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TAU FUNCTIONS FOR THE DIRAC OPERATOR
IN THE EUCLIDEAN PLANE

JOHN PALMER

In this paper, the 7-functions introduced by M. Sato, M. Miwa,
and T. Jimbo in their study of monodromy preserving deformations
of the Dirac equation are rigorously identified as determinants of sin-
gular Dirac operators. The singular Dirac operators have branched
functions in their domains that reflect the monodromy in the deforma-
tion theory. The principal result is a new formula for the 7-function,
obtained by trivializing a suitable determinant bundle, that can be
simply related to the deformation theory and which may also be com-
puted in the transfer matrix formalism. These two different ways of
understanding the t-function provide the link between the deforma-
tion theory and the quantum field theory significance of 7-function
as a correlation function. This connection is the central result of the
Sato-Miwa-Jimbo theory of Holonomic Fields.

Introduction. In this paper we develop a new version of the Sato-
Miwa-Jimbo theory of 7-functions for the Euclidean Dirac operator
acting in the plane R2. Before attempting to explain the features of
this analysis which are new it will be useful to recall the original set-
ting and results in [14]. In 1973 Wu, McCoy, Tracy, and Barouch an-
nounced results in Physical Review Letters [1] for the scaling limit of
the two point correlation function of the two dimensional Ising model.
In [19] and [20] they published a full account of the remarkable result
that this scaled correlation could be expressed in terms of a Painlevé
function of the third kind. In a series of five long papers titled “Holo-
nomic Quantum Fields I-V” published in the years 1978-1980, the
mathematicians M. Sato, T. Miwa, and M. Jimbo (SMJ henceforth)
revealed that the WMTB result was a specal case of a more general
phenomena. There is a class of two dimensional quantum field the-
ories whose correlation functions (i.e., Schwinger functions) could be
expressed in terms of the solutions to nonlinear equations associated
with monodromy preserving deformations of linear differential equa-
tions. SMJ named these quantum fields “Holonomic Quantum Fields”
in reference to the intimate connection they have with holonomic sys-
tems of linear differential equations. A holonomic system of linear
differential equations is one that is “maximally overdetermined” in a
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technical sense and one of the tools introduced by SMJ in the study
of monodromy preserving deformation theory is the introduction of
an appropriate associated holonomic system. For example, they con-
sidered the Dirac equation in R? (with a mass term)

D(m)y =0,

and studied solutions to this equation which have isolated singulari-
ties at points a; for j =1,..., n, where they are “branched” with
monodromy e~ Of course, the solutions y to such a problem
ought to be considered as functions on the simply connected cover-
ing space of R?\{qay, ..., a,}. In [14-III] SMJ showed that if one
confined oneself to the solutions of this problem which are in L2(R?)
then the space of solutions is #-dimensional. They construct a canon-
ical basis {w,, ..., w,} for this space and they show that the vector
[wy, ..., w,] can be thought of as a flat section for a “Dirac compat-
ible connection” on the maps from R?\{a,, ..., a,} into C?". The
holonomy of this connection about the point a; is simply related to
the monodromy e~2",. The elements of the canonical basis w; de-
pend on the points a;, ..., a,, of course, and a basic technique in
SMJ I1I is to extend the flat connection in the R? variables to a con-
nection in the {a,, ..., a,} variables with respect to which the vector
[wy, ..., w,] remains a flat section. The zero curvature condition for
this connection gives the deformation equations which SMJ associate
to the monodromy preserving deformation of the Dirac equation.

What has this to do with quantum fields? In SMJ IV singular field
operators ¢1j(a ;) associated with the free Dirac field are introduced.
SMJ refer to the vacuum expectations of such fields as 7-functions
defining 7(a) by:

w(a) = (1 (a1) -~ ¢ (an)).

By introducing Dirac fields in the expectation defining 7, SMJ show
that one obtains wave functions for the Dirac equation which can ul-
timately be related to the canonical wave functions introduced above.
The systematic and clever introduction of local operator product ex-
pansions allows SMJ to recover the 7-function from the local expan-
sion coefficients of the wave functions. The field operators ¢;(a) in-
troduced by SMJ are quite singular objects and a lot of effort has gone
into trying to make rigorous mathematical sense of them. They turn
out to be intimately related to the Federbush and massless Thirring
fields and the field theories associated with these formal quantum fields
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have been rigorously constructed by S. Ruijsenaars [13] and by A.
Carey, S. Ruijsenaars, and J. Wright [2]. These field theories have
been constructed in the Minkowski regime—the t-functions (or more
precisely, objects akin to the SMJ 7-functions) should be the ana-
lytic continuations of the correlations to pure imaginary time but I
do not believe that this connection has been established yet. In an-
other direction lattice analogues for (Euclidean) holonomic quantum
fields were introduced in [7] and the convergence to a continuum limit
was proved (earlier, the SMJ analysis of the scaling limit for the Ising
model was dealt with in [9]). More recently, R. Davey [3] established
that the continuum limit of the lattice fields in [7] is associated with
an SMJ style deformation theory. However, his results also show that
the limiting 7-function is not always the same as the 7-function which
SMJ associate with their L2 deformation theory. The analysis in [3]
is difficult and tedious. It involves constructing lattice precursors of
the continuum objects (like wave functions and local expansions) that
are part of the SMJ analysis and then showing these lattice objects
scale to a continuum setting in which one can carry out the SMJ anal-
ysis. These results are instructive but one pays a high price in the
computational complexity that attends working on the lattice.

In the following we will introduce a mathematically well-defined
theory of 7-functions which produces the 7-functions to which the
lattice t-functions scale. The approach we adopt by-passes the con-
struction of the field operators ¢;(a). Instead we show that it is pos-
sible to introduce a family of Dirac operators D, ;(m) whose do-
main incorporates functions with “specified branching” e*" at the
points a; (our parametrization of the monodromy by A; rather than
the /; used by SMJ may seem a small point but it is ultimately the
source of the difference between the results we present here and the
SMJ results!). We show that it is possible to “localize” the differen-
tial operator D, ;(m) away from its singularities (which consist of
branch cuts emerging from the points a;) and that the localization 1s
completely characterized by a family of subspaces (see E. Witten [18]
for a discussion of this idea) that belong to an infinite dimensional
Grassmannian. There is a holomorphic line bundle, det*, over this
Grassmannian first introduced by G. Segal and G. Wilson [15] and in
84 we show that there is a trivialization of this line bundle over the lo-
calization subspaces which makes mathematical sense of the following
definition of 7(a) (see (4.9)):

7(a) = det(D, ,(m)).
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We show that the logarithmic derivative of this r-function is com-
putable in terms of data associated with the Green function G%*(z, z')
for D, ;(m). The fundamental result (see (3.62) and (3.63)) that con-
nects this with the deformation theory is that d,G%*(z, z') is finite
rank and expressible in terms of the basic wave functions (which are
not always in L? in our version—half of them are always in L2 in the
SM1J theory). It is interesting to note that the factorization property
of the derivative of the Green function is a property that was empha-
sized by J. Myers in work on scattering theory that was the source of
the Painlevé functions in the WMTB paper [18]. As another illustra-
tion of the central character of the derivative d,G%* we show in §5
that the deformation equations are an expression of the information
in d2G**=0.

There are, I believe, a number of advantages to defining the 1-
function as the determinant of a differential operator. The first is that
the conceptual connection between the various elements of the SMJ
analysis become transparent—given that the derivative of the Green
function is expressed in terms of wave functions it is not surpris-
ing that the logarithmic derivative of the 7-function can be expressed
in terms of the local expansion coefficients for the wave functions.
Secondly, the generalization of the SMJ theory to say, monodromy
preserving deformations of the Cauchy-Riemann equations, is not pre-
cisely parallel to the Dirac case when one regards the deformation the-
ory as fundamental. In contrast, the introduction of Cauchy-Riemann
operators, 0, ; with domains that incorporate functions with pre-
scribed branching (or monodromy) matrices, "L | can be done in
a fashion that precisely parallels the Dirac case [8]. In the regular
singular case the t-function has been defined by Malgrange [4] in a
fashion that makes it possible to write (see [8]):

7(a) = det(,,1)-

On the technical side the formula (4.9) for the 7-function can also be
evaluated in the transfer matrix formalism (this is done here at the
end of §4). The result is a formula, (4.17), which can be matched
with the formula for the scaling limit of the lattice 7-function found
in [7]. We are thus able to by-pass the auxiliary constructions in [3]
in making a connection with the lattice theory. Osterwalder-Schrader
positivity is an immediate consequence of the control of this scaling
limit and I believe that the rest of the Osterwalder-Schrader axioms
can be confirmed for the appropriate subclass of 7-functions (although
this is not taken up here).
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Finally generalizations beyond the examples considered by SMJ are
more easily approached through the formalism of differential oper-
ators and determinant bundles than they are through the represen-
tation theoretic formalism of free Fermi and Bose fields. The two
formulations are related (by G. Segal’s infinite dimensional version
of the Borel-Weil construction [11]) but the less refined structures in
the determinant bundle approach make it possible to ignore compli-
cations such as the “unitary” structure in the representation theoretic
approach and to concentrate on the geometric role of the Green func-
tion in describing localizations. Generalizations to compact Riemann
surfaces with genus greater than 0 for the Cauchy-Riemann theory
and to manifolds with non-Euclidean metrics for Dirac theory imme-
diately suggest themselves. I should mention that quite independent
of these developments, C. Tracy has already introduced an extension
of the deformation theory to the hyperbolic plane [15], [10] and in col-
laboration with R. Narayanan has results for the zero curvature limit
of 7-functions [6].

Incidentally, if one regards the operators 8, ; and D, ;(m) as
fundamental one sees that the Cauchy-Riemann theory naturally be-
longs on a compact Riemann surface and the Dirac theory needs the
mass term to give a regular theory on R?. The reason is that it is
important for the operators 9, ; and D, ;(m) to be Fredholm op-
erators. Compactness ensures that the Cauchy-Riemann operator will
be Fredholm and the mass term makes the Dirac operator invertible.
The Ising case (monodromy —1) is singular from this point of view
as the associated Dirac operator D, ;(m) is not Fredholm even with
the mass term. One symptom of this is that there is more than one
continuum theory associated with the monodromy parameter —1 (the
scaling limits from above and below the critical point are different for
example).

I would now like to describe the organization of this paper. The first
section introduces the operator D, ;(m) and summarizes a number of
results from SMJ III about local expansions of multivalued solutions
to the Dirac equation that will be used frequently in what follows. The
reader should be aware that our parametrization of the local expan-
sions differs from that in SMJ III. Some formulas, such as the local
expansion formulas for the basic wave functions (see (5.3)) “look”
the same as the formulas for the local expansions for the canonical
wave functions in SMJ III but the two wave functions are different in
general.
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The second section of the paper is devoted to the characterization of
the n-point Green function for D, ;(m) following some ideas from
SMJ III and to the calculation of an explicit formula for the “one-
point” Green function. The principal results are (2.13), (2.14), (2.25)
and (2.26). I believe these results are new but they are closely related
to some formulas in SMJ IV which arise in calculating the normal
ordered exponential representation for the holonomy fields ¢;(a).

The third section is devoted to an existence result for the n-point
Green function, G%*(z, z’), and to the calculation of its derivative
in the ‘a’ variables. The calculation of this derivative again follows
some ideas in SMJ III. The principal results are (3.62) and (3.63).
SMJ introduce and deal with a Green function in SMJ III whose ex-
istence can be established by first constructing the Green function for
the Helmholtz operator and then differentiating it to get the Green
function for the Dirac operator. Our Green function differs from the
SMIJ Green function by a “wave function” whose existence can be
inferred from the developments found in §5 of this paper. An exis-
tence proof for the Green function along these lines is simpler than
the proof we have given but we did not present this proof for a num-
ber of reasons. The proof of the existence of the Green function that
is given here is based on subspace localization ideas, transfer matrix
calculations, and Fredholm theory. An advantage to this somewhat
awkward combination is that it makes the connection with lattice re-
sults straightforward. The explicit calculation of the one-point Green
function and the transfer matrix subspace transversality computation
in §3 are both important in this regard, and the latter is, in any case,
central to the 7-function construction in §4.

The fourth section introduces the 7-function. First a heuristic cal-
culation of det(D, ,(m)) is made and then a rigorous definition (see
(4.9)) is given and shown to connect with the result of this calculation.
The principal result is Theorem 4.3.

The fifth section deduces the deformation equations for the low
order expansion coefficients of our fundamental wave functions from
the equation d2G%* = 0. This section was included because, although
it is possible to connect the expansion coefficients that appear in our
formula for the logarithmic derivative of the 7-function with the local
expansion coefficients for the canonical wave functions of SMJ II1, it is
excessively awkward to do so. Our conclusion is that the deformation
equations (5.21) and (5.22) with the algebraic side conditions (5.23)
and (5.24) have exactly the same form as the SMJ III deformation
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equations with the single exception of a positive definiteness condition
which is no longer satisfied by one of the matrices. We conclude by
carrying out the analysis of the two-point case in the one circumstance
where the result will look different from the SMJ analysis. It does not
look very different.

I would like to express my gratitude to D. Quillen, G. Segal, E. Wit-
ten, and B. Malgrange whose clear ideas on the subject of determinant
bundles and 7-functions made this work possible. I must also express
my debt to M. Sato, T. Miwa, and M. Jimbo. I have been studying
their work for more than ten years now and I am still amazed by their
achievement. Finally, I would like to thank C. Tracy for constant
support and enthusiasm in the pursuit of what must seem an endless
project.

1. D, ;,(m) and local expansions.

Incorporating branching in the domain of the Dirac operator. The
Dirac operator in the plane is:

D . 0 _az
T (—_52 0 )
1

0: = 5(0x —i8,) and 3= %(ax +i0y).

We are interested in defining a modified Dirac operator whose do-
main incorporates functions with specified branching at a collection
of points {a;, ..., a,} in R? which we identify with C in the usual
fashion. For simplicity we will suppose that all the points a, lie
strictly in the lower half plane (that is, all the a; have second coordi-
nates that are strictly less than 0). Now choose real numbers 4; for
j=1,...,n sothat:

where

and define:
y](z) = (Z _ aj)/lj — e/lj log(z—a))

where the logarithm in the definition is the principal value with branch
cut on the positive real axis. As z makes a counterclockwise circuit
of a; the function y; changes by the monodromy factor A; := e
We will say that the choice of 4; less than one half in absolute value
realizes the monodromy A; for the function y; with “minimal sin-
gularity” at a; (the function y; and its inverse y~! are as “close” to

J
the constant 1 as they can be).
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Let 4 = 3 ;4; and choose some point b which is strictly in the
upper half plane. Define:

I yi2)

T (z-bY

with the conventions regarding the logarithm in the definition of
(z — b)* as above. The function Y(z) is holomorphic in the lower
half plane except for branch cuts emanating from the branch points a,
where it realizes the monodromy A; at a; with minimal singularity.
The function Y(z) tends to 1 near infinity on the negative real axis
and tends to the constant [[ A; near infinity on the positive real axis.
Between the branch cuts in the lower half plane the function Y(z)
tends to a constant that depends on the branch cuts involved. The be-
havior of Y (z) in the upper half plane will not be of any consequence
for us. We are now prepared to define a Dirac operator whose domain
incorporates branching with monodromy A; at a,. Let ¢ denote a
bounded C*° function on R? which is identically 1 in the lower half
plane and which vanishes identically for arguments with second co-
ordinates greater than some number slightly smaller than the second
coordinate of b. Thus @Y is smooth in the upper half plane. Define:

o= (5 50).

A measurable function f(z) will be in the domain of the operator
we are interested in provided pM f € H'(R?) and (1—-¢)f € H'(R?)
where H! is the standard Sobolev space of square integrable functions
with square integrable first derivatives. We will denote this domain
by &, ; and we observe that it has a norm given by:

Mo fll g + 11 = )l

It is not hard to check that this domain does not depend on the choice
of b or the choice of ¢ although the norm does depend on these
choices. If f €<, ; we write:

D, ,f:=M"DMof+D(1-9)f

where M* denotes the transpose conjugate of the matrix M . A simple
calculation shows that:

Y(z)

—
M*DM=< 0o~ -Yox )

Y-19.Y 0
Since Y is holomorphic and Y is anti-holomorphic in a neighborhood
of the real axis it follows that 0-(Y) and 0-(Y) both vanish in a
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neighborhood of the real axis. Thus the action of M*DAM is the same
as the action of D for functions with support in a neighborhood of
the real axis. From this one may easily deduce that the operator D, ;
does not depend on the choice of ¢ . Similar considerations show that
D, ; does not depend on the choice of b either. It is clear that when
D, ; is applied to a function f € <, ; that the result lands in:

Ry 4= M*L*(R%) ® L*(R%)

where R2 and R? are the lower and upper half planes respectively.
The range space %, ; has a norm given by:

”M*—lgllLZ_ + ”g”l‘i

Now choose m > 0. We are now able to define the “massive” Dirac
operator which will be the principal object of our study:

D, ;(m)=D, ; + mI

where I is the 2 x 2 identity matrix. To make simple sense of this
as a map from <, ; to %, ; we will show that:

ga,/l C ﬁa,,{-

Suppose that f € &, ;. We want to show that f € %, ;. It is clear
that f isin H'(R2) and so it is automatically square integrable in the
upper half plane. It remains to check that AM*~!f is square integrable
in the lower half plane. But M*~'f = (MM*)"'Mf and Mf is in
H'! of the lower half plane. Let D; denote a small disk about the
point a;. In the complement of the union of the disks D; in the
lower half plane the matrix function (M M*)~! is uniformly bounded.
Thus M*~1f is square integrable in this complement. Employing a
smooth partition of unity to localize f inside the disks D; one sees
that it will suffice to show that if g isan H! function with support in
some D; then (MM*)~'g will be in L?. The relevant singularity in
(MM*)~! near a; comes from the factor |z — a;|=*% . It will suffice
to show that if g is a function which is in H' in a neighborhood
of a point (which we may take to be 0 for simplicity) and o < 1 is
a real number then r~*g is locally square integrable, where r is the
distance from 0. It is not hard to see that the L2 norm of the radial
derivative of g will be finite if g € H!. The reader will not have any
trouble using this in turn to check that the desired result is implied by
the following proposition (in which the constant f =2a —1):
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ProvrosiTiON 1.0. Suppose that g(r) is a smooth function of r with
support in the domain 0 <r < 1. Let B be a real number strictly less
than 1. Then:

/ g dr < (1—%/;)2 / g Prdr

Proof. 1t will suffice to prove this when g is real. Calculating a
derivative in r one finds:

LD g = (1~ By g(r)? + 2P ()8 0).

Integrating this from 0 to 1 and using the fact that r!=# vanishes at
0 and g(r) vanishes at r = 1 it follows that:

1 1
(1 —,B)/O r Bg(r)?dr= —2/0 r'=Fe(r)g'(r)dr.

The Schwartz inequality implies:

: B 2 2 : 2 2 b 28 2 v
/Or g(r) drgl*“ﬁ—(/o g'(r) ra’r) </0 ¥ g(r) dr) .

