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POLES OF EISENSTEIN SERIES ON SLW

INDUCED FROM MAXIMAL PARABOLICS

PAUL FEIT

The author locates poles for Eisenstein series on algebraic groups
SLW (Δ), where n 6 N and Δ is an arbitrary finite dimensional
division algebra over a number field. An explicit family of non-
holomorphic functions, which include series of arbitrary level, is char-
acterized. Each series E(z, s) is induced from a character on a max-
imal parabolic. For each E(z, s) in the family, there is an explicit
product Λ(s) of Γ-functions, L-functions and a polynomial term such
that A(s)E(z, s) has only simple poles in the s variable.

Introduction. Let F be a number field and let Δ be a finite dimen-
sional central division F-algebra. Let oo denote the infinite primes
of F, and for i/Goo, let Fv denote a completion of F and identify
Au = Δφ^iv with a matrix ring over R, C or H, accordingly. (We re-
fer to v as a real, complex or quaternionic prime of Δ, respectively.)
Let m, n e N, and consider algebraic groups over F

(1) G = S

where in (1) and hereafter we divide m+n square matrices into blocks
[ a

c

h

d ] in which a,b, c and d have sizes mxm, mxn, nxm and
nx n, respectively.

Let v G oo, and identify Gv — G(Fι/) with a matrix group over
1 , C or i accordingly. Set

(2) K^iTeGv'.T.'T^ln+n},

where p is 1R, complex conjugation or the main involution of H,
respectively. Then Gv = P{FV)<KV , and we may define Ύv on Gv x C
by

(3) Y

where dt is the reduced norm from Mn{Δv) to R and | | is the
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standard

(4)

norm. Put

Y(z) =

π
ff
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for 2' e Goc) , S €i c.

For Γ c G(F) a congruence subgroup, the sum

(5) E(z9s;Γ)=

converges for Re(s) >> 0, and has the property that E(az, s Γ) =
2?(z, s; Γ) for each a G Γ. Moreover, the sum has a meromorphic
extension to all s G C. We are seeking precise information on the
location and order of poles of such series.

Difficulties arise from considering non-trivial level. The meromor-
phic nature of an Eisenstein series can be resolved by computing its
constant terms with respect to parabolic subgroups. However, as the
level increases, so does the number of cusps. More importantly, the
required integrations do not fit a clear pattern, even though local in-
tegrals at primes away from the level are classified. In this paper, we
exploit a different approach.

Instead of working directly with the series E(z, s Γ), we introduce
a family of series E(z, s ψ, b). Here, b is a "level" and ψ is a
Hecke character of this conductor. In fact,

(5.a) each series of the form E(z, s T) is a finite sum of series
E(z, s ψ, b ) | τ ,

(5.b) for each choice of ψ and b, there is an explicit product
A(s\ψ,b) of L-functions and Γ-factors such that A(s\ψ,b)-
E(z, s ψ, b) is entire unless ψ is trivial, in which case it may only
have simple poles at assigned places.

To find A(s ψ, b), we compute the entire Fourier expansion of
E(z, s ψ, b) with respect to one specific parabolic subgroup. The
particular expansion happens to be simple to calculate. Terms in-
dexed by smaller Bruhat cells, which appear in expansions for conju-
gate parabolics, vanish for the expansion in question. The set of poles
of E(z, s ψ, b) is the union of the sets of poles for the coefficient
functions.

E(z, s ψ, b) is constructed adelicly. Its precise definition is in
§2, and the formula for A(s ψ, b) is given in (4.27). Our main result
is Theorem 4.2. Our method is a variation on the program developed
by Shimura in [11] and [12], and supplemented by this author in [6],
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to study Eisenstein series for congruence subgroups on symplectic and
special unitary groups.

Section 1 states our conventions for going from global to adelic
notions of automorphicity. Lemma 1.1 extends [12; Lemma 1.4] to
a broad class of algebraic groups. Section 2 introduces the series
E(z, s ψ, b) and proves a summation formula analogous to [12;
Proposition 2.4]. Section 3 recalls work of Bengtsen [2] on confluent
hypergeometric functions which arise as local integrals in our case.
In §4, we compute Fourier coefficients and determine the relevant
factor A(s). When ψ = 1, ζ-functions appear in our formulas and
additional simple poles occur.

1. Geometric conventions and a lemma. We begin with conventions
on adelization. Let F be a number field. Denote the set of non-
archimedean (or "finite") primes of F by f, and denote the remaining
(or "finite") primes by oo. For v a prime of F, let Fv denote a
localization of F at v, and let | \v be the normalized absolute value
on Fv . For i ? C F a subring (usually the ring of integers of F) and
p G f, let Rp denote the closure of R in Fp. Let A and Af denote
the rings of F-adeles and of finite .F-adeles, respectively.

Let R C F be the ring of integers of F, and let G be an algebraic
group defined over R. For B a commutative i?-algebra, denote the
^-rational points of G by G(B). We let " G " signify both the alge-
braic group and the group of "global" points G(F). For v e oo U f,
put Gv = G(FU). We also have topological groups

(1.1) Goo=

GA = G(A).

