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ON THE SHAPE OF FUNDAMENTAL DOMAINS
IN GL(/i,R)/O(n)

D O U G L A S G R E N I E R

We investigate parameters for the symmetric space H = G/K,
G = GL{n, R), K = O(n), in the sense of positive definite quadratic
forms. This leads to a description for the fundamental domain H/T
where Γ is an arithmetic subgroup of G. We also see interesting
relations with the Siegel sets. This enables us to explicitly describe
Satake compactifcations of H/T. We will also consider the behavior
at the "bottom" of the fundamental domains.

1. Introduction. The problem of reduction of quadratic forms is an
old one. When the subject is positive definite quadratic forms, the
first definition of reduction was achieved by Hermite [8]. However,
it is Minkowski's reduction that is the most familiar, primarily be-
cause when we view the quadratic forms geometrically, Minkowski's
reduction domain is easily seen to have a finite number of boundary
components while this was not known for Hermite's. One may consult
Cassels [3] or Terras [14] for more of the historical details and for a
definition of these domains.

In modern language, positive definite quadratic forms may be con-
sidered as a symmetric space. Denote the space of positive quadratic
forms by SPn , and let G = GL(n, R), K = O(n). Then &>n may be
identified with G/K by:

gK ^ τ gg

for any g e G. We will be most interested in the space of quadratic
forms of determinant one which will be denoted <9ZPn . This may be
obtained from G/K by modding out by the center of G. If Γn stands
for GL(n, Z)/{±/}, Γn acts discontinuously on &&>n by:

Z h- Z[γ] = τγZγ

where Z e &&n and γ e Γn. We will always use this notation
Z[X] = TXZX where X e Rnxk for any k (including k = 1 so
that X is a vector). Then a fundamental domain in 5^n under the
action of Tn is a subset of <9%Pn which may be identified with the
quotient space 5^n/Yn and which represents the reduced forms. For
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studying arithmetic subgroups of GL(n, R) and automorphic forms
an Hermite style fundamenal domain was preferable to Minkowski's.
In [5] such a fundamental domain was defined, and it was shown that
it was indeed possible to explicitly determine the (bottom) boundary
components. This is also in [6].

The object of this paper is to develop in more depth various prop-
erties of the fundamental domains of [5] and [6]. We will explicitly
determine compactifications of these domains and hence the quotient
groups. These will be Satake compactifications of S%PnIYn modelled
after those originally considered by Satake [12] for the Siegel space
and generalized by Satake and others (see, for example, [13, 1, 16])
to many algebraic groups. We will describe the topologies of cer-
tain compactifications of the fundamental domains and the quotient
groups, and see the relation between the so-called boundary compo-
nents and the parabolic subgroups of G, as in the compactifications
of Satake and Baily-Borel. We believe that these compactifications
will be quite useful in the study of automorphic forms for GL(/i, R),
specifically towards generalizing the results of [7] that defined a map
sending automorphic forms for GL{n, R) to forms for GL(ft - 1 , R).
The nature of the Satake topology defined in §4 indicates that there
should be similar maps relative to each parabolic subgroup, sending an
automorphic form for GL(/ι, R) to a product of lower rank automor-
phic forms. This in turn might lead to explicit Maass-Selberg relations
for GL(n, R). The Siegel sets play an important role both in the def-
inition of the fundamental domain and the compactification. The
relation of the fundamental domain to the Siegel sets also has a bear-
ing on many problems in automorphic forms and harmonic analysis
on GL{n, R), for example as in Huntley [9] (also see [14]). Mostly we
concentrate on the action of GL{n, Z) on <5%Pn , but since an arith-
metric subgroup of G is commensurable with GL(n, Z), these ideas
are easily extended to fundamental domains for arbitrary arithmetic
subgroups. Due to the celebrated arithmeticity theorems of Margulis
(summarized in [15]), this last notion may deserve more attention than
it is given here.