Since 2ab < e 'a?+¢b? forany ¢ >0 and r'=2 <rf for 0 <r< 1
it follows that the right-hand side of this last inequality is dominated

by:

e /l g'(r)dr+ & /l r~Pg(r)dr

1-8Jo 1—8Jo '
If we now choose ¢ = # in this last expression and combine this
with the previous inequality then the desired result follows. O

Local expansions. We will understand the singular operator D, ;(m)
primarily by localizing it away from its singularities (at the points
a, ..., a,). In order to formulate and to understand these localiza-
tions we will make heavy use of results for local expansions of multi-
valued solutions to the Dirac equation. Suppose that a is a point in
the plane and that B is an open ball centered at a. Let B denote the
simply connected covering of B\{a}. Suppose that p € B is a point
different from a and let y denote a simple closed curve which starts
at p and makes a counterclockwise circuit of a. Then y generates
the fundamental group of B\{a} and it acts as a deck transformation
on B. We will say that w: B — C? is a multivalued solution to the
Dirac equation with monodromy A at a if:

D(m)w(x)=0 forxeB
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and
W(yx) = Aw(x) for x € B.

Now let b denote the horizontal ray with vertex a which emerges to
the right of a. If w(x) is a solution to the Dirac equation on the
open set B\b, and w(x) is a branch of a multivalued solution 0 (x)
with monodromy A at a then we will say that w(x) is solution to
the Dirac equation with monodromy A near a which is branched
along b. What is at issue here is that away from the vertex a along
the branch cut b, the function w(x) must have boundary values that
continue smoothly across » as solutions to the Dirac equation and
that the upper and lower continuations differ by a factor of A. It
is a result of SMJ III that such solutions to the Dirac equation are
characterized in terms of local expansions. We will now summarize
the results concerning these local expansions that will be of use to us.
Let R denote the differential operator:
R = 282—762+% [(1) _01] .

It is easy to check that this “infinitesimal rotation” commutes with the
Dirac operator D(m). Now let / denote a real number and consider
the differential equations:

D(m)y =0, Ry =1y

where w is a C2? valued function on the simply connected covering
space of R?\{0}. It is not hard to see that the “global” consequence
of being an eigenvector for R with eigenvalue / is that w(x) changes
by a factor of e2*(!/+1/2) a5 x makes a counterclockwise circuit of 0.
By working in polar coordinates it is not hard to see that the space
of such solutions y is two dimensional. Furthermore by calculating
the commutator of R with 8, and 8, one sees that the latter two
differential operators will map the / eigenspace for R into the / —1
and /+ 1 eigenspaces for R respectively. Following SMJ III we now
define:

el=1/20 1, o (mr)
and
e~iU+1/20F, o (mr)
* = /2
(1.1) wj(r, 0) = (e_iu—l/z)@][_l/z(mr))
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where I;(r) is the modified Bessel function of the first kind. The
functions w; and w; determine multivalued solutions to the Dirac
equation D(m)w = 0 and furthermore:

Rw; = lwy, Rw; = —lwyj.

The functions w; and w*, span the two dimensional space of (multi-
valued) solutions to the Dirac equation which are also eigenfunctions
of the infinitesimal rotation R with eigenvalue /. These eigenfunc-
tions are singled out by the requirement that the other infinitesimal
symmetries of the Dirac operator, d, and 9. act in a simple fashion
as “ladder” operators. In fact, one has:

m = m
(1.2) ow; = ?wl-—ls ow; = 5 Wit
and
* m * Ao * m *
(1.3) awl = —i—w1+1 s 31,0/ = 'jwl_l.

Finally, the parametrization of w; by minus the eigenvalue of R
rather than the eigenvalue itself is done so that both w; and w?,
become locally /ess singular at 0 at / increases. This simple change
will be very useful in sorting out the local singularity structure of
multivalued solutions to the Dirac equation—something that will be
important for us in what follows.

It is a result of SMJ III that any multivalued solution of the Dirac
equation, w, defined near 0 and with monodromy A = e2"* at 0
has a local expansion:

(1.4) w(r, 0) =Y {ap(w)w,(r, 0) + b(w)w;_,(r, 6)}
k

where the sum is over the half-integers Z+% and the coefficients a; (w)
and b, (w) are complex numbers. For fixed r this expansion can be
identified with the Fourier series expansion for the smooth 27 peri-
odic function 6 — e~*%w(r, #) and consequently the series converges
rapidly at fixed r (it certainly converges absolutely for example).

PROPOSITION 1.1. Suppose that |A| < } and that w(z) is a mul-

tivalued solution to the Dirac equation in a neighborhood of 0 with
monodromy e~2"* . Then w(z) is locally in the domain of Dy ;(m)
if and only if it has a local expansion of the form: '
(1.5) w =Y {ap(wywy_; + be(w)wy,;}

k>0
where the sum is now over the positive half-integers.
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Proof. Let

M(z) = {ZOA ?O_A}

with the principal values for the fractional powers as in the first sec-
tion. To say that w(z) is locally in &, ; means that for some J >0
the (single valued) function M (z)w(z) is in Sobolev space H'(Bj;)
where Bgs is the ball of radius J about 0. We will first show that
if w has an expansion of the form (1.5) then M(z)w(z) is in H'
near 0. Suppose then that w is a multivalued solution to the Dirac
equation with a local expansion (1.5). We know that for some rg > 0
the Fourier expansion of the single valued function e*fw(ry, 6) is
absolutely convergent. Choose 6 < ryp. We will show that M(z)w(z)
is in H'(B;). We begin by identifying the Fourier coefficients of
eMw(r, 0). If

eilﬁw(’., 0)= i ein@ [gl((;;]

n=—00

is the Fourier expansion then using (1.0) and (1.1) the Fourier coefli-
cients f,(r) and g,(r) are given by:

(1.6) fulr) = { any1/2ln_a(mr)  forn >0,
| ' b~ﬂ—1/21—n+z(mr) forn <0

and

(1.7) gn(r) = { An-1/24n-3(mr) forn >0,

| ' b_ni12l_pys(mr) forn <0

where » is an integer. The following formula for the modified Bessel
functions will allow us to obtain simple estimates for the Fourier co-
efficients f, and g,:

where Re(v) > —1 and

hy(r) = % /01(1 — s2)"=1/2 cosh(rs) ds.

It is clear from this last formula that 4,(r) is an increasing function
of r and using this fact together with (1.6) and (1.7) one finds:
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n—A
(£) sl forn>o0.
(1.8) (] < .
(—) | fu(rg)] forn <O

and

n—ai
(1) \ga(ro)]  forn >0
() <

p
(1.9) g (NI <8 Y07

;
(—) |gn(rg)] forn <0

o
where r < ry. One sees from this that the Fourier coefficients tend
at least geometrically to 0 as n — oo for r < ry. Now let w(r, 0)
denote the function M(z)w(z) considered as a function of (r, 8).
Then one has:

yir 0= 3 ot [ P fa ) |

-2
2 O [ rigu(n)

for the Fourier expansion of w(r, 8). To show that this function is in
H'(B;) one needs to show that v, 3%, and }g—‘f,f are all in L2(B;).
Calculating the L?(B;) norm for y in polar coordinates and making
use of the orthogonality of the functions e?? on the circle one finds
this L? norm is proportional to:

(1.10) i /Brﬂm(r)lzrdr+ \E /ér-zﬂgn(mzrdr.
0 0

n=—00 n=—00

Using the assumption |4| < % and the geometric estimate (1.8)-(1.9)
for the Fourier coefficients f,(r) and g,(r) for » < < ry one easily
checks that this is finite. The r dependence of f,(r) is given by
r"h,_;(r) for n > 0 and by r~—"+*h_, ,(r) for n < 0. In every
case except n = 0 one finds that differentiating the power terms with
respect to r brings down a factor % and a multiplier roughly of size
|n|. The reader should check that in each case (excluding, of course,

n = 0) the additional factor of % gives terms in the analogue of

(1.10) for %—"r’ that remain locally integrable. The additional factor
of order |n| is easily controlled by the geometric convergence (1.8)-
(1.9) and the terms in which A,_;(r) and h_,,;(r) are differentiated
are estimated by the obvious inequality 4, (r) < h,(r). Something

analogous occurs for the Fourier coefficients of g, (r) and this suffices
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to demonstrate that %‘rﬂ is in L?(Bys). Every Fourier coefficient of

12% picks up an additional local singularity of ! except the n =0
coefficient (since this is killed by d/906) and an additional factor of
order |n| compared to the Fourier coefficients of . Once again this
suffices to show that the analogue of (1.10) for }%% is finite and hence
that this function is in L2(Bj).

We leave it to the reader to check that Mw,_; and Mw;, , for
k < 0 are too locally singular at O to be in H'(B;s). Since Mw_;
and Mwy , make direct contributions to the H 1(Bs) norm through
their Fourier coefficients it follows that no terms involving wy_; or
wyf,, can occur for k < 0 in the local expansion of a function in
Y, ., . This finishes the proof of the proposition. O

We next recall Proposition 3.1.5 from SMJ III. Let w; denote the
function defined by:

W (z) = wy(z) —w_(2).

Then it is a result of SMJ III that ; is square integrable at oo.
Up to a constant multiple @, is the only multivalued solution to the
Dirac equation (branched at 0) which is an eigenfunction for R with
eigenvalue —/ and which is square integrable at oco. It is a result of
SMJ III that any multivalued solution to the Dirac equation which
is square integrable in a neighborhood of oo and has monodromy
multiplier e#** in making a counter-clockwise circuit of a sufficiently
large circle about the origin has a convergent expansion:

(1.11) W(z)= Y c(W)bk_y(2).
keZ+1/2

In SMJ III this result is used to prove the following proposition (see
Proposition 3.1.5. in [14-III]).

ProOPOSITION 1.2. Suppose that w is a multivalued solution to the
Dirac equation which is branched at a,, ..., a,. If w is square in-
tegrable in the exterior of the ball of radius R about O then in a
neigborhood of z = oo one has:

e—mlzl
|Pw(z)| =0 (W)

where P is any polynomial in the differential operators 9., 0., and
R with constant coefficients. Furthermore any multivalued solution of
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the Dirac equation with a local expansion (1.11) in a neighborhood of
oo Is square integrable near o .

This will be of use to us when we examine the properties of the
Green function for D, ;(m) in more detail. To conclude this section
we formulate a uniqueness result that is a consequence of the for-
mula 3.1.18 in SMJ III for the inner product of two (multivalued) L’
solutions to the Dirac equations in terms of their local expansion co-
efficients. Because of the slight difference in our notation for the local
expansion coefficients the result has a different look to it here. Suppose
that w and u are two multivalued solutions to the Dirac equation
which have the same (unitary) monodromy about the branch points
{a, ..., ay}. One finds then that:

(1.12) M (2Va(z) dz dF = d(ws(2)E (2)i d7)

2
=d(w(2)ir(z)idz).

Suppose now that w and u are locally in L? at each of the branch
points and globally in L2 near oco. Let R(e) denote the complement
in R? of the union of the disks of radius & about the branch points
aj for j=1,...,n. Let Cj(¢) denote the circle of radius ¢ about
the point a;. Then Stoke’s theorem transforms the integral:

lm/ w(z)u(z)dzdz

into an integral over the union of the circles C;(¢). It is a simple
matter to use local expansion results for w and u to evaluate those
boundary integrals in the limit ¢ — 0. Suppose that the infinitesimal
exponent of monodromy for w at a; is A;. Then w and u will
have local expansions at a, of the following sort:

w = Z{aZ(w)w/ﬁ_,{u + b;é(“’)wlt—iy}
k

where the sum is over the half-integers Z + ; and we have written
Wyy; and wy_ 5, s shorthand for wy,; (z—-a,) and w;_ i (z—ay).
We now divide the integers from 1 to »n into two classes. Let N
denote those elements j € {1,..., n} such that 4; < 0 and let P
denote those elements j € {1, ..., n} such that A; > 0. Recalling
that |4 < § it is easy to check the smallest index k for which wy.;
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isin L? at a, is —1/2 if v € P and 1/2 if v € N. Thus we define:

a’. (w), vepP,
C,,('ZU) = —1/2< )

ay /2(w), v eN.
In a similar fashion one sees that the smallest value of k& for which
w}_, isin L? near g, is —1/2 for v € N and 1/2 for v € P.
Thus we define:
C*(’U)): b.’fl/z(w), I/GN,
Y bip(w), veP.
Using (1.0) and (1.1) to do the Stokes’ theorem calculation(s) sug-
gested above one finds:

ProPosITION 1.3. Suppose that w and u are two multivalued solu-
tions to the Dirac equation both branched at the points {a;, ..., an}
with the same unitary monodromy. If both solutions are in L?*(R?)
then:

(1.13) z [ wmz)idzaz - —%zyj|su|c,,(w)ajm
and

(1.14) ’—?21— sz(z)ﬁ(z)idzd?: —%;1sy|cz(w)cu(u)
where:

Sy :=sin(mwA,)
and the two different forms result from the two different ways in which
the left-hand side of (1.12) is expressed as a derivative.

The uniqueness result we want is a direct consequence of Proposi-
tion 1.3.

ProPoOsITION 1.4. Suppose that w is a multivalued solution to the
Dirac equation which is square integrable at infinity and which has local
expansion.

w = Z{a,’;wkﬂu +biw_; }
k>0
at the branch point a, . Then the function w is identically zero.

Proof. To see this one needs only calculate the L? norm of w using

(1.13) and:
0, vePb,

aj(w), veN,

v (w) ={
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b’l’/z(w) , veP,

0, v € N. O

citw) = {

2. Calculating the Green function for D, ; when n=1.

Green functions. In this section we will define the Green function
for the operator D, ;(m) and examine some of its properties assum-
ing that it exists. In succeeding sections we will prove the existence
of the Green function—first for the case of just one branch point by
exhibiting a formula for the Green function and then in the case of
n branch points using a combination of transfer matrix ideas, local-
ization, and Fredholm theory together with the formula from the one
point case. The Green function we construct will allow us to solve the
equation:

Da,/l(m)f =&

given a function g in L? which has support disjoint from b, the
union of the branch cuts b; emanating to the right from the branch
points a; for j =1, ..., n. Our solution will end up in the domain
<, ; but we will not attempt to prove the estimates needed to extend
this to a full inverse on all of %, ;. It is useful to begin with a
calculation of the Green function for D(m) where no branch points
are involved.

The Green function for D(m) on R*. Consider the Euclidean Dirac
operator defined on R? by:

/0 -a.
D"‘(—EZ 0 )

where 9, = %(8)( —10y). We are interested in the Dirac operator with
a mass term defined by:

me=0+%1

where I is the 2 x 2 identity operator. In the Fourier transform
variables

£ 1 —Ix
7O = gz [ fx)e ¥ dx

the Dirac operator becomes multiplication by the matrix:

1/ m —if
5(—1’6 m)
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where & = &;+i&, . The Green function, Gy(x), for the Dirac operator

is thus: _ e
_ 1 m i e
600 = 53 fo (3 ) 46

In a later calculation it will be very convenient to identify a particular
contour integral representation for this Green function. Suppose that
X, > 0. Then the d&, integral can be closed in the upper half plane

with a single contribution from the pole at & = i @/élz +m2. One

finds: eli/2)(x& +x¢_)
_ 1 m lé 1 XG, +X
%W‘EA( )————wa

i m \/ &2+ m?

where & := & £4/&? + m?. Now introduce a new variable u defined
by:

then:

and one finds:

Go(x) = m ( 1! ) o—(m/2)Gurxu™) AU
R\ —U 1 2nu
where iR" := {u|u = ia with a € R*}. The exponential factor in this
last integrand decays as u tends to 0 and also as # tends to co. In
fact, it is easy to see that Cauchy’s theorem permits one to deform the
contour iR* to any other ray HR* with Re(Xd) = x-b > 0 (indeed,
our choice of the variable u was determined by the desire that the
admissible rays, bR*, should have such a simple direct connection to
the disposition of the point x).
In particular one can choose b = x. Thus:

Iy o du
— —(m/2)(Xu+xu"")
(2.0) Golx) = m /x R+(~u 1 )e .

We leave it to the reader to check that this representation of the Green
function is valid even without the restriction x, > 0. We may also use
the integral representations to identify the matrix elements of Gg(x)
with modified Bessel functions. One finds:

(2.1) Go(x) = (11|<o(m|)C|) |X|K0(m|x|)>

s Ko(mlx])  Ko(m]|x|)
where as before x = x; + ix;.
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It will be very convenient for later developments to make changes
in the kernel Go(x) associated with using the measure idxdX =
2dx; dx, and the bilinear form (x, y) := x - Jy where:

Define:

(2.2) G(x):= zGo(x)J

so that the solution of D(m)f = g (for g € L?(R?)) is given by:
1) = [ Gx=nJsidydy.

One can express this same observation as:

(2.3) [ (G =) DOm)f))idy dy = fitx)

where G; .(x) denotes the ith row of G(x) (regarded as a vector
in C?). The reason we make this change is that the operator D(m)
is formally symmetric with respect to the bilinear form (-, -). One
consequence of this is that not only are the columns of G(x) solutions
to the Dirac equation but the rows are as well. In the calculation of the
more complicated Green function for D, ;(m) the use of this bilinear
pairing will allow us to work exclusively with the Dirac equation (were
we to use the standard Euclidean inner product we would be forced
to deal with solutions to the adjoint equation D(m)*y = 0 as well).

Defining the Green function for D, ;(m). We will now define the
Green function for D, ;(m). The Green function G**(z, z') will
denote the kernel of the inverse for D, ,(m). If

D, ;f(z) = g(z)

then we want to recover f from g as follows:
(2.4) @)= [ 6%z Ig(idz az
RA\b

where the essential support of g is supposed to be disjoint from 5,
the union of the branch cuts 5; for j =1, ..., n. In order that f(z)
in (2.4) should satisfy the Dirac equation we want:

G1: The columns of the map z — G%*(z, z') are multivalued
solutions of the Dirac equation, defined for z € R?\{z’} U b, and
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—2mil
J

branched along b; with monodromy A; = e . These solutions

have local expansions near @, given by:
(2.5) G*M(z, 2)

=A@ (P (2 — @) + b} (2 wp, (2 - @)}
k>0
where the notation G. ; signifies the jth column vector of the matrix
G.

The restriction on the local expansions in (2.5) is suggested by
Proposition (1.1) and will insure that the function f is locally in
Y, ;. To insure that f(z) is well behaved at co we require:

G2: The map:

z— G5z, 2) € LA(R*\B,)

for some p > 0. Here B, denotes the ball of radius p about 0 in
R?.

Finally in order that the integral operator with kernel G%%(z, z')
inverts D, ;(m) away from the branch points we require:

G3: The difference of G%-*(z, z’) and the unperturbed Green func-
tion G(z — z') should be smooth along the diagonal. That is:

z—G¥*z,z)-G(z-2') e CYN(Z"))

where N(z') denotes a neighborhood of z’ which is disjoint from the
union of the branch cuts 5.

REMARK. In SMJ III a “Green function” is introduced and char-
acterized by just such conditions. The one difference in what we do
here is in G1. Our restriction on the local expansions near the branch
points g; is different than that in SMJ IIL.

It will take some work to establish the existence of a Green function
but following SMJ we can easily show that the conditions Gi, for
i = 1,2, 3 uniquely determine G%*. The difference A(z, z’) of
two matrix valued solutions to Gi for i =1, 2, 3, again satisfies G1
and G2 but G3 now implies that the columns of z — A(z, z’) extend
to z = z' as solutions to the Dirac equation. Thus the columns of
A(z, z') are multivalued solutions to the Dirac equation which are
globally in L2?(R?) and have local expansions of type (2.5) at the
branch points. Proposition (1.4) implies that A(z, z’) =0.

