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ON THE POSTULATION OF 0-DIMENSIONAL
SUBSCHEMES ON A SMOOTH QUADRIC

S. GlUFFRIDA, R. MAGGIONI, AND A . RAGUSA

If X is a O-dimensional subscheme of a smooth quadric Q =
P1 x P1 we investigate the behaviour of X with respect to the linear
systems of divisors of any degree (a, b). This leads to the construc-
tion of a matrix of integers which plays the role of a Hubert function
of X we study numerical properties of this matrix and their con-
nection with the geometry of X. Further we relate the graded Betti
numbers of a minimal free resolution of X on Q with that matrix,
and give a complete description of the arithmetically Cohen-Macaulay
O-dimensional subschemes of Q.

Introduction. In the last few years the interest about O-dimensional
subschemes of Pw has greatly grown, so many recent papers concern
a deep investigation into the Hubert function, free resolution, Betti
numbers, and defining equations for such subschemes. On the other
hand there has been a good deal of work on two codimensional sub-
schemes of Pw hence, points of P 2 , which have both conditions, have
been intensively studied. The interest on points of P2 comes, also,
because geometric properties of a variety can sometimes be given in
terms of its generic hyperplane section; so, for studying curves of P 3 ,
one needs properties of O-dimensional subschemes of P 2 . A complete
list of papers on these topics seems impossible to do; so we insert in
the references just a few of them, which are more familiar to us.

It seems natural to generalize this situation from one side studying
O-dimensional subschemes of any variety and in particular of surfaces,
on the other side working on sections of varieties done by hypersur-
faces of degree bigger than one. Therefore, a first step in this direc-
tion is to investigate O-dimensional subschemes of a quadric (P1 x P1)
with special regard to their behaviour with respect to the divisors of
the quadric itself.

When one embeds the quadric Q in P 3 , any subscheme X of Q
becomes a subscheme of P3 in that case one can relate properties of
X as a subscheme of Q with those as a subscheme of P3 .

Of course, studying subschemes of Q, the geometry of the surface
Q plays a big role; in particular, the cohomology groups of Q play an
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important part; but, unfortunately, they do not vanish as the analogues
on PΛ do. This is one reason why subschemes of Q with maximal
codimension need not be arithmetically Cohen-Macaulay.

A very naive question arises at this point: given a set of points X
on a smooth quadric Q, how to compute its "Hubert function" on Q,
i.e. the number of conditions that X imposes to the linear systems of
curves on Q. Taking into account that PicQ = Z θ Z , one notices
that the Hubert function of X takes the shape of a matrix: that is why
we will call the postulation of X "the Hubert matrix". This kind of
matter seems to be completely unexplored: as far as we tried, we could
find no literature on it. Therefore, the results in this paper represent
just a starting step in this field.

This point of view leads to quite surprising results: two points could
be non-collinear on Q, since there are "too few lines" on it; moreover
these points give the easiest example of a non-arithmetically Cohen-
Macaulay O-dimensional subscheme of Q. It comes out clearly how
important it is to define the context of our investigation, and to use a
proper nomenclature: this is the subject of the first section.

In §2 we investigate the structure of the Hubert matrix of a 0-
dimensional subscheme X of Q, with special regard to the distri-
bution of the points of X on the lines of the two rulings.

The minimal free resolution of the ideal sheaf J*χ C@Q of X, the
relationships between the Hubert matrix and the cohomology groups
of J*x are the main ingredients of §3.

In the final section the arithmetically Cohen-Macaulay O-dimen-
sional subschemes of Q are characterized in terms of their Hubert
matrix. Moreover, a complete description of their minimal free reso-
lution is given.

For the definitions and the results which are not explicitly given, we
refer to Hartshorne's book [H].

1. Notation and preliminaries. Let P 1 = Pι

k (k an algebraically
closed field), let Q = P 1 x P 1 be a quadric and let @Q be its structure
sheaf. If D c Q is any divisor of type (a, b) we denote by έ%(α, b)
the associated sheaf and, for any sheaf & on Q, we set SF(a, b) =
&' ®&Q{a9b). We also use the following notation:

H\a, b) = H\Q, @Q(a, b)), h\a, b) = dim^ H\a, b)

and, for any sheaf ^ on Q

a, b)) = dim*Jή^(α, b)).
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Let us consider

a>0
b>0

S is in a natural way a Λ>algebra using product of sections. It is
easy to check that S is generated, as a λ -algebra, by H°(l, 0) and
H°(0, 1) (both vector spaces of dimension 2) since for every a, b > 0
the map

H°(a, b)®H°(l, 0)

given by the product is surjective (see Lemma 2.3 for a generalization).
S is a bi-graded fc-algebra taking if°(α, b) = S ^ ) as the homo-

geneous component of degree (a, b). When s e H°(a, b), its zero
locus (ty)o will be called a curve of type (a, b)\ in particular L = (/)o
and L' = (/')o, with / e H°(l, 0) and /r G //°(0? 1) will be men-
tioned as lines of type (1,0) or (1, 0)-lines, and lines of type (0,1)
or (0, l)-lines respectively. When no confusion can arise we will not
distinguish between curves and their defining forms.

Let u, u' and υ, v' be bases for H°(l, 0) and H°(0, 1) then
we have a bi-graded ring isomorphism

S = k[u, u']®k[v,vr].

We use the above isomorphism to identify elements of S and ele-
ments of k[u, uf]®k[v, v']. We deal only with bihomogeneous ideals
of S, i.e. ideals generated by elements which are homogeneous both
with respect to w, «' and v, υ'. From now on we will call them
homogeneous ideals for short.

Consider the following subrings of S: A = 0 r t > o /7°(O, n), B =
0 m > p # ° ( m , O ) ; for a fixed m > 0 S(m^ =" ®n>0H°(m9 n)
inherits an ^1-module structure from S and similarly &(_,«) =
0 m > o / f ° ( m , ή) as 5-module.

When Q is embedded in P 3 by the Segre embedding, the coordi-
nate ring of Q is 0 r t > o 7/°(n, n).

For the reader's convenience we recall the dimensions of the coho-
mology groups of &Q(CI , b):
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) fθΓtf,6>0,

otherwise

-1) forα< -2andZ? > 0

or a > 0 and b < - 2 ,

0 otherwise

(a+ l)(b+ 1) ΐov a < -2 and b < - 2 ,

0 otherwise

Λ°(α, b) is well known; h2(a, b) is obtained by Serre's duality;
hι(a, b) can be computed by using the Riemann-Roch Theorem for
surfaces. Note that for any divisor D c Q (effective or not) of type
(a, b) the Euler characteristic of @n{a, b) is

since only one among H\a, b) (i = 0, 1, 2) can be different from
zero, that is @Q has natural cohomology.

