ρ-cat(Γ) < ρ-cat(X). In particular, ρ-cat(-) is a p-homotopy
invariant.

(iv) If A is a p-retract of X then p-cat(^) < p-cat(X).
(v) If A and B are closed and X = int^Uinti?, then p-cat(X) <

p-cat(Λ) + p-cat(£).

The next proposition gives us an elementary relation between the
set of Freudenthal ends of X and ρ-cat(X).

1.7. PROPOSITION. Given a space X in φoo we have card(^(X)) <
ρ-cat(X).

Proof. If p-cat(X) = oo there is nothing to prove. Otherwise, if
C\, Cι, . . . , Cm is a p-categorical closed covering of X, the natu-
ral inclusions Kj\ Cj —• X induce continuous maps kj\



204 R. AYALA, E. DOMINGUEZ, A. MARQUEZ, AND A. QUINTERO

. Moreover, it is easy to check that ^(X) = U I m ^/* and since
Cj is p-deformable to / we get that each Im fc,* is an one-point set.
Hence card(^(X)) < p-cat(X).

1.8. EXAMPLES, (a) p-cat(Rπ) = 2 > 1 = cat(RΛ).
(b) For any Γ2-compact space X,

cat(X) = p-cat(X x /) = ρ-cat(X V / ) .

(c) If Sn is the space obtained from / by attaching one copy of

Sn at each natural number n e / we have p-cat(*SΛ) = 2.
(d) If X is a space in <Poo and r: X -> / is a p-map we can define

(up to p-homotopy) the proper cone CPX oϊ X as the push-out of

the diagram X x I <— X -^ J and the proper mapping cone Cpf

of a p-map / is defined in the natural way (see [2] for details). If
/ = r, Cpr turns to be the proper suspension Σp X of X. As in the
ordinary case it follows from 1.6(iii) and (iv)

p-cat(Q/) < p-cat(Γ) + 1.

In particular p - c a t ( ^ X) < 2.
(e) As a consequence of (d), p-cat(X) < d i m X + 1 , if X is a locally

finite CW-complex with only one Freudenthal end.
(f) The notion of categorical sequence due to Fox (see [10]) can

be translated into proper terms. Namely, given a space X in φ ^ a
sequence of open sets V\ c c Vn — X for which each difference
Vι - Vι_\ is p-categorical (Vo = 0 ) , is called a p-categorical sequence.
It is easy to check that p-catX < n if and only if X admits a p-
categorical sequence of length n . By using this result, one shows the
inequality p-cat(X x F ) < p-cat(ΛT) + p-cat(Γ) - 1.

(g) The inequality max{catX, cat Y} < cat(X x Y) holds in or-
dinary L-S category but not in proper L-S category as the following
example shows. Let X = R2 and Y = J then ρ-cat(X x Y) = 1 <
p-cat(R2).

The following definition provides a new proper L-S invariant which
is the translation of Ganea's strong L-S category into proper homotopy
(see [15]).

DEFINITION 1.9. given a space X in φ ^ , the strong L-S category
of X is the smallest integer p-Cat(X) such that there exists a space
Y in *Poo p-homotopically equivalent to X which can be covered
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by p-Cat(X) closed sets each with the same p-homotopy type as / .
Obviously p-cat(X) < p-Cat(X).

The relation between p-Cat(X) and the 1-LC at oo condition is
given in the following theorem. We firstly recall that a space X in
φoo is 1-LC at oo if given a sequence of compact subsets {Lj} with
Lj C intLj+ι and X = \JLj, the inverse sequence

(1.9.1) πι(X-Lι,a{tx))<^-πι{X-L2,a{t2))X

is trivial, where a: J —• X is a proper map with a{[tι?, oo)) C X - Li
(/ > 1) and θj is the inclusion induced homomorphism followed by
the change of basepoint isomorphism given by α|[ί, , ί, +i] .

THEOREM 1.10. Let X be a space in ty^ with one Freudenthal end.
If p-Cat(X) = 2, X is l-LC at oo if and only if the inverse sequence

(1.10.1) H^X - Lό+-Hi(X - I*) < *-Hι(X-Ln)<

is trivial.
This theorem is an immediate corollary of

PROPOSITION 1.11. Let X be as in Theorem 1.10. Assume that X
can be covered by two one-ended p-categorical closed subsets U and
V. Then X is 1 - LC at 00 if and only if the inverse sequence (1.10.1)
is trivial.

