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AN APPLICATION OF HOMOGENIZATION THEORY
TO HARMONIC ANALYSIS ON SOLVABLE LIE GROUPS
OF POLYNOMIAL GROWTH

G. ALEXOPOULOS

Let Q be a connected solvable Lie group of polynomial growth.
Let also E;, ..., E, be left invariant vector fields on G that satisfy
Hormander’s condition and denote by L = —(E? + --- + EZ) the
associated sub-Laplacian and by S(x, ¢) the ball which is centered
at x € Q and it is of radius ¢ > O with respect to the control distance
associated to those vector fields. The goal of this article is to prove
the following Harnack inequality: there is a constant ¢ > 0 such
that |[Eju(x)| <ct™'u(x),x€Q, t>1,1<i<p,forall u>0
such that Lu = 0 in S(x, ¢). This inequality is proved by adapting
some ideas from the theory of homogenization.

0. Introduction. Let Q be a connected solvable Lie group which
we assume to be of polynomial growth; i.e., if dg is a left invariant
Haar measure on Q and V' a compact neighborhood of the identity
element e of Q, then there are constants ¢, d > 0 such that

dg — measure(V") < cn?, neN.

Notice that the connected nilpotent Lie groups are also solvable and
of polynomial growth (cf. [5], [6]).

Let us identify the Lie algebra q of @ with the left invariant vector
fields on Q and consider Ej, ..., E, € q that satisfy Hérmander’s
condition,; i.e., together with their successive Lie brackets [Ei , [E;,,
[...[Ei_,, E;]...1]], they generate q. To these vector fields there is
associated, in a canonical way, a left invariant distance dg(-, ) on
G, called control distance. This distance has the property that (cf.
[15]) if Se(x,t)={y e G,dg(x,y)<t}, x € G, t >0 then there
is ¢ € N such that

(0.1) Se(e,n) C V", V"CSg(e,cn), n € N.
According to a classical theorem of L. Hérmander [7] the operator
L=—(E}+---+E3)

is hypoelliptic.
The goal of this paper is to prove the following result:
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THEOREM 1. Let Q, E,, ..., E, and L be as above. Then there is
¢ > 0 such that
(0.2) |[Esu(x)| < ct™lu(x), xe€Q,t>1,

for all u>0 suchthat Lu=0 in Sg(x,t), 1<i<p.

This is a result of technical nature, but a very useful one, when
one tries to generalise the “real variable theory” to Q (cf. [9], [10]).
For instance, it can be used to obtain estimates for the Poisson kernel
and the Green function. Another immediate consequence of Theorem
1 is that every positive harmonic function in Q (i.e. every u > 0,
ue C>®(Q) such that Lu =0 in Q) is constant (cf. [13]).

When Q is also nilpotent then Theorem 1 is a particular case of a
more general result of N. Th. Varopoulos [14], namely for all integers
[ > 0 there is ¢; > 0 such that

(0.3) |E; - Eju(x)| <qrlu(x), xe€Q,t>1,

for all ¥ >0 such that Lu =0, in Sg(x, ?).

As we shall see, for / > 2, (0.3) is not true for general, not neces-
sarily nilpotent, solvable Lie groups.

(0.3) is also true for 0 < ¢t < 1 (cf. N. Th. Varopoulos [14]), but
this is a local result and the Lie group structure does not play any role
in proving it.

The main contribution of this article is the observation that the
operator L can be viewed as a second order differential operator
with quasiperiodic coefficients on the nil-shadow Qx of @, which
is a nilpotent Lie group (cf. [6]). Once we adopt this point of view,
proving Theorem 1 becomes a matter of generalizing results, already
known for second order uniformly elliptic differential operators with
periodic coefficients (cf. [1], [2]). Indeed, in that context, Theorem 1
has already been proved by M. Avellaneda and F. H. Lin [1].

More precisely, let (we use the summation convention for repeated
indices) 5

0
L= —a—xiaij(x)gx—j
be a uniformly elliptic operator in R” and assume that its coefficients
a;j(x) are periodic (i.e. a;j(x +z) = a;j(x), x e R*, z € Z") and
Holder continuous (i.e. there is a € (0, 1) and M > 0 such that
lai;(X)lcemry < M).
Also let

0 x\ O
= q::[Z) — <
L 8x,~a”(s)8xj’ O<esl,
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and denote by B(x, t) the Euclidean ball of radius ¢ > 0 centered at
x €R".

We observe that L.y, = 0 in B(0, 1) if and only if Lu = 0 in
B(0, t), where u(x) = u;(ex), t =¢&~!. Hence, proving that there is
¢ > 0 such that

IVu(0)| < ct™'u(0), t>1,

for all ¥ > 0 such that Lu =0 in B(0, ?), is equivalent to proving
that there is a constant ¢ > 0, independent of ¢ € (0, 1) such that

|Vue(0)| < cug(0), 0<e<l,

for all u, > 0 such that L,u, = 0 in B(0, 1). This follows from
the following result of M. Avellaneda and F. H. Lin [1], using Moser’s
Harnack inequality (cf. [9]).

THEOREM 0.1 (¢f. M. Avellanedaand F. H. Lin[1]). Let L,, 0 <¢e <
1, be as above, f € L"9(B(0,1)), 6 >0, and g€ C1>*(dB(0, 1)),
0 < v < 1. Then there is a constant ¢ > 0 depending only on
a,M,n,v,d and independent of ¢ such that

(04) [ue]CO»l(B(Q,l))
< C([g]c*’"(ag((), iyt ”f”L"*"(B(O, 1))) > O0<e<l,

for all u, satisfying
Lu, = finB(0,1), u,=gondB(0,1), O<e<l.

