ON THE POSTULATION OF 0-DIMENSIONAL SUBSCHEMES ON A SMOOTH QUADRIC

S. Giuffrida, R. Maggioni, and A. Ragusa

Abstract

If X is a 0 -dimensional subscheme of a smooth quadric $Q \cong$ $\mathbf{P}^{1} \times \mathbf{P}^{1}$ we investigate the behaviour of X with respect to the linear systems of divisors of any degree (a, b). This leads to the construction of a matrix of integers which plays the role of a Hilbert function of X; we study numerical properties of this matrix and their connection with the geometry of X. Further we relate the graded Betti numbers of a minimal free resolution of X on Q with that matrix, and give a complete description of the arithmetically Cohen-Macaulay 0 -dimensional subschemes of Q.

Introduction. In the last few years the interest about 0 -dimensional subschemes of \mathbf{P}^{n} has greatly grown, so many recent papers concern a deep investigation into the Hilbert function, free resolution, Betti numbers, and defining equations for such subschemes. On the other hand there has been a good deal of work on two codimensional subschemes of \mathbf{P}^{n}; hence, points of \mathbf{P}^{2}, which have both conditions, have been intensively studied. The interest on points of \mathbf{P}^{2} comes, also, because geometric properties of a variety can sometimes be given in terms of its generic hyperplane section; so, for studying curves of \mathbf{P}^{3}, one needs properties of 0 -dimensional subschemes of \mathbf{P}^{2}. A complete list of papers on these topics seems impossible to do; so we insert in the references just a few of them, which are more familiar to us.

It seems natural to generalize this situation from one side studying 0 -dimensional subschemes of any variety and in particular of surfaces, on the other side working on sections of varieties done by hypersurfaces of degree bigger than one. Therefore, a first step in this direction is to investigate 0-dimensional subschemes of a quadric ($\mathbf{P}^{1} \times \mathbf{P}^{1}$) with special regard to their behaviour with respect to the divisors of the quadric itself.

When one embeds the quadric Q in \mathbf{P}^{3}, any subscheme X of Q becomes a subscheme of \mathbf{P}^{3}; in that case one can relate properties of X as a subscheme of Q with those as a subscheme of \mathbf{P}^{3}.

Of course, studying subschemes of Q, the geometry of the surface Q plays a big role; in particular, the cohomology groups of Q play an
important part; but, unfortunately, they do not vanish as the analogues on \mathbf{P}^{n} do. This is one reason why subschemes of Q with maximal codimension need not be arithmetically Cohen-Macaulay.

A very naive question arises at this point: given a set of points X on a smooth quadric Q, how to compute its "Hilbert function" on Q, i.e. the number of conditions that X imposes to the linear systems of curves on Q. Taking into account that $\operatorname{Pic} Q \cong \mathbf{Z} \oplus \mathbf{Z}$, one notices that the Hilbert function of X takes the shape of a matrix: that is why we will call the postulation of X "the Hilbert matrix". This kind of matter seems to be completely unexplored: as far as we tried, we could find no literature on it. Therefore, the results in this paper represent just a starting step in this field.

This point of view leads to quite surprising results: two points could be non-collinear on Q, since there are "too few lines" on it; moreover these points give the easiest example of a non-arithmetically CohenMacaulay 0 -dimensional subscheme of Q. It comes out clearly how important it is to define the context of our investigation, and to use a proper nomenclature: this is the subject of the first section.

In $\S 2$ we investigate the structure of the Hilbert matrix of a 0 dimensional subscheme X of Q, with special regard to the distribution of the points of X on the lines of the two rulings.

The minimal free resolution of the ideal sheaf $\mathscr{J}_{X} \subset \mathscr{O}_{Q}$ of X, the relationships between the Hilbert matrix and the cohomology groups of \mathscr{J}_{X} are the main ingredients of $\S 3$.

In the final section the arithmetically Cohen-Macaulay 0 -dimensional subschemes of Q are characterized in terms of their Hilbert matrix. Moreover, a complete description of their minimal free resolution is given.

For the definitions and the results which are not explicitly given, we refer to Hartshorne's book [H].

1. Notation and preliminaries. Let $\mathbf{P}^{1}=\mathbf{P}_{k}^{1} \quad(k$ an algebraically closed field), let $Q=\mathbf{P}^{1} \times \mathbf{P}^{1}$ be a quadric and let \mathscr{O}_{Q} be its structure sheaf. If $D \subset Q$ is any divisor of type (a, b) we denote by $\mathscr{O}_{Q}(a, b)$ the associated sheaf and, for any sheaf \mathscr{F} on Q, we set $\mathscr{F}(a, b)=$ $\mathscr{F} \otimes \mathscr{O}_{Q}(a, b)$. We also use the following notation:

$$
H^{i}(a, b)=H^{i}\left(Q, \mathscr{O}_{Q}(a, b)\right), \quad h^{i}(a, b)=\operatorname{dim}_{k} H^{i}(a, b)
$$

and, for any sheaf \mathscr{F} on Q

$$
\begin{aligned}
H^{i}(\mathscr{F}(a, b)) & =H^{i}(Q, \mathscr{F}(a, b)), \\
h^{i}(\mathscr{F}(a, b)) & =\operatorname{dim}_{k} H^{i}(\mathscr{F}(a, b)) .
\end{aligned}
$$

Let us consider

$$
S=H_{*}^{0}(a, b)=\bigoplus_{\substack{a \geq 0 \\ b \geq 0}} H^{0}(a, b)
$$

S is in a natural way a k-algebra using product of sections. It is easy to check that S is generated, as a k-algebra, by $H^{0}(1,0)$ and $H^{0}(0,1)$ (both vector spaces of dimension 2) since for every $a, b \geq 0$ the map

$$
H^{0}(a, b) \otimes H^{0}(1,0) \otimes H^{0}(0,1) \rightarrow H^{0}(a+1, b+1)
$$

given by the product is surjective (see Lemma 2.3 for a generalization).
S is a bi-graded k-algebra taking $H^{0}(a, b)=S_{(a, b)}$ as the homogeneous component of degree (a, b). When $s \in H^{0}(a, b)$, its zero locus $(s)_{0}$ will be called a curve of type (a, b); in particular $L=(l)_{0}$ and $L^{\prime}=\left(l^{\prime}\right)_{0}$, with $l \in H^{0}(1,0)$ and $l^{\prime} \in H^{0}(0,1)$ will be mentioned as lines of type $(1,0)$ or $(1,0)$-lines, and lines of type $(0,1)$ or (0,1)-lines respectively. When no confusion can arise we will not distinguish between curves and their defining forms.

Let u, u^{\prime} and v, v^{\prime} be bases for $H^{0}(1,0)$ and $H^{0}(0,1)$; then we have a bi-graded ring isomorphism

$$
S \cong k\left[u, u^{\prime}\right] \otimes k\left[v, v^{\prime}\right]
$$

We use the above isomorphism to identify elements of S and elements of $k\left[u, u^{\prime}\right] \otimes k\left[v, v^{\prime}\right]$. We deal only with bihomogeneous ideals of S, i.e. ideals generated by elements which are homogeneous both with respect to u, u^{\prime} and v, v^{\prime}. From now on we will call them homogeneous ideals for short.

Consider the following subrings of $S: A=\bigoplus_{n \geq 0} H^{0}(0, n), B=$ $\bigoplus_{m \geq 0} H^{0}(m, 0)$; for a fixed $m \geq 0 \quad S_{(m,-)}=\bigoplus_{n \geq 0} H^{0}(m, n)$ inherits an A-module structure from S and similarly $S_{(-, n)}=$ $\bigoplus_{m \geq 0} H^{0}(m, n)$ as B-module.

When Q is embedded in \mathbf{P}^{3} by the Segre embedding, the coordinate ring of Q is $\bigoplus_{n \geq 0} H^{0}(n, n)$.

For the reader's convenience we recall the dimensions of the cohomology groups of $\mathscr{O}_{Q}(a, b)$:

$$
\begin{aligned}
& h^{0}(a, b)= \begin{cases}(a+1)(b+1) & \text { for } a, b \geq 0, \\
0 & \text { otherwise } ;\end{cases} \\
& h^{1}(a, b)= \begin{cases}-(a+1)(b+1) & \text { for } a \leq-2 \text { and } b \geq 0 \\
0 & \text { or } a \geq 0 \text { and } b \leq-2,\end{cases} \\
& h^{2}(a, b)= \begin{cases}(a+1)(b+1) & \text { for } a \leq-2 \text { and } b \leq-2, \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

$h^{0}(a, b)$ is well known; $h^{2}(a, b)$ is obtained by Serre's duality; $h^{1}(a, b)$ can be computed by using the Riemann-Roch Theorem for surfaces. Note that for any divisor $D \subset Q$ (effective or not) of type (a, b) the Euler characteristic of $\mathscr{O}_{Q}(a, b)$ is

$$
\chi\left(\mathscr{O}_{Q}(a, b)\right)=(a+1)(b+1)
$$

since only one among $H^{i}(a, b)(i=0,1,2)$ can be different from zero, that is \mathscr{Q}_{Q} has natural cohomology.

Let P be any point on Q, i.e. the zero locus of an ideal $\mathfrak{p}=$ $\left(l\left(u, u^{\prime}\right) \otimes 1,1 \otimes l^{\prime}\left(v, v^{\prime}\right)\right)$ where l and l^{\prime} are linear forms; the element $\left(a, a^{\prime} ; b, b^{\prime}\right) \in k^{2} \times k^{2}$, homogeneous in a, a^{\prime} and b, b^{\prime}, with $l\left(a, a^{\prime}\right)=0$ and $l^{\prime}\left(b, b^{\prime}\right)=0$ gives the coordinates of P as subvariety of Q, with respect to the chosen basis.

Consider the following ideals of $S: \mathfrak{u}=\left(u \otimes 1, u^{\prime} \otimes 1\right), \mathfrak{v}=$ $\left(1 \otimes v, 1 \otimes v^{\prime}\right)$; their zero locus is trivially empty. An ideal $\mathfrak{a} \subset S$ is said to be irrelevant when it contains either a power of \mathfrak{u} or a power of \mathfrak{v}. In the set of non-irrelevant homogeneous ideals of S the maximal elements are the ideals of points, i.e. generated by $l\left(u, u^{\prime}\right) \otimes 1$, $1 \otimes l^{\prime}\left(v, v^{\prime}\right)$, where l and l^{\prime} are linear forms; this is seen looking at the restrictions of these ideals to the rings $k\left[u, u^{\prime}\right], k\left[v, v^{\prime}\right]$ and noting that such rings have principal non-irrelevant ideals. As a consequence one gets that an ideal $\mathfrak{a} \subset S$ is irrelevant iff $Z(\mathfrak{a})=\varnothing$. For any homogeneous ideal $\mathfrak{a} \subset S$ we define the saturation sat \mathfrak{a} of \mathfrak{a} to be

$$
\text { sat } \mathfrak{a}=\left\{f \in S \mid f \mathfrak{u}^{t} \subset \mathfrak{a} \text { for some } t\right\}+\left\{f \in S \mid f \mathfrak{v}^{t^{\prime}} \subset \mathfrak{a} \text { for some } t^{\prime}\right\} .
$$

By standard techniques one shows that Hilbert's Nullstellensatz holds in S :

Theorem 1.1. Let $\mathfrak{a} \subset S$ be a homogeneous saturated ideal and $f \in S$ a homogeneous element. If $Z(f) \supseteq Z(\mathfrak{a})$ then $f \in \sqrt{\mathfrak{a}}$.

The next theorem gives basic information about the generators for a saturated ideal of height 2 of S.

Theorem 1.2. Let $\mathfrak{a} \subset S$ be a saturated ideal of height 2. Then any minimal set of generators of \mathfrak{a} contains just one element of degree $(0, n)$ for some n and just one element of degree $(m, 0)$ for some m.