Proof. Let {£/, V) be a p-categorical open covering with U and
V one-ended. We claim that UnV also is one-ended or equivalently
that the inverse sequence

(1.11.1) HoiUnV-Li)* <r-HQ(UnV-Ln)

is trivial. In the commutative diagram

Hχ{X-Ln) « Hχ{X-Lnχ)

H0(U nV - Ln)

H0(U-Lnι)QHQ(V-Lnι) « H0(U-Ln

where the vertical arrows are provided by the respective Mayer-
Vietoris sequences. We may choose nι > n\ > n such that the upper
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and lower horizontal arrows are trivial. This implies that the com-
position of the morphisms (1) and (2) is trivial and so the inverse
sequence (1.11.1) is trivial.

We have the following facts:
(i) Since U and V are p-categorical, we may choose n?>> n such

that any loop either in U - Ln or in F - Ln^ is null-homotopic in

X-Ln.
(ii) On the other hand, since U n V is one-ended there is n4 > n-$

such that all the connected components of U Π V - Ln^ are included
in the same connected component of U Π V - Ln^.

Given any loop / : (/, {0, 1}) —> (X-Ln^, * ) , by Lebesgue's Lemma
we may find a partition O = ί o < ί i <•••<*„ = 1 s u c h Λat
f\[ti> U~\] is included either in U-Ln^ orin V -Ln^ Therefore, by
(ii), / is a loop in X-Ln^ that can be expressed as a product of loops
either in U - Ln^ or in V - Ln^ and each factor is null-homotopic in
X - Ln by (i). Thus the morphism

LnJ ^ πx(X - Ln)

is trivial and X is 1-LC at oo.

COROLLARY 1.12. Let X be a homologically trivial open n-manifold
(n > 3) with p-Cat(JΓ) = 2. Then X is \-LCat oo.

Proof. As n > 3, Poincare-Lefschetz Duality arguments (see [7;
3.2]) show that the inverse sequence (1.10.1) is semistable (i.e. satisfies
the Mittag-Leffler condition) and its inverse limit is trivial. Then by
[18; Π.6.2.2] the inverse sequence (1.10.1) is trivial. Now the result
follows from Theorem 1.11.

2. Proper L-S category and L-S category in pro-Top. We recall that
cat(/) < n for a continuous map / from X to Y, if there is an open
covering {V\, . . . , Vn} of X such that f\Vj is homotopically trivial
for 1 < j < n .

In [1] a notion of L-S category for inverse systems is defined. Name-
ly, given an inverse systems χ = {Xa Paβ} > the L-S category of χ,
cat(χ), is < n if for each a there exists β > a such that C3t(paβ) <
n.

If pro S0/1, is the category of topological inverse systems and pro-
morphisms, Edwards and Hastings (see [8]) have proven that there
exists a natural functor ε: φoo —> pro-<5ζ^, ε(X) being the inverse
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system {U\ <— U2 *— ••} where £4 = X - Q and Q is an in-

creasing sequence of compacts with Q C int Q + 1 and X = |J Q . A

relation between ρ-cat(X) and cat(ε(X)) is given by

2.1. THEOREM. 7f X is a space in φ ^ , ρ-cat(X) > cat(ε(X)).

Proof. If {Wγ, ... ,Wn} is a p-categorical open covering of X,
we consider the covering {WjΠUk} of U^. Let r7: PF7 —• / and
α ; : / - > I b e p-maps such that there are p-homotopies W: WjXl —•
X between α7 o r7 and the inclusion W7 c X . For each k there
exists s(k) > k such that Hj(Wj Π C/J(fc) x /) Q Uk. But since / is
contractible it follows that Us^ is nuU-homotopic in each Wj n J75

So cat(β(JΓ)) < p-cat(X).

2.2. REMARKS, (a) We now consider the category (pro-,%^,
whose objects are arrows f:χ—>A where χ is an object in
and A is a space regarded as the constant inverse system. Morphisms
are pairs (φ, h): where φ: χ -^ ξ is a pro-morphism and h: A -+
5 is a continuous map compatible with 0 via the bonding maps.
Edwards and Hastings proved that ε: <Poo —• (ρro-,%^, 3fc/ι) given
by e(X) = X «— C/i *- C/2 is a full embedding (see [8]). We can
also prove that cat(ε(X)) < p-cat(X) in this case.

(b) There exist spaces with cat(ε(X)) < p-cat(X). Indeed, let X be
the punctured torus. Then p-cat(X) = 3 according to Corollary 3.3
but obviously cat(ε(X)) = cat^S1) = 2.