Identify GA with G^ x Gf. For α e GA , we let ap, a^ and α f

denote the projections of a \o Gp, Goo and Gf, respectively.
Suppose Δ is a finite dimensional central simple F-algebra. There

is an order of Δ which is a free i?-module; fixing a choice of basis
for such an order, we can represent GLW(Δ) for n e N as the i7-
rational points of an algebraic group. We apply the above conventions
to GLW(Δ) (as well as any algebraic subgroup of products of such
matrix groups). The actual choice of order will not affect our work.
For v a prime of F, put Av = Δ ®p Fv if v e f, and S is an order
of Δ, let 5 ^ = 5 Θi? Ru denote the closure of S in Au .
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We quickly review the link between adelic and global approaches to
automorphic forms.

Let G be a (discrete) group which acts on a topological space S)
on the left. A factor of automorphy (with respect to the action) is a
function j : G x 9) —• C* such that

(1.2.a) j(a, z) is continuous in the variable z E ή ,
(1.2.b) j(e, z) = 1 for all z e f) and e the identity of G, and
(1.2.c) y(α/?, z) = 7 ( α , β - z)j(β, z) for all a, β G G and z e 9).

Let ^ be the set of functions from ft to C. For /c e Z, there is a
right action by G on ̂  given by

(1.3) (f\ka)(z) = f(a z)j(a,z)-k

for all/eiS QGG, and z e #.

We write f\a for / | ^ α when the context is clear. If Γ is a subgroup
of G and f\a = f for all a e Γ, then we say that / is Γ-invariant or
that / is an automorphic form of weight k with respect to Γ. The
space of Γ-invariant forms is denoted by e/#(Γ). If j is a factor of
automorphy, then so is j k we only refer to "weight k " to emphasize
the factor j rather than simply regard j k as an abstract factor of
automorphy.

Next, consider G a topological group which acts continuously on a
space 9), a fixed element of i in fj, and G and X subgroups of G.
Let C be the stabilizer of i, and assume that

(1.4) G acts transitively on # ,

X is a closed normal subgroup of G,

XC = G, and

XG is dense in G.

The adelic situation arises as follows: Begin with an algebraic group
Go over a field F. Put G = G0(A), X = G^.G = G0(F). Let
K be a maximal compact subgroup of X, and put S) = X/K and
i = K € S). These choices satisfy (1.4) provided that G$ has a Strong
Approximation Property.

In the above context, let j be a continuous factor of automorphy
G x fj —• ft. Let ^ be the set of open subgroups U of G which
contain X and for which U/X is compact. Define a congruence
subgroup of G to be any subgroup Γ = G n U where U e %. For
£/ G ̂ , let J?(U) be the set of continuous functions F: G —> C such



POLES OF EISENSTEIN SERIES ON SLn 233

that

(1.5) F(gxω) = F(x)j(ω, ι)~ι

for all g G G, x G G, and ω G C Π C/.

There is a bijective correspondence between *S?(U) and the set of
automorphic functions with respect to Γ = G Π U determined by the
property that

(1.6) Fe 5?{U) <—+ / G ΛT(Γ)

F(x) = f(x ι)./(jc, 0" 1 for all x e U.

If Γ is a congruence subgroup, then the only U G ̂  for which Γ =
GnU is (7 = XT.

Let J? = \JUe^^f(U) and J[ = U t / ^ ^ ^ 0 ^) τ h e identifi-
cations in (1.6) determine abijection θ between Jz?7 and Λf. There
is a right action by G on , / given by | \, and this induces an action
on Sf. Suppose that G = I x ί ί for some group H in the adelic
case, put H = G0(Af). Then for / G JT, α G G, and JF = θ ( / ) , the
function θ(/ |α) is x h-> F(xα^ 1) where α// is the projection of a
into if.

The elementary but useful lemmas [12; Lemma 1.4] and [12; Propo-
sition 2.4] can be generalized. Indeed, we now formulate a version
which applies to most standard parabolics in a reductive group.

Define a norm-accessible tuple to be datum (F, {K\, . . . , Kk}, M,
C, { # ! , . . . , # * } ) where

(1.7.a) F is a number field and, for each j, Kj/F is a finite exten-
sion field,

(1.7.b) M is a reductive group defined over T7,
(1.7.c) C is a compact open subset of Mf,
(1.7.d) for 1 < j < k, Nji M —• ϋfj is a group homomorphism

defined over i 7 (where XJ is regarded as a torus over Z7),
and the following properties are satisfied: Define K* = Π7 K] a n d
let N = N\X'"X Nm be the diagonal map into K*. We require that

j

(1.8.b) Ker(TV) is a semi-simple simply-connected algebraic group
and Ker(JV)oo is not compact,

(1.8.c) N(C) is the largest compact-open subgroup of (K*)f.
((K*)f is the product of idele groups of the Kj, and each of these
has a unique maximal compact-open subgroup which consists of the
product of unit groups of local integer rings.) Let Ij be the group of
fractional Ay-ideals, and let Lj be the subgroup of principal ideals
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generated by elements in Nj(M(F)). Define cl(Af) = Π/COA^/) and
define θ: M& —• cl(Af) to be the product of the maps θj which, for
each j , maps x E MA to the ideal determined by the finite part of

LEMMA 1.1. Let {F, {Ku . . . , Kk}9 M, C, {ΛΓi, . . . , JV*}) te α

norm-accessible tuple, and let θ: M —• cl(Af) £e the function defined
previously. Let G be a reductive group, P a parabolic subgroup and
Q be a compact open subgroup of Gf. Assume

(1.9.a) Gf = P f C 0 ,
(1.9.b) P = M£/ where U is the unipotent radical and M is a Levi

factor,
(1.9.c) M f n C 0 = C.