Proof. Since \mathfrak{a} is saturated of height 2, then it is pure, so there exists an S-sequence f, g in \mathfrak{a}. Consider the resultants $R_{1}\left(u^{\prime} \otimes 1\right)$ and $R_{2}(u \otimes 1)$ of f and g with respect to $u \otimes 1$ and $u^{\prime} \otimes 1$; these are elements of \mathfrak{a} of the following type: $R_{1}=u^{\prime t} \otimes h^{\prime}\left(v, v^{\prime}\right), R_{2}=$ $u^{t} \otimes h\left(v, v^{\prime}\right)$ where h and h^{\prime} are forms with the same degree. Observe that $h\left(v, v^{\prime}\right)=h^{\prime}\left(v, v^{\prime}\right)$: indeed they are resultants of f and g regarded as homogeneous polynomials in $u \otimes 1$ and $u^{\prime} \otimes 1$, and f, g have no common components. Since \mathfrak{a} is saturated $1 \otimes h^{\prime}\left(v, v^{\prime}\right) \in$ \mathfrak{a}. Similarly one proves that in \mathfrak{a} there exists an element of degree $(m, 0)$. Uniqueness follows since the graded rings $k\left[u, u^{\prime}\right], k\left[v, v^{\prime}\right]$ have principal homogeneous ideals.

Remark 1.3. As a consequence of the above theorem, a saturated ideal of S of height 2 is a complete intersection iff it is generated by 2 elements of type $h\left(u, u^{\prime}\right) \otimes 1,1 \otimes h^{\prime}\left(v, v^{\prime}\right)$, where h and h^{\prime} are any forms. From now on we shall mean by complete intersection on Q (c.i. for short) a subscheme whose saturated ideal has just 2 generators.
2. 0-dimensional subschemes of Q. Let $X \subset Q$ be a 0 -dimensional subscheme, i.e. a subscheme associated to a saturated ideal in S of height 2 . In this paper we shall for simplicity concentrate on the case when X consists of distinct points, but the results carry over to the general situation.

We can associate to any 0-dimensional subscheme X of Q the bigraded S-algebra $S(X)=S / I(X)$, where $I(X)$ is the homogeneous saturated ideal of X in S. On the analogy of Hilbert function for graded modules, we can define the function

$$
M_{X}: \mathbf{Z} \times \mathbf{Z} \rightarrow \mathbf{N}
$$

by

$$
M_{X}(i, j)=\operatorname{dim}_{k}(S(X))_{(i, j)}=\operatorname{dim}_{k}(S)_{(i, j)}-\operatorname{dim}_{k}(I(X))_{(i, j)}
$$

where for every bi-graded S-module N we denote by $(N)_{(i, j)}$ the component of degree (i, j). If \mathscr{I}_{X} is the ideal sheaf of X in Q, we
also have

$$
M_{X}(i, j)=h^{0}(i, j)-h^{0}\left(\mathscr{J}_{X}(i, j)\right)
$$

The function M_{X} produces a matrix with integer entries, $M_{X}=$ $\left(M_{X}(i, j)\right)$, which will be called the Hilbert matrix of X. Note that $M_{X}(i, j)=0$ for $i<0$ or $j<0$; so, from now on we restrict ourselves to the range $i \geq 0, j \geq 0$. When no confusion can arise we will use the notation $M_{X}=\left(m_{i j}\right)$ (warning: despite the name there is no relation between this matrix and the Hilbert-Burch matrix; but we will use this terminology since it seems the most natural).

From the defining exact sequence

$$
0 \rightarrow \mathscr{I}_{X} \rightarrow \mathscr{O}_{Q} \rightarrow \mathscr{O}_{X} \rightarrow 0
$$

taking cohomology we have:

$$
\begin{aligned}
h^{1}\left(\mathscr{J}_{X}(i, j)\right) & =h^{0}\left(\mathscr{J}_{X}(i, j)\right)-h^{0}(i, j)+h^{0}\left(\mathscr{O}_{X}(i, j)\right) \\
& =\operatorname{deg} X-m_{i j} \text { for } i, j \geq 0 \\
h^{2}\left(\mathscr{I}_{X}(i, j)\right) & =0 \quad \text { for } i, j \geq 0
\end{aligned}
$$

since $h^{2}\left(\mathscr{O}_{X}(i, j)\right)=0$ and in that range $H^{1}(i, j)=H^{2}(i, j)=0$.
It will be useful in the sequel to consider in $\mathbf{Z} \times \mathbf{Z}$ the partial ordering induced by the usual one on \mathbf{Z}; we will denote it by " \leq ".

Remark 2.1. When one thinks of Q as a subvariety of \mathbf{P}^{3} by the Segre embedding, X becomes a subscheme of \mathbf{P}^{3}. In this case, if $H F(X,-)$ is the Hilbert function of X in \mathbf{P}^{3}, one has

$$
H F(X, i)=m_{i i} \quad \text { for } i \geq 0
$$

This easily follows taking cohomology of the defining exact sequence of Q in \mathbf{P}^{3} and of the exact sequence

$$
0 \rightarrow \mathscr{I}_{Q} \rightarrow \mathscr{I}_{X}^{\prime} \rightarrow \mathscr{I}_{X} \rightarrow 0
$$

where \mathscr{I}_{Q} and \mathscr{I}_{X}^{\prime} are the ideal sheaves of Q and X in \mathbf{P}^{3}.
Let $M=\left(m_{i j}\right)$ be a matrix, with $i, j \in \mathbf{Z}$; we will use the following notation: we set

$$
\Delta^{R} M=\left(a_{i j}\right), \quad \Delta^{C} M=\left(b_{i j}\right)
$$

for the matrices of differences by rows and by columns of M, respectively. Thus we have $a_{i j}=m_{i j}-m_{i j-1}, b_{i j}=m_{i j}-m_{i-1 j}$. It is easy to check that $\Delta^{R}\left(\Delta^{C} M\right)=\Delta^{C}\left(\Delta^{R} M\right)$; this matrix will be denoted by $\Delta M=\left(c_{i j}\right)$ and referred to as the first difference matrix of M. The second difference matrix of M is $\Delta^{2} M=\Delta(\Delta M)=\left(d_{i j}\right)$.

Since for every (h, k) one has $c_{h k}=m_{h k}+m_{h-1 k-1}-m_{h k-1}-$ $m_{h-1 k}$, when $M=M_{X}$ is the Hilbert matrix of a subscheme X of Q one sees that

$$
m_{i j}=\sum_{\substack{h \leq i \\ k \leq j}} c_{h k} \quad \text { and } \quad c_{i j}=\sum_{\substack{h \leq i \\ k \leq j}} d_{h k} .
$$

Definition 2.2. Let $M^{\prime}=\left(m_{i j}^{\prime}\right)$ be a matrix such that $m_{i j}^{\prime}=0$ for $i<0$ or $j<0$. We say that M^{\prime} is admissible when its first difference $\Delta M^{\prime}=\left(c_{i j}^{\prime}\right)$ satisfies the following conditions:
(1) $c_{i j}^{\prime} \leq 1$ and $c_{i j}^{\prime}=0$ for $i \gg 0$ or $j \gg 0$;
(2) if $c_{i j}^{\prime} \leq 0$ then $c_{r s}^{\prime} \leq 0$ for any $(r, s) \geq(i, j)$;
(3) for every (i, j) $0 \leq \sum_{t=0}^{j} c_{i t}^{\prime} \leq \sum_{t=0}^{j} c_{i-1 t}^{\prime}$, and $0 \leq \sum_{t=0}^{i} c_{t j}^{\prime} \leq \sum_{t=0}^{j} c_{t j-1}^{\prime}$.
When M^{\prime} is an admissible matrix the non-zero part of ΔM^{\prime} is contained in a rectangle with opposite vertices $(0,0),(a, b)$ and the elements of the first row (resp. of the first column) are:

$$
\begin{aligned}
& c_{0 j}^{\prime}=1 \text { if } j \leq b, \quad \text { and } \quad c_{0 j}^{\prime}=0 \text { if } j>b \\
& \text { (resp. } \left.c_{i 0}^{\prime}=1 \text { if } i \leq a, \text { and } c_{i 0}^{\prime}=0 \text { if } i>a\right) .
\end{aligned}
$$

In this case we say M^{\prime}, or ΔM^{\prime}, to be of size (a, b).
We will show that the Hilbert matrix of a 0 -dimensional subscheme of Q is admissible (see Propositions 2.5 and 2.7).

Lemma 2.3. Let $X \subset Q$ be a 0-dimensional subscheme. For the cup-product morphisms

$$
\begin{aligned}
& \varphi_{i}: H^{0}\left(\mathscr{J}_{X}(i, j)\right) \otimes H^{0}(1,0) \rightarrow H^{0}\left(\mathscr{J}_{X}(i+1, j)\right), \\
& \psi_{j}: H^{0}\left(\mathscr{J}_{X}(i, j)\right) \otimes H^{0}(0,1) \rightarrow H^{0}\left(\mathscr{J}_{X}(i, j+1)\right),
\end{aligned}
$$

we have:

$$
\begin{aligned}
\operatorname{dim}_{k} \operatorname{Im} \varphi_{i} & =2 h^{0}\left(\mathscr{J}_{X}(i, j)\right)-h^{0}\left(\mathscr{J}_{X}(i-1, j)\right), \\
\operatorname{dim}_{k} \operatorname{Im} \psi_{j} & =2 h^{0}\left(\mathscr{J}_{X}(i, j)\right)-h^{0}\left(\mathscr{I}_{X}(i, j-1)\right) .
\end{aligned}
$$

Proof. Let $s_{1}, s_{2}, \ldots, s_{r}$ be a basis of $H^{0}\left(\mathscr{J}_{X}(i-1, j)\right)$, where $r=$ $h^{0}\left(\mathscr{J}_{X}(i-1, j)\right)$, and let u, u^{\prime} be a basis of $H^{0}(1,0)$ not vanishing at any point of X. Consider the following basis for $H^{0}\left(\mathscr{J}_{X}(i, j)\right)$:

$$
s_{1} u, s_{2} u, \ldots, s_{r} u, s_{r+1}, \ldots, s_{n}
$$

where $n=h^{0}\left(\mathscr{J}_{X}(i, j)\right)$; notice that no element in the vector subspace spanned by s_{r+1}, \ldots, s_{n} can contain u as a component. Now, a standard computation shows that (see [GMa], Lemma 3.4)

$$
s_{1} u^{2}, s_{2} u^{2}, \ldots, s_{r} u^{2}, s_{r+1} u, \ldots, s_{n} u, s_{r+1} u^{\prime}, \ldots, s_{n} u^{\prime}
$$

is a basis for $\operatorname{Im} \varphi_{i}$. This proves the first part; the second part follows similarly.

Remark 2.4. Observe that, for every $i \geq 0, \bigoplus_{j \geq 0} H^{0}\left(\mathscr{S}_{X}(i, j)\right)$ is a torsion-free A-module; since A is a domain with principal homogeneous non-irrelevant ideals, this A-module is free (cf., e.g., [AF] Cap. II, §8). In particular, $S_{(i,-)}$ is A-free for every $i \geq 0$.

The same is true for $\bigoplus_{i \geq 0} H^{0}\left(\mathscr{J}_{X}(i, j)\right)$ and for $S_{(-, j)}$ as B modules for every $j \geq 0$.

Proposition 2.5. Let $X \subset Q$ be a 0-dimensional subscheme, and $M_{X}=\left(m_{i j}\right)$ its Hilbert matrix. Then, the matrix $\Delta^{R} M_{X}\left(\right.$ resp. $\left.\Delta^{C} M_{X}\right)$ is non-increasing by rows (resp. by columns), i.e. for every $(i, j) \geq$ $(0,0) \quad a_{i j} \geq a_{i j+1}\left(\right.$ resp. $\left.b_{i j} \geq b_{i+1 j}\right)$. Moreover $a_{i j}=0$ for $j \gg 0$ (resp. $b_{i j}=0$ for $i \gg 0$).

Proof. It is enough to prove the theorem for $\Delta^{R} M_{X}$. For simplicity we set $h_{i j}=h^{0}\left(\mathscr{J}_{X}(i, j)\right)$, so by Lemma 2.3 we have $h_{i j+1} \geq 2 h_{i j}-$ $h_{i j-1}$. Using $m_{r s}=(r+1)(s+1)-h_{r s}$ we get

$$
2 m_{i j}-m_{i j-1} \geq m_{i j+1}
$$

from which we obtain our result $a_{i j} \geq a_{i j+1}$ for every $(i, j) \geq(0,0)$.
For the second part we know that $m_{i i}=H F(X, i)=\operatorname{deg} X$ for $i \gg 0$; since in any case $m_{i j} \leq \operatorname{deg} X$, the conclusion follows using the first part.