Notice that although we do not have any, uniform with respect to
¢, control of the Holder continuity of the coefficients of the operators
L., the above result gives a uniform with respect to the ¢ estimate
for [ug]-o.1. This is due to the fact that there is an elliptic operator
with constant coefficients

0 0
Ly= —é;;(b‘jg);;

called the homogenized operator, which has the property that if
Loug= fin B(0, 1), wuy=gondB(0, 1), 0<e<l,

then
U, — ug, €—0

uniformly on the compact subsets of B(0, 1).
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The coefficients ¢g;; of the homogenized operator L, are given by
the formula

o .
Po== o) — a: — 9/ = 1 n
qij L[azj(x) a”(x)ax, (x)| dx, D=]0,1]
where the functions x/, j = 1,..., n, called correctors, are the

unique solutions of the problem
Lixj—x))=0, x/(x+z)=x(x), XER", z€Z",
/ x/(x)dx=0, D=]0,1]"
D

The motivating example is the universal covering G of the group of
Euclidean motions on the plane, which is a three dimensional solvable
Lie group of polynomial growth. It turns out that every operator L,
as in Theorem 1, in G, can be expressed as a second order differential
operator in R3 with periodic coefficients.

More precisely, let g denote the Lie algebra of G and identify its
elements with the left invariant vector fields on G'. Then, there is a
basis {X;, X, X3} of g such that

[XI:XZ]'__X?)’ [X13X3]=_—X27 [X21X3]=0'

Identifying the simply connected analytic subgroups of G whose
Lie algebras are generated by {X,, X3} and {X;} with R? and R
respectively, we can see that G is isomorphic to the semidirect prod-
uct R? x,; R where the action 7 of R on R? is given by 7: R —
L(R?): x — roty, rot, being the counterclockwise rotation by angle
x and L(R?) the space of linear transformations of R2.

Let us consider the exponential coordinates of the second kind (cf.

[12])
0:R3—= G, ¢:(x3,x2, x1) — expx3.X3 exp x.Xs exp x X.
If x=(x3, x, X1), then we have (cf. §2)

3}
—1 _
(0.5) do ' X(x) = PETR

0 . 0
-1
do™ Xa(x) = cosxlax2 + smxlax3 ,
. 0
-1 _
do~ " X3(x) = —sinx, 9%, + cos x; axs

Let us now use ¢ to identify Q and R3 as differential manifolds.
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Let

Ei=X;, Ex=Xi+X,, E3;y=X; and L= —(E}+E:+E}).

Then L becomes a uniformly elliptic differential operator on R”",
which can be written in divergence form as
0 0
L=-""g.)-2
ax; ) dx;
with

aj1=2, ap=ay=1, ap=ay=cosxp,
a;3 =az; =sinx;, a3 =azyn=0.

Moreover, the control distance dg(-, ) associated to the vector
fields E,, E,, E3 becomes equivalent to the Euclidean one; i.e., 3b >
a > 0 such that a|x —y|<dg(x,y)<blx-y|, x,y eR3.

Let us now see why the inequalities (0.3) are not true for / > 2.
Let us put

0 x\ 0
_ 7 .. () 2 <1.
L Bxia”(s)axj’ O<esl

Then proving (0.3) for / > 2 and i; = i, = 1 is equivalent to
proving that there is ¢ > 0, independent of &, such that

(0.6)

82
ug(0)
ax2"°

< cu(0), O0<e<1,

for all u, > 0 satisfying L;u, =0 in B(0, 1).
As we are going to see, (0.6) is not true.
In the example we consider, we have that

F0=0, x2x)=gsinx, 2x)=—ycosx,

Lo=- (224390 30
0~ ox}  40x?  49x})’

Also L, can be written as

and

(92 X1 62 . X1 82
v L= —-2— — - — 21
(0 ) ¢ 6x12 2cos € 0x10x, n e 0x10x3
__ai — _22__ + _l.sin X1
ox} 0x: & & 0x
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Let us take f =0 and g = x3+ 2 in (0.4). Then up = x3 + 2.
Hence ug >0, du/dx3 =1 and Quy/0x; = Oup/dx; =0.

Since L.0u./0x; = (0/3x;)L;u, = 0, i = 2,3, it follows from
Theorem 0.1 that

0

_ _ — 1 =2.3
x, ax; L0’ (e—0),1=2,3,
uniformly on the compact subsets of B(0, 1) and that there is ¢ > 0
such that

(0.8) U, — ug and Uy —

(0.9) %ai.ug(x)lgc, xeB0,1),i=1,2,3,j=2,3.
i OXj
Now, (0.7), (0.8) and (0.9) imply that
82
b?lzus(o) ~ e (e—0)

which disproves (0.6). So (0.3) is not true for / > 0.
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1. The structure of the Lie algebra. Let q be a solvable Lie algebra
and denote by n its nil-radical. Then n is a nilpotent ideal of q and
[a, 9] € n (cf. [12]). We denote by =n the natural map 7: q — q/n.
We also put k = dim(q/n).

Let ad X = S(X) + K(X) denote the Jordan decomposition of the
derivation ad X(Y) = [X, Y], X € q. S(X) is the semisimple and
K(X) the nilpotent part. It is well known that

(1) S(X) and K(X) are derivations of q (cf. [12]).
(ii)) There are real polynomials s(x) and k(x) such that
(1.1) S(X)=s(ad X) and K(X) = k(ad X) (cf. [8]).
(1.2) (i) [S(X), K(X)]=0.
Notice that the fact that ad X(X) = [X, X] = 0, X € q implies

that the constant coefficients of the polynomials k(x), hence also of
the polynomials s(x), are zero.

LEMMA 1.1. There are vectors Yy, ..., Y, € q such that
(@) [S(Yy),S(¥)]=0, 1<, j<k,
(b) {n(Y1), ..., n(Yy)} is a basis of q/n.
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Proof. Let {Z,,...,Z;} any choice of vectors of q such that
{n(Zy),...,n(Z;)} is a basis of q/n. To prove the lemma it is
enough to prove that for every integer 1 < m < k we can choose
vectors Yi, ..., Y, € q such that

(1.3) [$(Y3), S(¥Y))1=0, 1<i,j<m,
{n(Y), ..., 7(Ym), n(Zms1), ..., n(Z)} basis of q/n.