Before we turn to the calculation of the “one-point” Green function
we would like to show that the Green function G**(z, z’) can be
characterized by its behavior in the z’ variable. We will introduce a
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matrix F%4(z, z’) which is characterized by the analogues of Gi for
i=1,2,3 for the second variable z’. We will then do the standard
calculation using Stokes’ theorem that is used to prove the symmetry
of Green functions in the classical case and we will find that:

F4%(z, 2"y = G*(z, 2').
We define F?* by the following three conditions:
F1: The rows of the map z/ — F<%*(z, z/) are multivalued solu-
tions of the Dirac equation, defined for z’ € R?\{z}Ub, and branched

along b; with monodromy A; = e*™* . These solutions have local
expansions near g, given by:

(2.6) Fj(z, 7))
=Y {0l (Dwies (2 = @) + BY (2wi_; (7= a)}
k>0

where the notation F; . signifies the jth row vector of the matrix F .
Note that the monodromy for z/ — F%%(z, z') is the inverse of

the monodromy for z — G%*(z, z') at corresponding branch points.
F2: The map:

2 = F)(z, 2) € L*(R)\B))
for some p > 0. Here B, denotes the ball of radius p about 0 in
R?.
F3: The difference of F%:*(z, z') and the unperturbed Green func-
tion G(z — z’) should be smooth along the diagonal. That is:

z' - F%*(z,z') - G(z-z') € C'(N(z2))

where N(z) denotes a neighborhood of z which is disjoint from the
union of the branch cuts b.

PROPOSITION 2.0. The matrix valued functions G%*(z,z') and
F%X(z, 7)Y characterized by Gi for i = 1,2,3 and Fi for i =
1,2, 3 areequal. That is: G**(z, z') = F%*(z, Z').

Proof. Suppose that f and g are smooth functions on some open
set U in RZ, then it is easy to check that:

(2.7) {D(m)f(2)-Jg(z) - f(z)- JD(m)g(z)}idzdz
=d(fi(z)g1(2)dz + fr(2)&:(2) dZ).

Suppose that x and y are fixed elements of R? which do not lie in 4.
Let ¢ > 0 be chosen so that the ball of radius ¢ about x, B.(x), and
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the ball radius ¢ about y, B;(y), do not intersect the union of the
branch cuts b. Let N;(b;) denote open neighborhoods of the branch
cuts b; which are pairwise disjoint and do not intersect B(x)UB:(y).
Finally let N, denote the union of B.(x)UB.(y) with {J; Ny(b;). To

show that F%*(x,y) and G**(x,y) are the same we will set
f(2)=F"Mx,z) and g(z)=G"/(z,)

in (2.7) above. Since D(m)f(z) =0 and D(m)g(z) =0 for z in the
complement of N; it follows that the left-hand side of (2.7) vanishes
in this complement. Stokes’ theorem shows that the integral of the
left-hand side of (2.7) over the complement of N is given by the
integral of a one form on the boundary. Thus:

(2.8) / figidz+ g, dzZ =0.
N,

The boundary of N, consists of the circles of radius ¢ about x and
y and the boundaries of the neighborhoods N:(b;). We haven’t been
specific about Ng(b;) but now we observe that the exponential decay
of f(z) and g(z) implied by F2 and G2 and Proposition (1.2) shows
that we can collapse the boundary of each N;(b;) to a contour which
comes in from oo along the top part of the ray b, makes a counter
clockwise circuit of a; of radius ¢ (for ¢ sufficiently small) and goes
back out to oo along the bottom of the ray b;. Because f(z) and
g(z) are branched solutions of the Dirac equation along each b; with
monodromy for f(z) that is precisely the inverse of the monodromy
for g(z) it follows that the contour integrals in (2.8) along the top
and bottom portions of the ray b; exactly cancel—the contribution
which each 0 N(b;) makes to (2.8) is thus reduced to circuit integrals
of radius ¢ about the point a;. A calculation of these circuit integrals
using the local expansions for f(z) and g(z) that are described in
F1 and G1 show that they all vanish in the limit ¢ — 0. The only
contributions to the circuit integral (2.8) which survive in the limit
¢ — 0 are the contributions from 9B.,(x) and 0B.(y). Now F3
and G3 imply that F%*(x, z) and G%*(z, y) differ from G(x — z)
and G(z — y) by something which is continuous on the diagonal.
The formula (2.1) for Gyp(z) in terms of Bessel functions and the
asymptotics Ky(z) < —log(z) and K'(z) < —1/z as z — 0 now
permit one to calculate the contributions to (2.8) from 9B.(x) and
OB;(y) in the limit ¢ — 0. One finds that the contribution from
OB:(x) is Gf f(x, ») in this limit and the contribution from 9B, (y) is

-Ff ’j’l(x , ¥). This finishes the demonstration that F%-* = G%*. O
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A Green function for D, ;(m) with one branch point. We next con-
sider the Dirac operator D, ;(m) for a single branch point a; = a
and monodromy parameter A; = A. We will construct a Green func-
tion for D, ;(m) which will serve as a left inverse for the restriction
of D, ,(m) to the functions in its domain which are mapped to zero
in a neighborhood of the branch cut emerging from a.

That D, ,(m) is invertible is not too surprising. The operator D, ;
is formally skew symmetric and to say that D, ;(m) is invertible is
roughly the same as saying that the real number —m/2 # 0 is in
the resolvent set for D, ;. This same “argument” applies in the case
that there are n branch points to show that D, ;(m) is invertible. I
have not yet found a way to make this rigorous (what is missing is a
characterization of the range). Our construction of a Green function
for D, ;(m) will stop short of the estimates needed to prove that
D, ,(m) is indeed invertible. The existence of the Green function
will suffice to discuss the localizations of D, ;(m) which are the main
objects of interest for us, and is simpler to deal with.

We return now to the consideration of the case in which there is a
single branch point a. For simplicity we may take the branch point
to be at @ = 0 since we may obtain the general result from this special
case by translation. Let D(m) denote the Dirac operator:

D(m):=D + %1.
We will begin with a heuristic account of the “derivation” of a Green
function for D, ;(m) and then we will confirm that the formula we
obtain actually works.

Suppose that f* is in the domain of Dy ;(m). To avoid any subtlety
in the following calculations we suppose that f is once differentiable
away from the branch cut on the positive real axis and that it has
continuous boundary values on the branch cut (though not necessarily
at the vertex 0). In the case of principal interest to us Dy ;(m)f(x)
will vanish in a neighborhood of the branch cut and f will have
continuous boundary values there.

We can think of the Green function G9-4(z, z’) as a pair of vector
valued functions G?,’,’l(z, z') for i = 1,2 on R*\R* x R?\R* such.
that (see 2.3):

/ G)H(z, 2') - JDo y(m)f(2)idZ' dZ' = fi(z)
R\R*

where R™ is the positive real axis and it is excluded to remind the
reader that the function f has a branch cut along R*. Since f isa
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smooth function away from this branch cut we have Dy ;(m)f(y) =
D(m)f(y) for y ¢ R*. Now let r = |z| and define I; = B,_,\R"
to be the ball of radius r — & about 0 with that portion of the positive
real axis that lies inside this ball deleted. Let E} = R?\{B,, UR"}
denote the exterior of the ball of radius r +¢& with that portion of the
positive real axis that lies inside this exterior region deleted. Stokes’
theorem and equation (1.12) then imply that the integrals:

G¥*z,2)- JD(m)f(2)idz dZ
- 9

and
/ G Nz, Z') - ID(m)f(Z)idz dZ'
EY

€

reduce to the boundary integrals:
(2.9) /81_ GOz, 2Vfi(2)dZ + Go(z, ) fi(2) dF

and

(2.10) / GoH(z, 2V fi(2)dZ + Gz, 2) fo(2) dZ

since z/ — G?,’.’l(z, z') is a non singular solution to the Dirac equation
inside the sets I, and E; . In the limit ¢ — 0 the sum of these two
contour integrals should reproduce f;(z). The boundary 9I; and
the boundary 0E; each consist of two pieces—one piece a circle of
radius r £+ ¢ and the other piece made up of the “top” and “bottom”
portions of the positive real axis that are included in I; and E; .
The integrals over the top and bottom portions of the real axis will
cancel provided f;(z’ )G?j”l(z, z') is continuous across the real axis.
This will happen for smooth [ if:

ut 0
u— ( 0 7;/1) G?”,’l(z, u)

is continuous across the positive real axis and this is, in turn, a con-
sequence of the local expansion F1 for the Green function.

Finally, the sum of the two remaining circuit integrals should re-
produce the function f;(z) in the limit ¢ — 0. Let (r, ) denote the
standard polar coordinates of a point in R?2. Then we will achieve the
result we desire if:

2.11) {G%H(r, 8, r+,0) =GO r, 0, r—, 0')}ie" r =5,6(0 - 0')
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and
(2.12) {G%(r, 6, r+, 0)=G% (r, 0, r—, 0')Yie 0 r = 6,,6(0-0)

where r+ is the limit from above r and r— is the limit from be-
low r. This translation of the condition F3 for G%*(z, z) into the
jump conditions (2.11) and (2.12) for G%*4(z, z’) is the main point
of this exercise. Now we will use this to find an explicit formula
for G%*(z, z’). We begin by writing down the local expansion for
G?’.’l(z, z') in z’ near O:

GPHz, 2) = o i(z, Nwiya(2) + Br iz, Hwi_, ()}
k>0

The components of the Green function G? "A( z, z') that we are inter-
ested in should tend to 0 as z’ tends to oo in the plane. Recalling
Proposition (1.2) we have:

GlHz 2= Y iz, Ads(2).
keZ+1/2

Our goal is to calculate the coefficients ay ,(z, 4), B i(z,4), and
7k.i(z, A). Since the columns of the Green function should be multi-
valued solutions to the Dirac equation as well as the rows it is fairly
clear that the vector valued functions:

(2. ) m (ak,l(z,l)> , Bielz, A) = (g’;;gﬁ) ;

ai 2(z, 4)

(7,12, 4)
niz 0= (05 7)

ought to be multivalued solutions of the Dirac equation branched
along R* with monodromy e—2%*. To further specify these func-
tions observe that Dy ;(m) acts like D(m) away from the branch
cut on the positive real axis and so commutes with the infinitesimal
rotation R (apart from domain considerations). Thus the operator
associated with G%% ought to “commute” with R. One may check
that R is formally skew symmetric with respect to the pairing asso-
ciated with the bilinear form (-, -) and the measure idzdz. Using
this to express the fact that G°-# and R commute one finds:

Royp(z,2) = —(k+Na(z,4)  RBi(z,4) = (k- 2)B(z, 4)

and
Ry(z, A) = (k = )yi(z, A).
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Thus the multivalued solutions to the Dirac equation that we seek are
all eigenfunctions for the infinitesimal rotation R. Clearly G2 suggests
the functions ax(z, A) and By(z, 4) ought to be square integrable at
oo and so we have:

ap(z,A) = ag ;Wra(z) and  Bi(z, A) = B ) W_g41(2)

for some constants «; ; and fi ;. The function y(z, A) need not
be square integrable at infinity but it must not be too singularat z = 0.
Thus G1 suggests:

Y(z, A) = ag ywi_;(2) + by wi,,(2)

for some constants a; ; and b , which are zero for kK < 0. We now
assemble these observations into formulas for the Green function:

GO”l(z, z')

= {og 13 Wk12(2) @ W2 (2)) + Brc s0_kya(2) ® wi_;(2")}
k>0

for all |Z/| < |z| and
GOXz, 2')

= {ar ,wi_3(2) @ Wy_3(2)) + by w4 (2) @ W_g_3(2)}
k>0

for all |z’| > |z|. In each of these formulas the tensor product notation
is used to signify the usual matrix product of a column vector with a
row vector:
A1B; A\B
AR B = [ 1B A4 2] .

A2By AyB;
In order to determine the constants ay ;, Bk i, @, and by , in

these formulas we now enforce (2.11) and (2.12) making use of the
Wronskian for modified Bessel functions:

2sin(kn
L (N _g (r) = I (N1 (r) = _*___#_
One finds:
ak,l = _ﬂk’j and bk,/l = -0y,
with:

B B —im(—l)k+‘/2
ag 2 =—Pra= W
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The expansions that result for the Green function are:

0,4 n_  tm _1yk—1/2
(2.13) G (Z’Z)—*——4sin(ni),§)( 1)

AW 2(2) @ Wiy 4 (2') — W_gpa(2) @ wi_,(2')}

for |z'| < |z| and

(2.14) G%*(z, 7)) = Hi;’?—w Y (—1k-t2
k>0
Awg_1(2) @ Wy_3(2') — wi,,(2) @ W_g_;(2')}

for |z/| > |z|. We will check that these formulas make sense (i.e.,
converge in the appropriate sense) and represent the Green func-
tion in just a moment. At this point we can do a calculation in the
one point case (at least formally) that is the fundamental result in
our version of the SMJ analysis. The Green function for D, ; is
G%*z,z) = G%*(z — a, z/ — a) obtained from the Green func-
tion above by translation. Using either (2.13) or (2.14) one finds the
derivative of this Green function with respect to the parameter a is:

im?

’A _ N A /
0,G**(z, ') = mwl/zu(z —a)®@ Wy p-,(z' —a)
5 Ga-* no_ im? . N /
a (z,2)= mw—l/zu(z —a)®W_1pp-;(2' — a).

The analogous result for the Green function with n-branch points will
be a principal object in the third section of this paper.
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In order to discuss the convergence of the infinite series (2.13) and
(2.14) for the Green function and to prove that they do give a repre-
sentation for the kernel of the inverse of the appropriate operator it
will be very convenient to introduce contour integral representations
for the wave functions w;(z) and wj;(z). We first discuss the two
sorts of contours that will be important for us. Let b denote a non
zero point in C and write DRt = {abla > 0} for the ray through
0 and b. We will write C#(b) for the contour that surrounds bR*
in a counter-clockwise manner in the following fashion. The contour
C#(b) follows the ray parallel to DR* from oo to e‘eb; it then fol-
lows the circle of radius |b| from e®bh counter-clockwise to e~ ¢h;
finally it travels from e~“b along the ray parallel to bR* out to oo
(see Figure 1). The contour C4(b) starts at 0 and follows the line
to e’€h; it then makes a counter-clockwise circuit from e¢h to e~ ¢h
along the circle of radius |b|; finally it returns to the origin along the
line which joins e~%b to 0 (see Figure 2). Now suppose that f(v)
is a holomorphic function for v € C\bR* and define:

f(v)dv =1lim f(v)dv
Ci(b) e=0Jcy(b)
provided, of course, that the limit makes sense. We are exclusively
interested in the case where the function f(v) has boundary values on
the ray bR* which depend, however, on the side the ray is approached
from. To describe these functions we introduce a logarithm, log,,
with a branch cut on the ray bR* by:
arg(b) — 2n < Im(log,(z)) < arg(d)
for z not in bR* and arg(b) chosen so that:
0 < arg(d) < 2m.

Now define:
e(z,v) = e-(m/2)(7v+zv")
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and let HP(b) denote the half plane in C consisting of those vectors,
z , with positive Euclidean inner product z-b = z,b; + z,b, > 0 with
b. If b is chosen in the left half plane and z € HP(b) then:

1-1/2
(2.15) wy(z) =ef”<"1/2>/ de?_i< 1 )
C,(b) 2miv —v
and
(2.16) wi(z) =e—m(1+1/z)/ vl vyo=I=12 1 ] |
1 C,(b) 2riv —v

In each integral the fractional powers of v are defined by:

e = ealogb(v).

The restriction z-b > 0 implies both that Re(Zv) > 0 and Re(zv™!)
> 0 for all v that lie on HR*. This implies that the exponential
factor e(z, v) controls the polynomial singularities in the integrands
at both 0 (for Cy(b)) and oo (for Cy(b)). We restrict b to the left
half plane to single out a branch of the multivalued functions w;(z)
and wj(z). Only for points z on the positive real axis or for z =0
is it not possible to find a & in the left half plane with z-56 > 0. We
leave it to the reader to check that this choice of a branch for w; and
w; corresponds to restricting 6 in (1.0) and (1.1) to values between
0 and 2=x.

Cauchy’s theorem implies that one may choose any b € HP(z) in
the contour representations for w,;(z) and wj;(z) without changing
the values of the integrals. One obvious choice that will be useful for
us is to choose b = az for some « > 0. Thus:

(2.17) w(2) =e"””"/2)/ de< ! )
C,(az)

2niv —v
and
(2.18) wi(z) = e—in(l+1/2)/ dve(z’ w-I-1/2 [ 1
l C (az) 2niv —v

where in each of the two preceding representations z € C\R*. These
representations of w;(z) and w;(z) allow us to obtain a useful repre-
sentation of W;(z) = wj(z)—w_;(z) as well. Let C(b) = C(b)-C,(b)
(strictly speaking, we ought to define C(b) as a limit just as Cy(b)
was defined). The circular arcs in C;(b) and C,(b) cancel and we find
that C(b) consists of the difference of the two sides of the ray AR .
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The representation for w,;(z) that arises by subtracting the preceding
representations for w;(z) and w_;(z) is then:

wy(z) = e“i”(1+1/2)/ dve(z’ vju 712 ( 1 )
Claz)

2niv —v
We may also write this last integral as:

NN 1 e(z, v)v"“”’-( 1 )
(2.19)  w(z) =2isin (n (1 + f)) - dv 3 v

where it is understood in the last integral that the fractional power
of v which occurs is determined by the principal value 0 < arg(v) <
27 . We are now prepared to use these representations to establish the
convergence of the infinite series for the Green function given above.
For simplicity we will treat the case |z’| < |z| in detail and only
indicate the changes needed to handle the other case. Substituting
(2.19) into (2.13) one finds the two sums:

(2.20) —’;wa duM( 1 >®u—k—1/2wk+l(21)
k>0 %

2riu —u
and
(2.21) _ﬂz due(z,—W U @ k=172 ()
’ 2 R* 2niu \~u fe=2

k>0

where once again the fractional powers of u in (2.20) and (2.21) are
determined by the principal value 0 < arg(u) < 2m of the argument.
If we truncate the k sum in (2.20) and interchange the finite sum and
the integral we encounter the sum:

Fy(u):= Y w*1Pw ()
O<k<N

where N is a positive integer. Substituting the representation (2.15)
for wy;(2z’) into this last sum one finds:

Fuw=en [ )

2((12’) 2miv u+v —v

If we now pick the constant a so that |az’| < |u| then |v/u| <1 for
all v € C3(az’) and it is clear that:

. i e(z', v)vt (1
]\}‘_IEOFN(“) =e /Cz(az,) d“—zm (u+v) ( )
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With a slightly more careful choice of a we can estimate the conver-
gence of Fy(u) to its limit so that dominated convergence applies in
the u integral. For this we will use the fact that |z/| < |z|. Fix ¢ >0
so that:

2’| < (1-¢)|z]
and then choose:

a=(1-¢&)lu/Z|
The very simplest estimates now show that the contribution to Fy(u«)
which arises from the integration over the circle in Cy(az’) is domi-
nated by a constant multiple of:

8—1,ul/l—ne(m/z)(1—e)(7u+zu")

where n =2 or n =1 depending on whether one looks at the first or
the second component of Fy(u). The contribution to Fy(u) which
arises from the line segments in C,(«z’) is even easier to bound since
the exponential term is always favorable and one finds it is dominated
by a constant times e¢~!. These two estimates suffice to show that
Fy(u) is controlled by the decaying exponential factor e~ (m/2)(Fu+zu")
in the integrand; dominated convergence applies to interchange the
k sum with the u integral in (2.20) and one obtains for (2.20) the
iterated integral:

me'™ e(z, u)u=*
e Mo [ ane

’ A _
/ dv—————e(z 2 p)v (u+v)! [ ! u]
Cy(az) 2riv —U U

where in this last formula o need only be chosen so that «|z/| < |u]|.