Let P be any point on Q, i.e. the zero locus of an ideal p =
(/(w, u') ® 1, 1 <g> /'(i; , v;)) where / and /' are linear forms; the el-
ement (a9a!\b, bf) e k2 x k2, homogeneous in α, α; and 6, δ r ,
with I (a, a1) = 0 and /'(fc, 6;) = 0 gives the coordinates of P as
subvariety of Q, with respect to the chosen basis.

Consider the following ideals of S: u = (u ® 1, u; ® 1), t> =
(1 ® v , 1 ® ι;;) their zero locus is trivially empty. An ideal α c S is
said to be irrelevant when it contains either a power of u or a power
of t). In the set of non-irrelevant homogeneous ideals of *S the max-
imal elements are the ideals of points, i.e. generated by l(u, υ!) ® 1,
1 ® l'{y, v'), where / and V are linear forms; this is seen looking
at the restrictions of these ideals to the rings k[u, uf], k[v , v1] and
noting that such rings have principal non-irrelevant ideals. As a con-
sequence one gets that an ideal α c S is irrelevant iff Z(α) = 0 . For
any homogeneous ideal α c S we define the saturation sat α of α to
be

sat α = {/ G S\fυf c α for some t) + {f e S]/t/ c α for some tf}.

By standard techniques one shows that Hubert's Nullstellensatz holds
in S:

THEOREM 1.1. Let α c 5 be a homogeneous saturated ideal and
f eS a homogeneous element If Z(f) D Z(α) then fey/a.
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The next theorem gives basic information about the generators for
a saturated ideal of height 2 of S.

THEOREM 1.2. Let a c S be a saturated ideal of height 2. Then
any minimal set of generators of α contains just one element of degree
(0, ή) for some n and just one element of degree (m, 0) for some m.

Proof. Since α is saturated of height 2, then it is pure, so there
exists an S-sequence / , g in α. Consider the resultants R\(u' Θ 1)
and i?2(w® 1) of / and g with respect to u<g> 1 and w'®l; these
are elements of α of the following type: R\ = un <g> h'{v, vf), Rι =
ul®h(v , ?/) where /* and λ' are forms with the same degree. Observe
that h(v, Ϊ;') = /*'(?;, t>'): indeed they are resultants of / and g
regarded as homogeneous polynomials in u® 1 and w'<8> 1, and / , g
have no common components. Since α is saturated 1 ®h'(y, v1) e
α. Similarly one proves that in α there exists an element of degree
(m, 0). Uniqueness follows since the graded rings k[u, uf], k[v, vr]
have principal homogeneous ideals. D

REMARK 1.3. As a consequence of the above theorem, a saturated
ideal of S of height 2 is a complete intersection iff it is generated
by 2 elements of type h(u, uf) Θ 1, 1 Θ h'(v , v'), where h and hf

are any forms. From now on we shall mean by complete intersection
on Q (c.i. for short) a subscheme whose saturated ideal has just 2
generators.

2. 0-dimensional subschemes of Q. Let X c Q be a 0-dimensional
subscheme, i.e. a subscheme associated to a saturated ideal in S of
height 2. In this paper we shall for simplicity concentrate on the case
when X consists of distinct points, but the results carry over to the
general situation.

We can associate to any 0-dimensional subscheme X of Q the bi-
graded AS-algebra S(X) = S/I{X), where I(X) is the homogeneous
saturated ideal of X in S. On the analogy of Hubert function for
graded modules, we can define the function

Mx\ Z x Z ^ N

by

Mx(i,j) = dimk(S(X)){i>j) = dimk(S){iJ) - dimk(I(X)){iJ)

where for every bi-graded S-module N we denote by (N)^j) the
component of degree (/, j). If J ^ is the ideal sheaf of X in Q, we
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also have

The function Mx produces a matrix with integer entries, Mx =
(Mx(i, j)), which will be called the Hubert matrix of X. Note that
Mχ(i, j) = 0 for / < 0 or j < 0; so, from now on we restrict our-
selves to the range i > 0, j > 0. When no confusion can arise we
will use the notation Mx = (my) (warning: despite the name there
is no relation between this matrix and the Hilbert-Burch matrix; but
we will use this terminology since it seems the most natural).

From the defining exact sequence

taking cohomology we have:

i, j)) = h\Sx{irj)) - Λ°(ι\ j) + h°(0χ(i, j))

= degX - rriij for /, j > 0,

)) = 0 f o r / , 7 > 0 ,

since h2{@x{i, j)) = 0 and in that range Hι(i, j) = H2(i, j) = 0.
It will be useful in the sequel to consider in Z x Z the partial

ordering induced by the usual one on Z we will denote it by " < " .

REMARK 2.1. When one thinks of Q as a subvariety of P 3 by the
Segre embedding, X becomes a subscheme of P 3 . In this case, if
HF(X, -) is the Hubert function of X in P 3 , one has

HF(X,i) = mu fori>0.

This easily follows taking cohomology of the defining exact sequence
of Q in P 3 and of the exact sequence

where J g and J ^ are the ideal sheaves of Q and X in P 3 .

Let M = (rriij) be a matrix, with /, j e Z we will use the following
notation: we set

Δ * M = ( α v ) , AcM=(bij)

for the matrices of differences by rows and by columns of M, respec-
tively. Thus we have <z/7 = my - my_i, bij = rriij - m^xj . It is easy
to check that AR(ACM) = AC(ARM) this matrix will be denoted by
AM = (Cij) and referred to as the first difference matrix of M. The
second difference matrix of M is A2M = A(AM) — (djj).
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Since for every (A, k) one has c^k = Whk + mh-\k-\ ~ mhk-\ -
mh-ik > when M = Mx is the Hubert matrix of a subscheme X of
Q one sees that

Σ ^ and c < ; =

DEFINITION 2.2. Let Mf = (m^ ) be a matrix such that m^ = 0 for
/ < 0 or j < 0. We say that Mf is admissible when its first difference
ΔΛ/7 = (Cy) satisfies the following conditions:

(1) c;7 < 1 and dtj = 0 for / > 0 or > 0
(2) if c;7 < 0 then c'rs < 0 for any (r, s) > (Ϊ , 7)

(3) for every (/, j) 0 < Σ/ = o ̂  ^ Σ i o C/-U > a n d

When Λ/' is an admissible matrix the non-zero part of ΔAf7 is
contained in a rectangle with opposite vertices (0 ,0) , (a, b) and the
elements of the first row (resp. of the first column) are:

^ = l i f j < Z > , and ^ = 0if7>Z>

(resp. c'i0 — 1 if i < a, and c 0 = 0 if i > a).

In this case we say M', or AM', to be of size (a, b).
We will show that the Hubert matrix of a 0-dimensional subscheme

of Q is admissible (see Propositions 2.5 and 2.7).

LEMMA 2.3. Le/ I c β be a 0-dimensional subscheme. For the
cup-product morphisms

I m ^ j = \ x { , ; ) ) ( ^ (

° °j - 1)).