(1.3) will be proved by induction on m. For m = 1 it is enough to
take Y; = Z;. So assume that (1.3) istrue for m =j, 1 < j<k.
To prove that it is also true for m = j + 1 assume that the vectors
Y1, ..., Y; have been chosen and consider the linear space b that is
generated by n and the vectors Z;.;, ..., Z;. It follows from the
fact that [q, g] C n that b is actually an ideal of q. By our induction
hypothesis the derivations S(Y7), ..., S(Y;) commute. They are also
semisimple linear transformations and satisfy .S(Y;)(b) C n. This last
assertion follows from the fact that the polynomials k(x) and s(x),
in (1.1), have zero constant coefficients. Hence b admits a subspace
0 complementary to n, i.e., such that b =0 @ n and S(Y;)(d) = {0},
1 <i<j. For Yj;; we choose any non zero element of d such that
n(Yj41) is linearly independent of the vectors {n(Z;,2), ..., n(Z)}.
S(Y;41) will commute with the S(Y7), ..., S(Y;) because of (1.1) and
the fact that S(Y;)Y;,; =0, 1 < i < j. This proves (1.3) and the
lemma follows.

PROPOSITION 1.2. There are vectors X, ..., Xy € q, such that
(@) S(X;))X; =0, 1<i,j<k.
(b) {m(X1), ..., n(Xy)} is a basis of q/n.

Proof. Let {Y;, ..., Y} be a set of elements of q as in Lemma
1.1. Arguing in the same way as in the proof of that lemma we can see
that q has a subspace b complementary to n, i.e. such that q=n®b
and S(Y;))b={0}, 1<i<k.

Let Ni,..., Ny ensuchthat X;=Y;—-N;eb,i=1,...,k. The
vectors X;, ..., X; have all the properties required by the proposi-
tion: they satisfy (b) since they form a basis of b. To verify that
they satisfy S(X;)X; =0, 1 < i, j < k observe that if this weren’t
true then we would have (ad X;)"X; # 0, n € N. To see that this
is not possible let us observe first that since K(Y;) is a derivation
we have that [K(Y;), ad N;] = ad(K(Y;)N;), which combined with
the fact that K(Y;)N; € n implies that the linear transformation
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[K(Y;), ad N;] is nilpotent. This in turn implies that although the
K(Y;) and ad N; do not commute, we can nevertheless find m € N
such that (K(Y;) + ad N;)™ = 0, i.e. K(Y;) + adN; is a nilpotent
transformation.

Next we observe that

ad X;(X;) = (ad Y; + ad N;) X; = (K(Y;) + ad N;) X;
and that
ad X;(K (Y;) +ad N))" = (K(Y;) +ad N)"*! + S(Y;)(K(Y;) +ad V)",
We also have that [S(Y;), ad N;] =0, since
0=S(Y)X; = S(Y;)(Y; — N;) = =S(Yi)N..
So using (1.2) we can conclude that
ad X;(K(Y;) + ad N;)" = (K(Y;) + ad N;)"*!
+(K(Y;) +ad N)"S(Y;), n20.

From this observation we can easily see that it can be proved by in-
duction that

(ad X;)"X; = (K(Y;) +ad N;))"X;, neN.
J J

This contradicts the assumption that (ad X;)"X; # 0, n € N, because
the transformation K(Y;)+ad N; as we have already seen is nilpotent.

In what follows we shall consider and fix, once and for all, vectors
X1, ..., Xx € q having the properties described in the above propo-
sition.

The nil-shadow qn of q. We can easily see that the conditions

[Xi, X;lv =[Xi, Xj1, [Xi, YIv = K(X)Y,
Y, Zln=1Y, Z], 1<i,j<k,Y,Zéen,

define a unique product [-, -]y on the linear space q. We can verify
directly (writing the elements X of q asa sum X = X'+ Y with
X' alinear combination of the vectors X;, ..., X; and Y €n) that
[, -]v satisfies the Jacobi identity. So, qy = (q,[-, -]y) is a Lie
algebra, which is also nilpotent. qu is called the nil-shadow of q.

The filtration of q. We put vy = q and v, = [ty, vy, > 1.
Then, since qy is nilpotent, we have the following filtration of q:

q=112n21 2 Dty 2ty = {0}, tm # {0}.
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ProOPOSITION 1.3. (1) try D n2Dr;.
(2) vj isanideal of q,ie [q,%t]Cry, i=1,2,....
(3) There are subspaces ay, ..., am of q such that
(a)S(Xj)a,-ga,-, j=1,...,k, i=1,...,m,
(b) vvi=0,® - @an and
(c) a; = ag; ® ay;, where ag; ={Y € q;, S(Xj)Y=O, 1<j<
ky, S(Xj)a;; Cay;, 1<j<k.

Proof. (1) follows from the fact that [q, q] C n and the way [-, ‘1n
was defined. (2) can be proved by induction. It is trivially true for
i = 1. So, assume that it is true for i = n. We are going to verify
that it is also true for i =n+ 1.

Let Xe€q, YeEr, Z€r;. If X €n,then adX([Y, Z]y) =
(X, 1Y, ZInIN € thao C tyyq. If Zen, Y= Xj and X = X,
for some 1 < j, /| < k, then ad X;([X;, Z]y) = ad X;K(X;)Z =
K(XNK(X;))Z+S(X))K(X;)Z = K(X))K(X;)Z+K(X;)S(X;)Z , since
S(X;)X; =0, S(X;) is a derivation and K(X;) is a polynomial in
ade . Hence adX,([Xj , Z]N) =[X;, [X] s Z]N]N+[Xj s S(X[)Z]N €
tpy1. Finally, if X = X, ¥ = X; and Z = X; for some 1 <
h,l,j < k, then ad X,([X;, X;lv) = [Xp, [X;, XjInIN € tai2 C
t,41 - Since the general case is a linear combination of the cases ex-
amined above, we conclude that t,,; is also an ideal of gq. This
proves the inductive step and (2) follows.

(3a) and (3b) follow from the observation that, according to (2), the
spaces tj, ..., t, are invariant with respect to the transformations
S(X;), i=1,..., k (cf. [8]). Given (3a) and (3b), (3c) follows again
from the observation that ag; is invariant with respect to the algebra of
linear transformations of q generated by the transformations S(X;),
i=1,...,k.