A similar formula results for the sum in (2.21) with the differ-
ence that the contour over which the interior integral must be done is
Cy(pz') with B|z'| > |u| and the overall sign is different. Combin-
ing these two results one finds that for |z’| < |z| the Green function
G%%(z, Z') is given by:

ink —A
(2.23) me / dyCEs wu™"
zR*

2 2riu
/ A _
/ dv—————e(z 2 p)v (u+v)"" [ 1 u]
c, 2wiv -V uv

where the contour C,g = Cy(az’) — C(f2') subject to the condition:
alz'| < ful < B|Z/|
on a and f.
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This integral representation may be simplified somewhat by deform-
ing the contour C;(fz’) to Ci(az’) in the interior integral. One finds

a contribution from the pole at v = —u and the contour Cy(az’) —
Ci(Bz') becomes Cr(az') — Ci(az’) = C(az’) = C(2’). In the evalu-
ation of the residue term one must find the value of v*/u* at v = —u

for u on the contour zR*. We will now describe this.
The appropriate choice of a branch for v on the curve C;(fz') is
determined by the branch of the logarithm log, (v). Thus:

v”v:——u — |u|’1ei’1 Im(log, (—u)).

But Im(log, (—u)) = Im(log,(—z)) and by definition:
arg(z') — 2m < Im(log, (—z)) < arg(z’)

where arg(z) denotes the branch of the argument function in the
complex plane chosen so that 0 < arg(z) < 2z. It is clear that for all
z, z' € C which are not on the positive real axis or zero we have:

—27 < arg(z') — arg(z) < 2x.
The reader may now easily check that the following choices are
appropriate for Im(log, (-z)).
arg(z) — 3n  for arg(z’) —arg(z) € (-2, —m),
Im(log, (—z)) = ¢ arg(z) —n  for arg(z’) —arg(z) € (-, n),
arg(z) +n  for arg(z’) —arg(z) € (n, 2n).
One finds:
e 3 for arg(z') —arg(z) € (=2n, —n),
v Juty—_y = { e ™ for arg(z') —arg(z) € (-7, 7),
e'™  for arg(z') — arg(z) € (n, 2n).
These results can be used to calculate the residue that arises in deform-
ing the contour C;(fz’) to C;(az’) in the inner integral of (2.23).
The case of principal interest to us is the case in which the arguments
of z and z’' differ by less than 7 in absolute value (this is always

the case, for example, when z and z’ are sufficiently close to one
another). In this case the residue contribution is:

/ e(z=z2,u) [-u"! -1
2 ) 27nu 1 u |-

Note that when |z’| < |z]| it is true that z - (z — z’) > O so that the
exponential factor in this last integrand is decaying at both 0 and
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oo. Thus the ray zR* can be deformed to the ray (z — z’)R* in this
last integral and we find the representation (2.0) for the free Green
function in its modified form (2.2).

Thus for |Z/| < |z| and —n < arg(z’) —arg(z) < m we have:
(2.24) GO z,2)=G(z-z2')+ Az, 2))
where:

z, u)u~*

N e
(2.25) A(z, Z') = —imsin(nl) - du >min

/ dv_____e(z’,p)vi(u+v)_l [ ! —v}
SR 2niv U uv
and the fractional powers =% and v* are determined by the prin-
cipal value arguments arg(#) and arg(v) each between 0 and 2x.
The only change in (2.24) needed to accommodate the cases where
arg(z’) — arg(z) is in the intervals (—2m, —m) or (m, 2m) 1is that
G(z — z') on the right-hand side of (2.24) should be replaced by
e 2"AG(z — z') and e?"*G(z — z') respectively. Thus
(e 2MAG(z — ') + Az, Z')
for arg(z’') —arg(z) € (—2n, —m),
G(z—-2Z)+A(z, ')
for arg(z’) — arg(z) € (—m, 7),
emiG(z — )+ Az, 2')
. for arg(z’) —arg(z) € (n, 2n).

(2.26)  G%*(z, 2') =4

We are now prepared to check that G%-*(z, z') is a Green function for
Dy ;(m) in the sense of conditions Gi, i =1, 2, 3. Perhaps the sim-
plest condition to check is G3. Formula (2.25) shows that G%-*(z, z')
differs from G(z — z’) by A(z, z’) for z sufficiently near z’. When
z is near z’ it is a simple matter to fix both the contours in (2.24)
to z’R*. One sees then that A(z, z’) is a smooth function of z for
all z sufficiently near z’. Our proof of the convergence of (2.13) for
|z| > |Z'| shows that the columns of G%:*(z, z') have a convergent ex-
pansion of type (1.11) for |z| sufficiently large. Thus Proposition 1.2
implies that the columns of G%-*(z, z) are square integrable (in z) in
a neighborhood of oo . This confirms that G%-#(z, z’) satisfies condi-
tion G2. Finally we need to see that z — G%-%(z, z’) is a multivalued
solution to the Dirac equation in R?\{0, z’} with monodromy e~2%"*.
For definiteness fix z’ = z;, in the upper half plane. Then formula
(2.25) shows that G°-%(z, z}) is given by G(z—z)))+A(z, z}) for all
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z with arg(z) € (0, arg(z;) + n) . For arg(z) € (arg(z;) + 7, 27m) the
formula for G%*(z, z{) is e"2**G(z—z{)+A(z, z{). There is an ap-
parent “singularity” in G%*(z, z})) when arg(z) = arg(z})+n that is
due to a genuine singularity in A(z, z;). Formula (2.24) for A(z, z;)
does not make sense when z lies along the ray —zgR™, since the ker-
nel (u+v)~! will then have a singularity. To study what happens as
z approaches this ray from the side with smaller argument one can fix
the contour zR* in (2.24) to —e~"z{R* for some small § >0. Ina
similar fashion to study what happens for z near the ray —zyR* on
the side with larger argument one can fix the ray zR*t to —ed zoR*.
A simple residue calculation allows one to compare the two different
expressions for G%*(z, z{) by deforming the contour —e~z{R* to
—e¥z{R*. One finds that G%*(z, z})) is smooth across this appar-
ent singularity. It is clear from the formulas for G°#(z, z{) that
the upper and lower boundary values on the positive real axis extend
across the axis as smooth solutions to the Dirac equation. It remains
to check that the upper and lower boundary values differ by the factor
e~2%4 This is obvious for the terms involving the unperturbed Green
function G(z — z). For A(z, z;,) observe that as the contour zR™*
approaches the positive real axis from below the principal value of the
integrand u»~* will pick up an additional factor of e~2%4 compared
to its boundary value from above. This finishes the verification of
condition G1 for z; in the upper half plane. The same calculations
can be done to check G1 when z; lies on the negative real axis or in
the lower half plane. We have then:

THEOREM 2.1. Formulas (2.26) and (2.13) and (2.14) represent
the Green function for Dy ;(m) in the sense of conditions Gi, | =
1,2,3.

3. Existence for the n-point Green function.

Reduction to a subspace problem. In this section we will prove the
existence of a Green function G%*(z, z') for D, ;(m) satisfying the
conditions Gi for i = 1,2,3 when a = {a,,...,a,} and 4 =
{A1, ..., An}. For simplicity we will suppose that the branch cuts:

b_] — {Z eRZ: Zy) = (aj)z and (Z_aj)l > O}

are disjoint (or what is the same thing—no two branch points have
the same second coordinate). We believe that this restriction is not
essential, but the modifications needed in the method we use to treat
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the existence question for G%*(z, z') when there are coincidences
among the second coordinates of the a; are clumsy to describe and
so we will not consider this case further here.

Our strategy for constructing such a Green function is standard.
Suppose for the moment that such a Green function exists. Let ¢(z)
denote a C{°(R?) test function which is identically 1 in a neighbor-
hood of 0 and which vanishes identically outside the ball of radius
1. Fix z’ not on the branch cuts b;. Then for some & > 0 the func-
tion ¢.(z) := ¢((z — z’)/e) will vanish identically in a neighborhood
of the branch cuts b;. A simple calculation using G3 shows that for
z € R?\b we have:

(3.0) D(m);(G**z, 2') — 9s(2)G(z — 2))
_ 0 0:0¢(2) /
=[50 7] 6=

Because the derivatives of ¢.(z) vanish for z near z’ it follows that
the columns of the matrix on the right-hand side of (3.0) are smooth
functions of compact support in z which vanish in a neighborhood
of the union of the branch cuts ». To construct the Green function
G%*(z, z') we will show that it is always possible to solve:

(3.1) D, (m)f =g

for f € 2, ; whenever g isa C§° function whose support is disjoint
from b. Let g; denote the ith column of the right-hand side of (3.0)
(thought of as a function of z depending on the parameter z’). Let
fi €2, , denote the solution of:

(3.2) Dy 2(m):fi = &i.
Then it is easy to check that the matrix F(z, z’) defined by:

(33) F(Za Z,) = [fl (Z’ Z,)’ fZ(Z’ Z,)] + ¢8(2)G(Z - Zl)

satisfies the conditions Gi for i = 1, 2, 3. The construction of the
Green function G%%(z, z’) is thus reduced to the solution of the
equation (3.1) for right-hand side g that vanishes in a neighborhood
of the branch cuts b; . We will use the following strategy to solve (3.1).
Each branch cut b; will be isolated in an open neighborhood S; (b;°C
S;). We will solve the unperturbed Dirac equation D(m)f = g in the
exterior of the union of the sets S; and we will show that it is possible
to choose this solution so that the restriction of f to the boundary
\U;0S; has an extension into the interior of the sets S; which is in
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the local null space of Daj i lj(m) . This particular solution will be the
appropriate solution to (3.1). The focus on boundary subspaces for
solutions to the Dirac equation is the main technical device we employ.
For a reason related to our use of the transfer matrix formalism we
employ horizontal strips S; to isolate the branch cuts b; (rather than
the tubular neighborhoods that would otherwise be natural). This
forces some preliminary complications in our treatment that we will
now deal with. We will say that S is a horizontal strip in R? if §
consists of all points z in R? whose second coordinates z, lie in an
open interval (a, b) with b > a. Suppose now that the branch cuts b,
are all disjoint and let S; denote a horizontal strip containing b; for
j=1,...,n. Since the b; are disjoint we can choose the strips S;
so that their closures, S ; are pairwise disjoint as well. Suppose now
that g(z) isa C§° function on R? with values in C2 and that the
support of g(z) is disjoint from the branch cuts b;. The complication
mentioned above that attends the choice of strips to isolate the branch
cuts b; is that even though the function g(z) has support disjoint
from the b; it may not be possible to choose the strips S; so that
the support of g(z) is disjoint from all the §;. For example, if
the support of g(z) contains points on the horizontal line through
a branch point gy, then it is obvious that the support of g(z) will
always intersect S; . We will now address the problem this creates.
Let S denote a horizontal strip which contains the branch cut b;

and such that the closure, §'j is contained in the strip S;. Define the
open set Sey; by:

Sext = Rz\ UE;.
J

Then the sets S; for j = 1,...,n and S together provide an
open covering of RZ. Let y; for j =1,...,n and ye denote
a C partition of unity subordinate to this covering. Thus y; has
support in S; and Wey has support in Sex and:

Vexi(2) + 3 wi(2) = 1.
j=1

Now suppose that g € C§°(R2) and suppose that the support of g
is disjoint from the union of the branch cuts b. Define g; = ;g
and gext = Wextg&. To solve D, ;(m)f = g it would suffice to solve
D, (m)fj=gj for j=1,...,n and D, ;(m)fexi = gex: and then
add the solutions together. We will not do this. Instead we use the
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one-point Green function to solve:
(3.4) Daj,,ljfj=gj forj=1,...,n

The functions f;(z) will have the right branching behavior at z = q;
to be locally in &, ; but for k& # j they will not have branch cuts
at g, and so will not be in &, ; globally. We fix this by multiplying
each solution f; to (3.4) by y;. Then a little thought shows that for
each j=1, ..., n the functions y; f; € Z, ;. It is now clear that to
solve D, ;(m)f = g it will suffice to solve:

(3-5) Da,l(m)F =8 — Da,i(m) Z ij}
J=1

for F (where each f; is the solution to (3.4)). But y, is identically
1 on §; and g = g; on S while y; is identically 0 on S} for
k # j. Thus, the right-hand side of (3.5) vanishes identically on \Y
for j =1, ..., n. The use of the one-point Green function to solve
(3.4) presents no serious problems and so we will leave this to the
reader. We have reduced the existence of the n-point Green function
to the problem of solving D, ;(m)f = g for f when g isa C§°

function whose support is disjoint from the union of the strips 3;-
containing the branch cuts b;. Since one family of horizontal strips
containing the branch cuts b, is like any other we will drop the prime
in S} and write S;- = S} henceforth, maintaining the assumption that

b; C S; and the condition that the closures S, are pairwise disjoint.
Let:
s=[Js;
J

denote the union of the strips S; and write 45 for the boundary of
S. Let H denote the Hilbert space H!/?2(9.S)—the Sobolev space of
order % for functions defined on the boundary 9.5 with values in C2.
We will reduce the existence question for solutions to D, ;(m)f = g
with g € C°(R%\S) to a question of transversality for two subspaces
Wext » and Wy (a) of H. First we describe We. Let Wi denote
the subspace of H!(R?\S) (the Sobolev space of order 1 for functions
on R2\S with values in C2) which consists of functions w which
satisfy the Dirac equation D(m)w(z) = 0 for z € R?\S. The Sobolev
embedding theorem shows that each element of W,,; has a boundary
value in H . The subspace of H which one obtains by restricting the
elements w € W to the boundary 95 we will also denote by Wy .
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In a similar fashion we will identify the subspace W, (a) first as a
space of functions on S and then we will pass to boundary values.
We will say that a function w(z) defined on S;\b, with values in C?
is locally in the null space of D, ;(m) provided that the following two
conditions are met:

WI1. The function w(z) is a multivalued solution to the Dirac
equation on S; branched along b; with monodromy e~2mi% and local
expansion near z = a; given by:

(3.6) w(z) = Z{ak w)wy_;(z — aj) + bp(w)w ,(z —a,)}.
k>0
W2. For ¢ > 0 the function w(z) is in the Sobolev space
H'(S,\{B:(a;)Ub,}) where B,(a,) is the ball of radius ¢ about g, .
The Sobolev embedding theorem implies that any function w which
is locally in the null space of D, ;(m) on §, has boundary values in
H'/2(9S;). Thus we make the following definition:

DerINITION 3.0. We will say that w € W,(a) C H provided that
foreach j =1, ..., n the restriction w|yg 1is the boundary value of
a function on S; which is locally in the null space of D, ;(m).

We are now prepared to state the main technical result of this sec-
tion.

THEOREM 3.1. The subspaces W and Wy (a) are transverse in
H.

Before we turn to the proof of this result (which will occupy us
for some time) it is useful to see how it can be used to settle the
existence question for solutions to D, ,(m)f = g where g vanishes
in a neighborhood of 3]- for j =1, , n. First we solve D(m)fy =
g for f, € H'(R?). The restriction of fo to 0S5 is then in H.
The transversality result allows us to split fy|s = fext + fimw Where
Jfext € Wexy and fiy; € Wini(a) . The function fiy; may also be regarded
as a function defined in the exterior of the union of the strips .S, which
satisfies the Dirac equation there. Define:

f(2) = fo(2) = fex(z) forz & S.

Then f(z) satisfies D(m)f(z) = g(z) for z ¢ S and the boundary
value of f on 9§ isequal to fi; Wthh has a continuation into the
interior of S which is locally in the null space of D, ;(m) Elliptic
regularity implies that f continues across 0S5 as a local solution to
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the Dirac equation, Proposition 1.1 implies that the extension of f
to R?\ Uj b; (which we continue to denote by f) isin &, , and we
have:

Da,/l(m)f = &.

Thus Theorem 3.1 will imply the existence result for the Green func-
tion G%*(z, z') that we seek.

The transfer formalism. We will now turn to some preliminary de-
velopments for the proof of Theorem 3.1. What we require is the
transfer matrix characterization of the subspace W, (a). We begin
by describing a splitting of the Sobolev space H'/2(L) for any hori-
zontal line L in R? that will be convenient to work with in describing
the more elaborate splitting of H'/2(9S) into Wuy and W (a). Let
z = X + iy be represented in the usual fashion in terms of horizontal
and vertical coordinates x and y. If one solves the Dirac equation
D(m)y =0 for the y derivative of y one finds:

(3.7) Oyy = Doy
where:
i0, —&
(3.8) Dog=|'m T |
2 X
Let

20 = 5; [ e dx

denote the Fourier transform. After Fourier transform the operator
Dy becomes multiplication by the matrix valued function Dy(¢) given
by:

(3.9) Dy(€) = w(E)(Q-(8) — 0+(&))
where (&) = [£2 + m?]'/? and the functions Q- () are defined by:

(é)ié 4 _im_ im
(3.10) 0.(6) = [ 0@ iy }
20() 2w()

The operators Q1 on H'!/2(R) induced by the matrix multiplication
operators Q4 (&) in (3.10) are self-adjoint projections on H /2(R)
with the property that Q_ + Q. = I, the identity on H!/2(R). We
define:

H. = Q-H'*(R).
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If L ={(x, y)|y =constant} is a horizontal line in R? then L can be
identified with R in an obvious fashion and H!/?(L) can be corre-
spondingly identified with H!/2(R). Relative to this identification we
will write:

HY>(L)=H_o® H,.

It is fairly clear from (3.7)-(3.10) that if g € H_ ¢ HY/?(L) then g
will be the boundary value of a solution to the Dirac equation which
is well behaved in the half plane that lies below the line L, and if
g € H. c H'/2(L) then g will be the boundary value of a solution
to the Dirac equation which is well behaved in the half plane that lies
above the line L. Let L_ denote the half plane bounded above by L
and let L, denote the half plane bounded below by L. The following
proposition makes this connection between the elements of Hi and
solutions to the Dirac equation more precise:

PROPOSITION 3.2. Each element g € H_ c H'Y/?(L) is the bound-
ary value of a function g € H'(L_) which is a solution to the Dirac
equation in the lower half plane L_ . Each element g € H, C H'/*(L)
is the boundary value of a function g € H'(L,) which is a solution to
the Dirac equation in the upper half plane L. .