Proof. Let 5Ί , s 2 , - . , ̂  be a basis of / f ° ( J ^ ( / - 1 , j)), where r =
h°(^χ(i -1,7*)), and let w, uf be a basis of H°(\, 0) not vanishing
at any point of X. Consider the following basis for H°(^x(i, j)):
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where n = Λ°(Jχ(/, j)) notice that no element in the vector subspace
spanned by sr+\9 ... , sn can contain u as a component. Now, a
standard computation shows that (see [GMa], Lemma 3.4)

S ι U 2 , S 2 U 2 , . . . , S r U 2 , S r + X U , . . . , S n U , S r + \ U ' , . . . , ^ K '

is a basis for Im φι . This proves the first part; the second part follows
similarly. D

REMARK 2.4. Observe that, for every i > 0, 0 y > o H°(^χ(i, j)) is
a torsion-free ^4-module; since A is a domain with principal homoge-
neous non-irrelevant ideals, this ^4-module is free (cf., e.g., [AF] Cap.
II, §8). In particular, S^,.) is ^4-free for every / > 0.

The same is true for φ / > 0 / / ° ( J χ ( / , j)) and for S^j) as B-
modules for every j > 0.

PROPOSITION 2.5. Let X c Q be a ^-dimensional subscheme, and
Mx =(my) its Hubert matrix. Then, the matrix ARMX (resp. ACMX)
is non-increasing by rows (resp. by columns), i.e. for every (/, j) >
(0, 0) atj > aij+\ (resp. bij > 6/+i7). Moreover a^ = 0 for j > 0
(resp. bij = 0 for / » 0).

Proof. It is enough to prove the theorem for ARMχ. For simplicity
we set hij = h°(^χ(i, j)), so by Lemma 2.3 we have Ay+i > 2Λ/7 -
Ay_i. Using m r 5 = (r + l)(s + 1) - Λ^ we get

from which we obtain our result α, 7 > α / 7 +i for every (/, j) > (0, 0).
For the second part we know that ma = HF(X, /) = degX for

i » 0; since in any case m/, < degX, the conclusion follows using
the first part. D

REMARK 2.6. Let />0 be a fixed integer, and set

qt = min{j\hij > 0}

where, as before, h^ = Λ°(Jχ(/, j)). For every j > qι we set αy =
Λ/7 - dim^ Im ψj_\ (see Lemma 2.3 for notation): note that α ί ; is the
number of minimal generators of degree (i9 j) for the ^4-module
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Applying Lemma 2.3 we have:

2) -

3) -

α y = (i + 1)(; + 1) - rritj - 2αy_i - 3αy_2 0' + 1 - Qi)^ ,

from which we get

hij = at] + 2αy_i + 3αy_2 + + 0" + 1 - tf/)^

A simple computation shows

j

dij = (i + \)(j + 1) - Λy - [(i + 1); - Λy.i] = i + 1 - ΣOLU .

This equality, since αy = 0 for y > 0, shows that the ^4-free module
Hj*(u?χ(i9 -)) has i + 1 generators. Of course the same happens for
the 5-free module f ί ? (J^(- , j)).

PROPOSITION 2.7. L^ί X c Q be a 0-dimensional subscherne, and
x = (rriij) its Hubert matrix. Then for AMx = (cy) w

(i) // cy < 0 then crs < 0 for every (r,s)> (i, j)
(ii) // Cij > 0 Λ̂̂ « cy = 1.

Proof. To prove (i) it is enough, for symmetry, to prove that if
Cij < 0 then crj < 0 for every r > i. Let us consider the following
piece of the matrix Mx

We start with proving that Cy < 0 implies cz +i7 < 0. If cy < 0 then
my < (/ + 1)0 + 1) (since otherwise mrs = (r + l)(s + I) for every
( r , j ) < (/, 7), and so cy = 1), consequently Λy > 0. Our aim is to
prove that m;+i7 < my + m / +i 7_i - my_i or equivalently that

hi+ij - hi+ij-i > hij - hij-i

the conclusion will follow by induction.
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Let L be a (1, 0)-line and L' be a (0, l)-line such that X Π L =
X Π L' = 0 , and the point P = Ln Lr is not in the base locus of

/ + 1 , 7 ) ) . Consider the commutative diagram

0 - //°PM*\ j ~ 1)) ^ Jf°(J5Kι, 7)) - Cokerα -> 0

0 -+ H°(Sx(i + 1, 7 - 1)) A H°(jrχ(i + 1, 7)) -> Cokerα' -+ 0

in which α and α' are given by multiplication for L!, /? and /?'
are given by multiplication for L, and β" is the induced map. Since
dimCokerα = Λy - hij-\ and dimCokerα/ = /zz+i7 - /*/+i7_i it is
enough to prove that β" is injective but not surjective. Let / €
Cokerα be a non-zero element: such an element exists since
H°(*/x(i> j)) Φ 0 a n d « is n o t surjective; then / is the image of
an element / e H°(*/χ(i, 7)) which does not contain V as a factor.
Now β»(f) φ 0 since β'{f) = fL $ Imα' by the choice of / .

To prove that β" is not surjective observe that not any element in
H°(J?x(i + 1, 7)) is of the form Lf + L'g with / e H°(Sx{i, j))
and g e H°(Sχ(i + 1 , 7 - 1 ) ) : in fact Lf + L'g vanishes at P for
every / and g, while P is not in the base locus of H°(J*χ(i+1,7)).

For (ii) it is sufficient to note that if for some (/, 7) we had cz ; > 1,
then by the first part of the proposition one would have crs > 1 for
every (r9s) < (/, 7). Hence we would have m 0 = Σh<i,k<jchk >
(/ + 1)(7 + 1), a contradiction. D

REMARK 2.8. Let Mx = (my) be the Hubert matrix of a 0-dimen-
sional subscheme X <z Q. By previous propositions the following
terminology makes sense.

For every i > 0 we set

j(i) = min{t e N\mit = mit+ι} = min{t e N\ait+ι = 0},

and for every 7 > 0 we set

ί{j) = min{ί G N|my = mt+χj} = min{t e N|feί+i7 = 0}.

The sequences i(j) and j{ί) are easily seen to be non-increasing (use
the above propositions), and hence the meaningful part of the matrix
Mx sits inside the rectangle with opposite vertices (0,0), (/(0), 7(0));
this means that for every / > /(0) the /th row is equal to the /(O)th
row, and for every j > j(0) the 7th column is equal to the 7'(0)th
column. Of course for (/, 7) > (/(0), 7(0)) my = deg X, and outside
the above rectangle AΛIχ has null entries.
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With this notation and with Theorem 1.2 in mind, one sees that X
is contained in a curve of type (z'(0) + 1, 0) and in a curve of type
(0, 7(0) + 1) therefore the minimal complete intersection containing
X is given by these two curves (see Remark 1.3).