Then
(A) For each 1 < j < m and each p a finite prime of Kj, there is

a function εjίP on Gf such that for m e A/j, u G Uf and ω e Q ,
6jίP(muω) = |iY/(fWp)jp w^r^ | | p is the normalized valuation at p.

(B) ΓΛ^re w a function θ: Gf -• cl(Af) .swcΛ that for meM^, ueUf
and ω € CQ, θ(muω) = 0(w). Moreover, θ factors to an injection
on P(F)\Gf/C0.

Proof. The only non-triviality is the claim that the factored map of
θ to P(F)\Gf/C0 is injective. Let x , y e C?f so θ(x) = θ(y), and we
must show that x e P(jF)yCo. By hypothesis (1.7.a) and definition
of cl(Af), there exists m e M(F) such that εJyP(mx) = eJiP(y) for
each j and each p e f thus, we may assume that ε 7 > p(x) = εjyP(y)
for each 7 and p. Express

(1.10) x = muω and j ;

where m, n eM^, u, v e Uf, ω, τ e Co.

For each 7, Λ̂ 7 extends to an algebraic homomorphism P —• AΓJ
defined over F by Nj(U) = {1}. By assumption, there is c €
C = Mf Π CQ for which Nj(xc) = Nj{ή) for every 7 . Observe that
xc = (mc)(c~1wc)(c~1ωc). Without changing double cosets, we may
assume x = mu,y = nυ and iV)(ra) = Nj(n) for every 7 .

Let N be the homomorphism of (1.8). Now xy~ι e Ker(JV)ft/f
and Ker(iV) and (7 are algebraic groups for which the global points
are dense in the finite adelic points. The set yCoy"1 is open, and
so there exists p G P(F) and δ e yC$y~x such that xy~λ = pδ.
Consequently, x e P(F)YC0. D
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In [12], Lemma 1.4 is given for (among other cases) F a totally real
field, G = Sp(ft, F), P the subgroup of matrices of the form [g b

d]
where a, b and d are « x n blocks, M is the Levi factor of P and N
is the homomorphism [g ^] —• det(<i). Now suppose F is a number
field, Δ a finite dimensional simple F-algebra, and τ\, . . . , rk e N.
Putr = Σ y = 1 η, G = SLr(Δ) and let P be the subgroup of matrices
of the form

(1.11) . . . where cij e GL r y (Δ) for each j .

Let M be the subset of P of matrices whose over-diagonal blocks are
all 0. For each j e {1, . . . , k}, let Nj be the function on P which
maps a matrix as given in (1.11) to det(α ;). If

(1.12) either Γj > 1 for all j or Δ splits at each I/GOO,

then any subset of k - 1 of the functions {Nj} determines a norm-
accessible tuple. In this paper, we only work in the latter case when
k = 2.

2. Eisenstein series from maximal parabolic subgroups of SL m . Fix

a number field F, and let f and oo be the sets of finite and infinite
primes of F, respectively. Denote the ring of integers of F by iJ.
Let Δ be a finite-dimensional central division F -algebra and let S be
a choice of maximal order of Δ. Hereafter we use the conventions
of § 1. Assign to each I / G O O a ring isomorphism from A» with
Affl(R), Ma(C) or Afβ(H), accordingly. We freely identify matrices
over Δ^ with matrices over the appropriate algebra R, C or EL

For m, n e N, let

(2.1)

where equality is both as an algebraic group and as F-rational points.
Whenever we express an a matrix in Gmn as \a

c

b

d\, it is to be
understood that a,b,c and d have dimensions rnxm, mxn, nxm



236 PAUL FEIT

and n x n, respectively. Also put

(2.2) Pm'n~{[θd)€Gm'n}'

An,« = G L W ( Δ ) x G L « ( Δ ) : d t ( y ι ) d t ( y 2 ) = I } ,

where rfί is the reduced norm function. When dealing with y €
Dm,n, we use the notation y = (y\, y ΐ). Also define algebraic func-
tions

(2.3)

W D m n —• Grm,n

by

by

'm,) xl\'

Extend TV to characters on Pm^n and P~n by setting it to be trivial
on unipotent matrices.

For the rest of this section, we fix a choice of m, n e N and omit
subscripts. We make the restriction that

(2.4) Standing Hypothesis: If there is v £ oo so Au « H, then
neither m nor ΛZ is 1.

For ι/ e oo u f, let

(2.5) Y. x-txp=l} if v € oo,

where /? is the involution idR, complex conjugation or the main in-
volution of H, if Δi/ is a matrix over R, C, or H, respectively. Put
Coo = ΓLGOC Cv and Cf = Π p e f C p . Put « = C^/G^^i = C^ in β ,
and let C?A act on f) by α zCoo = (αooZ)Coo .

