
PACIFIC JOURNAL OF MATHEMATICS

Vol. 161, No. 1, 1993

THE RELATIVE NIELSEN NUMBER AND
BOUNDARY-PRESERVING SURFACE MAPS

MICHAEL R. KELLY

Let X be a compact 2-manifold with nonempty boundary dX.
Given a boundary-preserving map / : {X, dX) —> {X, dX) the rel-
ative Nielsen number Nd(f) gives a lower bound for the number of
fixed points of / . Let MFd[f] denote the minimum number of fixed
points of all boundary-preserving maps homotopic to / as maps of
pairs. This paper continues the study of the difference MFd[f] -
Nd(f) for surface maps begun by Brown and Sanderson [BS]. Their
results are extended by (i) adding to their list of surfaces for which
this difference can be arbitrarily large, and (ii) producing an exam-
ple of a boundary-preserving map of the pants surface for which the
difference is equal to one. This answers a conjecture raised by the
authors.

1. Introduction. Let X be a compact, connected surface and let
dX denote its boundary. Given a self-map f: X -> X, following
standard notation, let N(f) denote the Nielsen number of / and let
MF[f\ be the minimum number of fixed points possible for a map
homotopic to / . It is a classical result that for arbitrary spaces and
maps the difference MF[f] - N(f) is always a non-negative integer.
For manifolds of dimension greater than two, it is a well-known result
of Wecken [W] that MF[f] = N(f). While on the other hand, Jiang
[J] showed that any surface with negative Euler characteristic supports
maps for which the difference is strictly positive. Results of the author
([Kl], [K2]) have established that for any surface which contains a
cohomology injective embedding of the pants surface, the difference
can be made arbitrarily large.

In the paper [BS] the authors begin a study of the fixed point be-
havior for boundary-preserving maps of surfaces. (These are relative
maps f; (X, dX) —> (X, dX).) It is assumed that all homotopies un-
der consideration are homotopies through boundary-preserving maps.
In this setting, the relative Nielsen number as defined by Schirmer [S],
and denoted Λ^ (/), is a better algebraic invariant than the standard
Nielsen number. The analogous minimal number to consider will be
denoted MFd[f]. The intent of their work is to classify all surfaces
X (with dX Φ 0) in terms of the following:
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(1) if Nd(f) = MFd[f] for all maps / , then X is said to be
boundary - Wecken.

(2) if the difference MFd[f]-Nd(f) is bounded, then X is almost
boundary - Wecken.

(3) if the difference MFd[f] - Nd(f) can be made arbitrarily large
then X is totally non-boundary-Wecken.

REMARK. The term boundary-Wecken will forthwith be abbreviated
to bW. Note that (1) is contained in (2), and that (2) and (3) are dis-
joint. The analogs to (l)-(3) in the non-boundary-preserving setting
are referred to as: Wecken, almost-Wecken, and totally non-Wecken.
Jiang's result [J] can then be rephrased as: a surface is Wecken if and
only if its euler characteristic is non-negative. An improvement of this
is given below in Theorem 1.1.

We now summarize the results of Brown and Sanderson given in
[BS]. First, they show that the disk, annulus and the Mόbius band
are each bW. In [BS; Theorem 3.1] it is established that each surface
from the following list is totally non-bW; (i) delete r > 2 open disks
from the torus, (ii) delete r > 1 open disks from the connected sum
of two or more tori, (iii) delete r > 1 open disks from the connected
sum of four or more projective planes. Finally, they show that the
pants surface is almost bW, with the bound on the difference being
one. They conjecture that this surface is not bW.

The purpose of this paper is to extend the above results of Brown
and Sanderson. In Theorem 4.1 a larger class of surfaces (than those
mentioned in the list above) are shown to be totally non-bW, and in
Theorem 4.3 we show that the pants surface, as conjectured, is not bW.
Thus, the notions of bW and almost bW are different in the boundary-
preserving setting. This is in contrast to the corresponding result for
maps of surfaces with boundary as

THEOREM 1.1. If X is a compact, connected surface with non-empty
boundary and the Euler characteristic of X is less than zero, then X
is totally non- Wecken.