We put n = dimgq, ny = 0 and »; = dim(a; ® --- @ a;), [ =
1,...,m. Then

1<k<m<--<ny=n.

The choice of the basis of q. We assume now that q is of type R,
i.e. that all the eigenvalues of the derivations ad X, X € q are purely
imaginary (i.e. of the type ia, a € R).

PrROPOSITION 1.4. If q is of type R, then there is a basis {X,, ...,
Xn} of q such that

(1) X1, ..., Xy are as in Proposition 1.1 and Xy,.{,..., Xn €n,

(2) {Xn,_,+1 seeus Xn} isabasisof a;, i=1,...,m,
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(3) {X",_1+1’ cevs Xn, } and {X,,mﬂ s ---» Xn } arebases of ay; and

ay; respectively, i=1,..., m and
(4) the number of the vectors {Xy_ 41, ..., Xn} is even and they can
be combined in pairs {Xp 41, Xn 12}, -5 {Xj, Xjra}, oo s {Xn -1,
Xn } so that for every pair {X;, X;,1} andevery | =1, ...,k there
is a; € R such that
(1.4) eSX X, = cosa X; +sina; X1,
S X;, | = —sina X; + cosa; X .

Proof. For {X,,‘_IH »---» Xn, } we choose any basis of ag;, so that
(1) is satisfied. In order to choose {X, ;1, ..., Xn} let us denote by
ay;,c the complexification of a;; and denote by S(X;)c the extension
of S(X;) to ajjc, i =1,...,k. Since S(X;)c is also semisim-
ple, we can decompose ay;,c as aj; p @ - @ ay; p Where a;; 5 =
{Y € a1;,C» S(XJ)C(Y) = lb[Y} and ib,, ..., ibh € iR are the dif-
ferent eigenvalues of S(Xj)c. Since S(X;)cS(Xj)c = S(Xj)cS(X))c,
I = 1, cee s k, S(X[)(Cali,bs C a”,bs, S = 1, cee s h. Applylng the

same procedure to a;; ; relative to any other S(X;)c, we obtain a
decomposition

(1.5) Cllj,c:bl@"'@bs

of aj; ¢ into {S(Xj)c, j=1, ..., k}-invariant subspaces, such that
the linear tranformations induced in the b; by every S(X;)c are scalar
multiplications by some ia, a € R. Moreover the subspaces b; can
be taken to be one-dimensional. Let us identify a;; ¢ with {Z +
iIE,Z,Eca;}andput Y =Z—iE, ReY =Z, ImY = E for
Y=Z+I.E€Cl1i,c, Z, E€q; and Z={?, Y € A} for A Cay,c-
We observe that if ia, a € R, a # 0 is an eigenvalue of S(X;)c
then —ia is also an eigenvalue of the same multiplicity and that if
Y is an eigenvector for ia, Y # 0 then ReY # 0, ImY # O,
ReY #ImY and Y is an eigenvector for the eigenvalue —ia. Using
this observation we can easily see that the subspaces b; can be chosen

in such a way, that the decomposition (1.5) can be written as ’

ayi,c = bil ®Ei1 @"'@b[r @E,‘r

where b, = {zY;, z € C} forsome Y, €aj;¢c, ¥/ =Z+IE, Z, E
€ ay;, Z;éE, Z, E#O
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We take X,, 1= ReY],X,, +;;_—ImYJ,... X,,_I—ReY,,X
=ImY; . We can easily see that the basis of q, constructed in this
way, satlsﬁes the requirements of the proposition.

2. The exponential coordinates of the second kind. Let Q a simply
connected solvable Lie group of polynomial growth and denote by q
its Lie algebra. According to a well-known theorem of Y. Guivarc’h
[6], q is of type R, i.e. all the eigenvalues of the derivations ad X(Y) =
[X,Y], X,Y € q are of the type ia, a € R. We identify the
elements of g with the left invariant vector fields on Q.

The derivations S(X), K(X), X € g and the integers n;, ..., Iy
are as in §1. We put

o(i)=j, ifn;_;<i<nj, i=1,...,n.

We denote by N the nil-radical of Q i.e. the analytic subgroup of
QO having the nil-shadow n of g as its Lie algebra. Note that N is
nilpotent and that Q/N is abelian.

Using the basis {X;, ..., X} of g constructed in Proposition 1.4,
we can consider the diffeomorphism

P:R">Q, @:x=Xn,...,X1) = eXpXp X, -€XpX1 X}

which is called exponential coordinates of the second kind (cf. [12]).
We want to give an expression for dp~!. To this end, we shall need
some notations.
We denote by adX; and K(X;) the linear transformations of q
defined by

ad(X;))X; =0, fori>j and ad(X,)X;=ad(X,)X;, fori<j/,
K(X)X;=0, fori>j and K(X))X;=K(X)X,;, fori<j.

It follows from (1.1) and the fact that S(X;)X; =0, 1<i,j <k,
that

(2.1) S(X)K(X;) =K(X)S(X;),  1<i,j<k.

If B(x)=bn(x)0/0xy +---+ bi(x)0/0x; is a vector field on R”,
then we put pr; B(x) = b;(x). We also use the same notation for the
left invariant vector fields on Q, i.e. if £ = ¢, X, +--- + ¢ Xy, then
we put pr; E =¢;.
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PROPOSITION 2.1. With the above notations we have

(2.2) pr;dg~'E(x) = pr,[e*2%%. ... ¢¥39X|(E)
= pr;[e"K(X) ... eXK(X)ex,S(X) .. X S(X)|(E)

)“ }'l—l
:pri Z xll”'xi—l
Ao(D)++4,_ a(i—1)<a(i)—1

K (Xy) - '_KX‘(XI):I e S .. -exls(X‘)} (E)

Proof. Clearly, the third equality in (2.2) is a more explicit version
of the second one and the second equality follows immediately from
the first one using (2.1). So it is enough to prove the first equality in
(2.2).