For an i?-ideal b, define for each p G f

(2.6) •{

•{ erf

€ SLm+n(5p): c = 0 mod (bSp) j ,

€ t/0(t>)P: rfί(rf) = 1 mod (bRp)\ ,

U{b)p = {a € : α = l
m + n

mod
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Put U0(b) = Goo x npefUoWp> Uu(b) = G^ x Y[p^Uu{b)p and
U(b) = Goo x Πpe^

u(b)p> a n d P u t ΓoW = GΠ U0(b),Γu(b) =
G n Uu(b), and Γ(b) = G n C/(b). A subgroup Γ C G is a congruence
subgroup (in the sense of § 1) if and only if there exists an ideal b
such that Γ(b) is a subgroup of finite index in Γ.

We have the elementary

LEMMA 2.1. Let b be an integral ideal of F. Then the injection
map induces an isomorphism

(2.7) (P n Γ(b))\Γ(b) «(/> n rw(b))\rw(b).

Proof It suffices to show that (P n ΓM(b))α ΓΊ Γ(b) ^ 0 for a given

a = [a

c

h

d] G Γw(b). There is an element d G SLW(ΔA) such that

for each p e U dp e SLn(Sp) and dp = dp mod (bSp). By Strong

Approximation, there is d' G SLn{S) so that d'p = dp mod (bSp).

Replacing a with ω(af, d')~ιa, we may assume that <z and d are

congruent to identity matrices mod (b). But now [̂  ~^]α G Γ(b). D

It is routinely verified that G, P, D, Cf and Λ̂  satisfy the hypothe-
ses of Lemma 1.1. For v G OO U f, define ε^ on Gv by the condition
that ev{yω) = \N(y)\u for y G P^ and ω e C^. For αE(?A and
z eft, put

(2.8) β ( α ) =
ι/GooUf

7(z) = p j ε^ίαo)"1 for each QQ G GA such that α 0 ι — z,

Note that / ( α , z) = ε(α) if α G Poo For Γ a congruence subgroup
of (? define

(2.9) E(z,s;Γ) = Y(zy ^ /(α, z)~s

α€(PnΓ)\Γ

= 5] r(α zY ,
α€(PnΓ)\Γ

where z G ij and 5 G C. More precisely, the summation on the right
is known to converge absolutely and uniformly on compact subsets of
ή x C on which Re(s) is sufficiently large; the corresponding func-
tion has a meromorphic continuation to all of ή x C . When dealing
with such sums, we prove results by performing formal manipulations
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which are valid where convergence is absolute and uniform, and then
deduce our claims from uniqueness of meromorphic continuation.

Clearly E(z, s Γ) is automorphic in z with respect to the Γ and
the trivial factor of automorphy j(a, z) — 1. Using the conventions
of §1 with G = GA acting on ft and X = G^ > w e establish a bijection
from automorphic forms on ft with respect to subgroups of G with
automorphic forms on G A . Let E*(x, s; Γ) denote the adelic form
ofE(z,s;Γ).

Next, we define a family of adelic functions. For a Hecke character
on ψ on {F*)A, we denote by ψp9 ψoo , and ψf the restrictions of ψ
to subgroups F* , F^ and Ff , respectively. For an ideal b, define

(2.10) %?{b) is the group of Hecke characters ψ such that
(2.10.a) the conductor of ψ divides b,
( 2 . 1 0 . b ) { ψ o o o d t } ( A * o o ) = {l}.

For each ψ e %?{b), define ε^ = εψ^ on G A x C by

p\b

for ^ G PA and ω = | , G C/0(b) Π C,

ε^(x,5) = 0 for x £ PA C/0(b).

If p G P/r, x G GA and .s1 G C, then ε^(px, s) = εψ(x, 5). We define

(2.12) E*{x,s;ψ,b)=

D e n o t e t h e restr ict ion of εψ^b to G p x C by ε ^ , b , p ? a n d t h e n

(2.13) εψ,b{x,s)= Yl εψ,Kp(xp, s).
p€ooUf

When meaning is clear from context, we omit the subscripts. By the
theorem of Langlands [9] (see also the formulation by Arthur [1]), the
sum (2.12) converges for Re(s) sufficiently large and the function E*
has a meromorphic continuation to GA X C Let E(z, s; ψ, b) de-
note the form on S) corresponding to E*(x, s ψ, b). Each function
E(z, s Γ) is a finite sum of terms E(z, s ^ , b)|τ. In fact

THEOREM 2.2 (Context o/§l). L ^ F , Δ, m ? /? eίc, be given. Let
T be a congruence subgroup of G.

(A) J/ Γ = Γ(b) /or 5om^ /ύf̂ α/ b,

(2.14) | ^ | £ ( z , 5; Γ) =

where 2? =
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(B) / / Γ c Γ is another congruence subgroup, then

(2.15) r E(z,s;Γ)= ] Γ E(z,s 9Γ)\τ,
τ€Γ\Γ

wAere r = [PnΓ: PnΓ].