Remark 2.6. Let $i \geq 0$ be a fixed integer, and set

$$
q_{i}=\min \left\{j \mid h_{i j}>0\right\}
$$

where, as before, $h_{i j}=h^{0}\left(\mathscr{J}_{X}(i, j)\right)$. For every $j \geq q_{i}$ we set $\alpha_{i j}=$ $h_{i j}-\operatorname{dim}_{k} \operatorname{Im} \psi_{j-1}$ (see Lemma 2.3 for notation): note that $\alpha_{i j}$ is the number of minimal generators of degree (i, j) for the A-module

$$
H_{*}^{0}\left(\mathscr{J}_{X}(i,-)\right)=\bigoplus_{j \geq 0} H^{0}\left(\mathscr{J}_{X}(i, j)\right)
$$

Applying Lemma 2.3 we have:

$$
\begin{aligned}
& \alpha_{i q_{i}}=(i+1)\left(q_{i}+1\right)-m_{i q_{i}}, \\
& \alpha_{i q_{i}+1}=(i+1)\left(q_{i}+2\right)-m_{i q_{t}+1}-2 \alpha_{i q_{i}}, \\
& \alpha_{i q_{i}+2}=(i+1)\left(q_{i}+3\right)-m_{i q_{i}+2}-2 \alpha_{i q_{t}+1}-3 \alpha_{i q_{i}}, \\
& \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots \\
& \alpha_{i j}=(i+1)(j+1)-m_{i j}-2 \alpha_{i j-1}-3 \alpha_{i j-2}-\cdots-\left(j+1-q_{i}\right) \alpha_{i q_{i}},
\end{aligned}
$$

from which we get

$$
h_{i j}=\alpha_{i j}+2 \alpha_{i j-1}+3 \alpha_{i j-2}+\cdots+\left(j+1-q_{i}\right) \alpha_{i q_{i}} .
$$

A simple computation shows

$$
a_{i j}=(i+1)(j+1)-h_{i j}-\left[(i+1) j-h_{i j-1}\right]=i+1-\sum_{t=q_{i}}^{j} \alpha_{i t} .
$$

This equality, since $a_{i j}=0$ for $j \gg 0$, shows that the A-free module $H_{*}^{0}\left(\mathscr{J}_{X}(i,-)\right)$ has $i+1$ generators. Of course the same happens for the B-free module $H_{*}^{0}\left(\mathscr{J}_{X}(-, j)\right)$.

Proposition 2.7. Let $X \subset Q$ be a 0 -dimensional subscheme, and $M_{X}=\left(m_{i j}\right)$ its Hilbert matrix. Then for $\Delta M_{X}=\left(c_{i j}\right)$ we have:
(i) if $c_{i j} \leq 0$ then $c_{r s} \leq 0$ for every $(r, s) \geq(i, j)$;
(ii) if $c_{i j}>0$ then $c_{i j}=1$.

Proof. To prove (i) it is enough, for symmetry, to prove that if $c_{i j} \leq 0$ then $c_{r j} \leq 0$ for every $r \geq i$. Let us consider the following piece of the matrix M_{X}

$$
\begin{array}{ll}
m_{i-1 j-1} & m_{i-1 j} \\
m_{i j-1} & m_{i j} \\
m_{i+1 j-1} & m_{i+1 j}
\end{array}
$$

We start with proving that $c_{i j} \leq 0$ implies $c_{i+1 j} \leq 0$. If $c_{i j} \leq 0$ then $m_{i j}<(i+1)(j+1)$ (since otherwise $m_{r s}=(r+1)(s+1)$ for every $(r, s) \leq(i, j)$, and so $\left.c_{i j}=1\right)$, consequently $h_{i j}>0$. Our aim is to prove that $m_{i+1 j} \leq m_{i j}+m_{i+1 j-1}-m_{i j-1}$ or equivalently that

$$
h_{i+1 j}-h_{i+1 j-1}>h_{i j}-h_{i j-1}
$$

the conclusion will follow by induction.

Let L be a $(1,0)$-line and L^{\prime} be a $(0,1)$-line such that $X \cap L=$ $X \cap L^{\prime}=\varnothing$, and the point $P=L \cap L^{\prime}$ is not in the base locus of $H^{0}\left(\mathscr{I}_{X}(i+1, j)\right)$. Consider the commutative diagram

$$
\begin{aligned}
& 0 \rightarrow H^{0}\left(\mathscr{J}_{X}(i, j-1)\right) \quad \xrightarrow{\alpha} \quad H^{0}\left(\mathscr{J}_{X}(i, j)\right) \quad \rightarrow \text { Coker } \alpha \rightarrow 0 \\
& \downarrow^{\beta} \quad \beta^{\prime} \quad \downarrow^{\prime \prime} \\
& 0 \rightarrow H^{0}\left(\mathscr{J}_{X}(i+1, j-1)\right) \xrightarrow{\alpha} H^{0}\left(\mathscr{J}_{X}(i+1, j)\right) \rightarrow \text { Coker } \alpha^{\prime} \rightarrow 0
\end{aligned}
$$

in which α and α^{\prime} are given by multiplication for L^{\prime}, β and β^{\prime} are given by multiplication for L, and $\beta^{\prime \prime}$ is the induced map. Since $\operatorname{dim} \operatorname{Coker} \alpha=h_{i j}-h_{i j-1}$ and $\operatorname{dim} \operatorname{Coker} \alpha^{\prime}=h_{i+1 j}-h_{i+1 j-1}$ it is enough to prove that $\beta^{\prime \prime}$ is injective but not surjective. Let $\bar{f} \in$ Coker α be a non-zero element: such an element exists since $H^{0}\left(\mathscr{J}_{X}(i, j)\right) \neq 0$ and α is not surjective; then \bar{f} is the image of an element $f \in H^{0}\left(\mathscr{J}_{X}(i, j)\right)$ which does not contain L^{\prime} as a factor. Now $\beta^{\prime \prime}(\bar{f}) \neq 0$ since $\beta^{\prime}(f)=f L \notin \operatorname{Im} \alpha^{\prime}$ by the choice of f.

To prove that $\beta^{\prime \prime}$ is not surjective observe that not any element in $H^{0}\left(\mathscr{J}_{X}(i+1, j)\right)$ is of the form $L f+L^{\prime} g$ with $f \in H^{0}\left(\mathscr{J}_{X}(i, j)\right)$ and $g \in H^{0}\left(\mathscr{J}_{X}(i+1, j-1)\right)$: in fact $L f+L^{\prime} g$ vanishes at P for every f and g, while P is not in the base locus of $H^{0}\left(\mathscr{J}_{X}(i+1, j)\right)$.

For (ii) it is sufficient to note that if for some (i, j) we had $c_{i j}>1$, then by the first part of the proposition one would have $c_{r s} \geq 1$ for every $(r, s) \leq(i, j)$. Hence we would have $m_{i j}=\sum_{h \leq i, k \leq j} c_{h k}>$ $(i+1)(j+1)$, a contradiction.

Remark 2.8. Let $M_{X}=\left(m_{i j}\right)$ be the Hilbert matrix of a 0 -dimensional subscheme $X \subset Q$. By previous propositions the following terminology makes sense.

For every $i \geq 0$ we set

$$
j(i)=\min \left\{t \in \mathbf{N} \mid m_{i t}=m_{i t+1}\right\}=\min \left\{t \in \mathbf{N} \mid a_{i t+1}=0\right\},
$$

and for every $j \geq 0$ we set

$$
i(j)=\min \left\{t \in \mathbf{N} \mid m_{t j}=m_{t+1 j}\right\}=\min \left\{t \in \mathbf{N} \mid b_{t+1 j}=0\right\} .
$$

The sequences $i(j)$ and $j(i)$ are easily seen to be non-increasing (use the above propositions), and hence the meaningful part of the matrix M_{X} sits inside the rectangle with opposite vertices $(0,0),(i(0), j(0))$; this means that for every $i>i(0)$ the i th row is equal to the $i(0)$ th row, and for every $j>j(0)$ the j th column is equal to the $j(0)$ th column. Of course for $(i, j) \geq(i(0), j(0)) m_{i j}=\operatorname{deg} X$, and outside the above rectangle ΔM_{X} has null entries.

With this notation and with Theorem 1.2 in mind, one sees that X is contained in a curve of type $(i(0)+1,0)$ and in a curve of type $(0, j(0)+1)$; therefore the minimal complete intersection containing X is given by these two curves (see Remark 1.3).

Remark 2.9. (i) One can represent the result of Proposition 2.7 just saying that each column of $\Delta^{R} M_{X}$ is a sequence of type $1,2, \ldots$, $t-1, t, t_{1}, t_{2}, \ldots$ in which $t \geq t_{1} \geq \cdots$, and $t_{i}=t_{i+1}$ for $i \gg 0$. The same holds for the rows of $\Delta^{C} M_{X}$.
(ii) In ΔM_{X} we have:
$c_{0 j}=\left\{\begin{array}{ll}1 & \text { for } 0 \leq j \leq j(0), \\ 0 & \text { otherwise, }\end{array} \quad\right.$ and $\quad c_{i 0}= \begin{cases}1 & \text { for } 0 \leq i \leq i(0), \\ 0 & \text { otherwise } .\end{cases}$
(iii) Proposition 2.5 in terms of the matrix ΔM_{X} can be expressed as:
for every $(i, j) \quad 0 \leq \sum_{t=0}^{j} c_{i t} \leq \sum_{t=0}^{j} c_{i-1 t}$: this means $b_{i j} \leq b_{i-1 j} ;$
for every $(i, j) \quad 0 \leq \sum_{t=0}^{i} c_{t j} \leq \sum_{t=0}^{i} c_{t j-1}$: this means $a_{i j} \leq a_{i j-1}$.
(iv) Propositions 2.5 and 2.7 give on the matrix $\Delta^{2} M_{X}=\left(d_{i j}\right)$ the following conditions:
(1) for every $i, \sum_{t \geq 0} d_{i t}=0$ and, for every $j, \sum_{t \geq 0} d_{t j}=0$; this because $c_{i j}=0$ for $i \gg 0$ or for $j \gg 0$;

$$
d_{i j}= \begin{cases}1 & \text { for } i=j=0, \tag{2}\\ 0 & \text { for } i=0 \text { and } j \neq j(0)+1 \text { or } j=0 \text { and } i \neq i(0)+1, \\ -1 & \text { for } i=0 \text { and } j=j(0)+1 \text { or } j=0 \text { and } i=i(0)+1\end{cases}
$$

(3) If $\sum_{r \leq i, s \leq j} d_{r s} \leq 0$ then $\sum_{r \leq i^{\prime}, s \leq j^{\prime}} d_{r s} \leq 0$ for $\left(i^{\prime}, j^{\prime}\right) \geq(i, j)$;
(4) for every (i, j) we have by a straight computation:

$$
\begin{aligned}
& \sum_{t=0}^{j} c_{i t}=\sum_{s \leq j}\left[(s+1) \sum_{t \leq i} d_{t j-s}\right] \text { and } \\
& \sum_{t=0}^{i} c_{t j}=\sum_{s \leq i}\left[(s+1) \sum_{t \leq j} d_{i-s t}\right]
\end{aligned}
$$

so the inequalities in (iii) become:

$$
\sum_{s \leq j}\left[(s+1) \sum_{t \leq i} d_{t j-s}\right] \geq 0, \quad \text { and } \quad \sum_{s \leq i}\left[(s+1) \sum_{i \leq j} d_{i-s t}\right] \geq 0,
$$

$$
\sum_{s \leq j}(s+1) d_{i j-s} \leq 0, \quad \text { and } \quad \sum_{s \leq i}(s+1) d_{i-s j} \leq 0
$$

Remark 2.10. When Q is embedded in \mathbf{P}^{3} then the sequence $m_{i i}$ is the Hilbert function of X as a subscheme of \mathbf{P}^{3} (see Remark 2.1). In this case, if $m_{i i}<(i+1)^{2}$ then $\Delta H F(X, i) \geq \Delta H F(X, i+1)$. In fact, by Proposition 2.5 we have $a_{i-1 i} \geq a_{i-1 i+1}$ and $b_{i i+1} \geq b_{i+1 i+1}$; by Proposition 2.7 and the hypothesis we have $b_{i i} \geq b_{i i+1}$. From these inequalities with a simple computation we get:

$$
\begin{aligned}
& m_{i-1 i+1}-m_{i-1 i} \leq m_{i-1 i}-m_{i-1 i-1} \quad \text { and } \\
& m_{i+1 i+1} \leq m_{i-1 i+1}+2 b_{i i}=m_{i-1 i+1}+2 m_{i i}-2 m_{i-1 i}
\end{aligned}
$$

summing up we obtain $m_{i+1 i+1}+m_{i-1 i-1} \leq 2 m_{i i}$, i.e. $m_{i+1 i+1}-m_{i i} \leq$ $m_{i i}-m_{i-1 i-1}$.