REMARK 2.9. (i) One can represent the result of Proposition 2.7 just
saying that each column of ARMχ is a sequence of type 1 ,2 , . . . ,
t ~ 1, t, h , t2, . . . in which t > t\ > , and tt = ti+ϊ for / > 0.
The same holds for the rows of AcMχ.

(ii) In AMx we have:

ί 1 for 0 < 7 < 7(0), f 1 for 0 < / < z(0),
c 0 i = S ~ , . a n d Cio = s ^

{ 0 otherwise, I 0 otherwise.
(iii) Proposition 2.5 in terms of the matrix AMx can be expressed

as:
j j

for every (/, 7) 0 < ^ cu <^2ci-u- this means bij < b^\j
ί=0 ί=0

for every (/, j) 0 < 2_^ ctj < X , ctj-\ : this means a\j < <2/7 _ i .
t=o t=o

(iv) Propositions 2.5 and 2.7 give on the matrix A2MX = (dy) the
following conditions:

(1) for every i, Σt>odit = 0 and, for every j , Σt>odtj = 0; this
because cy = 0 for / » 0 or for 7 » 0

(2)

( 1 for/ = 7 = 0,

0 for / = 0 and 7 φ j(0) + 1 or 7 = 0 and i φ i(0) + 1,

- 1 for 1 = 0 and j = j(0) + 1 or j = 0 and z = i(0) + 1

(3) If Σr<i,s<jdrs < 0 then Σr<i\s<f drs < 0 for (/',/) > (1, 7)
(4) for every (/, 7) we have by a straight computation:

r -1

t=0 s<j *• t<i

t=0 s<

so the inequalities in (iii) become:

\{s + 1) Σ ^ - J > 0, and Σ [̂  + !) Σ*-*] * 0,
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l)du-s < 0, and 0

REMARK 2.10. When Q is embedded in P 3 then the sequence ma
is the Hilbert function of X as a subscheme of P 3 (see Remark 2.1).
In this case, if ntu < (i + I) 2 then AHF(X, i) > AHF(X, i+ 1). In
fact, by Proposition 2.5 we have a,-_i/ > α/_ii+i and ή +i > &;+H+I

by Proposition 2.7 and the hypothesis we have bu > ba+\. From
these inequalities with a simple computation we get:

2bu = /W|-

summing up we obtain

/_i/_i and

+ 2mz/ -

_i < 2m//, i.e.

This result was recently proved, by different methods, in [Rl].

THEOREM 2.11. Let X c Q be a ^-dimensional subscheme, then its
Hilbert matrix Mx = (my) is admissible.

Proof. Just apply Propositions 2.5 and 2.7. D

Now we will give some geometric information contained in the
Hilbert matrix of a 0-dimensional subscheme of Q.

As a prelude to the next theorem, let us look at the following ex-
ample. Let X <zQ be a set of 16 points with Hilbert matrix Mx, of
size (3 ,4) :

0

1

2

3

4

0

1

2

3

4

4

1

2

4

6

8

8

2

3

6

9

11

11

3

4

8

12

14

14

4

5

10

14

16

16

5

5

10

14

16

16

a

If one writes down the matrices ARMχ and AcMχ and uses the
next theorem, one sees that there are two lines of type (1,0) each
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containing 5 points, one with 4 points and one with 2 points; similarly
there are two lines of type (0,1) each containing four points, two
more lines with 3 points, and one with 2 points.

Moreover, in this particular example, the same thing can be seen
more easily looking directly at the matrix AMX

0

1

2

3

4

0

1

1

1

1

0

1

1

1

1

1

0

2

1

1

1

0

0

3

1

1

1

0

0

4

1

1

0

0

0

5

0

0

0

0

0

a

and counting the number of "Γs" in each row and column (see §4).
What we are saying for points on the quadric makes sense also for

any 0-dimensional subscheme of Q. We need to explain what "n
points on a line" means for non-reduced subschemes.

Let X be any 0-dimensional subscheme of Q and / = I{X) C S be
its homogeneous saturated ideal. For any homogeneous form / e S
consider the ideal ( / , / ) : this is not in general a saturated ideal,
anyway denote by Y the subscheme of X that it defines. Then the
residual subscheme of Y in X is defined by the ideal / : / , which is
saturated as one can see by a standard check.

Since I(X) is saturated, it contains a form f(u, u') ® 1 of degree
(n, 0) for some n (see Theorem 1.2). Let /(w, u') = Y[r

i=ι(aiU+biu')s>
be the decomposition of /(w, w'), and set <zfw + b\u9 = Uι (/ =
1, 2, . . . , r). The line M, appears with multiplicity 57 in the de-
composition of / ; we count the number of "points of X" on each
copy of Uj in the following way:

set JX =

h =

and Iχ = / : M,

) and I2 = h ' w;

JSt = (ISrι, Ui) and ISι = T^i : κ,

(Is is not supported at any point of uϊ).
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Now the "first" copy of u\ contains deg(sat/i) points of X, . . . ,
the "last one" contains deg(sat/5) points of X.

In the next theorem we shall use the following property (Bezout):
with the above notation let g e S be any irreducible form of degree
(α, b) and h e H°(<Sx(c, d)). If deg(sat(/, g)) > ad + be then
h = gg' for some gf.

THEOREM 2.12. Let X c Q be a ^-dimensional subscheme, and
Mx = (my) its Hilbert matrix. Then for every 7 > 0 there are just
0/(0)7 - 0/(o)7+i lines of type (1,0) each containing just 7 + 1 points
of X and, similarly, for every i > 0 there are just ^ (o j-^+i^o) lines
of type (0, 1) each containing just i+\ points of X.

Proof. We establish the theorem for the (1, 0)-lines; one could work
in a similar way for the other lines. We proceed by induction on j .
Let us consider the following inductive hypothesis: there are just

rλ = 0/(θ)o - 0/(0)1 (1 9 0)-lines containing just 1 point of X,
r2 = β/(0)i - ai(0)2 (1 9 0)-lines containing just 2 points of X,

k Γj = 0/(o)7_i - 0/(0)7 (19 0)-lines containing just j points of X.

(1)

As the hypothesis (1) is empty for j = 0, we need deal only with the
general case. Denote by r7+i the number of (1, 0)-lines containing
just 7 + I points of X.

Since X is contained in i(0) + 1 (1, 0)-lines5 by hypothesis (1)
there are

7+1

lines containing more than j +1 points of X therefore every element
of J/°(J^(/(0), 7 + 1)) is the union of a fixed curve / of degree (<5, 0)
(δ fixed lines when X is reduced) and a curve of type (i(0)—δ ,7+1)
passing through X', where X1 c X is the subscheme defined by
I(X) : f (when X is reduced X' is the subset of points in X ly-
ing on the remaining lines); of course degX7 = YJtl\ trt.

Claim. X' imposes independent conditions on H°(i(0) -δ, 7 + 1).