In the following, in §2 we will briefly summarize the results of [5,
6] concerning the fundamental domain we will consider here. Then
these results will be modified and/or extended to suit the purposes of
this paper. Section 3 will take a closer look at the Siegel sets (which
are already preset in the definition of the fundamental domain). We
will investigate the relations between the fundamental domain and
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the Siegel sets, including how they are used to establish a reduction
algorithm, and in work of Huntley on the spectrum of the Laplacian.
In §4 the fundamental domain will be compactified in the style of
Satake [12]. This also gives a compactification of the quotient space
S^n/Tn . The author would like to thank S. Zucker for several helpful
discussions on these last matters.

2. Fundamental domains in <9%Pn . This section is partly a summary
of results from [5, 6], although we have made various modifications
and additions. Throughout we will use the following coordinates on

For any Z € &&n, let

(1) z = o
O ') [i Ί

where the square bracket notation is as before, and y > 0, Z ' e
<9&*n-\ > x € R""1. These may appear a little strange at first, but
they have been chosen to point out parallels with the upper half-plane
H (where x and y would just be the real and imaginary parts of
z G H), and so that \Z\' = 1, which enables us to define the co-
ordinates recursively. More explicitly the identification of S^SP-i with
H is given by:

H

x + iy = z i
0

The coordinates defined in (1) are called partial Iwasawa coordi-
nates since if we repeat this decomposition for Z', and so on, we get
the Iwasawa decomposition for Z € <9£Pn, which it is convenient to
write

/ I

(2) Z =

\

{y\yi yn-\)2)

1 Xi

Note that the y, correspond to the simple roots of the Lie alge-
bra of G, which in the Lie group setting are actually yf2 for i =
1,2,..., n — 1. The partial Iwasawa coordinates demonstrate an
embedding of the lower rank symmetric spaces 5^Ψm into
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Using the partial Iwasawa decomposition (1) we can now define a
fundamental domain for Γn in 5%Pn , corresponding to the quotient
space <9ίPnITn . Let 9^ be the set of all Z e <92Pn satisfying:

(Dl) For all ( « ^ ) e Γn, (a + τxc)2 + ynllfl-χ)Z'[c\ > 1 where
α e Z , b,ceZn-{ ,znd DeZn~lxn-1.

(D2) Z ' e ^ - i .
(D3) 0<JCi2< 1/2, |jcυ | < 1/2 for 7 = 3 , . . . , n - 1 .
This is slightly different from the definition in [5, 6], as there the

approach was more in keeping with the idea of quadratic forms (and
not necessarily just those of determinant one). Here, we want to see
a cusp as y —• oo. As indicated in the introduction, this fundamental
domain has the advantage of being defined recursively as in Hermite's
original idea, but it was shown in [5, 6] that only a finite number of
combinations of a e Z and c G Zn~ι are necessary in condition (Dl).

Since 5^2 is identified with the upper half-plane H, the funda-
mental domain above for n = 2 is just half of the usual one in H,
namely ^ is identified with D c H where

D = {x + iy = zeH\x2+y2> 1, 0 < x < 1/2}.

&2 is compactified by adding the point at infinity, i.e., ^ * = iζu{oo}
is a compact subset of H* = H U {oo} corresponding to H*/Γ2 . To
see how to compactify 9n when n > 2 we will first consider the
example of ^ . This fundamental domain was pictured in [4]. For
n = 3 the Iwasawa decomposition (2) becomes:

X\2

1

The fundamental domain &ί can be given as the set of all Z e
satisfying the following inequalities:

(i) χ\2+y\>U
(ϋ)

(iii)
(iv) ( l - * i 2

(v) χ h + yl>U
(vi) 0 < * i 2 < 1/2,

(vii) 0 < J C 2 3 < 1/2,

(viii) |JC13 | < 1/2.
Inequalities (i)-(iv) come from condition (Dl) in the definition,

while (v) and (vii) come from (D2). For y\> M, for some sufficiently
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large M, the first four inequalities above are unnecessary to have
Z G ̂ 3 . Thus we might say that as j ^ -> oo what was the point
at infinity for n — 2 now becomes ^ for n = 3. As ^2 -^ °°
we get similar behavior except that it is inequalities (ii)-(v) that be-
come unnecessary. However, we still see S^ as we approach the cusp
determined by y-i —> oo.