This result was recently proved, by different methods, in [R1].

Theorem 2.11. Let $X \subset Q$ be a 0 -dimensional subscheme, then its Hilbert matrix $M_{X}=\left(m_{i j}\right)$ is admissible.

Proof. Just apply Propositions 2.5 and 2.7.
Now we will give some geometric information contained in the Hilbert matrix of a 0 -dimensional subscheme of Q.

As a prelude to the next theorem, let us look at the following example. Let $X \subset Q$ be a set of 16 points with Hilbert matrix M_{X}, of size $(3,4)$:

	0			1	2	3
4	5	b				
0	1	2	3	4	5	5
1	2	4	6	8	10	10
2	3	6	9	12	14	14
3	4	8	11	14	16	16
4	4	8	11	14	16	16
a						

If one writes down the matrices $\Delta^{R} M_{X}$ and $\Delta^{C} M_{X}$ and uses the next theorem, one sees that there are two lines of type $(1,0)$ each
containing 5 points, one with 4 points and one with 2 points; similarly there are two lines of type $(0,1)$ each containing four points, two more lines with 3 points, and one with 2 points.

Moreover, in this particular example, the same thing can be seen more easily looking directly at the matrix ΔM_{X}

and counting the number of " 1 's" in each row and column (see $\S 4$).
What we are saying for points on the quadric makes sense also for any 0 -dimensional subscheme of Q. We need to explain what " n points on a line" means for non-reduced subschemes.

Let X be any 0 -dimensional subscheme of Q and $I=I(X) \subset S$ be its homogeneous saturated ideal. For any homogeneous form $f \in S$ consider the ideal (I, f) : this is not in general a saturated ideal, anyway denote by Y the subscheme of X that it defines. Then the residual subscheme of Y in X is defined by the ideal $I: f$, which is saturated as one can see by a standard check.

Since $I(X)$ is saturated, it contains a form $f\left(u, u^{\prime}\right) \otimes 1$ of degree $(n, 0)$ for some n (see Theorem 1.2). Let $f\left(u, u^{\prime}\right)=\prod_{i=1}^{r}\left(a_{i} u+b_{i} u^{\prime}\right)^{s}$ be the decomposition of $f\left(u, u^{\prime}\right)$, and set $a_{i} u+b_{i} u^{\prime}=u_{i} \quad(i=$ $1,2, \ldots, r)$. The line u_{i} appears with multiplicity s_{i} in the decomposition of f; we count the number of "points of X " on each copy of u_{i} in the following way:

$$
\text { set } \begin{aligned}
& J_{1}=\left(I, u_{i}\right) \text { and } I_{1}=I: u_{i} \\
& J_{2}=\left(I_{1}, u_{i}\right) \text { and } I_{2}=I_{1}: u_{i} ; \\
& \ldots \cdots \\
& J_{s_{i}}=\left(I_{s_{i}-1}, u_{i}\right) \text { and } I_{s_{i}}=I_{s_{i}-1}: u_{i} \\
&\left(I_{s_{i}} \text { is not supported at any point of } u_{i}\right) .
\end{aligned}
$$

Now the "first" copy of u_{i} contains $\operatorname{deg}\left(\right.$ sat $\left.J_{1}\right)$ points of X, \ldots, the "last one" contains $\operatorname{deg}\left(\operatorname{sat} J_{s_{i}}\right)$ points of X.

In the next theorem we shall use the following property (Bézout): with the above notation let $g \in S$ be any irreducible form of degree (a, b) and $h \in H^{0}\left(\mathscr{I}_{X}(c, d)\right)$. If $\operatorname{deg}(\operatorname{sat}(I, g))>a d+b c$ then $h=g g^{\prime}$ for some g^{\prime}.

Theorem 2.12. Let $X \subset Q$ be a 0-dimensional subscheme, and $M_{X}=\left(m_{i j}\right)$ its Hilbert matrix. Then for every $j \geq 0$ there are just $a_{i(0) j}-a_{i(0) j+1}$ lines of type $(1,0)$ each containing just $j+1$ points of X and, similarly, for every $i \geq 0$ there are just $b_{i j(0)}-b_{i+1 j(0)}$ lines of type $(0,1)$ each containing just $i+1$ points of X.

Proof. We establish the theorem for the (1,0)-lines; one could work in a similar way for the other lines. We proceed by induction on j. Let us consider the following inductive hypothesis: there are just

$$
\left\{\begin{array}{l}
r_{1}=a_{i(0) 0}-a_{i(0) 1}(1,0) \text {-lines containing just } 1 \text { point of } X \tag{1}\\
r_{2}=a_{i(0) 1}-a_{i(0) 2}(1,0) \text {-lines containing just } 2 \text { points of } X \\
\ldots \\
r_{j}=a_{i(0) j-1}-a_{i(0) j}(1,0) \text {-lines containing just } j \text { points of } X
\end{array}\right.
$$

As the hypothesis (1) is empty for $j=0$, we need deal only with the general case. Denote by r_{j+1} the number of $(1,0)$-lines containing just $j+1$ points of X.

Since X is contained in $i(0)+1(1,0)$-lines, by hypothesis (1) there are

$$
\delta=i(0)+1-\sum_{t=1}^{j+1} r_{t}
$$

lines containing more than $j+1$ points of X; therefore every element of $H^{0}\left(\mathscr{J}_{X}(i(0), j+1)\right)$ is the union of a fixed curve f of degree $(\delta, 0)$ (δ fixed lines when X is reduced) and a curve of type $(i(0)-\delta, j+1)$ passing through X^{\prime}, where $X^{\prime} \subset X$ is the subscheme defined by $I(X): f$ (when X is reduced X^{\prime} is the subset of points in X lying on the remaining lines); of course $\operatorname{deg} X^{\prime}=\sum_{t=1}^{j+1} t r_{t}$.

Claim. X^{\prime} imposes independent conditions on $H^{0}(i(0)-\delta, j+1)$.
We show that $m_{i(0)-\delta j}^{\prime}=\operatorname{deg} X^{\prime}$ where $M_{X^{\prime}}=\left(m_{i j}^{\prime}\right)$ denotes the Hilbert matrix of X^{\prime}.

Observe first that for $t \leq j+1$, by definition of X^{\prime} one has:

$$
\begin{aligned}
m_{i(0) t} & =(i(0)+1)(t+1)-h^{0}\left(\mathscr{J}_{X}(i(0), t)\right) \\
& =(i(0)+1-\delta)(t+1)-h^{0}\left(\mathscr{I}_{X^{\prime}}(i(0)-\delta, t)\right)+\delta(t+1) \\
& =m_{i(0)-\delta t}^{\prime}+\delta(t+1)
\end{aligned}
$$

Since by (1), for every $p \leq j$, we have $r_{p}+\cdots+r_{j}=a_{i(0) p-1}-a_{i(0) j}$, we can compute:

$$
\begin{align*}
\operatorname{deg} X^{\prime}= & \sum_{t=1}^{j+1} t r_{t}=\left(r_{1}+\cdots+r_{j}\right)+\left(r_{2}+\cdots+r_{j}\right) \tag{2}\\
& +\cdots+r_{j}+(j+1) r_{j+1} \\
= & \left(a_{i(0) 0}-a_{i(0) j}\right)+\left(a_{i(0) 1}-a_{i(0) j}\right) \\
& +\cdots+\left(a_{i(0) j-1}-a_{i(0) j}\right)+(j+1) r_{j+1} \\
= & m_{i(0) j}-(j+1)\left(a_{i(0) j}-r_{j+1}\right) .
\end{align*}
$$

Again by (1) one gets:

$$
\begin{aligned}
a_{i(0) j} & =a_{i(0) j-1}-r_{j}=a_{i(0) j-2}-r_{j-1}-r_{j}=\cdots=a_{i(0) 0}-r_{1}-\cdots-r_{j} \\
& =i(0)+1-r_{1}-\cdots-r_{j} .
\end{aligned}
$$

By substituting in (2) we have

$$
\begin{aligned}
\operatorname{deg} X^{\prime} & =m_{i(0) j}-(j+1)\left(i(0)+1-\sum_{t=1}^{j+1} r_{t}\right) \\
& =m_{i(0) j}-\delta(j+1)=m_{i(0)-\delta j}^{\prime} .
\end{aligned}
$$

Now, since

$$
\begin{aligned}
H^{0}\left(\mathscr{J}_{X}(i(0), j+1)\right) & \cong H^{0}\left(\mathscr{J}_{X^{\prime}}(i(0)-\delta, j+1)\right) \quad \text { and } \\
i(0)-\delta+1 & =\sum_{t=1}^{j+1} r_{t}
\end{aligned}
$$

by the claim we have:

$$
\begin{aligned}
m_{i(0) j+1} & =(i(0)+1)(j+2)\left[\left(\sum_{t=1}^{j+1} r_{t}\right)(j+2)-\sum_{t=1}^{j+1} t r_{t}\right] \\
& =(i(0)+1)(j+2)-\sum_{t=1}^{j+1}(j+2-t) r_{t}
\end{aligned}
$$

on the other hand, for every $s \leq j$, summing up the relations in (1), we have

$$
\sum_{t=1}^{s} r_{t}=a_{i(0) 0}-a_{i(0) s}=i(0)+1-a_{i(0) s}
$$

so by definition of $a_{i j}$ we get:

$$
\begin{aligned}
m_{i(0) j} & =i(0)+1+\sum_{s=1}^{j} a_{i(0) s}=i(0)+1+\sum_{s=1}^{j}\left[(i(0)+1)-\sum_{t=1}^{s} r_{t}\right] \\
& =(i(0)+1)(j+1)-\sum_{s=1}^{j}(j-s+1) r_{s}
\end{aligned}
$$

Finally, we get

$$
\begin{aligned}
a_{i(0) j+1}= & m_{i(0) j+1}-m_{i(0) j} \\
= & (i(0)+1)(j+2)-\sum_{t=1}^{j+1}(j+2-t) r_{t} \\
& -(i(0)+1)(j+1)+\sum_{t=1}^{j}(j+1-t) r_{t} \\
= & i(0)+1-\sum_{t=1}^{j} r_{t}-r_{j+1}=a_{i(0) j}-r_{j+1}
\end{aligned}
$$

Corollary 2.13. With the hypotheses of the above theorem, every linear system of curves of type (i, j) passing through X, with $i \leq i^{*}=$ $\min \left\{t \in N \mid m_{t j(t)}=\operatorname{deg} X\right\}\left(r e s p . j \leq j^{*}=\min \left\{t \in N \mid m_{i(t) t}=\operatorname{deg} X\right\}\right)$ has at least one fixed line of type $(0,1)$ (resp. of type $(1,0)$).

Proof. By minimality on i^{*}, in the matrix $\Delta^{C} M_{X}$ we have $b_{i^{*}+1 j\left(i^{*}\right)}$ $=0$ and $b_{i^{*} j\left(i^{*}\right)}>0$. Note that $b_{i^{*} j(0)}>0$ because $m_{i^{*} j(0)}=\operatorname{deg} X$ and $m_{i^{*}-1 j(0)}<\operatorname{deg} X$.

Applying the previous theorem one sees that there are $b_{i^{*} j(0)}(0,1)-$ lines containing $i^{*}+1$ points of X. Every curve of type (i, j) passing through X, with $i \leq i^{*}$, will contain such lines. One can repeat the same argument starting with $\Delta^{R} M_{X}$.