Proof. For the proof it will be very convenient to introduce a relative
of the rational parametrization for the curve (£, @) that was used in
the Green function calculation in §2. Let

L w+E
(3.11) V= —
so that

4 w=£
(3.12) v =—

and one has the rational parametrizations &(v) = %(v —v~'), and
w() = Z(v +v~!). To avoid introducing extra notation we write
(&) = [£2 + m?]'/? and also w(v) = Z(v + v~!)—we hope that the
usage will be clear in context. A simple calculation shows that:

613 [10s0e@e@ d =3 [T lewPow?
where:

(3.14) g+(v) = v'2g1(&(v)) + iv™ g (E(v))
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and

(3.15) g-(v)=iv'2g(EW)) + v &(E(W)).

From (3.13) it follows that the map which takes g to F(g-, g+)
maps H'/?(R) isometrically onto the space L?*(R,, w(v)4?). The
square roots in (3.14) and (3.15) were chosen so that the relevant
measure a)(v)%ﬁ is invariant under the map v — v~!—a property
that will be useful for us in a later calculation. The Fourier inversion
formula applied to & together with the change of variables & = &(v)
gives:

g0 = [ 2lew)e <z w) v,
Solving (3.14) and (3.15) for g(&(v)) in terms of g4 (v) one finds:

_m > 1xE(v g+(v) dU
(3.16) g(x) = 7/0 50 11 () [g_(v)} e

where: 12 12

M) = Lz’v’”z v1/2 ]
Without loss of generality we may suppose that the line L is the “real
axis”, that is L = {(x, 0)|]x € R}. Suppose that g € H.. Then
g-(v) = 0 and using (3.7) to solve the Dirac equation in the upper
half plane with “initial data” g on L one finds the solution:
G171 s = [T ety [g+(“)] v

2 0 O v

where y > 0. We wish to show that the H! norm of g in the upper
half plane is equal to the H!/2 norm of g on the real line. We
will do this by a Stokes’ theorem calculation. Suppose that f is a
differentiable C2? valued function on an open subset U of R? and
define a one form Q(f) on U by:

(3~18) Q(f) = i(—flngl +725zf2)d? - i(?lazfl + 728zf2) dz.
If f satisfies the Dirac equation D(m)f = 0 on U then a simple
calculation shows that:

(3.19)  dQU) = {10 SP +10,P + m?| P} id= dz.

Now let U, denote the rectangle in the upper half plane with vertices
given by (-n,0), (n,0), (n, h) and (—n, k) for h > 0. We wish

to calculate:
| o)
U’l
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using Stokes’ theorem and then pass to the limit » — oo. To avoid
any subtlety in the last limit we will suppose to begin with that g, €
C§°(R*T) (thus gy (v) vanishes in neighborhoods of v =0 and v =
00) . Stokes’ theorem now implies:

(3.20) Ldmw=LUmw

Since g, € C°(R*) and

o) 2009 i
imx(1 + v2) dv

we may integrate by parts repeatedly in (3.17) to see that g(x, y) and
its derivatives tend uniformly to 0 for y € [0, o0) as x — +oo. Thus
the vertical pieces of the boundary of U, make no contribution in the
limit » — oo. Let U denote the horizontal strip bounded above by
y = h and below by y = 0. Then since

I8l = [ 40e)
we have
(3.21) e, = [ Q@)

Now we wish to let 2 — oo in (3.21). It is clear from (3.17) that the
H'Y/2 norm of g(-, h) tendsto 0 as A — oo. Since this dominates
the integral of Q(g) over the upper boundary 9, U of U it follows
that in the limit 4 — oo equation (3.21) becomes

2 _
(3.22) I8, = [ e
Since dz =dZ=dx on R and i0, — i9, = -9, it follows that

[o®=-[zagdx

But g is a solution to the Dirac equation so d,g = Dpg and since
g € H, we have Dyg|gr = Dyg = —wg . Thus

2 _ — _ 2
(3.23) I8 ey = [ 2 02dx = gl

We proved (3.23) for g, € C§°(R*). But the functions g which
have such coordinates g, are clearly dense in H, and (3.23) then
follows for all g € H, by taking limits. The analogous result for H_



302 JOHN PALMER

may be proved along the same lines and this finishes the proof of the
proposition. a

Next we will give a simple formula for the projections Q_ and Q.
in terms of the Green function for D(m).

PROPOSITION 3.2. Suppose that f € H'/2(R) with values in C*> and
define:

(3.24) Qf(z)=/RG.’1(Z—Z’)ﬁ(Z’)dZ’+G.,2(z~z’)fz(z’)df’

where z ¢ R and G.; stands for the i"" column of the matrix G .
Then the boundary value on R of the restriction of Qf(z) to the upper
half plane is Q. f and the boundary value on R of the restriction of
Qf(z) to the lower half plane is Q_f .

Proof. Suppose that z is in the upper half plane and z’ is on the
real axis. Recall formula (2.2) for G(z—2z’) in terms of Gy(z—2z’) and
formula (2.0) for Go(z—=z'). In the formula for G(z—z’) that results
from substituting (2.0) in (2.2) we can choose the variable u to be on
the positive imaginary axis. Substitute ¥ = iv~!' where v € (0, co)
in this formula and use the result in (3.24). Letting z = x + iy one

dv

finds: .
0f(z)= %/0 e XEW) o=y @(V) pf (1) [ﬂév)} :

If one compares this with (3.17) above then it is clear that the upper
boundary value of Qf(z) is Q. f. A precisely analogous calculation
identifies the boundary value of Qf(z) from below with Q_f. O

The following theorem is the principal tool that we will use in deal-
ing with the subspace W, (a).

THEOREM 3.3. Suppose that S is a horizontal strip containing the
positive real axis in its interior. Suppose that g € H'Y*(dS), and
let G9*(z, z') denote the one-point Green function constructed in §2.
Then g — Pg(A)g defined by

(3.25) Ps(A)g(z) = /0 ) GOz, 2)gi(2)dZ + GO (z, 2)&(2) d

for z € S is a projection onto the functions locally in the domain of
Dy ;(m). The boundary dS in the circuit integral (3.25) is positively
oriented in the direction of increasing first coordinates on its bottom
portion and negatively oriented on its top portion. Functions locally
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in the domain of Dy ;(m) have boundary values on 8S in H'/?(9S)
and so by passing to boundary values (3.25) can also be interpreted as
a map on H2(3S).

Proof. We will first show that Pg(A)g(z) has a convergent local
expansion of type (3.6) near z = 0. We can use the formula (2.14) for
the Green function G°# to calculate the local expansion coefficients
for Pg(2)g(z). Elementary estimates of these coefficients will show
that the local expansion for Pg(1)g converges for z close enough to
0. Combining (3.16) and (2.14) one finds that the local expansion
coefficient q;(Ps(4)g) in the expansion (3.6) of Ps(1)g(z) near O is
given by:

im(—1)k=1/2

451n—n/1/ Wz, 1(2)&i(2)d
+y_p,2(2')g2(2") A7

We estimate this using the representation (2.19) for the wave function
w;. It will be enough to illustrate the idea for that portion of the
contour 4S5 which lies in the upper half plane. Suppose the upper
part of 9§ is 0,8 = {(x, ¢)|x € R, with ¢ > 0 fixed}, then for
z/ € ;S we can fix the contour for the variable v in (2.19) so that
v = iu with u € R*. For z’ = x + ie one finds

(3.26)  ax(Ps(D)g) =

e(z’ , iu) - e~£w(u)e——ixé(u)

where w(u) = %(u+u~') and &(u) = Z(u—u~'). If we substitute
(2.19) into the part of the contour integral in (3.17) over 9.5 then
we find that the result is dominated by:

mlco':(n}“)'/oc —ew(u), A-k @
(3.27) 4z J, e w " g-(u)] L

Employing the Cauchy-Schwarz inequality in (3.27) with the measure
w(u)iu'i and then using the inequality u#?*/w(u) < 1 and the repre-
sentation:

K= [ty
0

one finds that (3.27) is dominated by:
m| cot(mA)| du]!'/?

ik 2me2 | [P 5

Consulting (3.13) we see that this is in turn dominated by

| cot(mA)|

(3.28) -

(Ko (2me)] 2 g1 2
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Finally the representation for K; given above makes the following

estimate trivial
2

X

]11“(1)

for / > 0. Using this last estimate in (3.28) we find that (3.27) is
dominated by

K;(x) < {

| cot(mh)|
2n(me)k
A precisely similar estimate of the contribution to the expansion co-
efficient

(3.29) T(2k)' 2| g1 2-

ar(Ps(4)g)

that comes from the lower contour 9_.S shows that it is also domi-
nated by an expression of the form (3.29) (of course, ¢ may change).
If we now use the estimate (3.29) for a;(Ps(4)g) Stirling’s asymptotic
estimate for the I" function, and simple estimates for Bessel functions
that one may deduce from the formulas that follow (1.7) it is easy to
see that the local expansion (3.6) for Pg(4)g(z) will converge abso-
lutely for all z with |z| sufficiently small. Furthermore the radius
about 0 at which such convergence takes place can be fixed indepen-
dent of g € H'/2(9S). Let p > 0 denote a fixed radius at which the
local expansion (3.6) converges for all g € H'/?(4S). To finish the
proof of this proposition it will be enough to show that Pg(4)g(z) is
in H'(S\{B,(0)UR*}). We will do this by a Stokes’ theorem calcula-
tion as in Proposition 3.1. For simplicity write f(z) = Ps(4)g(z) and
define the one form Q(f) as in (3.18). Of course, f is multivalued
across the branch cut R* but because the monodromy is unitary it
is easy to see that Q(f) is a smooth one form in S\{0}. Let U,
denote the subregion of S which lies outside the ball of radius p
about O and inside the vertical strip |x| < n. To remove any subtlety
in the application of Stokes’ theorem suppose for the moment that
g+ € C§°(R") for both the restriction of g to 9_S and 9,S. Then
as in (3.20) one finds

(3.30) 1= | o)

We wish to pass to the limit # — oo in (3.30). Formula (2.25) for
the Green function G%%(z, z’) and the same sort of estimates used
to pass to the limit # — oo in (3.20) show that contribution to the
right-hand side of (3.30) which arises from the vertical line segments
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x = *n tends to O in the limit » — oo. Let U = S\B,(0). Then
passing to the limit #» — oo in (3.30) one finds

(3.31) 11y = 1 B s, = /8 0 O

P

The convergence of the local expansion for f renders the integral of
Q(f) over dB,(0) finite. Thus we will know that the H!(U) norm
of f will be finite provided that the H'/2 norm of the restriction of
f to 8S is finite. We will now formulate a proposition which shows
this is true and in addition provides a useful formula for the interior
boundary value of Pg(4)g(z) on 9S.

Let S denote a horizontal strip whose upper boundary is the hor-
izontal line y = y, and whose lower boundary is the horizontal line
y =y_, with y_ < 0 < y,. Suppose that g € H'/2(9S) and write
gV for the restriction of g to the upper boundary 8,5 and g’ for
the restriction of g to the lower boundary 9_S. Write g¥(«) and
gE(u) for the “coordinates” of g given by (3.14) and (3.15). It will
be convenient to use the following representation for g:

gy gy
2 [#]a[5].
(3:32) 8= ek gt
The following proposition will provide the result needed to finish
the proof of Theorem 3.1 and will also be used to provide the one tech-
nical estimate needed in the proof of the main result of this section,
Theorem 3.1.

ProrosITION 3.4. The boundary value of Ps(1)g(z) on 0S is given
by

s e[l 2]

in the coordinate representation (3.32) and the operators «, f, 7
and & are given by

(3.34)  ag(u)=- gv)—,

1 +uv v
_S [ k(s o)k s (v, y-)
(3.35) a5 =—i% [ s,

iS& /°° k(u, =y )k;(v, —y4) dv
T Jo

1+ uv v
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(3.36) Bg(u) = ™ ezt~ g (u)
) /°° ky(u, =y )k (v, y-)
T Jo U—v ’

(3.37)  yg(u) = e mgelV-YIoW g(y)

Ck_(u,y )k;(v, — d
_%/ au, y-)k;(v y+)g(v)_'v
0 u-—v ()

b

where the kernel (u— v)~! is understood in the principal value sense,
¢, =cos(mA), s; =sin(nk), and k,(u, a) is defined by

ku(u, a) = ut*+1/2ga00),

Proof. This is a fairly routine but somewhat tedious calculation
involving the representation (2.25) for the Green function, and the
transform (3.14), (3.15) and its inverse (3.16). We will indicate how
it goes and leave the details to the reader. In the formula (3.25) sup-
pose that both z and z’ both belong to 8,.5. Then G%*(z, 2/) =
G(z—-z')+A(z, z') and Proposition 3.2 shows that G(z — z’) makes
a contribution to (3.25) given by the first term in the direct sum on
the right-hand side of (3.31). Now we concentrate on the contribution
that comes from A(z, z’). It is useful to notice that the matrix which
appears in the definition of A(z, z’) factors as follows:

(3.38) [1 ‘“}:[_lu}[l — 0]

—uU uv

In formula (2.24) for A(z, z’) one can choose both of the contours
to be iR* parametrizing the integrals by iu and iv for u, v € R*.
Once this is done and (2.24) is substituted into (3.25) the factorization
(3.38) makes it easy to recognize that the z’ integration in (3.25)
produces a term involving gY(v). The u integration in the result
can be matched with the appropriate inversion formula (3.16) once the
substitution # — u~! is made. One finds that the contribution made
by A(z, z’) is precisely given by the formula (3.34). The formula for
0 above can be confirmed in the same fashion with the difference that
the substitution v — v~! allows one to identify the z’ integral over
0_S associated with A(z, z’) and g(z’) in (3.25) with the appropriate
multiple of gL (v). . ‘
To understand the contribution that the integral in (3.25) over 9,5
makes to the boundary value of Pgg on 9_S§ it is clear that we must
deal with G%:4(z, z') with z in the lower half plane and z’ in the up-
per half plane. Unfortunately the representation (2.25) for the Green
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function is rather clumsy on this score since it provides different look-
ing formulas for G%#(z, z’) depending on the difference of the argu-
ments for z and z’. We can get around this as follows. When z is
in the lower half plane and Zz’ is in the upper half plane then it is pos-
sible to deform the v-contour in (2.24) to /R* and the w-contour in
(2.24) to —iR*. Depending on the disposition of z and z’ one can
move either the u-contour first or the v-contour first so that one does
not encounter a pole contribution from the singularity in (u +v)~!.
When this version of A(z, z’) is used in (2.25) one finds two differ-
ent representations for G%:4(z, z') with contributions from A(z, z’)
distinguished by the boundary values (u+v +0)"! and (u+v—0)~!
which appear as singular integral kernels in the formula for A(z, z’).
The average of these two formulas gives:

(3.39) GY*(z, 2') = e7 "™ cos(nA)G(z — 2') + Apu(z, 2')

where Apy(z, 2’) is given by formula (2.24) with the v-contour along
the positive imaginary axis, the u-contour along the negative imagi-
nary axis and the singular kernel (u+v)~! understood in the principal
value sense. With formula (3.39) one may proceed as above to calcu-
late y above using (3.14)—(3.16).

A formula similar to (3.39) is true for G%#(z, z’) when z is in the
upper half plane and z’ is in the lower half plane. The only difference
is that the factor e~/"* should be replaced by e’™* on the right-hand
side of (3.39) and the v-contour should be —iR* and the u-contour
should be /R* in the representation (2.24) for A,,(z, z’). The sub-
stitutions ¥ — u~! and v — v~! should both be used in this final
case to make the application of (3.14)-(3.16) completely straightfor-
ward. This finishes our indication of the calculations needed to prove
(3.33). O

We will now use Proposition 3.4 to finish the proof of Theorem 3.3.
We need to show that the map which sends g € H'/2(8S) into the
boundary value of Pg(4)g on 8S is continuous in the H!/?2 norm. In
view of (3.13) and (3.33) it is enough to show that the maps «, £, 7,
and J are all continuous on L*(R*, w(v)%—”). To see that « is con-
tinuous we factor a as follows:

(3.40) o = e V20 eV 1200V [20) o=y, /20

and note the following easily confirmed observations about the
composition factors. First e V:/2® is a continuous map from
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L2(R*, a)(v)‘i}—”) to L*(R*, dv). Second, the kernel of:

ey+/2waey+/2w

i1s square integrable and so represents a Schmidt class operator on
L2(R*dv). Finally e7+/2? is a continuous map from L2(R,, dv) to
LR+, w(v)‘i—”). Together, these three observations show that « is
a bounded operator on L2(R*, w(v)4Y). In fact, it will be important
for us that we have also shown that a is compact. The same argument
shows that J is a compact operator. To deal with f we factor it as

follows:
ﬂ — e-—y+/2w{ey+/2wﬂe—y_/2w}ey_/2w'

The central factor in this representation of f is no longer in the
Schmidt class but because the principal value of (x — v)~! is the
kernel of a bounded operator on L?(R*, dv) an obvious modifi-
cation of the argument above shows that f is a bounded operator
on L2(Rt, w(v)“;—”). This argument also works to show that y is
bounded. To finish the proof of Theorem 3.3 it remains to show that
if g is the boundary value of a function locally in the domain of
D, ,(m) then Pgg = g. If g is locally in the domain of D, ;(m)
then it is easy to see that the right-hand side of (3.25) is an exact one
form except at z’ = z and z’ = 0. Stokes’ theorem allows one to de-
form the line integral on the right-hand side of (3.25) into the sum of
integrals over circles of radius & about the points z’ = z and z/ = 0.
In the limit ¢ — 0 no contribution comes from the point z’ =0 and
one finds g(z) for the contribution from the point z’ = z in this
limit. This finishes the proof of Theorem 3.3. o

Transversality. We are now prepared to prove the main technical
result of this section, the transversality of W.y and Wy (a).

Proof (of Theorem 3.1). As at the beginning of this section let {S;}
denote a disjoint collection of horizontal strips such that the jth
branch cut b; is a subset of S;. Suppose that branch cuts a; are
labeled so that the second coordinates of the ag; increase as j in-
creases. Let 0,S; denote the upper boundary of S; and let 0_S;
denote the lower boundary of S;. For j=2,...,n let Ay; denote
the difference of the y-coordinate of the lower boundary d_S; minus
the y-coordinate of the upper boundary 0,S,_;. Thus Ay; is always
positive for us. Suppose f € H/2(8S). We wish to show that there
exist functions g and % such that f = g+ h with g € W, (a) and
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h € We and that such a decomposition is unique. The uniqueness
is easily dealt with. Any function which is simultaneously in W, (a)
and W, is a multivalued solution to the Dirac equation globally in
L?(R?) and with local expansions of type (1.5) at each of the branch
points a;. Thus Proposition 1.4 implies that this function must be 0.
Our strategy in proving the existence of the decomposition g+ /4 will
be to show that the problem of finding g reduces to the inversion of
a Fredholm operator with index 0 whose null space can be identified
with W, (a) N We . Since we have seen that the intersection of these
subspaces is trivial this Fredholm operator must be invertible because
it has index 0. This will complete the existence proof.
Write:

(3.41) flos, =¥
and:
(3.42) flos = fF

for the restriction of f to the upper and lower boundaries of S;.
Suppose f = g+ h with g € W, (a) and h € We and use the nota-
tion (3.41) and (3.42) for g and / as well as f. We will now write
down linear conditions on g which characterize the decomposition
f = g+ h. For this purpose it will be very convenient to introduce:

(3.43) gj = [g:j’f]f] .