We show that m^Oj_j = degX' where Mx> = (mjy ) denotes the
Hilbert matrix of X1.
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Observe first that for t < j + 1, by definition of X' one has:

mmt = (i(0)

= (Ϊ(0) + 1 - δ)(t

Since by (1), for every p <j, we have rp

we can compute:
- + r}• = amp-χ -ai(ΰ)j,

(2) degX' = Σtr, = (rι + • • • + η) + (r2 + • • • + η)

+ (fl/(0);-l - βf(θy) + 0" + 1)0+1

- U + ι

Again by (1) one gets:

j = ^/(0)7-l - rj = ai(0)j-2 - r j - l ~ r j = ' - " = αί(0)0 ~ r\

= /(0) + l-rι η.

rj

By substituting in (2) we have

degX' = mmj - (./ + 1) I i(0)
j+i

Now, since

i(0), j + 1)) = ι(0) - ί, 7 + 1)) and

by the claim we have:

2)
k ί = l ί = l

ί = l
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on the other hand, for every s < j , summing up the relations in (1),
we have

Σ Yt = α<'(0)0 " aW)s = z(°) + 1

t=l

so by definition of aij we get:

mmj = i(0) + 1 + Σ ams = ι(0) + 1 + Σ f(i(0) + 1) -
5=1 s=i L t=ι

5=1

Finally, we get

7+1

t=l

7

= i(0) + 1 - Σ γt - O+i = α/(0)7 - O+i D

COROLLARY 2.13. With the hypotheses of the above theorem, every
linear system of curves of type (i, j) passing through X, with i < i* =
min{ί G N\mtj(t) = degX} (resp. j < j * = min{t e N\miWΐ =
has at least one fixed line of type (0, 1) (resp. of type (1, 0)).

Proof. By minimality on /*, in the matrix AcMχ we have fe/^)
= 0 and 6| y(, ) > 0 . Note that 6| 7 (0) > 0 because m Γ y ( 0 ) = degJSΓ
and m/ . ^ o ) < degX.

Applying the previous theorem one sees that there are £/*7(0) (0, 1 )-
lines containing z*+l points of X. Every curve of type (i9j) passing
through X, with / < /*, will contain such lines. One can repeat the
same argument starting with ARMχ. D

EXAMPLE 2.14. Not every admissible matrix is the Hilbert matrix
of some 0-dimensional subscheme of Q. The following admissible
matrix explains this situation:
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0

1

M = 2

3

4

5

1

2

3

4

5

2

4

6

8

10

3

6

8

10

10

4

8

9

10

10

5

10

10

10

10

We want to show that there is no set of 10 points X C Q such that
M = Mx. By Theorem 2.12 such an X would belong to 5 (1,0)-
lines L, and to 5 (0, l)-lines L\, 2 points of X on each of these lines.
Looking at M one sees that A0(J5r(2, 3)) = 3 therefore there would
exist a curve C of type (2,3) passing through X and containing
one of the above lines as a component, say L\ (take 2 further points
on L\ and remark that the dimension of the linear system of curves
of type (2, 3) through X and these two points is > 1). Hence,
C = L\ C where C is a curve of type (1, 3) containing the 8 points
X — {L\ ΠX}. Now the intersection on Q gives (1, 3) (0, 1) = 1, so
C must contain as components three lines L\ (each with 2 points of
X) and another line of type (1,0) passing through the remaining two
points: so, these two points together with the two points on L\ form
a complete intersection (0, 2), (2, 0) but this is impossible because
we can repeat the argument on each line L; (the number of the L, is
odd).

LEMMA 2.15. Let X c Q be a ^-dimensional subscheme, and Mx =
(my) its Hubert matrix; let AMX be of size (a, b) and L'o, L[, . . . ,
L'b be the (0, \)-lines containing X. Take any (1, Q)-line L disjoint
from X and consider Z = XuY, where Y = Ln(\J.=0Lβ with n>b
and L'b+ι;... , L'n arbitrary (0, l)-lines.

Then the Hilbert matrix of Z, Mz = (m\j) is the following.

(1)

(2) m

j ; f.7 + 1 forO<j<n,
Oj 1 n + 1 for j >n\

_{Wij + J+l fori>0, 0<j

\ mtj + n + 1 for i > 0, j > n.ϊ+lj
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Proof, One can express the lemma in terms of the first difference
matrices, AMX = (cu), ΔMZ = (e^ ) :

(2) 4+ij = *j for (i, 7) > (0 ,0) ,

which mean that ΔΛ/z is obtained from AMx just adding a 1st row
consisting of n + 1 " 1 * entries.

We prove (2), as (1) is trivial. Observe that, for j < n, one has

since every curve of type (i + 1, j) through Z splits into L and a
curve of type (/,./') through X ; hence

m'Mj = (i + 2)(j + I) - h°(^z(i + U j)) = rriij + j + I.

When 7 > n we have cj.+1 = cy = 0 and we are done.
Of course a similar result can be proved adding n + 1 points on a

(0, l)-line Z/ disjoint from X. D

COROLLARY 2.16. FΓzY/z ί/*£ s<zme hypotheses of the above theorem, if
the (0, lyiine L'o contains a+l points of Xf then X1 = X-{L'0Γ)X}
has the following Hilbert matrix:

AMr(i, j) = AMχ{i, j + 1) (ι,7) > (0, 0).

Proof Note that X = X'U Y, where Y = L'onX, and apply Lemma
2.15 changing rows with columns. D

3. The resolution of the ideal sheaf / j . Let I c (2 be a 0-
dimensional subscheme and I(X) c S the saturated ideal of X. Note
that 1 < depth S(X) < 2: in fact I(X) contains an S-sequence of
length 25 and in S(X) there is a regular element (it is enough to
take an element of S which does not vanish at any point of X).
Therefore I(X) has an S-free minimal resolution of length < 3 with
morphisms of degree (0 ,0) . If this resolution has length 2, i.e. when
depth S(X) = 2, then S(X) is a Cohen-Macaulay ring and X is called
arithmetically Cohen-Macaulay (ACM for short).

EXAMPLE 3.1. Although X has maximal codimension in Q, it is
not always true that S(X) is Cohen-Macaulay, in opposition to what
happens for subschemes of maximal codimension in Pn .

Here is a simple example of this fact.
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Take on Q two non-collinear points (i.e. not contained on a line of
Q), say Pi, P2, and let pi = (u ® 1, 1 ® υ) and p2 = (u' ® 1, 1 <8> i;7)
their defining ideals. If X = {JPJ , P2} one gets /(X) = (uuf ® 1,
u®v', u'Θ v , 1 ® W ) . One sees that (w + w7) <g> 1 is regular in S{X)
let us check that depth S// = 0, where / = (I(X), (u + u') ® 1).
In fact, in S/J the homogeneous elements are either of type u ®
^(v,!;7) or 1 ® h(υ, Ϊ;7) , where g{v,v') and h{v,vf) are forms
and deg/z(t>, t;7) > 0. They are both annihilated by u ® 1. So,
depth 5(X) = 1 < d i m £ ( X ) .