Example 2.14. Not every admissible matrix is the Hilbert matrix of some 0 -dimensional subscheme of Q. The following admissible matrix explains this situation:

We want to show that there is no set of 10 points $X \subset Q$ such that $M=M_{X}$. By Theorem 2.12 such an X would belong to $5(1,0)$ lines L_{i} and to $5(0,1)$-lines $L_{i}^{\prime}, 2$ points of X on each of these lines. Looking at M one sees that $h^{0}\left(\mathscr{J}_{X}(2,3)\right)=3$; therefore there would exist a curve C of type $(2,3)$ passing through X and containing one of the above lines as a component, say L_{1} (take 2 further points on L_{1} and remark that the dimension of the linear system of curves of type $(2,3)$ through X and these two points is ≥ 1). Hence, $C=L_{1} \cdot C^{\prime}$ where C^{\prime} is a curve of type $(1,3)$ containing the 8 points $X-\left\{L_{1} \cap X\right\}$. Now the intersection on Q gives $(1,3) \cdot(0,1)=1$, so C^{\prime} must contain as components three lines L_{i}^{\prime} (each with 2 points of $X)$ and another line of type $(1,0)$ passing through the remaining two points: so, these two points together with the two points on L_{1} form a complete intersection $(0,2),(2,0)$; but this is impossible because we can repeat the argument on each line L_{i} (the number of the L_{i} is odd).

Lemma 2.15. Let $X \subset Q$ be a 0 -dimensional subscheme, and $M_{X}=$ ($m_{i j}$) its Hilbert matrix; let ΔM_{X} be of size (a, b) and $L_{0}^{\prime}, L_{1}^{\prime}, \ldots$, L_{b}^{\prime} be the $(0,1)$-lines containing X. Take any $(1,0)$-line L disjoint from X and consider $Z=X \cup Y$, where $Y=L \cap\left(\bigcup_{i=0}^{n} L_{i}^{\prime}\right)$ with $n \geq b$ and $L_{b+1}^{\prime}, \ldots, L_{n}^{\prime}$ arbitrary $(0,1)$-lines.

Then the Hilbert matrix of $Z, M_{Z}=\left(m_{i j}^{\prime}\right)$ is the following:

$$
\begin{align*}
m_{0 j}^{\prime} & = \begin{cases}j+1 & \text { for } 0 \leq j \leq n, \\
n+1 & \text { for } j>n ;\end{cases} \tag{1}\\
m_{i+1 j}^{\prime} & = \begin{cases}m_{i j}+j+1 & \text { for } i \geq 0,0 \leq j \leq n, \\
m_{i j}+n+1 & \text { for } i \geq 0, j>n .\end{cases} \tag{2}
\end{align*}
$$

Proof. One can express the lemma in terms of the first difference matrices, $\Delta M_{X}=\left(c_{i j}\right), \Delta M_{Z}=\left(c_{i j}^{\prime}\right)$:

$$
\begin{align*}
c_{0 j}^{\prime} & = \begin{cases}1 & \text { for } 0 \leq j \leq n, \\
0 & \text { for } j>n ;\end{cases} \tag{1}\\
c_{i+1 j}^{\prime} & =c_{i j} \quad \text { for }(i, j) \geq(0,0), \tag{2}
\end{align*}
$$

which mean that ΔM_{Z} is obtained from ΔM_{X} just adding a 1st row consisting of $n+1$ " 1 " entries.

We prove (2), as (1) is trivial. Observe that, for $j \leq n$, one has

$$
h^{0}\left(\mathscr{J}_{X}(i, j)\right)=h^{0}\left(\mathscr{I}_{Z}(i+1, j)\right)
$$

since every curve of type $(i+1, j)$ through Z splits into L and a curve of type (i, j) through X; hence

$$
m_{i+1 j}^{\prime}=(i+2)(j+1)-h^{0}\left(\mathscr{I}_{Z}(i+1, j)\right)=m_{i j}+j+1 .
$$

When $j>n$ we have $c_{i+1 j}^{\prime}=c_{i j}=0$ and we are done.
Of course a similar result can be proved adding $n+1$ points on a $(0,1)$-line L^{\prime} disjoint from X.

Corollary 2.16. With the same hypotheses of the above theorem, if the (0,1)-line L_{0}^{\prime} contains a +1 points of X, then $X^{\prime}=X-\left\{L_{0}^{\prime} \cap X\right\}$ has the following Hilbert matrix:

$$
\Delta M_{X^{\prime}}(i, j)=\Delta M_{X}(i, j+1) \quad(i, j) \geq(0,0) .
$$

Proof. Note that $X=X^{\prime} \cup Y$, where $Y=L_{0}^{\prime} \cap X$, and apply Lemma 2.15 changing rows with columns.
3. The resolution of the ideal sheaf \mathscr{I}_{X}. Let $X \subset Q$ be a 0 dimensional subscheme and $I(X) \subset S$ the saturated ideal of X. Note that $1 \leq \operatorname{depth} S(X) \leq 2$: in fact $I(X)$ contains an S-sequence of length 2, and in $S(X)$ there is a regular element (it is enough to take an element of S which does not vanish at any point of X). Therefore $I(X)$ has an S-free minimal resolution of length ≤ 3 with morphisms of degree $(0,0)$. If this resolution has length 2 , i.e. when depth $S(X)=2$, then $S(X)$ is a Cohen-Macaulay ring and X is called arithmetically Cohen-Macaulay (ACM for short).

Example 3.1. Although X has maximal codimension in Q, it is not always true that $S(X)$ is Cohen-Macaulay, in opposition to what happens for subschemes of maximal codimension in \mathbf{P}^{n}.

Here is a simple example of this fact.

Take on Q two non-collinear points (i.e. not contained on a line of $Q)$, say P_{1}, P_{2}, and let $\mathfrak{p}_{1}=(u \otimes 1,1 \otimes v)$ and $\mathfrak{p}_{2}=\left(u^{\prime} \otimes 1,1 \otimes v^{\prime}\right)$ their defining ideals. If $X=\left\{P_{1}, P_{2}\right\}$ one gets $I(X)=\left(u u^{\prime} \otimes 1\right.$, $\left.u \otimes v^{\prime}, u^{\prime} \otimes v, 1 \otimes v v^{\prime}\right)$. One sees that $\left(u+u^{\prime}\right) \otimes 1$ is regular in $S(X)$; let us check that depth $S / J=0$, where $J=\left(I(X),\left(u+u^{\prime}\right) \otimes 1\right)$. In fact, in S / J the homogeneous elements are either of type $u \otimes$ $g\left(v, v^{\prime}\right)$ or $1 \otimes h\left(v, v^{\prime}\right)$, where $g\left(v, v^{\prime}\right)$ and $h\left(v, v^{\prime}\right)$ are forms and $\operatorname{deg} h\left(v, v^{\prime}\right)>0$. They are both annihilated by $u \otimes 1$. So, $\operatorname{depth} S(X)=1<\operatorname{dim} S(X)$.

Of course, two collinear points are complete intersection, hence ACM. In $\S 4$ we will see that not every ACM 0 -dimensional subscheme of Q is c.i.

Let

$$
\begin{align*}
0 & \rightarrow \bigoplus_{i=1}^{p} S\left(-a_{3 i},-a_{3 i}^{\prime}\right) \rightarrow \bigoplus_{i=1}^{n} S\left(-a_{2 i},-a_{2 i}^{\prime}\right) \tag{1}\\
& \rightarrow \bigoplus_{i=1}^{m} S\left(-a_{1 i},-a_{1 i}^{\prime}\right) \rightarrow I(X) \rightarrow 0
\end{align*}
$$

be the minimal free resolution of the saturated ideal $I(X)$, with morphisms of degree $(0,0)$. From this, taking sheaves, one gets an $\mathscr{O}_{Q^{-}}$ free resolution of the ideal sheaf \mathscr{I}_{X}.

Take now any \mathscr{O}_{Q}-free minimal resolution of \mathscr{I}_{X}

$$
0 \rightarrow \mathscr{L}_{2} \rightarrow \mathscr{L}_{1} \xrightarrow{\varphi} \mathscr{L}_{0} \rightarrow \mathscr{I}_{X} \rightarrow 0
$$

such that
$(*)\left\{\begin{array}{rr}\text { for any }(r, s) & H^{0}\left(\mathscr{L}_{0}(r, s)\right) \rightarrow H^{0}\left(\mathscr{S}_{X}(r, s)\right) \text { is surjective }, \\ \text { for any }(r, s) & H^{0}\left(\mathscr{L}_{1}(r, s)\right) \rightarrow H^{0}(\mathscr{E}(r, s)) \text { is surjective, } \\ & \text { with } \mathscr{E}=\operatorname{Im} \varphi .\end{array}\right.$
With this choice, for every (r, s) we obtain the exact sequence

$$
\begin{aligned}
0 & \rightarrow H^{0}\left(\mathscr{L}_{2}(r, s)\right) \rightarrow H^{0}\left(\mathscr{L}_{1}(r, s)\right) \rightarrow H^{0}\left(\mathscr{L}_{0}(r, s)\right) \\
& \rightarrow H^{0}\left(\mathscr{I}_{X}(r, s)\right) \rightarrow 0
\end{aligned}
$$

and since $H_{*}^{0}\left(\mathscr{S}_{X}\right)=\bigoplus_{r \geq 0, s \geq 0} H^{0}\left(\mathscr{I}_{X}(r, s)\right) \cong I(X)$, taking sums on (r, s) we obtain a resolution which is isomorphic to (1). Thus the
resolution

$$
\begin{align*}
0 & \rightarrow \bigoplus_{i=1}^{p} \mathscr{O}_{Q}\left(-a_{3 i},-a_{3 i}^{\prime}\right) \rightarrow \bigoplus_{i=1}^{n} \mathscr{O}_{Q}\left(-a_{2 i},-a_{2 i}^{\prime}\right) \tag{2}\\
& \rightarrow \bigoplus_{i=1}^{m} \mathscr{O}_{Q}\left(-a_{1 i},-a_{1 i}^{\prime}\right) \rightarrow \mathscr{J}_{X} \rightarrow 0
\end{align*}
$$

obtained by taking sheaves in (1), satisfies conditions (*).
From now on, we will refer to (2) as the minimal free resolution of \mathscr{J}_{X} without further specification.

The convenience of this choice is clear since from (2) one can compute $h^{0}\left(\mathscr{I}_{X}(r, s)\right)$ for every $(r, s) \geq(0,0)$:

$$
\begin{aligned}
h^{0}\left(\mathscr{I}_{X}(r, s)\right)= & \sum_{i=1}^{m} h^{0}\left(r-a_{1 i}, s-a_{1 i}^{\prime}\right)-\sum_{i=1}^{n} h^{0}\left(r-a_{2 i}, s-a_{2 i}^{\prime}\right) \\
& +\sum_{i=1}^{p} h^{0}\left(r-a_{3 i}, s-a_{3 i}^{\prime}\right) \\
= & \sum_{i=1}^{m}\left(r-a_{1 i}+1\right)_{+}\left(s-a_{1 i}^{\prime}+1\right)_{+} \\
& -\sum_{i=1}^{n}\left(r-a_{2 i}+1\right)_{+}\left(s-a_{2 i}^{\prime}+1\right)_{+} \\
& +\sum_{i=1}^{p}\left(r-a_{3 i}+1\right)_{+}\left(s-a_{3 i}^{\prime}+1\right)_{+}
\end{aligned}
$$

where for every $h \in \mathbf{Z}$ we mean $h_{+}=\max \{h, 0\}$.
Remark 3.2. We took great care in defining the resolution of \mathscr{J}_{X}, since, contrary to the situation of sheaves on \mathbf{P}^{n}, on Q it may happen that the ideal sheaf \mathscr{I}_{X} of a 0 -dimensional subscheme $X \subset Q$ has a minimal free resolution of length 2

$$
0 \rightarrow \mathscr{L}_{1} \rightarrow \mathscr{L}_{0} \rightarrow \mathscr{I}_{X} \rightarrow 0
$$

without X being ACM. This happens because the map $H_{*}^{0}\left(\mathscr{L}_{0}\right) \rightarrow$ $H_{*}^{0}\left(\mathscr{I}_{X}\right)$ could be nonsurjective. This is the case, for instance, when X is ideally a complete intersection, i.e. when there exists a sheaf surjection $\mathscr{O}_{Q}^{\oplus{ }^{2}} \rightarrow \mathscr{I}_{X}$, but X is not c.i. (see Example 3.1).