To see how this would carry over to the general situation it will be
convenient to write Z e ^ as:

( 3 ) ~ - ' \o zj [o i
so Z\ = y(n/"-ι)Z' from the partial Iwasawa decomposition (1).
Let us define a\{Z) to be the upper left corner entry of the matrix
Z € &n . Then

where y = (a £) as usual. A simple computation gives

If c — (a\'), with c' G Z π ~ 2 , then we can also decompose Z' as we
did for Z above and compute a\(Zr). Thus

y'Z'[c] = [a! + Γ x V ) 2 + Z2[c']

where x 7 , y' and Z 2 would correspond to x , y and Zi for Z . We
also know y'Z1 = yj~2Zi, so we can rewrite the above equation as:

(4) y;2Zι[c] = (a' + τx'c')2 + Z2[c'}.

If we repeat the arguments above we eventually arrive at the following:

LEMMA 1. Z, [c] > y] for all c e Zn~l - {0} .

Since for each /, yι —» oo =Φ- y —> oc (so y" 1 -^ 0), as yz -^ oo, Z
breaks into two blocks of sizes / and n — i, the first of which goes to
0, the second to oo. We will write:

As j// —> oo, ^ -> ̂  x ^ _ / .

A variation of Lemma 1 will also be useful:

LEMMA 2. Zχ[c] >_y\'-y\ for all c G Zn~ι which have cj φ 0 for
all j>k.

This may be proved by applying equation (4) and Lemma 1.
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3. Siegel sets in &5Pn In this section it will sometimes be con-
venient to consider the region 9^ = \JγeD ^n[y] where Dn is the
subgroup of diagonal matrices

±1.

We will denote this fundamental domain 9%. Condition (D3) would
become for 9^:

(D3') |jcι|< 1/2 for all i.
while (D2) would become accordingly:

(D2') Z ' 6 F ; _ p

with (Dl) remaining the same. Then 9^ is symmetric about x^ = 0
for all i , j with 1 <i < j <n.

The Iwasawa decomposition of G is written G = KAN, where
K = O(n), A is the diagonal subgroup of G, and N is the nilpotent
subgroup of upper triangular matrices with 1 on the diagonal. A Siegel
set in G is a subset of the form KΆrw where At = {a e A\a(a) < t}
for all simple roots a and w is a compact subgroup of N containing
a neighborhood of /. More details may be found in [2].

Analogously, we may define Siegel sets for <9£Pn. Since we have
seen that the j// in the decomposition (2) correspond to the simple
roots of the Lie algebra of G and under the map g ι-> τgg, g = kan
is sent to a2[n], define the Siegel set *£?, 1/2 by

c$?>1/2 = {ZeS&>n\yi > rχl\ |jcy| < 1/2}.

Then we have the following:

THEOREM 1. 3\, 1 / 2 c 9J c ^4/3,1/2

Proof. Clearly this is true for n = 2. One need only consider the
standard picture of ^ in the upper half-plane H. Using the partial
Iwasawa decomposition (3), condition (Dl) of the definition of ^n

becomes:
(Dl*) (a + τxc)2 + Z{[c]> 1

for all a, c forming the first column of γ G Tn . If we choose a — 0
c = ^1, the first standard unit vector in R"~ι we get x\ +y\ > 1 amd
since \x\\ < \/2, y\ > 3/4. This argument can be applied in turn
to Z' E &ϊ{_ι to get yι > 3/4 and so on. Thus we have the second
inclusion. To get the first we need to show that if yt > 1 for all /, and
\Xij\ < 1/2 for all /, j , then Z e ^ ' . As mentioned above, we know
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this for n — 2, so we proceed by induction. Since Z\ is positive, if
λ is the least eigenvalue of Z\, then Z\ [c] > λl[c]. The eigenvalues
of Z\ are y\, {yiyi)2, etc., so λ > 1. If c ψ 0, Z\[c] > λ > 1 so
condition (Dl*) is satisfied. If c = 0 then α must be ±1 to have
y e Γ n which again makes (Dl*) satisfied. Condition (D2;) is met
by the induction hypothesis and (D3;) by definition of ̂  j / 2