Of course, two collinear points are complete intersection, hence
ACM. In §4 we will see that not every ACM 0-dimensional subscheme
of Q is c.i.

Let

(1) 0 -
i=\ i=\
m

1=1

be the minimal free resolution of the saturated ideal I{X), with mor-
phisms of degree (0 ,0) . From this, taking sheaves, one gets an &Q-
free resolution of the ideal sheaf J"x.

Take now any <^ρ-free minimal resolution of

such that

{ for any (r, s) H°(£?0(r, s)) -> H°{Sx(r, j)) is surjective,

for any (r, s) i / 0 ^ (r, s)) -> H°(^(r, 5)) is surjective,

with I? = Im #>.

With this choice, for every (r, 5) we obtain the exact sequence

and since fl?(J5r) = 0 r > o 5 > 0 /f°p5Kr, 5)) = /(X), taking sums on
(r, s) we obtain a resolution which is isomorphic to (1). Thus the



270 S. GIUFFRIDA, R. MAGGIONI, AND A. RAGUSA

resolution

(2) 0 -

obtained by taking sheaves in (1), satisfies conditions (*).
From now on, we will refer to (2) as the minimal free resolution of

•Sx without further specification.
The convenience of this choice is clear since from (2) one can com-

pute Λ°(J5r(r, s)) for every (r, s) > (0, 0):
m n

r, s)) = Σ h°(r ~ au > s - a'u) - Σ h^r - a*' s ~ a2i)
i=\ i=l

m

- 0 2 / + 1 )

where for every h e Z we mean A+ = max{/z, 0}.

REMARK 3.2. We took great care in defining the resolution of
since, contrary to the situation of sheaves on P π , on Q it may happen
that the ideal sheaf J ^ of a 0-dimensional subscheme X c Q has a
minimal free resolution of length 2

without X being ACM. This happens because the map
H^i^x) could be nonsurjective. This is the case, for instance, when
X is ideally a complete intersection, i.e. when there exists a sheaf
surjection <f^2 -> J"x, but X is not c.i. (see Example 3.1).

With the notation of resolution (2), we set the following:
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PROPOSITION 3.3. Let X c Q be a ^-dimensional subscheme and
let

0 -
ι=l
m

Ϊ = 1

minimal free resolution of *fχ. Then we have:

(i) n + 1 = m + p

0;
(iii) degX = - Σ ^ i aua'u + Σl
(iv) yor every i = 1, 2, . . . , m ί/iere exwί5 j (1 < j < n) such that

j

(v) if a first syzygy exists, say of degree (a2r, a'2r), which is max-
imal with respect to the property "(a2r, a'2r) ^ (a^, a'Zi) for all i =
1, 2, . . . ,/?", then h^J^ia^ - 2, a'2r - 2)) ^0. In this case, if Mx

is the Hubert matrix of X, we Λαve Mx(a2r -2, a'2r-2) < degX
(vi) the following relations between the given resolution of J^ and

the matrices Mx = (ra/; ), AMX = (cy),

h<r
k<s

m r s = (r + 1)(J + 1) - ^ ( r + 1 - h)(s + 1 - fc)(αΛfc - βhk + γhk)

ϊhk) ,

=\, and for every (r9s)> (θ y 0) J r ί = -ars + ^ - y r 5

h<r
k<s

(vii) // AMX is of size (a, b) then for every (/, j) > {a + 2, b + 2)
y = jS/7 = y, ; = 0 .

Proof, (i) and (ii) are well-known consequences of the exactness of
the resolution. For (iii) we need an explicit computation. Since for
(r,s) » (0 ,0) , mrs = degX, taking in mind the computation of
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r,s)) we have:

( r - au + 1)0? - a'u
ι = l

p

ι = l ι = l
m

(r+ l)a'u - aua'u]

j + l)α2/ + (r

P

l)a3i + (r + l)a'3i - a3ia'3i]

m

Lι=l i = l i = l

[ m n p ]

Σ ^ - Σ ^ + Σ^
i = l ι = l ι = l J

m n p

~ Σ fllίflί / + Σ fl2i«2/ - Σ fl3/fl3i :
Ϊ = 1 ι = l / = 1

now the conclusion follows using (ii). Notice that in the first equality
we used (i).

To prove (iv) observe that if one generator of degree (a\r, a[r)
contradicts (iv), then the matrix of φ would have the rth row with all
zeros: this would mean that the mentioned generator has no syzygies
at all (not even the trivial one!).

(v) Splitting the resolution of J^r w e have the exact sequences
m

(3) o - r - 0*b(-αi/, -a'u) - J^x - 0,
ι = l

( 4) 0 - 0 ^ β ( - α 3 / , -̂ 3/) - ©*b(-*2/, -^/) - ^ - 0?
ι = l ι = l

where J? = Im ̂  is a locally free sheaf. Twisting in (4) by (air ~ 2,
ar

lr - 2), taking cohomology, using the minimality of the resolution
and the hypothesis on [air > #2r) > o n e ^ a s H2(^(a2r-2, a'2r-2)) Φ 0.
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Twisting (3) by the same degree and taking cohomology, we have

> Hι(Jr

x(a2r -2,a'2r- 2)) -> H2(^(a2r -2,a!2r- 2))

2r-2-au, a'2r - 2 - a'u)\

Since the last term of this sequence vanishes because of the maxi-
mality assumption on (a2r, a2r) and by (iv), we obtain

The second part is proven recalling that, for every

{*fχ{i 9 j)) — degX — πiij .
(vi) Since for every (r, s),

m

mrs = ( r + l)(s + 1) — y^(r — d\ι + l)+(s — a[j + 1 ) +

ι=l

the first claim follows by definition of a^ , β^k , ϊhk a n d a straightfor-
ward computation. To compute crs we employ the matrix ARMχ =
(ars).

ars = m r 5 - mr5_! = r + 1 - J 3 (r + 1 — h)(ahk - βhk

h<r
k<s-\

+ 1 - h){ahs - j8Λj + γhs)

h<r

J ^ - βhk

k<s

Using the analogue expression for ar_\s, one gets

Crs = &rs ~ &r-\s

= 1 - Σ(ark - βrk + yrk) - Σ (ahk - βhk + Vhk)
k<s h<r-\

k<s

+ )
h<r
k<s



274 S. GIUFFRIDA, R. MAGGIONI, AND A. RAGUSA

To compute drs we use the matrix ARAMX = (qrs):

Qrs = Crs -Crs-l

Σ - βhk + γhk) - 1 + 5 3 {othk - βhk + γhk)
h<r h<r
k<s k<s-\

h<r

now we can perform the last computation

drs = Qrs - Qr-ls = ~ l^i^hs ~ βhs + 7hs) + 2 ^ (<*hs ~ βhs + 7hs)
h<r h<r~\

= - ars + βrs - γrs.