To understand why this is useful one should consult (3.32) and (3.33).
One sees that glas} will be locally in the domain of D, ;(m) provided
that in the representation (3.32) for gly s, one has:

(3.44) glos = & @ N;g;
where:

3.45 N = | ﬂf]
(3.4 ’ [Vj 9;

and «;, B, 7;,and J; are the translates of the operators defined in
(3.34)-(3.37) to the point a;. Suppose that a; = m; + in; with m;
and n; real. Then one obtains the translate a; from o by multiplying
the kernel for a by e/™(¢®=¢(") and replacing y; in the formula
for a by y:+ — n; where in this last expression y. refers to the y-
coordinates of 0.S;. The other translates are obtained in a similar
fashion. It is easy to check that «; and J; remain compact and »;
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and f; remain bounded. Equation (3.44) shows that we may employ
g; as a “free coordinate” for g € Wi, (a). We will now express the
conditions on g; which are imposed by the requirement that /|ys €
Wext . The first condition is that hlL should be the boundary value of
an H'! solution to the Dirac equation in the lower half plane bounded
above by 9_S;. We can write this condition as Q+h1L = 0. Or since
ht = fL — gF we obtain:

(3.46) Q+g1L = Q+f1L-
L

Next we express the condition that the functions #4 jU and A e
be the boundary values of an H! solution to the Dirac equation in
the strip bounded by 0,S; and 0_S;;; for j=1,...,n—-1. We
find the conditions:

must

—-A
Q+hjL+1 = y’“wQ+h]U

and
—A L
e y’”wQ—th - Q_hju.

Using the fact that A = fV — gV and At = f} — g/ one may
translate these last two conditions into:

(347)  Qigfi—e V0.8 = QS — eV QST

(3.48) Q_gl-e ™m0 gk =0_fV-e V0 fh,

for j=1,...,n—1. Finally 4V should be the boundary value of an
H'! solution of the Dirac equation in the upper half plane bounded
below by 8,S,. Thus Q_hY =0 or:

(3.49) 0-g =0 1.
We will now use (3.44) to transform (3.46)—(3.49) into a system of
equations for gy, ..., g,. We need to eliminate Q; ng and Q_ gjL
in favor of g; using (3.44). One finds:
1 0] [a; B
U _ _
and
[0 0] [0 0
L _ P .
(3.51) Q-g = 0 1] N;g; = -, 6}_] gj.
We now wish to combine (3.47) with j = k—1 and (3.48) with j =k
for k=2,...,n—1. It will not be important for us to keep track of

the right-hand side of the resulting equations and so to unburden the
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notation we will write Fj(f) to denote computable combinations of
the functions f; = flasj- One finds combining (3.46), (3.47), (3.50)
and (3.51):

(3.52) L& + 8 + Ur8rr = Fe(f)
where

0 0
(3.53) Lk = — [e'_Aykwak_l e—Aykak-l]
and

The reader should keep in mind that there is a difference in the ma-
trix decomposition of (3.50) and (3.51) compared with (3.52) that ac-
counts for the apparent switch in (3.53) and (3.54). Equations (3.52)
for Kk =2,...,n—1 are to be supplemented by the combinations
that arise at the ends. Without difficulty the reader may verify that
(3.46) and (3.49) together with the endpoint cases of (3.47) and (3.48)
imply:

(3.55) & +Uig = Fi(f)
and:
(3.56) Lygn_1+ 8gn = Fu(f).

We now combine (3.52), (3.55), and (3.56) into the single matrix equa-
tion:

r v o - 0 8 Fi(f)

Ly, [ U, . 0 . .
(3.57) . . . . =

0 ’ Ln—l 1 Un—l :

o - : Ly, I 8n Fu(f)

We will now show that the operator on the left-hand side of (3.57) is
Fredholm with index 0. To see this it is useful to introduce:

o_ |0 0
(3.58) B=-|0 caop, .
and
-Ay, @
o_ _|€P%yq O
(3.59) Ul = [ 0 0].
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The matrix one obtains from the left-hand side of (3.57) by replacing
Ly by LY and U, by U is:

I UY 0 : 0

1 uw - 0
(3.60) . . . . .

o - LY, I UY,

0o - 0 LY 1

But it is easy to check that this matrix is the product of the invertible
lower triangular matrix:
I 0 - - 07
LYy 1 0 -0
0 - LY, I 0
o - - LY I]
and the invertible upper triangular matrix:
I U 0 - 0 ]
o1 U) - 0
o - 0 I U,
0o - -0 I
Thus (3.60) is invertible and since oy and J, are compact the oper-
ator on the left-hand side of (3.57) is a compact perturbation of an

invertible operator and hence Fredholm with index 0. It is clear that
if the operator:

I U 0 . 0
L, I U, . 0
(3.61) o . . .
0 - Ly I Uy
o - . L, I

had a non trivial null vector this null vector could be used to con-
struct a non trivial g € W (a) N Wexe . Thus (3.61) has only a trivial
null space and being a Fredholm operator with index O it must be
invertible. This finishes the proof of Theorem (3.0). n

The derivative of G%*(z, z'). As a prelude to the calculation of the
derivative of the n-point Green function G%:*(z, z') with respect to
the parameter a we will next do a calculation that will permit us
to identify the lowest order coefficients af /2’1.(2) and BY /2’1.(2) in
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the expansions (2.6) of the n-point Green function (the idea for this
calculation can be found in SMJ III, see (3.2.11) in [14-11I]). Let f(z')
denote a multivalued solution to the Dirac equation square integrable
at infinity and with local expansions:

f(2) = Z{alléwkﬂy(zl ay) + bwg_ A - ay)}
k

where we suppose that only a finite number of the coefficients {a} , b/}
with half integers k < 0 are non zero.

Suppose that w and u are two branched solutions to the Euclidean
Dirac equation with the same (unitary) monodromy at the points a, .
Then away from the branch points the functions w;u; are smooth
functions and one may easily check that for z’ # a, :

w(z") - u(z)idz' dz' = d {%wz(z’)ﬁl(z’)i, d’z"}
=—d {%wl(z’)ﬁz(z')idz’}

(see (1.12)). Now let D.(a) denote the disk of radius & about the
point a and let C,(a) denote the circle of radius ¢ about the point
a. Let D, denote the union of the disks D.(a,) for v =1,...,n
and the disk Dg(z). Then Stokes’ theorem implies that the integral:

% i G?’.’l(z,z’)' (z)idz'dZ
R\D,
is given by:
—Z/ Golz, 2)fi(2)id? Gz, 2)Fi(2)idZ
C(z2)
and also by:

Z/ Gii(z, ) fr(2)idZ +/ Gi(z, 2 f(2)idZ.

Next we will use the local expansions for the Green function and
f(2') near the branch cuts and the asymptotics of the Green function
near the diagonal z = z’ to evaluate each of the last two expressions
in the limit ¢ — 0. Equating the two results will give us what we
desire. Using the fact that I, (me) is O(e¥) and

2sin(nk)

limely_(me)l_i(me) = —
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one finds that:

limZ/ Gz, 2V fi(z)idZ

e—0

= —ZZ k=12 sin(nd, ) BY,(2)a"

v=1k>0
and

lim Z—: /C | Gz, 2V H(z)idz

n
= % DN (—pFe sin(nd, )y ()b,
v=1k>0
Each of the k summations is finite because of our assumptions re-
garding the local expansions for f(z’).
Now one may use the fact that Ky(z) is asymptotic to —log(z) and
K(z) is asymptotic to —% as z — 0 to calculate:

lim Gz, z)fl(z’)zdz 1‘5,271(2)
e—0 C.(z)

and
lim Gii(z, 2N f(2)idz' = id;, fH(z).

e—0 C.(2)

Combining these results one finds:

ZZ(—I)k—I/Z sin(md, ){ By, (z)a” , + oy, (Z k}

v=1k>0
~ - 0a]\(2) +0uT(2)).

We may now isolate the lowest order coefficients in the local ex-
pansion of the Green function by choosing the functions f(z) appro-
priately. Let W;(z, 4) denote the multivalued solution to the Dirac
equation which is square integrable at infinity and whose local expan-
sion at z = a, is:

Wiz, ) = 0y jw_1p2a, + D_{a};(Wwiy + b (Awi_; 3
k>0
where we have used the abbreviation wy,; = wg,, (z —a,) etc
Define W (z, 1) by: ’ ’

o (Th(z. )
v a= (i)
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so that the local expansion for W(z, 1) at z =a, is:

Wiz, 2) =6, w2 pey + D (@ (Awiy, + by j(Aywi_, }.
k>0

The existence of these “wave functions” is guaranteed by the SMJ
results for the existence of a “canonical basis” of L2 wave functions,
even though Wj(z,4) and W;(z, A) are not always locally in L?
near a;. We will spell out the connection between W;(z, A) and the
canonical basis of SMJ III in the final section of this paper which
deals with the deformation analysis of the t-function. Substituting
Wi (z, —4) for f(z) one finds:

31 =) im
( ji (Z)) = ~Tsinary) 0 A

Substituting Wj(z, ) for f(z) one finds:

J
('B%l(z)> ___im Wiz, ).
B (z) 4sin(na ;)
72
We can use this result to calculate the derivative of the Green function
with respect to the parameters a;. Let §, := 0/0a; denote the
holomorphic and 5(,} = 0/0d; the antiholomorphic derivative with

respect to a; . Differentiating the local expansions (2.6) for the Green
function using:

ow; = %wl-l ,  Ow = -’;wm
and

owf = Twjyy,  wj=Fwp,
one finds:

0a, G;_‘:_/l(z ,zZ) = —1;-5,-,,(1?/2(2)10_,/2”” + higher order terms.

The higher order terms all involve Wity and wy_ i with & > 0.

In these circumstances Proposition 1.4 shows that the single lead-
ing coefficient suffices to determine the (multivalued) solution z’ —
Oa, G;‘,’_’l(z , ') to the Dirac equation and we find:

m .
6(1](;?:.1(23 Z,) = _701{/2’[(2)”/}'(2/3 ;L)
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Putting this together with the previous result for a’i (z) one finds:
jl

2
a,i A m . _ (7
(3.62) BaJG (z,Z) = 8sin(n/1j)W](Z’ AW, A).
An analogous argument shows that:
- im?
(3.63) anGasi(z, 2= oo Wiz, ) @ W} (2, —A).

~ 8sin(nd;)

The reader might want to compare this result with (3.3.53) in SMJ IIL
In our formulation these derivative formulas for the Green function
will provide the connection between the 7-function and the local ex-
pansion coefficients for the wave functions Wj(z, £4) and W/ (z, £4)
(see (4.3)). Thus (3.62) and (3.63) are the fundamental link which re-
lates the t-functions with the deformation theory in our version of
the SMJ analysis.

4. The tau function for D, ;(m). In this section we will define the
tau function for D, ,(m) by localizing this operator away from the
singularities on the branch cuts. This localized family of operators is
associated with a family of subspaces in a Grassmannian affiliated with
the Hilbert space of the boundary of the localization. We trivialize the
det* bundle over this family of subspaces to define the determinant of
D, ;(m) which will be the t-function. We then establish the formula
which expressed the logarithmic derivative of the t-function in terms
of the local expansion coefficients of the wave functions W;(4) and
wr (4) . This is the main result of this paper. The reason for regarding
the procedure we have just described as defining a determinant for
D, ,(m) is described in some detail in the first section of [8] (for the
case of Cauchy-Riemann operators rather than Dirac operators but the
result connecting determinant bundles with det* bundles remains the
same). We will briefly recall this in the subsection below which deals
with the det* formalism. Before we do this however we will motivate
the definition of the t-function with a heuristic calculation of the
determinant of D, ;(m) that we hope the reader will find instructive.
After presenting this “derivation” we will show that the Grassmannian’
formulatiom can be used to give a rigorous definition of the t-function
which leads to the same result.

A heuristic calculation of det(D, ;(m)). In order to define the tau
function for D, ;(m) we wish to “regularize” the logarithmic deriva-



TAU FUNCTIONS 317
tive:
dylogdet D, ;(m) =Tr(D, 3(m)~'d,D, ;(m))
= —Tr(da(D, ;(m)~")D, ;(m)).

Let G%*(z, z') denote the Green function for D, ;(m). Then we
have seen that:

im?

a,l N _ - W, (z'
8auG (z,2)= S sin(7l) W,(z, =A@ W,(z', 4)
and
9,G%z, 2) = _im” i Wr(z, )@ W) (z', —4)
4 ’ 8sin(nd,) V'’ vame

where W, is characterized by the local expansions:

Wo(A) = 0juw_yj24a + Z{a;iy(i)wk% + b;{,,(l)’w;_gj}
k>0

about the points z = a;. Composing the operator d, G* 4 with
D, ;(m) one finds the operator:

im?

(4.0) f = Semtary (7> A

- / W,(2', ) - IDa s(m)f(2)idz d7.
RZ

We will make sense of this operator and of the tau function trace by
“localizing” the calculation away from the singularities at a, . Let ¢
denote a positive real number and for simplicity suppose that the sec-
ond coordinates of the a, are distinct for distinct values of v. Let S,
denote the horizontal strip containing @, with boundary 9§, consist-
ing of the horizontal lines with second coordinates +& away from the
second coordinate of a, . Choose ¢ sufficiently small so that the strips
S, do not intersect. In what follows one can permit the a, to have
coincident second coordinates. In such circumstances one should fix
branch cuts emanating from the points a, so that they do not inter-
sect and the strips S, should be replaced by tubular neighborhoods
of the branch cuts that do not intersect one another. We write

s=Js..

To localize away from the branch cuts consider a function f € <, ;
with D, ;(m)f(z) =0 for z € §. The map (4.0) induces a map on
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the boundary values of such functions on § in the following manner.
Let S’ denote the complement of the union of the strips S, . Then:

/ W, (2", 2) - JDy ;(m)f(2)idz' d7
RZ
- / W,(2', 2)- I Dy ;(m)f(2)idz d7'
S/

and Stokes’ theorem (see (2.7)) implies that this last integral is:
n
@0 3 [ O DA + W a2 DA 4T
j=1 J

where the boundaries of the strips .S, are positively oriented on the
bottom and negatively oriented on the top. If we now compare (4.0)
wth (4.1) we see that the map (4.0) induces a map on functions defined
on 0§ obtained by restricting the output of (4.0) to 9S'. In order to
define a trace for this map (we ignore the behavior in the interior since
the “differential operator” we are looking at does not change there) we
first make the observation that the boundary values of the functions f
on the upper 9,5, and the lower 0_S, boundaries of the strip .S, are
not independent of one another. Since D, ,(m)f(z) = 0 inside the
strip S, these upper and lower boundary values are the restriction to
the boundary of a single function defined in the strip and locally in the
null space of D, ;(m). One may define a projection on this family of
functions in the following way. Let G¥(z, z') = G% % (z, z') denote
the Green function for D, ; (m), the Dirac operator with a single
branch point at a, and monodromy parameter A,. Suppose [ €
HY2(8S,). Let GY.(z, z') denote the matrix of the one-point Green
function defined in §2. For z in the interior of the strip .S, define:

(P, f)j(z) = /aS G% (z, ZNfilzYdz' + G%(z, 2N H(2)dZ .

Then as shown in Theorem 3.3 the map:

f— PuflaSu

is a projection onto the family of functions on the boundary of the
strip S, which continue across the strip as elements of the null
space of D, ; (m) (and hence also as elements of the null space of
D, ;(m)). To make sense of the trace of (4.0) we thus compose the
induced map on the boundary with the direct sum of the projections
P, before taking the trace. I do not claim that the trace one gets is
independent of the choice of this projection. The particular choice we
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make here is related to the business of “factoring out the one-point
functions” that one finds in the representation theoretic version of
the 7-function in SMJ IV and SMJ V. The trace we wish to compute
becomes:

im? <&
42) - /W 2. WPW, (2, —A)dz
(4.2) SSVJZ:;as,{ Az, DPW, (2, =2)

+ W, 2z, A)PiW, 2(z, —A)dZ}

where
S, = sin(mA,)

and P;W,  denotes the kth component of the vector valued function
P;W, . The local expansion for W,(z, —4) in a neighborhood of z =
a; with j # v shows that with the obvious restriction to 9S; one
has:

PW,(-, =) =W,(-, =4) for j #v.

Because the one forms we are integrating are locally exact away from
the branch points and the functions W, are exponentially small at
infinity the contour integral over 9.5; we wish to compute for j # v
immediately collapses to a contour integral over a circle of small radius
about a;. A simple calculation using local expansions shows that all
these integrals vanish. It remains to compute:

im?
- {W, 1(z, VP,W, 1(z, -A)dz
8sy Jos,

+ WV,Z(Z 5 A’)PIJ WV,2(Z 5 —A) dE}’
Once again one is integrating a locally exact one form which is well
behaved at oo and so the integral collapses to a circuit integral about

a, which one can evaluate using the local expansions for W,(z, 1)
and P,W,(z, —4). Suppose the local expansion for P, W, is

P,W, =y {fiwi_s, + &Wis }-
k>0
Note that only expansion coefficients with & > 0 can appear since
P, W, islocally in the null space of D, . One finds
/ {VI/II,I(Z’ )‘)PIJWU, I(Z’ —’1) dZ + I/V;/,Z(Z ) A‘)PVWI/,2(23 —A) d_Z-}
as,

4is,
m

fi2
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where
s, = sin(mAy).

Using the formula for the projection P, and the formula for the one-
point Green function we compute the expansion coefficient f;/, to
find:

f1/2 m/ wl/z,l 1(2)W, (2, =A)dz

+ wl/2—ly,2(Z)Wu,2( , —A)dz.

Again one may collapse this contour to a small circle about the point
a, and do the resulting integral using local expansions. One finds:

Sia=aip ,(=4).

Putting these results together one finds:

m v
_2—‘11/2,1/(—“)“)

for the trace of interest.
A precisely analogous calculation gives one:

m——
52,4

for the 5‘,” derivative of the log determinant of D, ;(m). Our heuris-
tic version of the tau function is thus:

(43)  dalog(t) =5 Z{al/z J(=Ada, +ay, (2)da,}.

One could, perhaps, take (4.3) as the definition of the z-function but
there are a number of objections to doing so. First one must check
that the right-hand side is indeed a closed one form. The deformation
theory in §5 can be used to do this (this is done in SMJ III). Secondly
one would like to know that 7 defined by (4.3) is a regular function
of a with no zeros. This is not obvious from the purely deformation
theoretic point of view but it will follow from the formula for 7 which
we find below. Finally, (4.3) does not give any indication that the
function 7(a) is the Schwinger function for a quantum field theory.
This will not be evident from the formula we obtain below either but
because of the link with the transfer formalism in §3 it is possible to
connect simply with the scaled lattice formalism in [7] and so establish
Osterwalder-Schrader positivity.
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The det* interpretation for t. Fix a choice of branch points af
for v =1, ..., n without coincident second coordinates. As above
let S, denote the horizontal strip of width 2¢ centered on the branch
cut emanating from the point a2. Write S = {JS, andlet S denote
the boundary of S oriented so that S lies to the left of 9S5. Now
suppose that for each v =1, ..., n the point a, € B,(al), the open
ball of radius ¢ about al. Let W,y (a) denote the subspace of H :=
H'/2(3S) given by boundary values of functions f € &, ; such that
D, ;(m)f(z) =0 for z in the interior of the set S (see conditions W1
and W2 in §3 and Definition 3.1). Let &, ;(R?*\S) denote the space
of H! functions defined in the exterior of S with boundary values on
0S 1in the subspace Wy (a). The restriction of D(m) to the domain
Z,.,(R?\S) is then a natural localization of the operator D, ;(m) to
the complement of S in the sense that the kernel and the cokernel of
the localization can be identified with the kernel and cokernel of the
full operator D, ;(m). In fact, since the “differential operator part”
of this localization of D, ,(m) is independent of a;, ..., a, (it is
just D(m)) all the variation in this family of operators is captured
by the subspaces W (a). To define the t-function we will embed
the subspaces W, (a) in an infinite dimensional Grassmannian of
subspaces of H and then trivialize the det* bundle over the family
a — Wy(a). The t-function will be obtained by comparing this
trivialization with the “canonical section” of det”*.