With the notation of resolution (2), we set the following:

$$
\begin{aligned}
\alpha_{h k} & =\#\left\{\left(a_{1 i}, a_{1 i}^{\prime}\right)=(h, k)\right\} \\
\beta_{h k} & =\#\left\{\left(a_{2 i}, a_{2 i}^{\prime}\right)=(h, k)\right\} \\
\gamma_{h k} & =\#\left\{\left(a_{3 i}, a_{3 i}^{\prime}\right)=(h, k)\right\}
\end{aligned}
$$

Proposition 3.3. Let $X \subset Q$ be a 0 -dimensional subscheme and let

$$
\begin{aligned}
0 & \rightarrow \bigoplus_{i=1}^{p} \mathscr{O}_{Q}\left(-a_{3 i},-a_{3 i}^{\prime}\right) \rightarrow \bigoplus_{i=1}^{n} \mathscr{O}_{Q}\left(-a_{2 i},-a_{2 i}^{\prime}\right) \\
& \stackrel{\varphi}{\rightarrow} \bigoplus_{i=1}^{m} \mathscr{O}_{Q}\left(-a_{1 i},-a_{1 i}^{\prime}\right) \rightarrow \mathscr{I}_{X} \rightarrow 0
\end{aligned}
$$

be the minimal free resolution of \mathscr{J}_{X}. Then we have:
(i) $n+1=m+p$;
(ii) $\sum_{i=1}^{m} a_{1 i}-\sum_{i=1}^{n} a_{2 i}+\sum_{i=1}^{p} a_{3 i}=\sum_{i=1}^{m} a_{1 i}^{\prime}-\sum_{i=1}^{n} a_{2 i}^{\prime}+\sum_{i=1}^{p} a_{3 i}^{\prime}=$ 0 ;
(iii) $\operatorname{deg} X=-\sum_{i=1}^{m} a_{1 i} a_{1 i}^{\prime}+\sum_{i=1}^{n} a_{2 i} a_{2 i}^{\prime}-\sum_{i=1}^{p} a_{3 i} a_{3 i}^{\prime}$;
(iv) for every $i=1,2, \ldots, m$ there exists $j(1 \leq j \leq n)$ such that $\left(a_{2 j}, a_{2 j}^{\prime}\right)>\left(a_{1 i}, a_{1 i}^{\prime}\right)$;
(v) if a first syzygy exists, say of degree $\left(a_{2 r}, a_{2 r}^{\prime}\right)$, which is maximal with respect to the property " $\left(a_{2 r}, a_{2 r}^{\prime}\right) \nless\left(a_{3 i}, a_{3 i}^{\prime}\right)$ for all $i=$ $1,2, \ldots, p "$, then $h^{1}\left(\mathscr{J}_{X}\left(a_{2 r}-2, a_{2 r}^{\prime}-2\right)\right) \neq 0$. In this case, if M_{X} is the Hilbert matrix of X, we have $M_{X}\left(a_{2 r}-2, a_{2 r}^{\prime}-2\right)<\operatorname{deg} X$;
(vi) the following relations between the given resolution of \mathscr{I}_{X} and the matrices $M_{X}=\left(m_{i j}\right), \Delta M_{X}=\left(c_{i j}\right), \Delta^{2} M_{X}=\left(d_{i j}\right)$ hold:

$$
\begin{aligned}
& m_{r s}=(r+1)(s+1)-\sum_{\substack{h \leq r \\
k \leq s}}(r+1-h)(s+1-k)\left(\alpha_{h k}-\beta_{h k}+\gamma_{h k}\right) \\
& c_{r s}=1-\sum_{\substack{h \leq r \\
k \leq s}}\left(\alpha_{h k}-\beta_{h k}+\gamma_{h k}\right) \\
& d_{00}=1, \quad \text { and for every } \quad(r, s)>(0,0) d_{r s}=-\alpha_{r s}+\beta_{r s}-\gamma_{r s}
\end{aligned}
$$

(vii) if ΔM_{X} is of size (a, b) then for every $(i, j) \geq(a+2, b+2)$ one has $\alpha_{i j}=\beta_{i j}=\gamma_{i j}=0$.

Proof. (i) and (ii) are well-known consequences of the exactness of the resolution. For (iii) we need an explicit computation. Since for $(r, s) \gg(0,0), m_{r s}=\operatorname{deg} X$, taking in mind the computation of
$h^{0}\left(\mathscr{I}_{X}(r, s)\right)$ we have:

$$
\begin{aligned}
\operatorname{deg} X= & m_{r s}=(r+1)(s+1)-\sum_{i=1}^{m}\left(r-a_{1 i}+1\right)\left(s-a_{1 i}^{\prime}+1\right) \\
& +\sum_{i=1}^{n}\left(r-a_{2 i}+1\right)\left(s-a_{2 i}^{\prime}+1\right)-\sum_{i=1}^{p}\left(r-a_{3 i}+1\right)\left(s-a_{3 i}^{\prime}+1\right) \\
= & \sum_{i=1}^{m}\left[(s+1) a_{1 i}+(r+1) a_{1 i}^{\prime}-a_{1 i} a_{1 i}^{\prime}\right] \\
& -\sum_{i=1}^{n}\left[(s+1) a_{2 i}+(r+1) a_{2 i}^{\prime}-a_{2 i} a_{2 i}^{\prime}\right] \\
& +\sum_{i=1}^{p}\left[(s+1) a_{3 i}+(r+1) a_{3 i}^{\prime}-a_{3 i} a_{3 i}^{\prime}\right] \\
= & (s+1)\left[\sum_{i=1}^{m} a_{1 i}-\sum_{i=1}^{n} a_{2 i}+\sum_{i=1}^{p} a_{3 i}\right] \\
& +(r+1)\left[\sum_{i=1}^{m} a_{1 i}^{\prime}-\sum_{i=1}^{n} a_{2 i}^{\prime}+\sum_{i=1}^{p} a_{3 i}^{\prime}\right] \\
& -\sum_{i=1}^{m} a_{1 i} a_{1 i}^{\prime}+\sum_{i=1}^{n} a_{2 i} a_{2 i}^{\prime}-\sum_{i=1}^{p} a_{3 i} a_{3 i}^{\prime}
\end{aligned}
$$

now the conclusion follows using (ii). Notice that in the first equality we used (i).

To prove (iv) observe that if one generator of degree ($a_{1 r}, a_{1 r}^{\prime}$) contradicts (iv), then the matrix of φ would have the r th row with all zeros: this would mean that the mentioned generator has no syzygies at all (not even the trivial one!).
(v) Splitting the resolution of \mathscr{J}_{X} we have the exact sequences

$$
\begin{equation*}
0 \rightarrow \mathscr{E} \rightarrow \bigoplus_{i=1}^{m} \mathscr{O}_{Q}\left(-a_{1 i},-a_{1 i}^{\prime}\right) \rightarrow \mathscr{I}_{X} \rightarrow 0 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
0 \rightarrow \bigoplus_{i=1}^{p} \mathscr{O}_{Q}\left(-a_{3 i},-a_{3 i}^{\prime}\right) \rightarrow \bigoplus_{i=1}^{n} \mathscr{Q}_{Q}\left(-a_{2 i},-a_{2 i}^{\prime}\right) \rightarrow \mathscr{E} \rightarrow 0 \tag{4}
\end{equation*}
$$

where $\mathscr{E}=\operatorname{Im} \varphi$ is a locally free sheaf. Twisting in (4) by $\left(a_{2 r}-2\right.$, $\left.a_{2 r}^{\prime}-2\right)$, taking cohomology, using the minimality of the resolution and the hypothesis on $\left(a_{2 r}, a_{2 r}^{\prime}\right)$, one has $H^{2}\left(\mathscr{E}\left(a_{2 r}-2, a_{2 r}^{\prime}-2\right)\right) \neq 0$.

Twisting (3) by the same degree and taking cohomology, we have

$$
\begin{aligned}
\cdots & \rightarrow H^{1}\left(\mathscr{J}_{X}\left(a_{2 r}-2, a_{2 r}^{\prime}-2\right)\right) \rightarrow H^{2}\left(\mathscr{E}\left(a_{2 r}-2, a_{2 r}^{\prime}-2\right)\right) \\
& \rightarrow H^{2}\left(\bigoplus_{i=1}^{m} \mathscr{O}_{Q}\left(a_{2 r}-2-a_{1 i}, a_{2 r}^{\prime}-2-a_{1 i}^{\prime}\right)\right) \rightarrow \cdots
\end{aligned}
$$

Since the last term of this sequence vanishes because of the maximality assumption on ($a_{2 r}, a_{2 r}^{\prime}$) and by (iv), we obtain

$$
H^{1}\left(\mathscr{J}_{X}\left(a_{2 r}-2, a_{2 r}^{\prime}-2\right)\right) \neq 0
$$

The second part is proven recalling that, for every (i, j), $h^{1}\left(\mathscr{J}_{X}(i, j)\right)=\operatorname{deg} X-m_{i j}$.
(vi) Since for every (r, s),

$$
\begin{aligned}
m_{r s}= & (r+1)(s+1)-\sum_{i=1}^{m}\left(r-a_{1 i}+1\right)_{+}\left(s-a_{1 i}^{\prime}+1\right)_{+} \\
& +\sum_{i=1}^{n}\left(r-a_{2 i}+1\right)_{+}\left(s-a_{2 i}^{\prime}+1\right)_{+} \\
& -\sum_{i=1}^{p}\left(r-a_{3 i}+1\right)_{+}\left(s-a_{3 i}^{\prime}+1\right)_{+}
\end{aligned}
$$

the first claim follows by definition of $\alpha_{h k}, \beta_{h k}, \gamma_{h k}$ and a straightforward computation. To compute $c_{r s}$ we employ the matrix $\Delta^{R} M_{X}=$ ($a_{r s}$).

$$
\begin{aligned}
a_{r s}= & m_{r s}-m_{r s-1}=r+1-\sum_{\substack{h \leq r \\
k \leq s-1}}(r+1-h)\left(\alpha_{h k}-\beta_{h k}+\gamma_{h k}\right) \\
& -\sum_{h \leq r}(r+1-h)\left(\alpha_{h s}-\beta_{h s}+\gamma_{h s}\right) \\
= & r+1-\sum_{\substack{h \leq r \\
k \leq s}}(r+1-h)\left(\alpha_{h k}-\beta_{h k}+\gamma_{h k}\right) .
\end{aligned}
$$

Using the analogue expression for $a_{r-1 s}$, one gets

$$
\begin{aligned}
c_{r s} & =a_{r s}-a_{r-1 s} \\
& =1-\sum_{k \leq s}\left(\alpha_{r k}-\beta_{r k}+\gamma_{r k}\right)-\sum_{\substack{h \leq r-1 \\
k \leq s}}\left(\alpha_{h k}-\beta_{h k}+\gamma_{h k}\right) \\
& =1-\sum_{\substack{h \leq r \\
k \leq s}}\left(\alpha_{h k}-\beta_{h k}+\gamma_{h k}\right) .
\end{aligned}
$$

To compute $d_{r s}$ we use the matrix $\Delta^{R} \Delta M_{X}=\left(q_{r s}\right)$:

$$
\begin{aligned}
q_{r s} & =c_{r s}-c_{r s-1} \\
& =1-\sum_{\substack{h \leq r \\
k \leq s}}\left(\alpha_{h k}-\beta_{h k}+\gamma_{h k}\right)-1+\sum_{\substack{h \leq r \\
k \leq s-1}}\left(\alpha_{h k}-\beta_{h k}+\gamma_{h k}\right) \\
& =-\sum_{h \leq r}\left(\alpha_{h s}-\beta_{h s}+\gamma_{h s}\right)
\end{aligned}
$$

now we can perform the last computation

$$
\begin{aligned}
d_{r s} & =q_{r s}-q_{r-1 s}=-\sum_{h \leq r}\left(\alpha_{h s}-\beta_{h s}+\gamma_{h s}\right)+\sum_{h \leq r-1}\left(\alpha_{h s}-\beta_{h s}+\gamma_{h s}\right) \\
& =-\alpha_{r s}+\beta_{r s}-\gamma_{r s}
\end{aligned}
$$

(vii) Suppose that $(i, j) \geq(a+2, b+2)$ is the degree of a maximal first syzygy. Notice that $\alpha_{i j}=0$ by item (iv); moreover for $(i, j)>$ $(a+1, b+1)$ one has $d_{i j}=0$, and thus in the range $(r, s)>(i, j)$ we have $\alpha_{r s}=0$ and $\beta_{r s}=0$, which implies $\gamma_{r s}=0$: so our syzygy is linked by no second syzygy. Hence, by item (v), $m_{i-2 j-2}<\operatorname{deg} X$ must occur; this is a contradiction as $(i-2, j-2) \geq(a, b)$ and therefore $m_{i-2 j-2}=m_{a b}=\operatorname{deg} X$.
4. Arithmetically Cohen-Macaulay 0-dimensional subschemes. As we know not every 0 -dimensional subscheme $X \subset Q$ is ACM; in this section we want to characterize the ACM subschemes in term of their Hilbert matrix.