Proof. It suffices to prove the equations formally. Statement (B)
follows trivially from reordering sums, and we omit proof. Put 2? =
%?{b). For p e f, let Up be the unit group of Rp.

Let y ePA and ω= [a

c

b

d] e £/0(b)nC, and fix x = yω. The value
eψ(x , s) is a product of a term dependent only on s and a factor
which is multiplicative with respect to ψ in the group Sf. By elemen-
tary character theory, ΣVe<r εv( x> s) i s 0 unless (Ny) Πpib^^p)
lies in the subgroup of F£ which is generated by rfί(Δ^), i 7 , and

(2.16) Vb = {a e F f*: α p G (1 + bi?p) Π Up for each p e f}.

Suppose the sum is non-zero. Now dt(d) is a p-adic unit at each
ρ|b. Thus, we may express Ny — abc for a € d ί (Δ^) , b e F and
c € Πpef ^ P J t follows that δoo G dί(Δ^). By Eichler's Theorem on
norms, b must be a global norm. By Lemma 1.1, there is a global
g e PF for which #.x G PooC. Rewrite gx = )>iωi where now
^1 G Poo and ω\ e C, and let d\ be the corresponding submatrix of

ω i . Then Σ ^ j r M ^ * ^ ) = Σ,Ψ&r*ψ{*> s)> s o (ΠP |b r f ί( r f i)p) i s

in dt(Alo) - F - Ub. Consequently, there is another global parabolic h
such that hx G C/M(b). We may now conclude that

(2.17) for x G Uu(b) and a G G, Σ^ G ^e^(«^ : ? s) ^ 0 only if
aePF Tu{b).

Thus, for JC G Uu{b),

(2.18) ^ £ * ( x , s; ψ,b)=

By Lemma 2.1, injection induces an isomorphism (P n Γ(b))\Γ(b) —•
P\P Tu(b). Moreover, if α G Γ(b) and x e C/M(b), then ε(αx, s) =
Y(ax, s). The right-hand side becomes the adelic version of \%?\
E(z,s;Γ(b)). D

Another useful characterization is
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LEMMA 2.3 {Context o/§l). Let F, Δ, m, n etc. be given. Let
b Φ R be a proper integral ideal and let ψ e %?{b). Then

(2.19) E*{x,s\ ψ,b) =
aeu

Proof. Choose p e f such that ρ\b , and suppose that a e G such
that ε(ax,s) Φ 0(forε = eψ,b). Express ax = pω for p e PA

and ω e Uo(b). Then α = pωx~ι where ( 0 ) 1 " % = [*}] for
a? G GLn(Ap). Consequently,

(2.20) α ^

Simple matrix manipulation shows that a e PU. It is easy to check
that £/ is a complete and irredundant list of representatives for
P\PU. π

3. Enter the Bessel functions. Our conventions here are different
from those of other sections. Let Δ = R, C or I . If T is a square
matrix in Δ, let | T\ be the standard real absolute value of the reduced
norm of T. (In other sections, we use the square of this norm for
Δ = C or H.) Let p denote 1R, conjugation or the main involution
of H on R, C or H, respectively. For T a matrix in Δ, put Γ* =
\Tp) = (!T)P\ if T is invertible, use the notation T~* = (Γ" 1 )* =
( Γ * ) " 1 .

Fix i = [A : F]. Suppose m, n e N and T is an n x n matrix.
The function U *-+ UT on A = Mmjn{A) changes the Haar measure
of A by a factor of \T\ιn there is an analogous factor for maps of
the form U \-±TU. For m e N, put

(3.1) U(m) = {Te Mm{A): ΓΓ* = lm}.

We remark

LEMMA 3.1. Let m, n e N and h e Mm,n(A) - {0}. Then there

exists a e U(m) and b e U{n) so ahb = [Q°O] ' where h0 is a

non-degenerate square matrix.

Proof. Trivial. D

Let m, n e N. Let Gm^n, Pm,n, N, etc. be as defined in §2 with
respect to the "local" algebra Δ. Define ε = εm,w on GLw + m(Δ) by
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the condition

(3.2) e(yω) = \Nd\ f o r y = [ * * | and ωeU(n + m).

Then

(3.3) e Q ^ ] ) = | l + * * Ί 1 / 2 = | l + * *l1/2 forx€Mm,n(A).

For 5 e C, A e GLW(Δ), B e GLB(Δ) and h e Mm>n(Δ), define a
formal integral

(3.4) k(h,m,n,A,B,s)

and put /c(/z, m, n, s) = k(h, m, n, l m , \n , 5). Now

Γl 01 Γ^ 01 _ Γ^ 0] Γ 1 0
( 3 ' 5 ) [jclj Lo^J - [OB\ [B-'xA
Simple coordinate change implies that

(3.6) k(h,m9n,A9B,s) = \B\-s+mι\A\-nιk{A-χhB,m,n,s)9

k(ahβ, m, n9s) = k{h,m,n,s)

for a e U{m) a n d β e U(n)

in the sense that if the integral on either side exists, then both sides
are defined and equal.