Let g =expx, X, ---expx; X; € Q and p(¢) = gexptE, t >0 an
integral curve of E. Then to prove the proposition it is enough to
prove that
(2.3)

7(t) = exp(xn + tpr, eX-131 . eXAdX E 4 O(£2)) X,

.- exp(xa + 1 pry €3N E + O(12)) X, exp(x + t pr; E) X;.
(2.3) can be proved by induction on #n: It is trivially true for n = 1.
So assume that it is true for n < /. To prove that it is also true for
n =1[1+1, observe that it follows from the Campell-Hausdorff formula
that

exptE =expt(cj 1 Xjp1 + - + 1 X1)
= exp[(tciy1 + O() X1y + -+ + (te2 + O(F)) Xal exp e  1X.
Hence
(2.4) y(t) = expXx;11 Xpy1 - expx1 Xy
-expl(tciyy + O() Xppy + -+ + (ter + O(17)) X2]
-exp —x; Xy exp x; Xj exptc; Xy
= eXpX; 1 X411 €XP X2 X)
-exp e[ (1e, ) + O() Xjyy + -+ + (te2 + O(2)) Xa]
- exp(x; + tcy)X;.

Observing that the linear subspace of g generated by the vectors
Xi41, ..., X isin fact an ideal of the Lie algebra q we can see that
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it follows from (2.4) and the inductive hypothesis that (2.3) is also
true for n = [+ 1. This proves the inductive step and the proposition
follows.

Let Qn be a simply connected nilpotent Lie group that admits the
nil-shadow qy of q (cf. §1 for the definition) as its Lie algebra. Qy
is called the nil-shadow of Q.

We identify the elements of qy with the left invariant vector fields
on Oy and if X € q then we denote by yX the element of qy
satisfying y X (e) = X(e). We extend the transformations S(X), X €
q, to qy by putting S(X)yY = §(S(X)Y).

Using again the exponential coordinates of the second kind

oN:R" > 0N, @:(Xn,...,X1) = exXpXonXy---expXinXy
we can see that Qp is diffeomorphic with R”.

From now on, using the exponential coordinates of the second kind
¢ and ¢y, we shall identify Q and Qp as differential manifolds
with R”.

It follows from (2.2) that if x = (x,, ..., x1) € R” and E € q then
(2.5) E(x) = (e%SX) ... eXSX) G E)(x).

3. The volume growth. Let Q be a simply connected solvable Lie
group of polynomial growth and dg a left invariant Haar measure on

0.
We shall use the notations of §2. As it was explained in that section
we identify Q and Qxn with R”.

Let ng, ny,..., ny asin §l and o(1), ..., ag(n) asin §2. We put
d=o(l)+---+a(n).
Let Ey, ..., E, as in Theorem 1, i.e. left invariant vector fields on

Q that satisfy Hormander’s condition. The control distance dg(-, -)
associated to these vector fields is defined as follows (cf. [4], [14]):

We call an absolutely continuous path y: [0, 1] — Q admissible if
and only if 9(¢) =a,(£)E; +---a,(¢)E, for almost all ¢ € [0, 1]. Itis
a consequence of the Héormander condition that all points x,y € Q
can be joint with at least one admissible path. We put |7(¢)|> = a?(¢)+
-+ +a2(t) and we define

1
de(x,y) = inf{/ |p(¢)|dt, y admissible path
0

such that y(0) = x, y(1) = y} .
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Weput Sg(x,t)={y€Q:de(x,y)<t},xe€Q,t>0.

We want to describe the shape of the balls Sg(e, t), t > 1, and to
estimate the dg-measure (Sg(e, t)). To this end we shall need some
notations. If x = (x,, ..., x1), then we put

x=0"Mx,, ..., t°Ux)), >0,

D(x,t)={y=(J’na---,J’1)€Q:
xi—t°D <y <x;+t°D 1 <i<n}, t>0.

We also put D; = D(e, t) and D = D(e, 1).

ProrosITION 3.1. Let Sg(x,t) and D, be as above. Then there is
¢ > 0 such that

Sg(e, ct) € D, C Sg(e, ct), t>1,
¢ 1% < dg-measure(Sg(e, t)) < ct?, t>1.

Proof. As we see from (0.1), the balls Sg(e, ¢), ¢t > 0, behave, for
large ¢, in the same way as the powers V", n € N, of a compact
neighborhood V' of e. Hence the vector fields {E;, ..., E,} can be
replaced with the basis {X}, ..., X;} of q. Furthermore, it follows
from (2.5), that {X,, ..., X;} can be replaced by {yX,, ..., vX1}
and then the proposition becomes a well-known result (cf. [5], [6],
[15]).

Arguing in the same way as in the above proposition, we can prove
the following lemma which we shall need later on.

LEMMA 3.2. Let Sg(x,t), D(x,t) and D be as above. Then there
is A >0 and pu € N such that for all x € D, R € (0, 1] and
t >ty =to(R), we have

SE(xt s tR) g D('xt B AtRl/‘u) s D(xt s tR) g SE(X[ s AtRl/#)‘

4. Generalization of some classical results of homogenization the-
ory. Let Q be a simply connected solvable Lie group of polynomial
growthand E;, ..., E, and L asin Theorem 1, i.e. Ey, ..., E, are
left invariant vector fields on Q that satisfy Hormander’s condition;
let L=—(E}+---+E}).

The purpose of this section is to generalize some classical results of
the theory of homogenization (cf. [2]) in our context. In particular,
we shall prove a homogenization formula for the operator L. The ho-
mogenized operator Ly will be a left invariant sub-Laplacian defined
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on a limit group Q. Qg is a homogeneous nilpotent Lie group and
L, is invariant with respect to its dilation structure.

We fix a basis {X,, ..., Xi} of g, as in Proposition 1.4. As it was
explained in §2, we identify Q and Qp with R”.
ng, My, ..., N, are as in §1, a(i), i = 1,...,n, as in §2 and

D(x,t), D;, D asin §3.
To simplify the notations, we shall use the summation convention
for repeated indices.