Terras [14] says that ^ has a "box shape" at infinity. For example,
considering n = 2, the portion of ̂  with y > 1 is a semi-infinite
strip of width one. It can be seen fairly easily that <^i, 1/2 is the largest
Siegel set contained in ̂  and 5̂*4/3,1/2 is the smallest containing
^ . Again, this is well known in the case n = 2, where

S*t,1/2 = {zeH:\x\< 1/2,y>Vt-1}.

It is also clear from that same picture that

4̂/3,1/2 c ^ ' u ^ ' m

where S — (^ ~ * ) . Roelcke [11] uses the fact that it takes just two
copies of the fundamental domain to cover the smallest Siegel set
containing the fundamental domain to obtain a lower bound for the
eigenvalues of the Laplacian on L2(///SL(2, Z)). In this case, \λ\ >
3π 2 /2. Huntley [10] has extended these ideas to L2(S^3/T3) and
shows that there |A| > 3π2/10. To do this one needs to know that
it takes 10 copies of the fundamental domain to cover ^4/3 s l / 2 in
J5^3. From well known properties of the Siegel sets (see for example
[2]) it is clear that the number is finite, but we need the exact number.
This is related to the reduction algorithm for 5^^ discussed in [4]
where it was necessary to form matrices γ e Γ3 having a and c as
their first column for all the a and c necessary in (Dl). However,
there is an infinite number of choices for these matrices. For the
application to Roelcke's method it is important to select these matrices
more carefully.

Since we are using ^ here, (Dl) gives the inequalities:

(i) x2

n+y\>\,

(ϋ) ? ?
(iϋ)
(iv)
The difference in the inequalities here comes from the symmetry

about X\2 = 0 which 9^ has and ^ has not.
To get the smallest number of copies of 5ζ' needed to cover
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^4/3,1/2 9 i e > the number of yf needed so that

we need to make sure that for any y, , Z G &$[y{\ satisfies \x^\ < 1/2
for all /, j where we use the Iwasawa decomposition (2). Take any
Z G ̂ 4/3,1/2 and use the reduction algorithm to move it to &£. (See
[4] for the construction of a reduction algorithm, although we will
need different matrices Si here.) First, if (using the decomposition
(1)) Z ' £ &Z then Z[S'] with

S' =

has Z' e ^2 . At the same time this switches X\ and xι where
Γ x = (xj 9 χ2) , but this is no problem since each satisfies |jcf-| < 1/2.
Thus, we may take Z e ^4/3,1/2 to satisfy conditions (D2;) and
(D3') for 9%, and we need to find y e Γ3 so that Z[γ] e 9%. In [6]
it is seen that for Z[γ] e &£ we have for all y e Γ'3 :

where a\(Z) denotes the upper left entry of Z as before. If we take
M = γ~ι we have (aw + τxc)2 + y3/2Zf[c] < 1. So, we need only
consider y with a and c satisfying this last inequality. Also based on
results in [6] it can be shown that this inequalty can never be satisfed
(mod 2)3) unless:

,,-,.,:v m. (•). (i). (io-
So we need to find matrices Si wth the first columns above. Experi-
mentation showed that the right choices of Si are:

S2 =

S4 =

0
0

1
1

0
1

0
- 1

1>

°>
0
0

1 0 -1

and S5 = I. What is meant by calling these the "right choices" is
that there are infinitely many choices of matrices with the same first
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columns, but in each case Si is the only one with that first column
to not affect (D2;) and (D3 ;). Also, each 5/ fixes the piece of the
boundary of &^ from inequality (i) above. Note that for each /,
Sf = I. We will say more on this shortly.