LEMMA 3.2. Let r,m,neN,ho£ Mr(A) and s e C. Assume

that r <m,n, and let

(3.7) h =

Then

(3.8) k{h9m9n9s) = kφ9m9n-r9s)

• k(0 ,m-r,r,s-(n- r)ι)

-k(h0, r9 r9s-(m + n-2r)i)9

in the sense that if the integrals on either side exist, then both sides are
defined and equal

Proof, We play the change of variables game. For x e Mn 9 m

express x= [y

z] where yeAf r > m (Δ) and z eMn-rym(A). Then

(3.9) k(h,m,n,s)= ί [\l+y*y + z*z\~s/2e2πitr([/>)dzdy.
Jy J z
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For each y ? let t e. Mm(Δ) such that t*t = 1 + y*y, and substitute
variables z = z$t to get

(3.10) k{h,m,n,s)

= k(0, m, n - r, s) I | 1 + j ^ W *

= fc(0, ra, n-r9s)k ί

Now decompose y = (6c) where 6 e AfΓ(Δ) and c e Af r>m_ r(Δ).

° , m, r, 5 - I(/I - r)J .

(3.11)

= I f\
JbJcbJc

For each b, choose w e AfΓ(Δ) so that uu* = 1 + 66* and replace
c = WCQ to get

(3.12) Q

= /c(0, m - r, r, s - ι(n - r))

, r , r , )s - ι{m + n - 2r)). D

For m G N, define a meromorphic function on 5 G C by

(3.13) r m ( 5 ) =
7=0

where Γ without subscript is the usual gamma function. Adopt the
convention that ΓQ(S) = 1. From the literature,

THEOREM 3.3. Let m, n eN, s e C, A e GLm(Δ), B e GLΠ(Δ)
and h e Mm>n(A). Then there is a bound b such that the integral
for k(h ,m,n9A9B,s) converges for all s with Re(s) > b, and the
function has a meromorphic continuation to all C. We let the no-
tations k(h, m, n, A, B, s) and k{h,m,n, s) denote the contin-
uations, and then (3.6) and (3.8) are true in the sense of equality
of meromorphic functions. Moreover, for r = rankΔ(Λ), the product
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γ(s)k(h, m9n,A9 B,s) is entire for

(3 14) y(s) = Γ m ^ - Γ n ^ )
^ ^ ^ ' Γ ίs-nι\ ~~ r (s-mι\ >

1 m-r ^ 2 / w ~ r V—2—/

α/w/ 7(5)^(0, m, n, s) is a non-zero constant

Proof. In the case Δ = R, the functions k(h, m, n, s) are special
examples of the " .K-Bessel" functions studied by Bengtson [2] and
Terras [14]. When h = 0 or h is invertible, the lemma can be verified
using [14; §4.2.2, Theorem 2]. The previous lemmas show how the
calculation can be reduced to these two extreme cases. The proofs in
[2] and [14] easily generalize to the cases Δ = C and H, although
some of the relevant constants must be changed. D

4. Integration over the "Big Cell". We begin by fixing some additive
characters. For v e oo U f and x eFp , define

(4.1) χv(χ) = e

lπiXτ^{x) if v € oo,

Xv(x) = elπιr if v divides the rational prime p and

r e Z[l//?]such that r + tτFjQ (x) e Z p .

Define χ on F\ to be the product of the local characters of (4.1).
For m G N, and B a finite dimensional central simple F-algebra,
extend χ to Mm{B&) (respectively, χv to Mm{Bv) for v a prime)
by composing the character above with the reduced trace function.
We freely denote any and all of these characters by χ.

Let m, n, e N. Set

(4.2) β ( m , « ) = M m , n (Δ A )/M m , r t (Δ),

where the quotient is taken with respect to addition. For Δ equal
either ΔA or Ap for a prime v , the pairing

(4.3) Mm,n(A) x AfΛ,m(Δ) —• T (c C )

induces a canonical identification of Mw > m(Δ) with the character
group of Afm>π(Δ). Also, for Δ = ΔA the pairing also induces an iden-
tification of Mn9m(A) with the character group of Mmίn(A). Also,
for Δ = ΔA the pairing also induces an identification of Mn^m(A) c
Mn^m(Ap,) with the character group of Q(m, «).

For z/ E oo U f, let μ = μv be the Haar measure on Av which is
self-dual with respect to the identification of Au with its character
group. Then μ = μA = ΓLeoouf/^ ^s self-dual on ΔA. Define μ on
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Mm^n{A) to be the product of the coordinate measures. Also let μ
denote the measure induced on Q(m, n) (this is the Haar measure
s u c h t h a t μ ( Q ( m , n ) ) = l ) .

Suppose / is a function on Gm > w ;A which is automorphic with
respect to the trivial factor of automorphy. The function

(4.4) (x, y) " A«x)ω(y))

on Q(n, m) x Z>oo uniquely determine the original / . Now (4.4)
has a "Fourier expansion" with respect to the variable x where the
coefficients are functions in y. We are interested in the case / =
E*(g, s) (for s fixed) is an Eisenstein series of §2, and our objective
is to find a meromorphic factor A(s) such that A(s)E*(g, s) has only
simple poles at known positions. It suffices to find a meromorphic
continuation for each Fourier coefficient of E*(g, s) and to compute
a A{s) which controls the poles of each continuation. Since each
coefficient is an integral over a compact space, each coefficient has an
analytic continuation to C with isolated singularities. Conversely, if
s0 e C and n e Z so (s - so)

n E*(g, s) is finite and non-zero at
SQ 9 then (s -So)n times each coefficient is finite and at least one such
integral is non-zero. Thus, the continuation is meromorphic and the
poles of the coefficients are the poles of the series.