An admissible matrix M^{\prime} will be called an $A C M$ matrix if ΔM^{\prime} has only nonnegative entries. If an ACM matrix M^{\prime} of size (a, b) is such that ΔM^{\prime} has entries $c_{i j}^{\prime}=1$ for every $(i, j) \leq(a, b)$, it is trivial to verify that M^{\prime} is the Hilbert matrix of a complete intersection of type $(a+1,0),(0, b+1)$.

Let M^{\prime} be an ACM matrix of size (a, b). We say that (i, j) is a corner for ΔM^{\prime} if $(i, j)=(0, b+1)$ or $(i, j)=(a+1,0)$, or even if $c_{i j}^{\prime}=0$ and $c_{i-1 j}^{\prime}=c_{i j-1}^{\prime}=1$. We say that (i, j) is a vertex for ΔM^{\prime} if $c_{i-1 j}^{\prime}=c_{i j-1}^{\prime}=0$ and $c_{i-1 j-1}^{\prime}=1$; in this case, of course, $c_{i j}^{\prime}=0$. See Figure 1.

Figure 1
One can check for an ACM matrix M^{\prime} that the entries of $\Delta^{2} M^{\prime}=$ $\left(d_{i j}^{\prime}\right)$ are:

$$
d_{i j}^{\prime}= \begin{cases}1 & \text { if }(i, j)=(0,0) \text { or }(i, j) \text { is a vertex } \\ -1 & \text { if }(i, j) \text { is a corner } \\ 0 & \text { otherwise }\end{cases}
$$

Recall that $X \subset Q$ is an ACM 0-dimensional subscheme if and only if the minimal free resolution of \mathscr{J}_{X} is of type (2) of $\S 3$ with $\gamma_{i j}=0$ for all (i, j).

Theorem 4.1. Let $X \subset Q$ be a 0 -dimensional subscheme, and let M_{X} be its Hilbert matrix. X is an ACM scheme if and only if M_{X} is an ACM matrix. Furthermore, in this case, the minimal free resolution of \mathscr{I}_{X} looks like

$$
0 \rightarrow \bigoplus_{i=1}^{m-1} \mathscr{Q}_{Q}\left(-a_{2 i},-a_{2 i}^{\prime}\right) \rightarrow \bigoplus_{i=1}^{m} \mathscr{Q}_{Q}\left(-a_{1 i},-a_{1 i}^{\prime}\right) \rightarrow \mathscr{I}_{X} \rightarrow 0
$$

where $\left(a_{2 i}, a_{2 i}^{\prime}\right)$ runs over all the vertices and ($a_{1 i}, a_{1 i}^{\prime}$) runs over all the corners of ΔM_{X}.

Proof. For complete intersections the theorem is trivially true. Assume that X is an ACM not c.i. subscheme. Suppose by contradiction that there are negative entries in $\Delta M_{X}=\left(c_{i j}\right)$: take a maximal one, say $c_{r s}<0$ such that $c_{i j}=0$ for $(i, j)>(r, s)$. Such an element does exist by Proposition 2.7 and Remark 2.8. By the choice of (r, s)
one can write:

$$
d_{r+1 s+1}=c_{r+1 s+1}+c_{r s}-c_{r+1 s}-c_{r s+1}=c_{r s}<0
$$

Apply Proposition 3.3 item (vi): $d_{r+1 s+1}=-\alpha_{r+1 s+1}+\beta_{r+1 s+1}<0$ (recall that $\gamma_{i j}=0$ for all (i, j)); so, $\alpha_{r+1 s+1}>\beta_{r+1 s+1} \geq 0$ i.e. there is at least one minimal generator in degree $(r+1, s+1)$. This provides a contradiction since $d_{i j}=0$ for every $(i, j)>(r+1, s+1)$ while a syzygy is required by item (iv) of Proposition 3.3.

Vice versa, let us suppose that M_{X} is an ACM matrix of size (a, b). Applying Theorem 2.12 to M_{X}, one shows that there are $a+1(1,0)$ lines, $L_{i}(i=0,1, \ldots, a)$ each containing as many points of X as the positive entries of the i th row of ΔM_{X}, and $b+1(0,1)$-lines, $L_{j}^{\prime}(j=0,1, \ldots, b)$ each containing as many points of X as the positive entries of the j th column of ΔM_{X}.

Claim 1. If $i \leq a$ or $j \leq b$, then

$$
\alpha_{i j}= \begin{cases}1 & \text { if }(1, j) \text { is a corner of } \Delta M_{X} \\ 0 & \text { otherwise }\end{cases}
$$

To prove the claim we start with observing that if (i, j) is a corner of ΔM_{X}, then $h^{0}\left(\mathscr{J}_{X}(i, j)\right)=1$; hence $\alpha_{i j}=1$. Moreover, this generator is the curve of type (i, j) consisting of the lines L_{0}, L_{1}, \ldots, L_{i-1} and $L_{0}^{\prime}, L_{1}^{\prime}, \ldots, L_{j-1}^{\prime}$. Let us show, now, that for any other (i, j) in our range, a curve of type (i, j) containing X is a combination of the previous generators. We suppose $i \leq a$ and work by induction on b (a similar proof can be done when $j \leq b$ working by induction on a). When $b=0 X \subset L_{0}^{\prime}$ is a c.i.; assume the statement true when X is contained in less than $b+1(0,1)$-lines. In this case any curve C of type (i, j) through X splits into L^{\prime} and C^{\prime}, where L^{\prime} is the union of the $r>0(0,1)$-lines containing more than i points of X and C^{\prime} is a curve of type $(i, j-r)$ containing $Z=X-\left\{L^{\prime} \cap X\right\}$. By Corollary 2.16 the matrix ΔM_{Z} can be obtained from ΔM_{X} just deleting the columns $0,1, \ldots, r-1$; then every corner of ΔM_{Z} corresponds to a corner of ΔM_{X}. By the inductive assumption C^{\prime} is a combination of the generators of $I(Z)$ corresponding to the corners of ΔM_{Z}. Now the multiplication by L^{\prime} supplies the required expression for C.

If (i, j) is a vertex, counting the dimension of $H^{0}\left(\mathscr{I}_{X}(i, j)\right)$ and taking into account that in each rectangle with opposite vertices $(0,0)$
and (i, j) there are just two generators of $I(X)$, one shows that $\beta_{i j}=$ 1 .

Claim 2. If Σ is a first syzygy which acts only on the generators corresponding to the corners, then it is generated by the syzygies on the vertices.

Let Σ be such a syzygy. For simplicity, we restrict ourselves to the case when ΔM_{X} has three corners $(0, b+1),(r+1, s+1),(a+1,0)$; the procedure easily extends to the general case. In this hypothesis the three generators will be (recall that we do not distinguish between curves and the forms defining them):
$F_{1}=R \cdot R^{\prime} \quad$ where $R=L_{0}^{\prime} \cdot L_{1}^{\prime} \cdot \cdots \cdot L_{s}^{\prime}$ and $R^{\prime}=L_{s+1}^{\prime} \cdot L_{s+2}^{\prime} \cdot \cdots \cdot L_{b}^{\prime}$;
$F_{2}=R \cdot T \quad$ where $T=L_{1} \cdot L_{2} \cdot \cdots \cdot L_{r} ;$
$F_{3}=T \cdot T^{\prime} \quad$ where $T^{\prime}=L_{r+1} \cdot L_{r+2} \cdots \cdot L_{a} ;$
and the syzygies corresponding to the vertices will be:

$$
\begin{aligned}
& \Sigma_{1}=\left(T,-R^{\prime}, 0\right) \quad \text { which links } F_{1} \text { and } F_{2}, \\
& \Sigma_{2}=\left(0, T^{\prime},-R\right) \quad \text { which links } F_{2} \text { and } F_{3} .
\end{aligned}
$$

By the assumption, Σ acts only on F_{1}, F_{2}, and F_{3}, so $\Sigma=$ (X, Y, Z) with $X F_{1}+Y F_{2}+Z F_{3}=0$, i.e. $X F_{1}=-T\left(Y R+Z T^{\prime}\right)$. Since every L_{i} in T is not in F_{1}, it follows that $X=T X^{\prime}$; from which we get $X^{\prime} F_{1}+Y R+Z T^{\prime}=0$, i.e. $R\left(X^{\prime} R^{\prime}+Y\right)=-Z T^{\prime}$ and, with the same argument, we have $Z=R Z^{\prime}$. So, finally, we have $Y=-X^{\prime} R^{\prime}-Z^{\prime} T^{\prime}$. This implies:

$$
\Sigma=(X, Y, Z)=\left(T X^{\prime},-R^{\prime} X^{\prime}-Z^{\prime} T^{\prime}, R Z^{\prime}\right)=X^{\prime} \Sigma_{1}-Z^{\prime} \Sigma_{2}
$$

Claim 3. If $i \leq a+1$ or $j \leq b+1$, then

$$
\beta_{i j}= \begin{cases}1 & \text { if }(i, j) \text { is a vertex of } \Delta M_{X} \\ 0 & \text { otherwise }\end{cases}
$$

If $i \leq a$ or $j \leq b$, just apply Claim 2. If $i=a+1$ and $j \geq$ $b+1$ (resp. $j=b+1$ and $i \geq a+1$) we have $d_{a+1 j}=0$ (resp. $d_{i b+1}=0$). If for some $j \quad \beta_{a+1 j} \neq 0$, we could take the minimal j with this property; a syzygy in this degree would have to act only on the generators of the corners: by Claim 2 this means $\beta_{a+1 j}=0$. The same argument works for $\beta_{i b+1}$.

Conclusion. Recalling that $d_{i j}=-\alpha_{i j}+\beta_{i j}-\gamma_{i j}$, a simple computation shows that $\gamma_{i j}=0$ in the range $i \leq a+1$ or $j \leq b+1$; so, in the same range, $\alpha_{i j}=0$ outside the corners. On the other hand, for $(i, j) \geq(a+2, b+2)$ Proposition 3.3 item (vii) states $\alpha_{i j}=\beta_{i j}=\gamma_{i j}=0$ and the proof is complete.

Note that the Hilbert matrix of an ACM 0-dimensional subscheme of Q completely determines the graded Betti numbers of its ideal sheaf, although this is not true for 0-dimensional subschemes of \mathbf{P}^{n}.

As we saw in Example 2.14 not every admissible matrix is the Hilbert matrix of some 0 -dimensional subscheme of Q. We want to show that this happens for ACM matrices.

Theorem 4.2. Let $M^{\prime}=\left(m_{i j}^{\prime}\right)$ be an ACM matrix of size (a, b). For any choice of $a+1$ distinct (1,0)-lines and $b+1(0,1)$-lines, there exists in their complete intersection one and only one (up to permutations of lines) subscheme X such that $M^{\prime}=M_{X}$. Further X is an ACM subscheme.

Proof. We construct a subscheme X with the required property. Let $L_{0}, L_{1}, \ldots, L_{a}$ be any $a+1(1,0)$-lines, and $L_{0}^{\prime}, L_{1}^{\prime}, \ldots, L_{b}^{\prime}$ be any $b+1(0,1)$-lines. Set $P_{i j}=L_{i} \cap L_{j}^{\prime} \quad(i=0,1, \ldots, a ; j=$ $0,1, \ldots, b)$ and consider $X=\left\{P_{i j} \mid c_{i j}^{\prime}=1\right\}$, where $\Delta M^{\prime}=\left(c_{i j}^{\prime}\right)$. We want to check that $M^{\prime}=M_{X}$. Of course, it is enough to verify that $m_{i j}=m_{i j}^{\prime}$ for $(i, j) \leq(a, b)$, since by definition of $X \quad \Delta M_{X}(i, j)=$ $c_{i j}=c_{i j}^{\prime}=0$ for $i>a$ or $j>b$.