Returning to the problem at hand, since (Sf)eSi, / = 1 , 2 , 3 , 4 , 5 ,
e = 0 or 1 move Z into 9%, the inverses Si(Sf)e are what we need
to cover ^4/3,1/2 with images of &J, i.e.,

To check that these are sufficient, recall that only matrices of the form
(S')eS with S having first column from the list above would move
Z G ̂ 4/3,1/2 into 9^. If we were to use a different S from one of
the Si9 S = Sig, g e GL(3, Z) . Specifically, S = SΊ ( ^ ) , with
? G Z 2 , Re GL(2, Z), in other words, S e P(l, 2) where P ( l , 2)
is the parabolic subgroup of GL(3, Z) consisting of matrices of this
form. Now, if Z ' = Z[(S')eSi] e 9%, then Z'\g\ e ^ => g = I as
long as Zf is not on the boundary of 9^. It is easily checked that they
are all necessary. Thus, it takes 10 images of 9^ to cover ^4/3,1/2.
This may be simplified and generalized to any n by the following:

THEOREM 2. If Mi are the minimal set such that

4̂/3,1/2 c | J ^ - i M inS&>n-U

then in <9&>n> ^4/3,1/2 c U^'[S 7][M;] where M't = (ι

o °) and the
Sj are those uniquely determined matrices (modP(l, n — 1)) with
first columns given by the necessary and sufficient a and c in condition
(Dl) of Definition 1, which fix the corresponding pieces of the boundary
of 9J. These satisfy Sj = I.

Most of this is clear from the preceding discussion, so we prove that
we must have Sj = I. The Riemannian metric on 5%Pn is defined
by:

ds2 = Tr((dYY-1)2).

Let ZQ be on the boundary fixed by Sj but not on the other portions
of the boundary, and let Z\ e J^' (not on the boundary) be within
a distance e of ZQ where ε is small enough so that no point on
any other boundary piece is within ε of ZQ. Then, since the map
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Z —• Z[g] is continuous in Z , Z\[Sj] must be within εi of Z o , and
Zι[Sj]e&Z[Sj]. Similarly, Zx[Sj][Sj] = Zx[Sj] is within ε2 of Z o .
By adjusting ε we can make sure £2 is small enough so that no other
boundary portion is within ε2 of ZQ . Thus Z\[Sj] e ^[. This gives

4. Compactification of ^ . In this section we consider:

THEOREM 3. Let

( / l l , / I 2 , . . . ,

where if P is a partition of n written

= ίfn X X ,

, >v/ίΛ /Λ̂  topology defined below, ^ * w α Satake compactification
of&ii, i.e. ^ * w α compact Hausdorff space whose topology is induced
by the closure of ^n and this topology induces a compactification of

Here &[ is just {00}, a single point, as in the compactification of
^ , ^ * = ^ U { c x ) } .

Recall that a\ (Z) is defined to be the upper left entry of the matrix
Z . Then for (Zr, Zs) e <9^x<9^ with n = r+s and U a neighborhood
of (ZΓ, Zj) in ^ x ^ , define a neighborhood of (ZΓ, Z5) in ^ * as
follows: write Zr and Z.y as

/ I

/ I

\

Then define y by

7=1
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and for M > 0 let

V(U9M) =

_ v i ( - ι Z r O \\Ir X
~y V O ax{Zs)-\yλ...yr)

2Zs) [O Is

with yr > M, Zr x Zs e U,

= (χ/7) with |.x/7 | < 1/2, x r l > 0 i .

If r or 5 is 1, we must take Zr or Zs to be 1. Now define a neigh-
borhood of (Z r , Z5) in ^ * by F*(C/9 Af) = K(ί/, M)uU. This
definition can then be extended to define a neighborhood in ^ * of
(Zi, . . . , Zk) G &nx x x ^nk. This sort of thing is usually called the
Satake topology.