To see that this is a reasonable way to define a determinant for
the family of operators D, ;(m) it will be useful to make an analogy
with a somewhat less singular situation. Let X denote a differential
operator which is a perturbation of D(m) by a C§° multiplication
operator with support in the set S. Let . denote the family of
all such differential operators X . Let W denote the subspace of H
which consists of boundary values of functions mapped to 0 in S by
D(m) and let V' (X) denote the space of boundary values of functions
mapped to 0 by X in S. Let Gr(W) denote the Grassmannian of
subspaces, V', of H which are close to W in the sense that the or-
thogonal projection on W differs from the orthogonal projection on
V' by a compact operator. The space Gr(W) is not connected and we
let Gro(W) denote the connected component of Gr(W) which con-
tains W . It is not difficult to see that each subspace V(X) € Gro(W).
Now each X € . is a Fredholm map of index 0 from the domain
of D(m) to L*(R?) and sitting over the space of all such Fredholm
maps is the determinant line bundle first defined by D. Quillen [12].
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We will briefly describe this holomorphic line bundle. If X is a Fred-
holm map of index O then there exists an invertible map ¢ such that
g~ 'X is a compact perturbation of the identity. In fact it is always
possible to find invertible maps ¢ such that g~'X is a trace class
perturbation of the identity—if ¢ is such a map we will say that ¢
is an admissible parametrix for the operator X . The fiber in the de-
terminant bundle over X can be identified with equivalence classes
of pairs (¢, @) where ¢ is an admissible parametrix for X and «
is a complex number. Two such pairs (g;, ox) for k = 1,2 are
equivalent if

ar = ay det(q; ' q).

The multiplicative property of determinants makes it possible to check
that this is indeed an equivalence relation. The map which sends X
into the “relative determinant”, (¢, det(¢~!X)), is easily seen to be
a section of the determinant bundle. This section is called the canon-
ical section and we denote it by o. For our family % of Fredholm
operators making a choice of a relative determinant for each element
of the family is intuitively the same as finding a trivialization of the
determinant bundle. If J is a nonvanishing section of det —.7 , then
we can define a determinant for the family . by

ag(X)
(X’

What has this to do with Grassmannians? G. Segal and G. Wilson
[15] have defined a determinant bundle over the infinite dimensional
Grassmannian Gr(W). The fiber is a natural analogue of the highest
exterior power of a subspace in finite dimensions. We write det*
for the dual of this determinant bundle over Gr(W). A connection
between the determinant bundle and the det® bundle is provided by
the following result. The map X — V(X) lifts to a map V': det —
det® which is an isomorphism on the fibers. One may understand this
lift in the following way. The fiber in the det* bundle over a subspace
V' can be characterized using maps which invert the projection of
V on W up to a trace class perturbation. Such maps are called
admissible frames for V. The natural lift ¥ for the map V can
be understood by seeing that it is possible to use an admissible frame
for V(X) to construct an admissible parametrix for X (see [8] for
more details). In any case one can use the map V to show that a
trivialization of the bundle det* — V(%) leads to a trivialization
of the bundle det — . (or corresponding sub-bundles if the bundle

det(X) =
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over V(%) is not trivial). Furthermore det™ has a natural canonical
section which pulls back to o under V . A trivialization in det* pulls
back to a trivialization in det and since the canonical sections are also
so related one can work exclusively in det® if this proves desirable.
Unfortunately, localizing the operator D, ;(m) in the complement of
S produces subspaces Wy (a) on the boundary which are too far from
W to be in the Grassmannian Gr(#). However, it turns out that for
ay,...,a, in S the subspaces W(a) are in a Grassmannian Gry
with reference subspace Wy := W(a?, ..., ad) that we will presently
describe. It is still reasonable to define a determinant for D, ;(m) by
first obtaining a trivialization of the det® bundle over the family of
subspaces W (a) in Gry and then dividing the trivializing section
by the canonical section. However, because both the domain and the
range of the operator D, ;(m) depend on the parameters a;, ..., a,
it is difficult to define a suitable determinant bundle over the family
of operators D, ;(m). We believe that this could be done; one could,
for example, define the determinant bundle as the det® bundle of a
localization—the appropriate transfer formalism could then be used
to show that the result was independent of the choice of localization.
For the present we will not attempt this and we simply regard the det”
formalism as an alternative which captures the essential information
in our application to the Dirac operators D, ;(m).

We will now describe the Grassmannian Grgy. Recall that Wiy
denotes the subspace of H which consists of boundary values of
H'(R2\S) solutions, f, to the Dirac equation D(m)f(z) = 0 for
z in the exterior of the region S. Theorem 3.1 tells us that W and
Wext are transverse subspaces in H and we let Py denote the projec-
tion on W, relative to the splitting:

(4.4) H =Wy + Wex.

We are interested in the Grassmannian, Grg, of closed subspaces of
H which are close to W, in the following sense. A closed subspace
W is in Gry provided that the map

(45) Po: W — %
is Fredholm with index 0, and the map
(4.6) (I=Fp): W — Wex

i1s compact. Without the specification of the index for the map in (4.5)
this is essentially the definition of the Grassmannian that Segal and
Wilson consider in [15] and the reader can find a detailed theory of
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such Grassmannians in the book by Segal and Pressley. The restric-
tion to index O in (4.5) just means that we confine our attention to
the connected component of the Grassmannian containing Wy . It is
simpler to discuss the det® bundle over the connected component of
the Grassmannian and it will suffice for our purposes. The first result
we require is that:

THEOREM 4.1. If a, € B,(a%) for v = 1, ..., n then Wiy(a) €
GI'().

Proof. In what follows we suppose that a, € Bg(a’) for v =
l,...,n. Let P(a) denote the projection of H on W, (a) rela-
tive to the splitting H = W, (a) @ Wexr (which is a continuous direct
sum as a consequence of Theorem 3.1). What we require for the proof
is the analogue of the formula (3.25) in Theorem 3.3. Let Gl“k’i(z, z')
denote the ikth matrix element of the Green function for D, ;(m)
introduced in §3. For f € H we claim that:

(4.7) (P(a)f);(z) = /BS G4z, Vi) dZ + GGz, 2) (2 dZ

for z € §. To avoid introducing extra notation we will temporarily
use P(a) to denote the operator defined by (4.7). The result we wish to
prove is simpler than Theorem 3.3 since we can use the transversality
of Win(a) and Wy in H. We will first evaluate (4.7) on f € Wiy (a)
and then on f € W, . To begin suppose f isin the subspace W, (a).
Then it is easy to see that the one form in (4.7) which is integrated
to give P(a)f(z) is exact in S except for the places where z/ = z
or z/ =a, forsome v =1, ..., n. Using the local asymptotics for
G*%*(z, z') one sees that Stokes’ theorem generates a contribution
only from the singularity at z’ = z in the calculation of P(a)f(z)
and one finds:

P(a)f(z)= f(z) for ze S and f € Wy (a).

Next I claim that:
P (a) Wexe = 0.

To see this suppose that f € We. Then the one form which one
integrates to get P(a)f is easily seen to be exact in the exterior of the
set §'. Thus the contour integral in the definition of P(a)f on the
portion of the boundary 9.5 which lies between two adjacent branch
points a, and a,_; is seen to be zero by Stokes’ theorem. The integral
over the portion of the contour 9.5 which lies above the highest branch
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cut can be closed at oo to give zero as can the integral over the portion
of the contour S which lies below the lowest branch cut. Thus
P(a)f = 0 for f € We. Since H = Wy(a) + Wex is a direct
sum decomposition we have shown that P(a) given by (4.7) is the
projection of H on W (a) along the subspace Wy:. To see that
Wint(a) € Gry we differentiate (4.7) in the variable a using formulas
(3.62) and (3.63) for the derivative of the Green function. One finds
that d,P(a) is a finite rank operator. Integrating along a path which
joins a° to a while staying inside |JB:(a%) one sees immediately
that:
P(a) — Py = P(a) — P(a%

is compact. From this fact, and the fact that W, (a) is joined to
Wini(a®) by a continuous path it is easy to see that Wy, (a) is in the
Grassmannian Gry. 0

Recall that an invertible linear map F: Wy — W is an admissible
frame for the subspace W € Gry provided that PyF: Wy — W is
a trace class perturbation of the identity. We will now introduce two
different admissible frames for the subspace Wi, (a). The first such
frame will define the canonical section of the det* bundle over Gry
and the second will be used to provide the trivialization of det* over
the family of subspaces a — W, (a) in Gry.

First we show that the restriction P(a): Wy — Wiy (a) inverts the
projection Py: Wiy (a) — Wy . From this it follows that the restriction
of P(a) to W, is an admissible frame for W,,(a) which defines the
canonical section of the det®” bundle. The argument is a simple one.
Suppose that w € Wy and w = w,; + Wexty With w, € Wy (a) and
Wext € Wext - Then P(a)w = w, and writing w, = W — Wex; WE S€€
that Pyw, =w.

The second frame for W, (a) arises from considering the direct
sum of “one point” projections in the following manner. Suppose for
the moment that g is the only branch point and write Wi, (ay) for
the corresponding subspace of Hj := H'/?(8S;) and W, , for the
boundary values on 9.S; of H! solutions to D(m)f(z) =0 for z in
the exterior of Sj, . Now let P(a;) denote the projection of H!/2(0S;)
onto Winy,) relative to the splitting Hy = Win(ax) ® Wex k - Write
F(a) = P(a;) ® --- @ P(a,) for the direct sum of these projections
actingon H=H, & ---® H,.

ProrosITION 4.2. The restriction of F(a) to the subspace Wy is an
admissible frame for Wi, (a).
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Proof. The first thing to check is that the restriction of F(a) to the
subspace W, is an isomorphism onto W, (a). When there is just
one branch point (say a,) then, as has already been observed, the
restriction of P(a,) to the subspace W, (a,) inverts the projection

(4.8) P(ap): Win(ay) — Win(@y)

which is an isomorphism since the complementary subspace Wy
is transverse to both subspaces Wiy (a,) and W, (a). Since W, =
>, Wini(a)) and Wiy(a) = ¥, Win(a,) the map F(a) (which acts
diagonally with respect to these direct sum decompositions) is clearly
an isomorphism in the zn-point case as well. Thus to prove that F(a)
is an admissible frame it will suffice to show that the restriction of
PyF(a) to the subspace W is a trace class perturbation of the identity
on W,. Since the restriction of PyF(a®) to W, is the identity it is
enough to show that the difference F(a) — F(aP) is trace class. Using
the formula for the derivative of the one-point Green function found
in §2 one sees that d,F (a) is finite rank. The operator F(a)—F(a®) is
recovered from this derivative by integrating along a path, 7, from a°
to a which stays inside the union of the balls B;(al). The resulting
integral clearly converges in the Schmidt norm since the kernel of the
finite rank operator d,F (a) is square integrable on 9.5 with a uniform
bound for the integral of the square when a, € B, (a)) forany ¢ < ¢.
Thus the integral along y of the squares of the eigenvalues of d,F(a)
are finite. Since L!(y) c L%*(y) and d,F(a) has rank 2n it follows
that the L!(y) norms of the eigenvalues for d,F(a) are summable.
This shows that integral of d,F(a) along y converges in trace norm
and finishes the proof of the proposition. O

We now recall that the fiber in the det® bundle over a subspace
V € Gry can be identified with equivalence classes of pairs (v, «)
where v: Wy — V is an admissible frame and « is a complex number.
The equivalence relation which defines the fiber is (v, a;) = (v2, a2)
if and only if:

a) = aydet(vy'vy).

In this representation the canonical section of the det® bundle is given
by V — (v, det(Pyv)) where the determinant is understood to be
the determinant of Pyv regarded as a map from W, to W,. Since
PyP(a) is the identity on W it follows that we may regard W, (a) —
(P(a), 1) as a representation of the canonical section a(W,(a)). We
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now use F(a) to define a trivialization of the det® bundle over the
family of subspaces Wy (a). Define:

0(Win(a)) = (F(a)lw,, 1).
We may then define a determinant 7(a, qp) for the Dirac operator
D, ;(m) as follows:
o (Win(a))
0(Wini(a))
= detm(F(a)l;ViP(a))"

(4.9) 1(a, ag) = = detWO(P(a)h},;F(a))

where we have included the second version of the tau function as a
reciprocal since in this form it will be slightly simpler to relate it to
the formula (4.2) for the logarithmic derivative that appears above.
The principal result of this paper can now be stated.

THEOREM 4.3. The t-function defined by (4.9) has the logarithmic
derivative:

n
(4.10) dlog(t) = 323 S @), (~Dda, +af,, ,(D)da,}.

v=1

Proof. For simplicity write F = F(a)|w, in the following calcu-
lation. Let d denote exterior differentiation with respect to the pa-
rameters {4, ..., a,}. To start with, the well known rule for dif-
ferentiating determinants gives (for the second determinant in (4.9)
above):

dlog(a, ag) = — Try (d(F~'P(a))P(a)”'F)
where the trace is calculated on W} and it is also understood that
P(a) is restricted to W, so that it has an inverse. But now we know
that Py inverts P(a) restricted to W,. Thus

P(a)"'F = PyF.

In a similar fashion Fy := @, P(a0) inverts F restricted to Wj.
Thus we find:

dlogt(a, ap) = — Try, (Fod(P(a))PoF).

But P(a)(I — Py) = 0 so that d(P(a))Py = dP(a) now regarded as
maps on all of H and the range of Fy is W so we can remove the
subspace restriction on the trace to find:

dlogt(a, ay) = — Tr(d(P(a))F Fy).
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But now for the same reason that P(a)Py = P(a) on H we have that
FFy=F on H. Finally then we see that:

dlogt(a, ap) = — Tr(d(P(a))F).

Consulting the representation for P(a) in terms of the Green function
we see that this is precsely the representation for d log 7 that one finds
n (4.2) above. One may follow the arguments leading to (4.3) to
obtain (4.10) above. O

The reader might note that although 7(a, ay) certainly depends on
ap as well as a the logarithmic derivative of 7(a, qy) does not depend
on ap. This will be explained more fully in the next subsection where
an explicit formula for 7(a, ay) as a Fredholm determinant will be
obtained.

A transfer matrix calculation of 7. Here we will use the transfer
formalism of §3 to obtain a more explicit formula for the determinant
which defines the 7-function. The formula we wish to make more
explicit is:

v(a; ag) = detw, (P(a)[5! F (@)
given in (4.9) above. To begin we recall the splitting of the Hilbert

space on the boundary given by (3.32). If g € W(a) then we have (in
the notation of (3.44)):

(4.11) glos = & ® Nj(a)g;
and in a similar fashion for f € W(ay) we have:
(4.12) flos, = fj ® Nj(ao) fj-

A little calculation now shows that F(a) maps the element f € W(ag)
given by (4.12) into the element in W (a) with jth boundary value:

f}' @Nj(a)f}.

Thus in terms of the coordinates (f, f,..., fn) and (g1, &, ...,
gn) for W(ay) and W (a) defined by (4.12) and (4.11) above the
map F(a): W(ag) — W (a) is represented by the identity transforma-
tion. Next we wish to find the representation of the transformation
P(a): W(ag) — W(a) in these same coordinates. For this purpose
suppose that f € W(ay) and that one wants to obtain a splitting
f=g+h where g € W(a) and h € Wey (so that g = P(a)f).
Following the calculation from (3.41) to (3.57) but this time keeping
track of what happens to f on the right-hand side and making use of
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the fact that f € W(ap) in the same way that the calculation uses the
fact that g € W(a) we find:

(4.13) (I+M(a))g =+ Ma))Sf

where g denotes the column vector with jth entry g;, f denotes
the column vector with jth entry f; and:

0 Ui(a) 0 . 0

Ly(a) O Us(a) : 0

(4.14) M(a) = . . . . .
0 : L,_(a) 0 Up—1(a)

0 . . Ly(a) 0

Thus we find that:
t(a, ap) = det{(I + M(ap))~ (I + M(a))}
= det{(I + M(a))(I + M(ap))™"}.
Now in the notation of (3.58) and (3.59) let M (a) denote the matrix
M(a) with Uj(a) replaced by U?(a) and L;(a) replaced by L9(a).

We have seen above that the matrix elements of M (ag) and M (a)
differ by trace class operators. Thus the determinant

(4.15) det{(I + M(ap))(I + M(a))™"}

converges in the usual sense. Indeed the upper triangular-lower tri-
angular factorization that is described following (3.60) shows that the
determinant defined in (4.15) is equal to 1. We now multiply the
formula for t(a, ap) that we found above by (4.15) and use the mul-
tiplicative property of determinants to obtain:

©(a, ag) = det{(I + M(ao))(I + M(a))™"(I + M(a))(I + M(a))"'}
=det{({ + H(a))”‘(! + M(a))(I + M(ag))~ (I + H(ao))}.
We would like to use the multiplicative property of determinants again

to write:

(4.16) 1(a, a) = ;(ao)

where: .
1(a) = det{(I + M(a))" (I + M(a))}.

This is almost legitimate except that M(a) and M (a) differ by an
operator which is clearly Schmidt class but not so obviously trace
class. One can get around this by defining:

(4.17) (@) = dety,{(I + M(a))"'(I + M(a))}
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where dety(I + K) = det(e X (I + K)) is the regularized determinant.
The regularized determinant is not multiplicative in general so this
might seem to have defeated the desired factorization in (4.16). How-
ever, using the explicit inverse of (I + M (a)) that can be computed
from the upper-lower factorzation described above we will see that:

K(a) := (I + M(a))""(M(a) - M(a))
is the Schmidt norm limit of finite rank operators, K,,(a), which are
manifestly trace 0. Suppose that this is the case for the moment.
Then since:
det(e!) = exp(Tr(F))
when F is finite rank, it follows that:
det(eX»(@) = 1.
Thus

7(a, ap) = det((I + K(a))(I + K(ap))™")
= det(eXn(@) =K@ (1 1 K(a))(I + K(ag))™").