2.3. PROPOSITION. If M is a compact connected triangulable man-
ifold with boundary and W = M - dM then cat(<9M) < p-cat(fΓ) <
cat(9Jl/)+cat(Af). Furthermore, if M is contractible then p-cat(W^) =
cat(<9M).

Proof. The inverse system ε(W) in (pro-^/^, 9*/ι) is

Now we have cat[/: dM x [0, 00) -• W] < cat(dM x [0? 00)) =
cat(0Λ/) and cat(ε(X)) = max{cat(/), cat(9M)} = cat(ΘM). So,
by Remark 2.2(a) caX(ΘM) < p-cat(FF).

On the other hand if we take a copy of M, M' C W then p-cat( W)
< p-cat(M; V /) + v-cdi\{dMr x J) = cat(M) + cat(ΘM) by 1.6(viii)
and 1.8(b).
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If we assume that M is contractible, we get cat(<9M) < p-cat(FΓ) <
cat(dM) + 1. But actually p-cat(W) < caX(dM). Indeed, if {Wj}j<n

is a categorical covering of dM, we may assume that W \ is a sub-
polyhedron (see Proposition 1.5). By [22; 6.30] we extend the proper
deformation of Wx x J into {*} x / to a proper deformation of
Wι x J UM. Thus {W x J uM,W2x J, ... , Wn x J} is a p-
categorical covering of W.

The invariant catε(X) can be used to give some results on the
behaviour of the inverse sequence

(2.3.1) πx(X - Kx) <- π1 (X - K2) < <-πx(X - Kn) <

where {Ki} is a sequence of compact subsets with Kt C mtKi+x, and

2.4. THEOREM. Let X be a locally finite polyhedron with one Freud-
enthal end and catε(X) = 2. Assume that the inverse sequence of
abelian groups

HX{X - Kx) - K2) Hx{X-Kn)

is trivial. Then the inverse sequence (2.3.1) is pro-isomorphic in
to an inverse sequence of finitely generated groups.

THEOREM 2.5. Under the hypotheses of Theorem 2.4, X is ί-LC
at oc if and only if the inverse sequence (2.3.1) is semistable, i.e.
\imι πx(X - Kj) = *.

Proof of Theorem 2.4. We may choose the sequence {Kj} with Uj =
X - Kj subpolyhedron of X. Up to pro-isomorphism we may replace
nx{X-Kj) by Gj = πλ(Uj) in (2.3.1). By using the 1-skeleton of X,
it is easy to check that there is a commutative diagram

F(L2)

(2.4.1)

where F(Ln) denotes the corresponding free group of basis Ln , the
differences Ln - L Λ + 1 are finite, and the bonding morphisms are the
natural inclusions.
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Since the inverse sequence

Gf ^Gf^Qf, <_ G f <

is trivial, by abelianizing (2.4.1) we readily check that G*b is finitely
generated for n > 1.

Now, since

catε(X) = sup{cat[/« : Un - Un^]} = 2

we get from [15; 7.3] that for any n > 2, there is μn such that

Un > Un^VUn^

is commutative up to homotopy. This diagram induces a commutative
diagram

Gn • Gn-\ * Gn-\

(2.4.2) j/.. [in_u

Gn-\ • Gn-\ x
 ^Λ-I

where /„* induces the natural epimorphism a*b —• (α, δ) .
From the Kurosh Subgroup Theorem (see [17]) the group

l~\uΔim{Gn) is a free group. Therefore, μm : (?„ -• Im//^* is an
epimorphism onto a free group and so (Imμ n*) a b is a finitely gen-
erated free abelian group. Hence, Im/^* is a finitely generated free
group.

On the other hand, Δ is injective and so the commutativity of
(2.4.2) yields a natural epimorphism Imμ r t* -» Im/W*. Thus, \vs\im

is a finitely generated group.
It is a well-known fact that (2.3.1) is pro-isomorphic to the inverse

sequence

(2.4.3) I m i u ^-Im/2*^ ^- Im/„*<—••-.

Proof of Theorem 2.5. If in addition lim1 G}• = *, we know that the
inverse sequence (2.3.1) satisfies the Mittag-Leffler condition (see [18;
p. 174]) and we may assume that the bonding morphisms in (2.4.3)
are onto. We shall denote Im im by Hn .
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Since the sequences (2.3.1) and (2.4.3) are pro-isomorphic, the
abelianization of (2.4.3) is trivial. Furthermore, as the bonding mor-
phisms are onto we get that Hn is its own commutator subgroup.
Thus, i/*b = 0.