(vii) Suppose that (/, 7) > (a + 2, b + 2) is the degree of a maximal
first syzygy. Notice that αZ7 = 0 by item (iv); moreover for (/, 7) >
(α + 1, b + 1) one has dij — 0, and thus in the range (r, s) > (i, 7)
we have ars = 0 and βrs = 0, which implies y^ = 0: so our syzygy
is linked by no second syzygy. Hence, by item (v), mi^2j-2 < degX
must occur; this is a contradiction as (/ - 2, j - 2) > (α, 6) and
therefore m/_27_2 = wfl^ = degX. D

4. Arithmetically Cohen-Macaulay O-dimensional subschemes. As
we know not every O-dimensional subscheme X c Q is ACM; in this
section we want to characterize the ACM subschemes in term of their
Hubert matrix.

An admissible matrix M' will be called an ACM matrix if AM' has
only nonnegative entries. If an ACM matrix M' of size (a, b) is such
that AM' has entries c 7 = 1 for every (/, 7) < (α, b), it is trivial
to verify that M' is the Hubert matrix of a complete intersection of
type (a+ 1,0), ( 0 , 6 + 1 ) .

Let M' be an ACM matrix of size (α, b). We say that (/, j) is a
corner for AM' if (/, 7) = (0, b + 1) or (/, j) = {a + 1, 0), or even
if c'jj = 0 and c(_1; = c 7 - 1 = 1. We say that (/, 7) is a vertex for
AM' if cj _ l 7 = c'ij_ι = 0 and cJ-_ly-_x = 1 in this case, of course,
c • = 0. See Figure 1.
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FIGURE 1

One can check for an ACM matrix Mf that the entries of A2M' =
(d'u) are:

{ 1 if (i, j) = (0,0) or (/, j) is a vertex,

- 1 if (/, j) is a corner,

0 otherwise.

Recall that X c Q is an ACM 0-dimensional subscheme if and only
if the minimal free resolution of J x is of type (2) of §3 with y, 7 = 0
for all (i,j).

THEOREM 4.1. Let X c Q be a 0-dimensional subscheme, and let
Mx be its Hubert matrix. X is an ACM scheme if and only if Mχ is
an ACM matrix. Furthermore, in this case, the minimal free resolution
of J"x looks like

m-\

0 -a2i, -
ι=l

where (α2/ ? CLr

2i) runs over all the vertices and (an, a'u) runs over all
the corners of AMx.

Proof. For complete intersections the theorem is trivially true. As-
sume that X is an ACM not c.i. subscheme. Suppose by contradiction
that there are negative entries in AMx = (cZ7): take a maximal one,
say crs < 0 such that c/, = 0 for (/, j) > (r, s). Such an element
does exist by Proposition 2.7 and Remark 2.8. By the choice of (r, s)
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one can write:

= Cr+ls+1 + crs ~ cr+\s ~ crs+\ = Crs < 0.

Apply Proposition 3.3 item (vi): dr+i5+i = - α Γ + i J + i + βr+\s+\ < 0
(recall that ytj = 0 for all (/ , ; ) ) ; so, α r + u + 1 > βr+\s+i > 0 i.e.
there is at least one minimal generator in degree (r+l,s+l). This
provides a contradiction since rfy = 0 for every (/, j) > ( r + 1 , s+ 1)
while a syzygy is required by item (iv) of Proposition 3.3.

Vice versa, let us suppose that Mx is an ACM matrix of size (α, b).
Applying Theorem 2.12 to Mx, one shows that there are a+1 (1, 0)-
lines, L; (/ = 0, 1, . . . , a) each containing as many points of X as
the positive entries of the zth row of AMx, and b + 1 (0, l)-lines,
Lj (j = 0, 1, . . . , b) each containing as many points of X as the
positive entries of the Jth column of AMx.

Claim 1. If / < a or j < b, then

{ 1 if (1, j) is a corner of AMX,

0 otherwise.

To prove the claim we start with observing that if (/, j) is a corner
of AMx, then A°p!r(*, j)) = 1 hence atj = 1. Moreover, this gen-
erator is the curve of type (/, j) consisting of the lines LQ, L\, ... ,
Li_\ and Lr

0, L\, . . . , Lrj_x. Let us show, now, that for any other
(i, j) in our range, a curve of type (/, j) containing X is a combi-
nation of the previous generators. We suppose / < a and work by
induction on b (a similar proof can be done when j < b working by
induction on a). When b = 0 X c L'o is a c.L; assume the state-
ment true when X is contained in less than b + 1 (0, l)-lines. In
this case any curve C of type (i, j) through X splits into L' and
C, where L' is the union of the r > 0 (0, l)-lines containing more
than / points of X and C is a curve of type (/, j - r) containing
Z = X - {Lf Γ\X}. By Corollary 2.16 the matrix AMZ can be ob-
tained from AMx just deleting the columns 0, 1, ... , r — 1; then
every corner of AMZ corresponds to a corner of AMx. By the in-
ductive assumption C is a combination of the generators of I(Z)
corresponding to the corners of AMz . Now the multiplication by L'
supplies the required expression for C.

If (/, j) is a vertex, counting the dimension of //°(Jχ(/, j)) and
taking into account that in each rectangle with opposite vertices (0, 0)
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and (/, j) there are just two generators of I{X), one shows that /fy =
1.

Claim 2. If Σ is a first syzygy which acts only on the generators
corresponding to the corners, then it is generated by the syzygies on
the vertices.

Let Σ be such a syzygy. For simplicity, we restrict ourselves to the
case when AMx has three corners (0, b+1), ( r + 1 , 5 + 1 ) , (a+1,0);
the procedure easily extends to the general case. In this hypothesis the
three generators will be (recall that we do not distinguish between
curves and the forms defining them):

Fx = R*Rr where R = L'0-L\ L's and R1 = L'5+ι -Lr

s+2 l!h\

F2 = R T where T = LX-L2 Lr\

F^= T-T' where V = Lr+χ Lr+2 La

and the syzygies corresponding to the vertices will be:

Σi = (Γ, -Rr, 0) which links Fx and F2,

Σ 2 = (0, V, -R) which links F2 and F 3 .

By the assumption, Σ acts only on F\, F2, and F$, so Σ =
{X,Y,Z) with X^! + YF2 + Zi^3 = 0, i.e. X^i = -T(YR + ZTf).
Since every Lz in T is not in F\, it follows that X = TX' from
which we get X'FX + YR + ZT' = 0, i.e. R(X'R' + Y) = -ZT and,
with the same argument, we have Z = RZ1. So, finally, we have
Y = -X'R1 -Z'T. This implies:

Σ = (X, Y, Z) = (ΓX ;, -iϊ 'X' - Z ' Γ ' , RZ1) = X'Σχ - Z'Σ2.