When we construct the sequence K,,(a) we will see that it is simple
to arrange that K,,(a) — K,,(ag) converges to K(a) — K(ap) in trace
norm. Thus in the limit m — oo we can replace K,,(ag) — Kn(a)
in the preceding equation by K(ay) — K(a). Take this limit in the
preceding equation, make the obvious similarity transformation by
eX(@) and use the multiplicative property of determinants to obtain:

det(e X@(I+ K(a))) _ (a)

det(e=X@)(] + K(ag)))  t(ap)

where 1(a) is defined by (4.17) above. It only remains to confirm
the existence of an appropriate approximating sequence K,,(a). First
we calculate the inverse for the operator (/ + M (a)) by using the
Neumann series for the upper and lower diagonal pieces of the fac-
torization described following (3.60). One finds:

t(a, ay) =

1 Uy Uis ' Uin
~ L, I Ux3 : Uz
(4.18) I+ M(a) ' =] - : : - -
L, 1,1 - Lp_in2 I Un-1,n
Ln,l : Ln,n*Z Ln,n—l I

where:

(4.19) Ly =(=1Y7%L0--. L) | fork<j
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and
(4.20) U = (-D)*UP--. U2 fork > j.
Next we calculate M(a) — M (a) to get:
0 AU 0 . 0
. AL, O AU, . 0
(4.21) M(a)—M(a)=| - : . : :
0 - AL, 0 AU,
0 - 0 AL, 0
where:
0 0
_ 0_
(4.22) AL;j=L;j-L;=- [e'Ayf“’aj_l 0}
and
0 e Vm?;
— /. 0_ 1
(4.23) AU =U; - U; _—{O 0 J+ }

Now multiplying (4.21) on the left by (4.18) one and making note
of the fact that the upper triangular part of (I + M(a))~! kills the
lower triangular part of M(a)— M (a) and the lower triangular part of
(I +M (a))~! kills the upper triangular part of M (a)— M (a), one sees
that the product, K(a), has zeros on the diagonal. Now let P, denote
any sequence of orthgonal projections on H which tends strongly to
the identity as m — oo and write:

Py=Pn®Pn®---®P, (n copies).

Then the finite rank operator K,,(a) := K(a)P,, also has zeros on the
diagonal and so has trace 0. The operator K,,(a) tends to K(a) in
Schmidt norm since K(a) is Schmidt class, and K,,(a) — Kiy(ag) =
(K(a)—K(ap))Py, tends to K(a)— K(ap) in trace norm since this last
operator is trace class. This finishes the proof of (4.16) and (4.17).
Notice that the formula for the logarithmic derivative of 7(a, ay) ob-
tained above also gives the same formula for d,log(t(a)) since:

dglog(t(a)) = d,log(t(a, ao)).

In this form the result can be used to make a conection between the
lattice scaling results of [7] and the deformation theory described in
the next section.

Specializing to the two-point case and using the formulas (3.34)-
(3.37) we can obtain an even more explicit representation. Suppose
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that a; and a, differ only in their second coordinate by » > 0 and
that A; and A, are the associated exponents of monodromy. Then we
write t(r) for t(a,, a;) (in the last section we will see that t(a;, ay)
does indeed only depend on |a; — a;|) and one finds after a little
calculation that:

7(r) = det({ — K/{l Jz)

where K] , is the integral operator on L%(0, oo) with kernel
1272
K,{l,lz(s, t) given by:

si5n [ [ e-(r/Das)—row—r/o) i, [\
55 [ ONORE
% Jo (s 4+ u)(t+ u) s u
Such an explicit formula is, finally, the payoff for the labor that went

into the demonstration of Proposition 3.4 and the calculation of the
one-point Green function.

Note added in proof. See [21] for an analysis of the asymptotics of
this t-function for small r.

5. The deformation equations.

Existence results for W; and W} . In this section we will deduce
the SMJ deformation equations for the “low order expansion” coef-
ficients of the wave functions W; and W and the formulas which
relate the tau function to these expansion coefficients. We begin by
explaining some existence results derived in SMJ III and the bearing
that these results have on the existence of the wave function W;(4)
and W;(4). In SMJ II1 it is proved that the space of solutions to the
Dirac equation branched at {a;, ..., a,} with monodromy e 24,
at a; (with 0 < |4;] < $) and globally in L?(R?) is n-dimensional.
They construct a canonical basis {w;(L)} for this space (see Theorem
3.2.8 and equation (3.2.19)). In their work the parameter L is a di-
agonal matrix with jth entry /;. The /; are related to our parameter

A; in the following manner:
Ai+1 fori; <0,

(5.1) lj ={ 7 ’
lj—j fOI’/‘Lj>0.

We will write W (4, L) for the n-dimensional space spanned by the
{w;(L)}. In the notation of §1 following (1.12) the basis {w;(L)} is
characterized by the condition:

(52) c,,(wu(L)) = 5;11/
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on the local expansion coefficients. Proposition 1.3 shows that these
wave functions are uniquely characterized by condition (5.2).

We will now use this existence result to deduce existence results for
the wave functions W;(—A) each of which is square integrable at oo
and characterized by the local expansions:

Wi(=4) = djpw_1/2-3,

(5.3) + Y {ag;(=Mwi_y, + b (=Awiy, -

k>0
Recall that N is the subset of {1, ..., n} characterized by the con-
dition that A; < 0 if j € N and P is the subset of {1,...,n}

characterized by the condition that 4; > 0 if j€P. If j € N then
it is easy to see that W;(—A) must be globally in L? and so ought to
be expressible in terms of the SMJ basis {w, (L)} . Without difficulty
one may verify:

(5.4) c(Wij(-4))=6,; forv,jeN
and
(5.5) c;(Wij(-=4)) =0 forveP, and j€N.

These conditions characterize the expansion (5.3) for W;(—4) when
J € N. Thus to show that W;(—A) exists for j € N it is enough to
show that there is an element of W (A4, L) which satisfies (5.4) and
(5.5). But Proposition 1.3 shows that if w € W (A4, L) and ¢,(w) =0
for v €N and ¢}(w) =0 for v € P then w = 0. Thus the »n linear
functionals {c,},en U {c}},cp are linearly independent on W (A, L)
and it follows that it is possible to satisfy (5.4) and (5.5) with an
element from W (A4, L). Now suppose that j € P. Then using (1.2)
and (1.3) to differentiate the local expansions for w;(L) one sees that
%Bzw ;(L) has a local expansion which fails to be of type (5.3) only
at points aq, with v € N. At these points we can subtract a suitable
multiple of w, (L) to insure that the expansion has the correct form
(5.3). Thus for the right choice of constants d; with k € N (these
constants are just certain expansion coefficients of w;(L)) one finds

that:

2
—d:wj(L) - > drwy(L)
keN

has an expansion of type (5.3) at each of the points a,. This fin-
ishes the translation of the existence results for the canonical basis
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wj(L) into existence results for W;(—A). The solutions Wi (-4) are
obtained from W;(—4) by the conjugation:

f] [3]
5.6 — | &
(>-6) [g f
and this completes our discussion of existence results for W;(—4) and
W*(=2).
J

Algebraic relations among the expansion coefficients. Following SMJ
IIT we will now deduce relations among the low order expansion co-
efficients of W, and W by differentiating the local expansions for
W, and Wj* with respect to z and using the uniqueness result of
Proposition 1.4. The simplest of these relations is:

— m N
(5.7) OWj(=4) - =5 Y b, (~AWi(2) =0.
u
This is obtained by simply noting that the local expansion of the left-
hand side is of type (1.5) at each point a, .
Now write by(4) for the n x n matrix whose jrth entry is:

bo(i)ju = i’/z,j()-)-
Then the fact that the local expansion coefficient for w;;,;_; must
vanish at a, in (5.7) implies:
(5.8) bo(=A)bo(4) =1
where I is the n x n identity matrix. Setting the local expansion
coefficient of wik/z—zy at a, to 0 in (5.7) one finds:
(5.9) by(=4) = bo(—A)ap(4)
where b;(A) isthe nxn matrix whose jv entry is bg’/L ;(A) and ag(4)
is the n x n matrix whose jv entry is af 12, ;(4) (we have shifted the
indices down 1/2 to avoid half integer indices).

A slightly more complicated relation is obtained by noting the ac-
tion of the infinitesimal rotation R = R, + a,0 — @,0 on the local
expansions of W;(4). One finds that subtracting a;0W;(—4) from
RW;(—A) kills the lowest local expansion coefficient at level k =
—3/2. The remaining local expansion coefficients at level k = —1/2
can all be canceled by the suitable subtraction of a linear combination
of the wave functions W,(~4) and W (4). One finds:

(5.10) (R=a;0)Wi(=2) + > _(fju + 105 Wu(=2)
u

+ 3 Aubo(—A)ju W (2) =0
Y3
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where we have written:
. May
Ay = 5
Writing A4 for the diagonal matrix with uu entry 4, and A for the
diagonal matrix with uu matrix element A,, the matrix f which

appears in (5.10) is defined by:
(5.11) fi=A+[A4, ag(-)]

where [A4, B] := AB — BA denotes the usual commutator.

There is interesting non-trivial information concerning the low or-
der expansion coefficients ag(4) and bo(4) for W; and W} at level
k = % in local expansions for (5.10). Calculating the coefficient of
Wi/-;, oOne finds:

(5.12) [4, a1(=A)] = ao(=4) + [A, ap(=A)] + [4, ao(—4)]ao(—4)

+ bo(—A)A bo(A) — A.
A further relation is obtained by calculating the coefficient of wy 244
in the local expansions of (5.10) at a, : ’

(5.13) fbo(=4) = bo(=2)(A + [do(4) , 4])

where (5.9) has been used to eliminate the appearance of b;(—1) in
this relation.

Deformation equations. We now follow SMJ and deduce deforma-
tion equations (in the variables a,) for the matrices f and (a slight
modification of ) by(—A). The reason for choosing these matrices has
to do with the observation that the wave functions W;(-4) and W/ (1)
satisfy a linear holonomic system in the a variables with the entries
of f and by(—A) as coefficients. This is worked out in detail in SMJ
III for the canonical case and we could follow a similar course here
using the uniqueness result to express a derivatives of W;(—4) and
W;(4) in terms of z derivatives and the wave functions themselves.

Instead we will deduce the deformation equations from the obser-
vation that the one form:

(5.14) > s7'Wi(-A) @ WiAda, + s7 ' Wi (A) ® Wi (-A)da,
J

is closed, being proportional to the derivative of the Green’s function
G?-* with respect to the a variables. There is not any real advantage
to this but in some respect it is more straightforward to arrive at the
full collection of identities which SMJ employ to deduce the deforma-
tion equations. I believe it is also conceptually interesting to realize
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that the information in the deformation equations is contained in the
equation d2G%:* =0, where d denotes the exterior derivative:
d:= Zdajaj + dﬁjgj
J

with respect to the a parameters. Our strategy in determining the
deformation equations will be to calculate the local expansion coeffi-
cients in the exterior derivative of the one form (5.14) at site a, in
the first variable and a, in the second. The following formulas for
the leading terms in the local expansions for dW;(1) and dW}(2) are
useful in doing the calculations which follow:

dWj(A) = = 6judAyw_3)245 — aiy [(A)dAW_1)249,
= bl ;A dAw )y,
+(day)y j(A) — a3y, ;(A)dA, ~dj d A, w2z,
+(dby)y ;(A) = by ;(A)dA)wi ), + -
and
dWwi(A) = =9, dzuwi3/2+iu — a2, ;(4) dz”wil/ﬂ/h
= b1, ;(A) dAyw_yyp_;,
+(day), [(A) -5, ;(A)dA, = 6j, dA)wi ),
+(dby )y, j(A) = By j(A)d A wi s+

We will now list the relations which one may deduce by calculating
the lowest order expansion coefficients for the exterior derivative of
(5.14). Computing the coefficient of w_; j2-2, ® W_1/24;, ONE finds
that:

(5.15) s7lag(—=4) — ap(A)'s~! = diagonal

where s is the diagonal matrix whose uu entry is s, and a® denotes
the transpose of a. We write ¢ = diagonal to express the fact that
the off diagonal elements of the matrix ¢ vanish. Computing the
coefficient of w*, J24, ® W_y124; one finds that:

(5.16) s bo(=4) — bo(=A)'s™ 1 =0
Computing the coefficient of w,/,_ 4, ®W_121; one finds that:

(5.17)  dao(—A) = ai(=2) dA + dAX — ag(—1) d Aag(—A)
— bo(—=A) dAby(A) + dA
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where the matrix X is not determined by this relation but using (5.15)
and (5.17) one can say that:

(5.18) X —sa;(A)'s~! = diagonal

which determines the off diagonal elements of X . Computing the
coefficient of w7/, ; ®w_y/54; one finds that:

(5.19) dby(—A) =dAY + s~ b (=A)dA — ag(A)*s~ dAby(—A)

— bo(=A)'s~ dAay(4).
Once again the matrix Y is not determined by this relation but com-
bining (5.16) and (5.19) one finds that:

(5.20) Y =b(—A)s7L

We are ready now to obtain the SMJ deformation equations. In
addition to the matrix f already introduced we define:

g =s""bo(A)
and the matrix of one forms 8:
0 = [ap(—4), dA].

The matrices f, g and 6 are the analogues of the matrices F, G
and © introduced by SMJ in [14-I1I]. Since they will not be exactly
the same except in the event that the local exponent of monodromy 4;
is positive for all j we have altered the notation slightly. First note
that the matrix elements of 6 are determined by f:

0/11/ - f;u/ W
Using the definition of f one finds immediately:

df =14, dap(-A)]1= 6.
Now substitute (5.17) and (5.18) in this last expression. Use (5.12)

and (5.15) to eliminate a;(—A) and a;(4)* from the result. One finds
after a little calculation:

(5.21) df =[f, 0)+[g 'dg, dAl+ g~ 'dAg, Al

To get the second deformation equation we calculate dg using
(5.19) and (5.20). Eliminating b;(4) from the result using (5.9) one
finds after some calculation:

(5.22) dg=g0+06"g.
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The condition (5.16) translates directly into Hermitian symmetry for
g:
(5.23) g =g.

We can also translate (5.13) using (5.8) and (5.15) into the following
algebraic relation between f and g:

(5.24) gf=rsg

We now come to the only formal difference between the SMJ anal-
ysis and the analysis based on the wave functions W;(—4) and W (4)
above. Suppose that j and k are bothin N. Then both W;(—-4) and
W, (=A) are in L? and one finds the L2 inner product using (5.2) is
(note: si(A) =sin(mdy) = —sp(—4)):

4 .
(Wi(=4), Wi(=4)) = _Elsk(l)lb{/z’k(_i)
and in a similar fashion if j, k € P then:
4 .
(W} (2), WE @) = = Isk(A)[B 2, 1(2):

It follows from these relations that the |P| x |P| submatrix of g asso-
ciated with the indices in P is negative definite and that the |N|x |N]|
submatrix of g~! associated with the indices in N is positive definite.
In the SMJ scheme the matrix G is always positive definite because
of its association with the canonical basis.

The two-point case. We are now able to imitate the SMJ analysis of
the deformation equations in the case of two branch points. There
are essentially four different cases that we must analyse. If the local
exponents of monodromy A; and A, have the same sign then we have
seen that the matrix g above is either positive or negative definite.
In either of these two cases the analysis of the deformation equations
follows the analysis in SMJ III from (3.3.42) to (3.3.47) without es-
sential change. If the local exponents of monodromy have opposite
signs then the ansatz (3.3.42) in SMJ III is not right for the matrix g
we have defined. We will illustrate the analysis in the case 4; > 0 and
A < 0. Write 9; for 8/8a; and 0; for 0/06a,. Then:

dA(0y + 8r) = (m/2)I

and it is easy to see from this and the deformation equations (5.21)
and (5.22) that:
(01+02)g =0
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and
(014+0,)f =0.

The same results are found for the complex conjugate vector field 9, +
8, and it follows that as a consequence of the deformation equations
f and g are functions of the difference variable a; — a; only. We
write:

a, —a; = re'®
for the polar representation of this difference with ¢ taken between
0 and 27 . Next we observe that:

9/0¢ = i(a10, + a0, — @0 — a20,)

so that:
dA(0/0¢) = iA, dA(D/0¢) = —id
and
6(0/0¢) =i(A-f), 67(0/0¢) = —i(A - f").

One now calculates without difficulty that:

af

g—i = —[iA, g] and 96 = —[iA, f].
It follows from these last two results that:
(5.25) g(r, ¢) =e Mg(r, 0)er?
and
(5.26) f(r, ¢)=e 2 f(r, 0)e'.

Since dlogdet g = Tr(g~'dg) and the trace of both 6 and 6* are 0
one sees that the determinant of g is a constant independent of both
a; and a,.

The Hermitian symmetry of g, the positive definite character of
the N part of g~!, and the negative definite character of the P part
of g are easily seen to imply that det(g) < 0 and g;; < 0. By
comparing the g matrix in our formalism with the G matrix in the
SMJ formalism one also finds that g, > 0 (I did not see a way to
obtain this relation directly). In any case these observations and (5.25)
show that we can parametrize g in the following manner:

B ~Kkcos(y)  esin(y)e?
(5.27) g(r,¢)=c <Esin(l//)€_i’1¢ k=1 cos(y) )

where —c? is the determinant of g, A:= A, — A;, the functions «,
¢, and y are all functions of r alone, and x and y are real while
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ge = 1. Also cos(y) > 0. The reader might want to compare this
with the ansatz for G in SMJ III which is (see (3.3.42)):

_ ksh(y)  ech(y)e*
6.9 = (eniyre e xtonty) )

Making use of (5.26) and the relation (5.24) between f and g one
finds:

iAp
(5.28) F=(apmas 7

where f. is a function of r alone and making use of (5.24) we fiad
that there is a function ¢ such that:

(5.29) 2k fr = —¢ + Atan(y)
and
(5.30) 2k . = ¢ 4 Atan(y).

We now calculate the r derivatives for f and g making use of the
deformation equations and:

22 (- a)(8: - 8) + @ — 7))@ - )

or
from which it follows that
0
0 (FW) A — f
Thus:
0g «
(5.31) 15y = 8A-N+(A-g
and
(5.32) r%% =[f, Al+2[g '4g, A].

To obtain this last result we used the fact that 4 and the matrix A’
obtained from A by interchanging A; and A, on the diagonal have
the same commutator with an arbitrary 2 x 2 matrix except for a
change in sign.

After a little calculation (5.31) simplifies to the following:

oe
(5.33) 5 =0,
(5.34) B

or
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and
(5.35) ne-19% Atan®(y)

' or V).

Making use of (5.35) in (5.32) one finds:

2,2
(5.36) r%—(: = —A?sec?(y) tan(y) — m2r sin(2y)
and finally combining (5.36) with (5.34) one has:
i 8!// a2 2 m2r2 .

(5.37) P (rw) = A“sec”(y)tan(y) + > sin(2y).

This equation is remarkably similar to equation (5.3.46) in SMJ III ex-
cept that the hyperbolic functions have been replaced by trigonometric
functions reflecting the change in the ansatz for g above.

This similarity persists if we evaluate the logarithmic derivative of
the 7-function in terms of the deformation data. Recall that:

(5.38) dlog(t) =Y {af,, ,(-A)dA, +a, ,(A)dA,}.

Next observe that the diagonal part of (5.12) gives an equation for the
diagonal part of a( in terms of the off diagonal part of gy and the
matrix by. The off diagonal part of ap is in turn determined by f
and b, is determined by g. These observations and the equations
(5.27) and (5.28) for f and g can be used in (5.38) to give:

(5.39) dlog(t) = —%;((pz — A2 tan?(y) — m2r? sin®(y)) dr.
Or making use of (5.34) one finds:
8 1 ow\? :
(5.40) - log(r) = —5- (r2 (a—"r’> — A2 tan’(y) — m?r? smz(t//)>

which the reader might want to compare with 4.5.42 in SMJ IV.
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