On the other hand, diagram (2.4.2) induces a commutative diagram

(2.4.4)

Hn-2 • Hn-2 X Hn-2

where (1) is the natural bonding morphism and μ' = {in-\ * *«-i) °β :

As in the proof of Theorem 2.4, Imμ' is a free group and the
epimorphism Hjp = 0 -» (Imμ') a b implies that Imμ' is trivial. Since
Δ is injective, the morphism on the left side of (2.4.4) is trivial. This
completes the proof.

COROLLARY 2.6. Let X be a homologically trivial open n-manifold
(n > 3) with only one strong end and cat(ε(Z)) = 2. Then X is ί-LC
at oo.

We recall that the strong ends of X are the elements in the set of
p-homotopy classes [/ X]p . It is a well-known fact that [/ X]p =
lim1 7t\{X — Kj). Now the proof of Corollary 2.6 is similar to the
proof of Corollary 1.12.

REMARK 2.7. Notice that Theorem 2.1 and Theorem 2.4 imply that
the contractible open 3-manifolds described in [20; Theorem 1] have
P' cat > 3. These manifolds have infinitely many strong ends.

Indeed, the inverse sequence of πfs of those manifolds are of the
type

(

0 1 n

where " * " stands for the free product of groups and the bonding
morphisms are the natural inclusions (see [24] and [20]). The sequence
S? is not pro-isomorphic to a sequence of finitely generated groups
since the existence of such an isomorphism would yield an inclusion
*£°G7 Q F c *o°G!/ for some finitely generated group F, if n > no
for some no.

REMARK 2.8. The following simple example shows that Theorem
2.4 does not imply the condition 1-LC at oo.
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Let F(x,y) be the free group with generators x and y, and let
f:Sι\/Sι-^Sι\/Sι be a continuous realization of the morphism
φ: F(x, y) -+ F(x, y) given by 0(x) = [x, y] and φ{y) = [x~ι, y] ,
with [x, y] = x y x ' V " 1

We now define T as the telescope

T = X x [ 0 , l ] U f X x [ l 9 2 ] U f \JfXx[n,n + l]

with X = Sι V S 1 . It is clear that T is under the hypotheses of
Theorem 2.4 but the inverse sequence (2.3.1) agrees with

F(X 9y)<LF(X9y)jLF(X9y)jL...

whose lim1 is not trivial.

3. Cohomology and p-category. Several p-homotopy invariant coho-
mologies have appeared in the literature. We next give some examples.

3.1. EXAMPLES, (a) Various cohomologies with compact supports
(singular, Cech type, Alexander-Spanier, etc.). See [19] for details.

(b) Cohomology of the end of X, H$(X). Namely, H*(X) is de-
fined as the cohomology of the cochain complex C*(X)/Cc(X) where
C*(X) stands for the subgroup of singular cochains with compact sup-
ports. Alternatively, H*(X)= lim {//*(£//)} where {£/,} is a system
of (^-neighbourhoods of X. See [13] for details.

(c) Pro-cohomology of X with coefficients in the inverse system S?.
Given {[/,} as above, ^ " ( X J?*7) is the cohomology of the cochain
complex C*(Z; <9>) = (pro-jύf, sάf)(K(X); S*), where <%>(X) de-
notes the inverse system (C*(X) ^- C*(U\) ̂ — }. Here sff stands
for the category of abelian groups and (pro-JS^, s/f) is constructed
from J$f as (pro-J^/*, <%/*) is constructed from &σ/ι in §3. See
[14] for details.

If Sf is any of the above cohomologies, relative groups fi*(X9 A)
are easily defined and restricted morphisms p: fi*(X, A) —• fi*(X, B)
are natural when B C A. If A is closed there is an exact sequence

where i: A c X is the inclusion. Also cup-products can be defined
for # * .

As in the ordinary case, p-invariant cohomologies provide a lower
bound for proper L-S category. Namely,
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3.2. PROPOSITION. Given X in φ ^ , let l(fi*(X)) be suρ{n e N;
3αi, a2, ... , an G S)*(X) with αiUα2U \Jan φ 0} . Then p-cat(X) >

Proof. Let A{, A2, ... , An be a p-categorical open covering of
X. Since /*: Λ*(X) -» β*(^) is trivial for each k < n, given
αi, α 2 , ... , an G ̂ *(X), there are elements a'k e fi*(X, Ak) with
p(a!

k) = ak (k < n) in the diagram

— V(Ak)

Now the commutative diagram

$)*(X, A^φfi* (X, Aj) <S> <8> $ί*(X, An) > S) (X, A^ U A2U U An) = 0

I' 1' I" u I'
yields a\ U α 2 U U an — 0 .