The dilation. We denote by 7., ¢ > 0, the dilation of R", hence
of Q and Qy, defined by

T RP = R", Te: (Xn, ..., x1) — (€%Wx,, ..., eWxy).
We put
Ee,izédrs(E,-), i=1,...,p and
Ly=—(E} +---+E7,), 0O<e<l

The compactness. We recall the following Moser type Harnack in-
equality due to N. Th. Varopoulos [13]:

THEOREM 4.1 (¢f. N. Th. Varopoulos [13]). For all a € (0, 1) there
is a constant ¢ > 0 such that forall t >0 and u > 0 such that Lu =0
in Sg(x,t) we have

sup  u(y)<c inf u(y).
YES,(x,at) y€S(x,at)

The above theorem provides a compactness on families of functions
U , satisfying

(4.1) lltelloo <1, Leue=0in D, 0<e<l.

More precisely we have the following

ProPOSITION 4.2. Let u,, 0 < ¢ < 1, be a family of functions
satisfying (4.1). Then there is a subsequence, also denoted by u,, such
that

Us — Uy (e—0)

uniformly on the compact subsets of D .

Proof. The first thing to observe is that if L;u, =0 in D then the
function u(x) = u(te(x)) satisfies Lu =0 in D,, for t = ¢~!. Using
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this observation and Lemma 3.2, we can easily see that it follows from
Theorem 4.1 that for every compact U C D there are sequences

Fp>r>--- ,r,-——>0(i—>oo)
1>e>6> - ,8i—>0(i—+oo)

and a constant ¢ > 0 such that

(4.2) sup v(¥) <c inf v(y), xeU
yeD(x’r,H) yeD(x’rl-)-l)

for all v, > 0 satisfying
L,ov,=0 1in D(x, r;), e<eg;.

Now, let r; such that D(x,r,)C D, xe€ U, ¢ <g;, u, satisfying
(4.1) and put
'Ug = 1 + ue s

M= sup v (y), M = sup v(y),

yeD(x,r,,,) YED(x,1,)
m= inf v , m'= inf wv.(y).
yeD(x,r,,,) ) yeD(x,r)) )

Then it follows from (4.2) that
M -m= sup (M —vy(y))
yeD(x,r,,,)

<c inf (M —v(y)) =c(M' - M),
YED(x,r,

i+1

M-m'= sup (ve(y)—m)
yeD(x,r,,,)

<c¢ inf (v(y)—m')=c(m—-m')
YED(x, 1y,
and from this that
c—1
_ < e ! . / .
M—ms c+ l(M )
It follows from the above argument that for every compact U C D
and 0 >0 thereis r=r(U,d) >0 and ¢ € (0, 1) such that
lue(y) —ue(z)| <6, y,zeD(x,r),xeU,

for all u. satisfying (4.1), with ¢ < ¢y and the proposition follows by
standard arguments.
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The limit group Qp . Let [-, -]y asin§l and ¢y, ... ,t, and af, ...,
a,, asin Proposition 1.2. Making use of the direct sum decomposition

q=u1®"'®am

we consider the projection pr, of q on a;.
We denote by [-, -]z the unique product on the linear space g
satisfying for X €a; and Y € q;

[X, Y]y = praiH[X, Yly, ifi+j<m and
[X,Ylg=0, ifi+j>m.

It is easy to see that [-, -]y satisfies the Jacobi identity (observe that
if Z € q;, and X, Y are as above then it follows from the way the
spaces t;, a;,1 = 1,...,m, were defined that [X,[Y, Zlylyg =
pra‘mh[P(, Y, ZInln)- So, gy =(q, [, -1g) is a nilpotent Lie algebra
which is also stratified.

The limit group Qg is defined to be a simply connected Lie group
that admits qy as its Lie algebra.

If X € qy then we denote by yX(e) the left invariant vector field
on Qp satisfying g X(e) = X(e) (e is the identity element of Q).
Using the exponential coordinates of the second kind

P R" = Qp, ¢:(xn, ..., xX1) > eXPXpaXn - eXP X1 X}

we identify Qy with R”.

Having done this identification, we should notice that the family
of dilations 7., ¢ > 0, introduced in the beginning of this section,
is exactly the natural family of dilations which is compatible with the
Lie group structure of Oy (cf. [5]).

The coefficients of the operator L. Let us fix a vector field E,,
1 < h <p. Then from (2.2) and with the same notations we have that

0 0
Eh=(a3+bﬁ)axn +~--+(a{’+b{’)5x—1

where

al(x)=ol(x,x), bl(x)=pl(x,x),
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P A_
(4.3) aﬁ'(x, y) = pr; z Xyt o
A a(l)+-+4,_ a(i-1)=0(i)—1

—A. A
K (Xisy) - KN (G)

CeViS(X) L. ey‘S(X,)} (Ep)

and
(4.4)
A A_
Blx,y) = pr > Xt x o
Ao(l)++4,_ o(i—1)<a(i)~1

—4, —A
KX)o KT (X))

VS, .enS<X1)} (Ep),

x=(-xns---,x1)>y=(yn’---aJ’1): x,yeRn,ISiSn-

We have the following proposition which is a direct consequence
of the above definitions and the way the vectors X;, ..., X, were
chosen (cf. Propositions 1.3).

PROPOSITION 4.3. The coefficients o'(x, y) and B!(x, y) have the
Jfollowing properties:

(1) of(x, y) = constant, for 1 <i<k,

(2) if k < i < ny, then o(x,y) = o¥(y) and it is periodic with
respect to y,

(3)if ny < i< n, then of(x,y) and Bk(x,y) can be written as
finite sums of terms of the form p(x)p(y), where p(x) = cx; -~ x; ,
ceR, 1<i;<i, 1<j<I and ¢(y) =cosay; or sinay; for some
1 < j <k, hence a periodic function and

(4) Bh(x,y)=0, 1<i<n,.