Note that, for $(i, j) \leq(a, b)$,

$$
m_{i j}^{\prime}=\sum_{r \leq i, s \leq j} c_{r s}^{\prime}=\#\left\{P_{r s} \in X \mid(r, s) \leq(i, j)\right\} .
$$

We have just to prove that X gives $m_{i j}^{\prime}$ conditions to $H^{0}(i, j)$.
We work by induction on the number $a+1$ of (1,0)-lines containing X. If $a=0$ then X consists of $b+1$ collinear points; so, $m_{0 j}=\min \{j+1, b+1\}=m_{0 j}^{\prime}$ for every j.

Inductive step. By construction, L_{0} contains $b+1$ points of X; hence every curve C of type (i, j) through X must contain it since $j<b+1$. Thus, $C=L_{0} \cdot C^{\prime}$, where C^{\prime} is a curve of type $(i-1, j)$ containing $\bar{X}=X-\left\{P_{00}, P_{01}, \ldots, P_{0 b}\right\}$. Let $\Delta \bar{M}=\left(\bar{c}_{i j}\right)$ be the matrix obtained from ΔM^{\prime} by deleting the first row; we have $\bar{c}_{i j}=$ $c_{i+1 j}^{\prime}$ for $i \geq 0 \quad\left(\bar{c}_{i j}=0\right.$ for $\left.i<0\right)$. Notice that \bar{X} is the set of points which one can construct from $\bar{M}=\left(\bar{m}_{i j}\right)$ with the same procedure
we did for X from $M^{\prime} . \Delta \bar{M}$ has " a " rows; so we have

$$
m_{i j}=M_{\bar{X}}(i-1, j)+j+1=\bar{m}_{i-1 j}+j+1=m_{i j}^{\prime}
$$

where the first equality comes from the definition of X, the second from the inductive hypothesis and the third by a straight computation.

We prove uniqueness again by induction on $a+1$.
If $a=0$ then X is the complete intersection $L_{0} \cap\left(\bigcup_{j=0}^{b} L_{j}^{\prime}\right)$. Let Y be another subscheme of the c.i. $\left(\bigcup_{i=0}^{a} L_{i}\right) \cap\left(\bigcup_{j=0}^{b} L_{j}^{\prime}\right)$ such that $M_{Y}=M^{\prime}$ and let again L_{0} be one of the (1,0)-lines containing $b+1$ points of Y. By the inductive assumption one has:

$$
Y-\left\{Y \cap L_{0}\right\}=\bar{X}
$$

therefore $Y=X$. The last claim is Theorem 4.1.
Remark 4.3. We already know that there are 0 -dimensional subschemes X of Q which are ideally c.i. but not c.i. (see Remark 3.2). In the case of ACM subschemes we have: X is ideally c.i. if and only if X is c.i. In fact, if $X \subset Q$ is an ACM 0 -dimensional subscheme which is not c.i., then a minimal set of generators for the ideal $I(X)$ is given in Theorem 4.1: the two generators of degree ($a+1,0$), $(0, b+1)$ defines a c.i.; any other pair of generators has a common component (which is a union of lines). So, X cannot be ideally c.i.

Remark 4.4. Let \bar{H} be the following sequence of integers, and $\Delta \bar{H}$ its first difference

$$
\begin{aligned}
& \bar{H}: 1,4,9, \ldots, b^{2}, b^{2}+c_{1}, b^{2}+c_{1}+c_{2}, \ldots, b^{2}+\sum_{i=1}^{t} c_{i}, \rightarrow \\
& \Delta \bar{H}: 1,3,5, \ldots, 2 b-1, c_{1}, c_{2}, \ldots, c_{t}, 0, \rightarrow
\end{aligned}
$$

(" \rightarrow " means that the sequence stabilizes) where $2 b \geq c_{i} \geq c_{i+1}, i=$ $1,2, \ldots, t-1$. In [R2] was proved that there exists a subscheme $X \subset$ \mathbf{P}^{3} on an irreducible quadric such that $H F(X)=\bar{H}$. Now we can construct a class of ACM matrices $M=\left(m_{i j}\right)$ such that $\bar{H}=\left\{m_{i i}\right\}$: this will imply, by Theorem 4.2, that there are ACM 0 -dimensional subschemes on a quadric Q having \bar{H} as their Hilbert function.

To construct ΔM, we start with an ACM matrix B of size $(b-1$, $b-1$) whose entries are all " 1 "'s. Choose then t couples (p_{i}, q_{i}) such that $p_{i}+q_{i}=c_{i}$ and $b \geq p_{i} \geq p_{i+1}, b \geq q_{i} \geq q_{i+1}$ (this can be done by the assumption $2 b \geq c_{i} \geq c_{i+1}$). Now we border B by t rows (resp. t columns) containing in the initial p_{i} places (resp. in the
initial q_{i} places) " 1 " entries, and " 0 " elsewhere. The ACM matrix so obtained has the required properties.

Remark 4.5. Let $X \subset Q$ be an ACM 0-dimensional subscheme and M_{X} its Hilbert matrix, say of size (a, b). Recall that the resolution of \mathscr{I}_{X} is of the kind

$$
0 \rightarrow \bigoplus_{i=1}^{m-1} \mathscr{O}_{Q}\left(-a_{2 i},-a_{2 i}^{\prime}\right) \rightarrow \bigoplus_{i=1}^{m} \mathscr{O}_{Q}\left(-a_{1 i},-a_{1 i}^{\prime}\right) \rightarrow \mathscr{I}_{X} \rightarrow 0
$$

Applying the results of [PS] to our case, i.e. to the ring S localized at its maximal irrelevant ideal $(\mathfrak{u}, \mathfrak{v})$, one has the following facts:
(i) X is ACM if and only if the subscheme X^{\prime} directly linked to X in a c.i. is again ACM.
(ii) X is ACM if and only if it is linked to a complete intersection; more precisely, if $m=\nu(I(X))$ is the number of elements in any minimal set of generators of $I(X)$, then $m-2$ is the minimal number of direct linkages

$$
X \sim X_{1} \sim \cdots \sim X_{m-1}
$$

in order that X_{m-1} be a complete intersection.
(iii) We know that in any minimal set of generators of $I(X)$ there is a unique regular sequence consisting of two elements f, g of type $(a+1,0),(0, b+1)$. One can use Ferrand's procedure, as shown in [PS], to find the resolution of X^{\prime}, the subscheme directly linked to X in the c.i. f, g :

$$
\begin{aligned}
0 & \rightarrow \bigoplus_{i=1}^{m-2} \mathscr{O}_{Q}\left(a_{1 i}-a-1, a_{1 i}^{\prime}-b-1\right) \\
& \rightarrow \bigoplus_{i=1}^{m-1} \mathscr{O}_{Q}\left(a_{2 i}-a-1, a_{2 i}^{\prime}-b-1\right) \rightarrow \mathscr{I}_{X^{\prime}} \rightarrow 0
\end{aligned}
$$

Moreover, if $M_{X^{\prime}}$ is the Hilbert matrix of X^{\prime}, setting $\Delta M_{X}=\left(c_{i j}\right)$ and $\Delta M_{X^{\prime}}=\left(c_{i j}^{\prime}\right)$ we have:

$$
c_{i j}^{\prime}= \begin{cases}1 & \text { if } c_{a-i b-j}=0 \text { with }(i, j) \leq(a, b) \\ 0 & \text { otherwise }\end{cases}
$$

Alternatively, one can say that for $(i, j) \leq(a, b) c_{i j}+c_{i j}^{\prime}=1$. One can easily realize how $\Delta M_{X^{\prime}}$ looks like, just giving a glance at Figure 2.

Figure 2

References

[AF] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, GTM 13, Springer-Verlag, New York, 1973.
[B] E. Ballico, Generators for the homogeneous ideal of s general points in \mathbf{P}^{3}, J. Algebra, 106 (1987), 46-52.
[BG] E. Ballico and A. V. Geramita, The minimal free resolution of the ideal of s general points in \mathbf{P}^{3}, Canad. Math. Soc. Conf. Proc., 6 (1986), 1-10.
[CGO] C. Ciliberto, A. V. Geramita, and F. Orecchia, Perfect varieties with defining equations of high degree, Boll. Un. Mat. Ital. 7, 1-B, (1987), 633-647.
[D] E. Davis, 0-dimensional subschemes of \mathbf{P}^{2} : new application of Castelnuovo function, Ann. Univ. Ferrara, sez. VII, Sc. Mat., 32 (1986), 93-107.
[DGO] E. Davis, A. V. Geramita, and F. Orecchia, Gorenstein algebras and the Cayley-Bacharach theorem, Proc. Amer. Math. Soc., 93 (1985), 593-597.
[E] G. Ellingsrud, Sur le schéma de Hilbert des variétés de codimension 2 dans \mathbf{P}^{e} à cône de Cohen-Macaulay, Ann. Sc. Ec. Norm. Sup., t. 8 fasc. 4 (1975), 423-431.
[GM] A. V. Geramita and P. Maroscia, The ideal of forms vanishing at a finite set of points in \mathbf{P}^{n}, J. Algebra, 90 (1984), 528-555.
[GMR] A. V. Geramita, P. Maroscia, and L. Roberts, The Hilbert function of a reduced k-algebra, J. London Math. Soc., (2), 28 (1983), 443-452.
[G] S. Giuffrida, Hilbert function of a 0-cycle in \mathbf{P}^{2}, Le Matematiche, Vol. XV, Fasc. I-II (1985), 252-266.
[GMa] S. Giuffrida and R. Maggioni, On the Rao module of a curve lying on a smooth cubic surface in \mathbf{P}^{3}, Comm. in Algebra, 18 (7), (1990), 2039-2061.
[GP1] L. Gruson and C. Peskine, Genre des courbes de l'espace projectif, Algebraic Geometry, Lecture Notes in Math. no. 687, Springer, 1978.
[GP2] __, Section plane d'une courbe gauche: postulation, Prog. in Math., 24 Birkhauser (1982), 33-35.
[Hb] B. Harbourne, The geometry of rational surfaces and Hilbert functions of points in the plane, Canad. Math. Soc., Conf. Proc., 6 (1986), 95-111.
[HE] J. Harris and D. Eisenbud, Curves in projective space, Sem. de Math. Super. Université de Montréal, 1982.
[H] R. Hartshorne, Algebraic Geometry, GTM 52, Springer-Verlag, Berlin, 1977.
[MR1] R. Maggioni and A. Ragusa, Connections between Hilbert function and geometric properties for a finite set of points in \mathbf{P}^{2}, Le Matematiche, Vol. XXXIX, Fasc. I-II (1984), 153-170.
[MR2] _, The Hilbert function of generic plane sections of curves in \mathbf{P}^{3}, Inv. Math., 91 (1988), 253-258.
[M] P. Maroscia, Some problems and results on finite sets of points in \mathbf{P}^{2}, Lecture Notes in Math. no. 977, Springer-Verlag (1982), 290-314.
[MV] P. Maroscia and W. Vogel, On the defining equations of points in general position in \mathbf{P}^{n}, Math. Ann., 269 (1984), 183-189.
[PS] C. Peskine and L. Szpiro, Liaison des variétés algébriques I, Invent. Math., 26 (1974), 271-302.
[R1] G. Raditi, Hilbert function and geometric properties for a closed zero-dimensional subscheme of a quadric $Q \subset \mathbf{P}^{3}$, to appear on Comm. in Algebra.
[R2] ___ Construction of a set of points on a smooth quadric $Q \subset \mathbf{P}^{3}$ with assigned Hilbert function, Queen's Papers in Pure and Applied Math., 83 (1989), art. J.
[Sa] T. Sauer, The number of equations defining points in general position, Pacific J. Math., 120 (1985), 199-213.
[St] R. Stanley, Hilbert function of graded algebras, Adv. in Math., 28 (1978), 57-83.
[S] R. Strano, Sulle sezioni iperpiane delle curve, Rend. Sem. Mat. e Fis. Milano, 57 (1987), 125-134.

Received August 14, 1990. Work was done with financial support of M.P.I., while the authors were members of C.N.R.

Dipartimento di Matematica
Viale A. Doria, 6
95125 Catania, Italy