3.3. COROLLARY. If W is a non-compact surface with only one
Freudenthal end then

2

3 otherwise.

(
=

Proof. If W ψ R2 we can find elements α, /? G H£{W\ Z2) with
αUjδ ^ 0 and then ρ-cat(fF) > 3. By 1.8(e) we conclude ρ-cat(ίF) =
3.

Also we may use the cohomology with compact supports in the
following

3.4. EXAMPLE. There are contractible spaces with only one Freuden-
thal end and infinite proper L-S category. Let Tn be the n-dimen-
sional torus (n > 0, T° = *) and πn: Tn -• Γ'2"1 (n > 1) the
natural projection. Then X = \J Xn, where X« is the mapping
cylinder of π π , is a contractible space and H] (X Z) is the exte-
rior algebra Λ(.xi, ... , xn , ...) with infinitely many generators. Then
p-cat(X) = oc.

Now we characterize W1 among all the manifolds by using proper
L-S category. Namely,
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T H E O R E M 3.5. Let X be a connected open manifold (n> 1). Then

X ~ p Rn if and only if one of the following statements holds:

(i) p-Cat(X) = 2
(ii) p-cat(X) = 2 and X has only one strong end.

Proof. Since cat(X) < p-cat(X) = 2, it follows that n\{X) is a free
group (see [15, §4]) and so X is orientable.

For any Zp with p prime we have the isomorphisms

H?(X;ZP) i Hn-q(X; Zp) & Hn^(X; Zp)

given by the Poincare Duality (see [19; 11.2]) and the ordinary al-
gebraic duality respectively. Then, if e Φ 0 e H%(X\ Zp) and μx e
H^(X \ZP) is the fundamental class of X in the homology of "infinite
chains'9, we get

)) = D(ε) na(D(e)) = 1

where " n " and "U" are the natural cap and cup products Hf <g> Hr

c —•

# p _ r and H«®Hr -+ i ί ? + r respectively (see [19; 10.4] for details).
Therefore, Hn-q{X\ Zp) = H?(X; Zp) = 0 for all q and the Uni-

versal Coefficient Theorem proves that X is homologically trivial. In
particular π\(X) = 1 and X is contractible by the Whitehead Theo-
rem. Then X = Rn if n = 1, 2.

On the other hand, if n > 3 we have the Poincare Duality H^(X Z)
= Hn-«(X\ Z) = 0 (see [19; 11.4]). Since X is properly 1-connected
at infinity by Corollary 1.12 or Corollary 2.6, a convenient proper
Hurewicz Theorem (see [3; 3.4]) yields that HιJ(X\ Z) s [R"; JT]p
and the fundamental class μ^ can be represented by a p-map f:Rn-^
X. It is easily checked that /*: Hlι(Rn) -> //*Π(X) is an isomorphism
and again by [19; 11.4], /* : H*(X) -> Λ?(MW) is an isomorphism.
Now, / is a p-homotopy equivalence by [9; 4.9].

By using the results of Siebenmann [21] and Freedman [12] we get

THEOREM 3.6. If X is a connected open n-manifold {nφ2>)f then
X is homeomorphic to Rn if and only //3.5(i) or 3.5(ii) holds.

REMARK 3.7. We do not know whether Theorem 3.5(ii) is true with-
out the condition on strong ends.

Given an embedding i: J —> X, we can define a new L-S type
proper invariant hρ-cat(X, i) as follows (cf. [15; §4 and §5]).
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We define the nth canonical proper fat wedge of (X, /) as the
union

T?(X,i) = (J{Ak,i<k<n}

where A^ is the product of (n - 1) copies of X with / , where / is
placed in the kth factor. Then hρ-cat(X, ΐ) <n if there is a diagram
in ^oo

x —£—> nnx

commutative up to the p-homotopy. Here Δ is the diagonal map and
φ(i) is the natural embedding induced by /.

In contrast with Theorem 3.6, the following result holds.

3.7. PROPOSITION. For any contractible open manifold W, and any
embedding i: J -> W, hp-cat(W, /) = 2.

Proof. It is clear that hρ-cat(W^) > 2 and hρ-cat(R) = 2. For
dim(W/) = n > 2 9 it is known that W x W is 1-connected at infinity

(see [13; 1.8]). And by [12] and [21] W x W £ R 2 w . Finally we
apply the Proper Cellular Approximation Theorem (see [9]) to deform
h o Δ: W -+ R2w onto the ^-skeleton of R2n which may be regarded
as / since R2n is properly (2n - 2)-connected. So, hρ-cat(W) < 2.
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