Let Kg(X;), 1 <i < n, be the linear transformations of q defined
by

Ku(X)X;=0, j<i, and Ky(X)X;=I[Xi, Xjlg, i<].
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Then (4.3) becomes
(4.5) ol'(x, y) = prjle-KuaXi) .. X Ku(X)n S .. nSH)Y(E,)
and from this we have
(4.6) ol(x,y)= Y oh(y)pren-FalFio) . KX (x;).
1<j<n,
Let us put, for 1 <i,j<n
aij(x,y)= Y af(x,»)e](x, ),

1<h<p

Bij(x,¥)= Y [eh(x, y)Bh(x, y)+ Bl(x, »)Bl(x, »)

1<h<p
+ Bh(x, y)ali(x, y)]

aij(x) = a;j(x, x), bij(x) = Bij(x, x).
Then we have (we use the summation convention for repeated indices)

L=A4+B, whercA:—aiaU(x) 9 andB——-—bU(x)

In the following proposition we have gathered some properties of
the coefficients a;;(x, y) and B;;(x, y) which are immediate conse-
quences of the definitions.

ox;’

PROPOSITION 4.4. (1) The coefficients a;j(x,y) and B;j(x,y) are
finite sums of terms of the form p(x)p(y), where p(x) = cx; -+~ x;,
ceR, 1 <ip<max(i, j), 1<h<I,and ¢p(y) =cosay; or sinay;
for some 1< j <k, hence a periodic function.

(2) aij(x,y)=a;(y), 1<i, j<n.

(3) ajj(x,y)=constant, 1<1i, j<k.

4) ﬂij(x>J’)=0, -1<1i, j<n;.
The correctors. We put

o
A(x) = “53;;0:’1'( J’)ay]

If f(x,y) is a finite sum of functions periodic with respect to the
variable y then we denote by 9(f)(x) the mean of f, defined by

(1)) = fim 7 [ S )dy

where |D;| denotes the volume of D;.
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The correctors x/(x,y), 1 < j < n, are defined to be C* func-
tions satisfying

4.7) A7 (x, y) = -aiyiaij(x, Y, M) =0

They are defined as follows:
For 1 < j < n; they are defined to be the unique solutions of the
problem

A (x, y) = —%amx, ). M) =0

Notice that, in view of Proposition 4.4,
0 0 .
Z _'Taij(x3y)= Z al](yk"”’yl)’ ISJSnl’
1<i<n 0y 1<i<k 0y

which is a periodic function with mean zero and therefore the correc-
tors x/, 1 <j< ny, are well defined.
For ny < j < n the correctors x’/ are defined by

Y, y)= S 2 @) prjle-Kal-0 L enKuy X)),
1<I<n,

An immediate consequence of the definition is the following

ProPosITION 4.5. (1) A(x)(x/(x,y)—pj)=0, 1<j<n.

(2) X, y)=x/(x, Wk, .--s)), 1<j<n.

(3) ¥’ =0, 1<j<k.

(4) If k < j < ny, then 3/(x,y) = x/(y) and is periodic with
respect to y .

The homogenized operator L,. We put
0
gij(x) =M {aij(X, y) —ay(x, y)ay X (x, y)}

The homogenized operator L, is defined by

_0

PROPOSITION 4.6. (1) ¢;j(x) =gq;i(x), 1<i, j<n.
(2) qij(x) =constant, 1 <i, j<ny.



HOMOGENIZATION ON SOLVABLE LIE GROUPS 39
(3)

g (x)= Y {prfet-Ku¥i) . onKalXD)( X))} gy,
1<, u<n,

. {prj[exj—-lEH(X]—l) RN exxfﬂ(xl)](Xu)} s 1<1i, j <n.

Proof. (2) and (3) follow from the definitions and Propositions 4.4
and 4.5. To prove (1) let us observe that

gij(x) =M { (5%%) ap(x, y)a—i?[yj‘ - X/ (x, J’)]}
and that from the definition of the correctors x/, 1 < j < n, we have
that
{2 x| anr, ») -y - 26, M1 =0,
Oyh ’ oy ’
Hence

(48) (%) =m{f7h

and the proposition follows.

i — x'(x, »)lan(x, y)a—aﬁ[yj - x/(x, y)]}

LeEMMA 4.7. The operator
0 0
L=- ¥ Lan
1<i, j<n, ax,’ 6xj
is an elliptic operator with constant coefficients in R™: .
Proof. Let & = (&1, ...,&n) € RN, £ # 0, and (cf. Proposition
4.5)

fO) =& ='W+ + & n, — 2 )]
Then, from (4.7) we have that

> aitts =] |52 10)] ant) -0}

1<i, j<n,

and from Proposition 4.4 that
0 0 ) )
3 { | S 0] )= ) } = THELS P+ + (Ep )

So to prove the lemma it is enough to prove that
M{(E1 )+ + (Epf)*} #0.
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To do this, since the function (E;f)?+ -+ (E,f)? is a finite sum
of C* periodic functions, it is enough to prove that there is an open
set U CR"” and 1 < i < p such that E;f(y) # 0, y € U. This
follows from the observation that if E;f(y) =0, Vy € R" then, since
the vector fields E,, ..., E, satisfy Hérmander’s condition, we would
have that f(y) =c, Vy € R" and hence that

i+ eayn =&x' )+ & X B) +c

which is absurd since the second member of the above equality is a
sum of periodic functions.

It follows from the above proposition that there are linearly inde-

pendent vector fields Yi, ..., ¥, in R™, with constant coefficients,
such that Ly = —(Y2 + - + Y,,zl). Let us denote by Wy, ..., Wy,
respectively the images of Y;, ..., ¥, under the linear isomorphism

of R™ with a; that maps 8/8x; — X;, 1 <i < n;, and denote by
Wi, ..., HWn, the left invariant vector fields on the limit group Qg
satisfying yWi(e)=W;, i=1, ..., n;. Since Qg (as well as Q) has
been identified as differential manifold with R", gzW;, ..., gW,_;
can also be viewed as vector fields on R” (as well as on Q). Then it
follows from Proposition 4.6(3) that the limit operator L, satisfies

a ..

ax; qij

i.e. L isaleft invariant sub-Laplacian on Qg , which is also invariant
with respect to the natural dilation structure of Qg (cf. [5]).