We need now show that for M sufficiently large, V(U, M) c S^i -
To prove condition (Dl),

note that since Z is a quadratic form, then if cy = 0 for j > r,

where m e Zn~r and τm = (α, ci, . . . , cΓ_i). But Zr e ^ so
yZr[m] > 1. If c7 7̂  0 for some j >r, then we may apply Lemma 2.
We have:

( f l + τχc)2 + Zχ[c] > Z i [ c ] >y2...y2

Thus, if we choose M > (4/3)(r"1)/2 we have (a + τxc)2 + Zx[c] > 1.
Now we must show that Z ' e ^ _ i . Since yfZf = y^2Z\ and so on,
this is equivalent to showing that y~2Zi[c] > 1 for all 0 Φ c e Zn~ι

and / = 1, . . . , n — 1. Since

this follows immediately from Lemma 2 for / = 1, . . . , r - 1 using
the same arguments as above. For / = r, Z ' e ^ _ i follows from
Lemma 1, and from Zs e ^ for / > r. Condition (D3) clearly holds
by the definition of V(U,M).

To show compactness of ^ * it will suffice to show that any se-
quence {ZW} in 9^ has a limit point in ^ * . Write the Iwasawa
decomposition (2) of Z ^ with y ^ ) , y ^ in place of the y, y\. If
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all the sequences {yf]} are bounded, then Z^ -> Z e &n - If
for some r is not bounded, let ar be defined by

r - l

and write

\>M)-ιarzίu) O \\Ir
/~\ (\Λv)n—1 \γι.IYI~, r7\y
yy \V Clf ) ' 2 / ; _

Then Z^p G &[ for i = r or n - r and if no other {y^} is un-

bounded, Z^ converges to some Zi€<9^. If another {y^} is un-
bounded we can repeat for z\v^ for whichever / , r or n - r. Thus,
we can establish the desired result inductively.

For some small n we can write out ^ * :

where we write 3^ instead of &ι x &{ since 9^{ is just one point.
Note that this holds up very well with what we saw in §2. We also
have

We can think of the first ^ as being a subspace of the first ^ as well
as &2 x&2 in the Satake topology while the second &ϊ would be a sub-
space of each «9ξ. This follows the containments of the appropriate
parabolic subgroups..

If πn is the canonical projection of 5%Pn onto <9£PnITn , then πn

identifies S^n/Γn with &n . Using this, and letting Vn = S^n/Γn ,
we get the Satake compactification V* = |Jp Vp where if P is the
partition of n into (n\, ni, . . . , n^) or the parabolic subgroup
P{nχ, n2, . . . , nk), then VP = VHι x •- x Vnk. Satake [13] actually
defines several different compactifications of a quotient space (see
also [16]); the one we have investigated here is the maximal Satake
compactification. In [6] the compactification considered was not this
maximal one. If we go all the way back to the beginning and restrict
ourselves to the partial Iwasawa decompositions (1) we would have
^ * defined recursively by:
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with the topology defined accordingly by taking a neighborhood of
Z' E ̂ Lγ, U, and defining its neighborhood in ^ * to be:

withy > ¥ , Z / G ί / / x = ( i i , . . . ,x«-i)

with \xj\ < 1/2, JCI > θ | .

Thus we have:

THEOREM 4. ^ * = ^ u ^ _ i U U ^ U ^ is a Satake compacti-
fication of ^n.lfVn = ̂ ΨnITn then V; = KΛuKΛ_iU uK1uK0 =
^ U V*_χ is a Satake compactificatίon of Vn .

This last compactification is analogous to Satake's original compact-
ification of SiegeΓs quotient space [12].

If Γ' is any arithmetic subgroup of G, we can similarly obtain the
compactifications of V = S^n/T'. If 3% is the fundamental domain
corresponding to S^n/T' and (^')* its compactification, Satake [13]
shows that U/eΓ (e^/)*[7/] = U?GΓ^*[y] > a n d t h a t t h e topologies on
these spaces are the same.
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