Claim 3. If i < a + 1 or j < b + 1, then

1 if (/, 7) is a vertex of

0 otherwise.{
If / < α or < 6, just apply Claim 2. If i = a + 1 and 7 >

b + 1 (resp. 7 = b + 1 and / > α + 1) we have rffl+1</ = 0 (resp.
dib+\ = 0) If f°Γ some 7 ^ + i 7 ^ 0, we could take the minimal j
with this property; a syzygy in this degree would have to act only on
the generators of the corners: by Claim 2 this means βa+\j = 0 The
same argument works for βn,+i -
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Conclusion. Recalling that djj = —αy + βy - yy, a simple com-
putation shows that yy = 0 in the range i < a+\ or j < b + 1
so, in the same range, αy = 0 outside the corners. On the other
hand, for (/, j) > (a + 2, b + 2) Proposition 3.3 item (vii) states
αy = βij = yy = 0 and the proof is complete. D

Note that the Hubert matrix of an ACM O-dimensional subscheme
of Q completely determines the graded Betti numbers of its ideal
sheaf, although this is not true for O-dimensional subschemes of Pn .

As we saw in Example 2.14 not every admissible matrix is the
Hubert matrix of some O-dimensional subscheme of Q. We want
to show that this happens for ACM matrices.

THEOREM 4.2. Let M1 = (mj ) be an ACM matrix of size (a, b).
For any choice of a + 1 distinct (1, 0)-lines and b + 1 (0, \)-linesf

there exists in their complete intersection one and only one {up to per-
mutations of lines) subscheme X such that M1 = Mx. Further X is
an ACM subscheme.

Proof. We construct a subscheme X with the required property.
Let L o , L\, . . . , La be any a + 1 (1, 0)-lines, and Lf

0, L\, . . . , L'b
be any b + 1 (0, l)-lines. Set Ptj = LiΠL'j (i = 0, 1, . . . , a j =
0, 1, . . . , b) and consider X = {Pu \ c'i} = 1}, where AM' = « ; ) .
We want to check that M' = Mx. Of course, it is enough to verify that
rriij = m\j for (/, j) <(a9b), since by definition of X AMχ(i, j) =
Cij = Cy = 0 for i > a or j > b.

Note that, for (/, j) <{a9b)9

m'ij= Σ c'rs = #{PrseX\(r,s)<(iJ)}.
r<i ,s<j

We have just to prove that X gives m[j conditions to H°(i9 j).
We work by induction on the number a + 1 of (1, 0)-lines con-

taining X. If a = 0 then X consists of b + 1 collinear points; so,
mOj = min{; + 1 , 6 + 1 } = rriQj for every j .

Inductive step. By construction, LQ contains b + 1 points of X
hence every curve C of type (/, j) through X must contain it since
j < b + 1. Thus, C = LQ-O , where C is a curve of type (/ - 1, j)
containing X = X - {POo > Po\, - , ̂ oz>} Let ΔM = (c y ) be the
matrix obtained from AM' by deleting the first row; we have Cy =
c + 1 ; for / > 0 (cy = 0 for / < 0). Notice that X is the set of points
which one can construct from M = (my) with the same procedure
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we did for X from Mf. AM has "α" rows; so we have

niij = M Ύ ( i - 1 , j ) + j + 1 = TFίi-ij + j + l = m ' u

where the first equality comes from the definition of X, the second
from the inductive hypothesis and the third by a straight computation.

We prove uniqueness again by induction on a + 1.

If a = 0 then X is the complete intersection LQ n (Uj=o^) Let

y be another subscheme of the c.i. (U/Lo- î) Π (U;=o^) s u c h t h a t

Λfy = Mι and let again LQ be one of the (1, 0)-lines containing b+1
points of Y. By the inductive assumption one has:

Y-{YΠLQ} = X

therefore Y = X. The last claim is Theorem 4.1. D

REMARK 4.3. We already know that there are 0-dimensional sub-
schemes X of Q which are ideally c.i. but not c.i. (see Remark 3.2).
In the case of ACM subschemes we have: X is ideally c.i. if and only
if X is c.i. In fact, if X c Q is an ACM 0-dimensional subscheme
which is not c.i., then a minimal set of generators for the ideal I(X)
is given in Theorem 4.1: the two generators of degree (a + 1, 0),
( 0 , 6 + 1 ) defines a c.i.; any other pair of generators has a common
component (which is a union of lines). So, X cannot be ideally c.i.

REMARK 4.4. Let Ή be the following sequence of integers, and AH
its first difference

Ή : 1 , 4 , 9 , . . . ,b\b2 + cu 6 2 + d + c 2 , . . . , 6 2 +
ι = l

AH : 1, 3, 5, . . . , 2 b - 1, c i , c2, . . . , ct, 0, ->

("-»" means that the sequence stabilizes) where 2b > q > ci+\, / =
1, 2, . . . , t-1. In [R2] was proved that there exists a subscheme X c
P 3 on an irreducible quadric such that HF{X) = Ή. Now we can
construct a class of ACM matrices M = (/w, 7 ) such that 77 = {m//}:
this will imply, by Theorem 4.2, that there are ACM 0-dimensional
subschemes on a quadric Q having Ή as their Hubert function.

To construct AM, we start with an ACM matrix B of size (b - 1,
6 - 1 ) whose entries are all "Γ"s . Choose then t couples (/?/, q{)
such that Pi + qt = C\ and b > pt > piΛ.\, b > qt > qi+i (this can
be done by the assumption 2b > cι > c / + i ) . Now we border B by t
rows (resp. t columns) containing in the initial p\ places (resp. in the
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initial #,- places) " 1 " entries, and "0" elsewhere. The ACM matrix so
obtained has the required properties.

REMARK 4.5. Let X c Q be an ACM 0-dimensional subscheme and
Mx its Hubert matrix, say of size (a, b). Recall that the resolution
of J x is of the kind

m—1 m

o.

Applying the results of [PS] to our case, i.e. to the ring S localized
at its maximal irrelevant ideal (u, d), one has the following facts:

(i) X is ACM if and only if the subscheme X1 directly linked to
X in a c.i. is again ACM.

(ii) X is ACM if and only if it is linked to a complete intersection;
more precisely, if m = u(I(X)) is the number of elements in any
minimal set of generators of I(X), then m - 2 is the minimal number
of direct linkages

X ~ X\ ~ ~ Xm—\

in order that Xm-\ be a complete intersection.
(iii) We know that in any minimal set of generators of I(X) there

is a unique regular sequence consisting of two elements / , g of type
(α + 1, 0), (0, b + 1). One can use Ferrand's procedure, as shown in
[PS], to find the resolution of X1, the subscheme directly linked to X
in the c.i. / , g:

m-2

ι=l
m-\

Moreover, if Mx> is the Hubert matrix of X', setting AMx =
and AAfy' = (Cy) we have:

= f
\

1 if c β - a - , = 0 with ( i , 7 ) < (α,

0 otherwise.

Alternatively, one can say that for (/, 7) < (a, b) ctj + c 7 = 1.

One can easily realize how AMX> looks like, just giving a glance at

Figure 2.
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