0
Ly= (x)%z_(m2+...+%%),
J

The homogenization formula. Now we can state the following

PROPOSITION 4.8. Let ug be as in Proposition 4.2 and Ly as above.
Then
Louo =0 inD.

The proof of the above proposition is exactly the same with the
proof of the homogenization formula in the classical case of uniformly
elliptic second order differential operators with periodic coefficients
(cf. [2]).

The only modification is that, since in our case we deal with hypoel-
liptic and not uniformly elliptic operators we have to replace D with
a neighborhood U of 0 which is very regular, in the sense of Bony
[4], i.e. it is such that

(i) U = ByNB,, where By and B, are two Euclidean balls of R”
and
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(i) if x € 0U, hence x € B; forsome i € {1, 2}, v = (vy, ... ,V1)
is the vertical unit vector to the ball B; at the point x and the op-
erators L, 0 < ¢ < 1, are written in divergence form as L, =
—(0/0xi)a;(0/0x;) then

Z as;(x)vvj > 0.
1<i, j<n

Observe that since D can be scaled down to a subset of U, we can
indeed replace it by U.

To see that not only 0 but every y = (¥, ..., »1) € O hassuch a
very regular neighborhood U let us observe that af ; = const., 1<1,
j<k.Hence,if £#0, =&, ..., &), & ==& =0, then

Z afjéi§j>0, O<e<l.
1<i, j<n

So the intersection U = B; N B, of the balls B; and B, of radius
M + 6, centered at the points y + M¢ and y — ME respectively, for
M large and J small enough is a very regular neighborhood of y.

Apart from this modification the energy proof of the homogeniza-
tion formula (cf. [2]) can be carried through without any change at
all.

5. The proof of Theorem 1. The proof of Theorem 1 will be based
on a rescaling argument of M. Avellaneda and F. H. Lin [1] that we
shall adapt in our context.

We shall use the notations of §4.

LEMMA 5.1. For all u € (0, 1) there are 6 € (0,1), & € (0, 1)
and ¢ > 0 such that for all 0 < ¢ < &y and all functions u, satisfying

Lite =0 inD,  |tg]loo <1
we have that
(5.1) sup |ue(x) — A5 — > A%x; —ex/(1,-1x))| < '
xeD, 1<j<n,

where, A%, 0<j<ny, are constants satisfying |48 <c, 0<j<n.

Proof. First we observe that thereis ' >y, 8 €(0,1) and ¢ >0
such that for all u satisfying

Lou=0 inD, lulloo <1
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we have that

(5.2) sup < o

x€D,

(u(x) - 43— Y x;

1<j<n,

where 49, 0 < j < n;, are constants satisfying [4%] < ¢, 0 </ <
ny . This follows from the fact that the homogenized operator L is
hypoelliptic (cf. [4]).

Let us fix these values of § and c. If (5.1) weren’t true then there
would be a sequence of functions Ug 5 &m — 0 (m — o0) not satis-
fying (5.1). We can assume, by extracting a subsequence if necessary,
that u, — up (m — oo) uniformly on the compact subsets of D,
and then u would satisfy (5.2).

Let us take Aj.'" = A?, 0 < j < n;. Then using the assumption that
the functions . do not satisfy (5.1) and passing to the limit we have
that

0 < sup |u(x) - 43— S Alx;| < 0K
xeD, 1<52n,
which is absurd. Hence the lemma.
LEMMA 5.2. Let 6, u and &y be as in Lemma 5.1. Then there is

a constant ¢ > 0 such that for all m € N and ¢ € (-1, 1) such that
e < 0™ ey and all u, satisfying

Liu.,=0 inD, ltelloo <1
we have that

(5.3)  sup |uex — A3 — D AD"(x; - ex! (1,-1x))| < 9"UH
XEng lg_]SnI

where Ajm 0 < j < ny, are constants satisfying IAj.’ml <c, 0<
J<ny.

Proof. The lemma will be proved by induction. For m = 1 we
are in the case of Lemma 5.1. So assume that (5.3) is true for some
m e N. We put

(5.4) wy(x) = 0™ |y (zgmx) — 45"

— ) AP0 x; —ex! (1, )) | -

1<j<n,
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Then we have that
Leﬁ—mwg = O il’l D ) “wslloo S 1

Therefore it follows from Lemma 5.1 that, for ¢6-" < gy we have
that

(5.5) sup |we(x)—Bf— > BHO™x;— 07" x/(1,-14nX))| < O'H
x€D, 1<j<n,

with [Bf| <c¢, 0<j < n; (the constant ¢ being as in Lemma 5.1).
Let us put

Ag,m+1 =A8,m+0m(l+y)B8,
AP = 45 L 9mIBE, 1< j< .

Then putting (5.4) and (5.5) together we have that

sup 0—m(1+u) ug(rgmx) _Ag,m+1
x€D,

= Y APOMx; — ey (1,-14mX))| < 01

1<j<n,
and from this

sup |up(x) — 45"
xeDam-H

B Z A;’mﬂ(xj—sxj(re_,x)) < gim+1)(1+u)
1<j<n,

which proves the inductive step and the lemma follows.
COROLLARY 5.3. Let ¢y be as in Lemma 5.2. Then there is ¢ > 0
such that for all ¢ € (0, &) and all u, satisfying
Liu.=0 inD, [ete]]oo <1
we have that

(5.6) sup |us(x) — 48| < c8£
0

xeDe/eo

where A is a constant such that Af < c.



44 G. ALEXOPOULOS

COROLLARY 5.4. There is a constant ¢ > 0 such that for all u sat-
isfying
Lu=0 inD;, t>1
we have that

c
(5.7) suplu(x) Ayl < ;||u||oo
xeD

where Ay is a constant such that |Ay| < c||u)|c -

Proof. The corollary follows from Corollary 5.3 and the observation
that if u satisfies

Lu=0 in D;, t>1
then the function u, defined by u.(x) = u(t,x), ¢ = 1/t satisfies

Lgug =O in D.

Proof of Theorem 1. It is enough to prove Theorem 1 when Q is
simply connected. In that case it is an immediate consequence of
Corollary 5.4 and Theorem 4.1.
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