Let b be an integral i?-ideal and let ψ e 2?(b). Put ε = eψ ? &, and

(4.5) σ = [A : F]1'2.

For p G ooUf, express Ap = Ma(A0) where Δo is a division Fp-
algebra, and define σp = [Δo : i y | 1 / 2 . For the rest of the section,
we assume Standing Hypothesis (2.4) and that b Φ R. We have the
simplified formula

(4.6) E(τ(x)ω(y),s; ψ,b)= ^ eψ,b{aτ(x)ω{y), s)

for (x,y)e Q(n, m)xDoo.
Let h G Mmin{A) and denote the Λth Fourier coefficient of

E*(z,s; ψ,b) by c(h,y,s) for y e Dm^n{Aoo). The function ε

is unaffected if the argument is multiplied on the right by an adelic
matrix τ(c) G C/(b) Π Gf it follows that the integral vanishes unless h
is contained in

(4.7) L(m,n;b)

= \ h e M m , w ( Δ ) : x l h H bMn,m{Sp) J = {1}
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For p E f, define

(4.8) L(m,n;b,p)

= {he Mm,n(A): χp(h bMn9fn{Sp)) = {1}},

the local version of (4.7)
For h e L(m, n b),

(4.9) c(h,y,s)= f Σ e(otτ(x)ω(y), s)χ(-hx)dμ(x)
Jχ€Q(n,m)aeU

= ^ ε(τ(x + u)ω(y),s)χ(-hx)dμ(x)
JxxεQin'^ueM^JA)

ε(τ(x)ω(y), s)χ(-hx) dμ{x)-I
={πL εv(τ(x)ω(yv), s)χv(-hvx)dμv{x)

where hp denotes h regarded as a matrix over Fp for p a prime.
The local integrals are of three types:

Infinite Primes: The integral at v e oo is a AΓ-Bessel function of
the type discussed in §3. It has a meromorphic continuation which is
an entire function times

where a = σ/σ^, t; = min{m, n}, u = max{m, n}, and K = 1 if
Δj, « Mσ(R) and ?c = 2 otherwise .

Finite Prime Divisors of b. Let p be a finite prime which divides
b. Then ε(τ(x), s) = 0 unless x G bA/π>m(5r

p). If x e bMn,m(Sp),
then ε(τ(x), 51) = 1. Thus, the integral is μp(bMn9m(Sp)).

Finite Primes which do not divide b: We refer to previous articles.
Let p be a finite prime which does not divide b. Let q = \R/ρ\

and α = σ/σp. Define / on Mnym(Ap) by q~ι^s = ε p(τ(x), 5), and
then / factors mod(Mnim(Sp)). The local integral becomes

(4.11) μ(Sp)
m>n Σ Ψl{x)q-l{x)sχ(~hx),
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where ψ in (4.11) is the value of the character ψp on any generator of
p. The expression in (4.11) is a non-zero constant times a(h, ψq~s)
where

(4.12) α ( Λ , ί ) =

is a power series in an indeterminate /.
The series (4.12) were evaluated in [7; Theorem 2.1]. Identify Ap «

Affl(Δo) for ΔQ a local division algebra in such a manner that Sp

is identified with Ma(So) for So the maximal order of ΔQ. Then
l(x)σp = j[Δo, 5Ό](x) for j[A0,S0] defined in [7; (1.5, 6, 7)].

Suppose r G N. Put Ur = GLr(Sb) and Φ r = GL r(Δ0) Π AfΓ(Sb).
For T G Mr(S0), define v(T) by

(4.13) ^ Γ ) = [Sr

0 : T Sr

0] = [Sr

Q : Sr

0 T].

Essentially, qv^ is the reduced norm raised to the power σp. In
particular, v{T) is an integer divisible by σp. There is δ e So ΠΔQ
such that

(1.14)

For E G Φ r , define p(E, t) a polynomial in Z[t] by

(4.15)

{DeUr\Φr :ED~ιeΦr}

where the indexing set is finite. If E G Ur, the /?(£, ί) = 1.
Now suppose h G L(m, n\ R, p). There is a unique polynomial

A(ρ, h,t)e Z[t] with the property that
(4.16.a) A(ρ9h, t) = 1 if/z = 0,
(4.16.b) if β G GLΛ(5o), α G GLW(SΌ), r G N and£ G GLr(Δ0) so

then J £ e Φ r and^(p, A, t) =p(δE, t).
Note that the set of primes p \ b at which ^4(ρ, h, ί) 7̂  1 is finite.

THEOREM 4.1 {Corollary of[Ί\ Theorem 2.1]). Let b be an ideal of
R, ψ G Sf(b) and h G L(m, n\ R, p). Let p be a finite prime which
does not divide b. Let τ be the additive Haar measure on Mnym(Ap)
for which τ{Mn^m{Sp)) = 1. Put ε = εψibyP and let r = rankΔ(/z).
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Express Ap = Ma(Δo) for Δo a division algebra, and let σf = σ/a.
Then

(4.17) / ε{τ{x),s)χ{-hx)dτ{x)

IΓjίό1 (1 - ψq°'υ-'))
= π(v-r)a-l) 7, ^Ap.h, ψq s) ,

where ψ = ̂ (π) for π any local generator of p, v = min{m, ή), w =
max{m, ή) and q — Np = \R/ρ\. •

Next, we measure the global effect. Let 21 be an integral ideal of R
and let φ be a Hecke character of F such that φv = 1 if iv « C.
Let c be the conductor of φ and let φ* denote the corresponding
function on ideals prime to c. We do not assume that c divides 21.
For i/Goo, define δ{v) = 0 if φv{-\) = 1 and δ{v) = 1 otherwise.
Define

(4.18)

^(s, φ) = L%(s, φ) i l Γ

in the sense that the first product converges for Re(s) > 1 and admits
a meromorphic continuation. We prefer to work with ^-functions,
as these have no zeros outside the critical strip. The function Lb(s, φ)
has no poles unless φ = 1. If φ = 1, then it has a simple pole at s = 1
and no others unless b = R, in which case it has a simple pole at 5 = 0
as well.

We can now extract L-factors from (4.9). Fix v = min{m, n} and
u = max{m, ή). Let h e L(m, n;b9 p), and set r = rankΔ(/z).
Outside a finite set of primes, the local factor at a finite prime p
contains a local factor for

( 4 1 9 ) Π*™"1 J (c — / \ι/\

where the relevant ideals can be determined later. The numerator
terms in (4.19) will ultimately indicate exceptional poles. The poles
of the integrals at the infinite primes are controlled by Γ-factors. In
fact, the Γ-factors from the -Sf-functions will cancel out the Γ-factors
of the infinite integrals.
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Put

(4.20) ooc = {v e oo: Fv « C},

OOR = {v e oo - ooc: Δ splits at v},

cx)o = {̂  € oo — ooc — OOR : ψv is even},

OOi = 0 0 — OOc — OOR — OOQ.

We may express c(h, y 9 s) times a finite product of polynomials in
powers q~s (from Theorem 4.1), a ratio of Jz?-functions similar to
(4.19)? a holomorphic function derived from the Bessel functions of
Theorem 3.3, and the following ratio of Γ-factors:

where ooo = ooi = 0 unless 2|σ. Define

(4.22) V c e Z , Vs€<C,

I ΐΐjL\(s-J) i f c < 0

Recall that

(4.23) Γ(s/2)Γ((s + l)/2) = π 1/ 22 1" sΓ(j).

We use (4.23) to combine terms of the form T((s + κ)/2) in (4.21)
and then use (4.22) to replace ratios of Γ-functions with ratios of
polynomials and exponential terms. The result is a non-vanishing
entire function times

πσ(t/-r)/2-l.

(4.24) ΓΓ
l ( 2 . _

ί
uσv/2-\( ? . n

ll/=o w - A/ - i ;

Π σ(v-r)/2-l f Λ

Πσv/2-1
;=0

The product of the last expression with the Γ-factors of the ^-func-
tions can be expressed as a product of Γ-functions with shifted argu-
ments.

After tedious calculation, with special attention to the constant term
h = 0, we can summarize with:

DEFINITION 4.1. Let Δ be the central simple division F-algebra.
Put σ = [Δ : F]χl2. For p e f, express Ap « Ma(A0) where ΔQ is a
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division Fp-algebra, and put σp = [Δo : Fp]
χl2 . Let 21 be the product

of finite prime ideals at which Δ does not split. Let b be an integral
ideal of R and let ψe^(b) where a?(b) is given in (2.10). Put

(4.25) ooc = {^€oc:Fz, ^ C } ,

= \y € oo — ooc: Δ splits at v},

= OO — OOc — OOR.

For m , n e N, put

(4.26) Am,n(s;ψ,

σm-l

= J[LWt(s-ktW)x
k=0

THEOREM 4.2 (Context o/§l). LΛ b ̂  i? ό^ α proper integral ideal
and ψ G ^ ( b ) . L^ί i; = min{m, n} and u = max{m, n}.

(A) Ifψφl, then Av,u(s; ψ, b)Em,n{z,s\ ψ, b) is entire.
(B) Suppose ψ = 1. If there is an infinite prime at which Δ flfoes rcctf

Λ p//Ϊ, ίΛ «̂ AV9u(s\ ψ9 b)Emyn(z, s; ψ, b) is analytic on s G C except
for (possible) simple poles at s = σu + 2j for j = I, ... , συ/2. If A
splits at every infinite prime, then Am ^n(s\ ψ, b)Έm,n(z, s\ ψ9 b) is
analytic on s e C except for (possible) simple poles at s = σu + j for
j = 1, . . . , σv . In either case, the residue at s = σ(m + n) = σ(u + v)
is a non-zero constant
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