The proof of Theorem 1.1 is a direct consequence of [K2; Theorem
1.1] and Proposition 3.3 of this paper. It is unknown whether or not
this extends to closed surfaces as well (the theorem quoted from [K2]
only applies to surfaces with boundary). It seems reasonable that the
above theorem extends to closed surfaces and thus, the notions of
Wecken and almost Wecken would be equivalent.
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The remainder of this paper is concerned with the proofs of Propo-
sition 3.3, and Theorems 4.1 and 4.3. In §2 the tools from [Kl] and
[K2] needed to compute the minimal number MF[] are given. Sec-
tion 3 shows that all bounded surfaces with fundamental group having
rank 2 are totally non-Wecken. This is then used to prove Theorem
4.1. Finally, in §4, a specific boundary-preserving map b of the pants
surface is shown to satisfy MFd[b] - Nd(b) = 1. As a result of this
work, the only surfaces for which this boundary-preserving map clas-
sification is unknown are: S2 with at least four open disks removed,
and projective space with at least two open disks removed.

2. A method for computing MF[], Let D be a 2-dimensional disk
and let M denote the surface obtained by attaching n 1-handles,
H\, . . . , Hn to the boundary of D. Let A\9 . . . , A2n be disjoint arcs
in ΘD so that HiΠD = A2i-ι UA2i, i e {1,...,«}. Set A = \JAi.
Choose a basepoint x0 i n D and let W\, ... ,wn be oriented based
loops in M which intersect in the point XQ , and Wj Π Hj is an arc if
/ = j , and empty otherwise. To remove any ambiguity in the indexing
of the components of A, it is assumed that when the oriented loop Wj
is traversed, that A2i_ι is traversed before A2i. Let W = U/Li wi and
let s: M -> W be a strong deformation retraction such that s~ι(x)
is a proper arc in Hi for each x e (W Π Hi).

By abuse of notation we let the based loops w\, . . . , wn also denote
elements in the fundamental group of M 9 and hence π\(M, XQ) is
the free group generated by these n loops. Given an endomorphism
φ: πx(M) -> πi(Λf), define a map φ: W -> W such that φ(WnD)
= xo, and φ(W n Hi) traces out the word in W corresponding to
φ(Wi). Define fφ: M —> M by fψ = i o φ o s where /: W —> M
denotes inclusion. Notice that flι{A) consists of proper arcs in M
(all contained in \JHi), and each of Hi contains 2m/ arcs, where
rrii is the length of the reduced word φ(Wi).

For the following we assume that given g: M —> M, then g(M) c
intM and that g~~ι(A) is a 1-dimensional proper submanifold of M.
With W denoting the set of components of g~ι(A), define a function
μ: & -> {1, . . . , In) so that μ(C) = fc iff ^(C) C ^ for each
C G ^ . The function μ extends naturally to subsets of components of
g~ι (A). Notice that, by general position, there exists a map having the
minimal number of fixed points, which satisfies the condition above.
Further, we may assume that g~ι(A) has the property that for each
open set & in M that meets g~ι(A), g(&) is not contained in the
closure of a component of M\A (see [Kl; Lemma 3.2]). Other ways
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to simplify maps having the minimal number of fixed points are given
in the following two lemmas. A proper arc in M is called a boundary
curve if it is isotopic (rel endpoints) to an arc which is disjoint from
W.

LEMMA 2.1. Given a map f:M—*M there is a map g homotopίc
to f such that #Fix(g) = MF[f] and g~ι(A) is a l-dimensional
proper submanifold of M. In addition, there is a map h, homotopic
to g, also having MF[f] fixed points and such that the collection of
curves h~ι(A) is properly isotopic to the collection obtained by remov-
ing all of the boundary curves and inessential simple closed curves from

Proof. That g~x (A) is a proper submanifold and the removal of the
inessential simple closed curves is given in [Kl; Lemma 3.2, Corollary
3.7]. The following construction for removing boundary curves, of
which a variation will also be used in the proof of Proposition 3.2, is
referred to as the "collar construction."

Suppose that β is a boundary curve in g~ι(A). Let C = Sι x I
be an annulus and form a surface M1 by identifying the boundary
component of M containing the endpoints of β with Sι x {0}. Let
A\ = AjU((dAinc) x / ) . Since β is a boundary curve there is a unique
arc βo contained in dM such that βuβo forms an inessential simple
closed curve. Let βr be a proper arc in C chosen so that βo U βf

forms an inessential simple closed curve. Then clearly, β u β' forms
an inessential simple closed curve. Moreover, if β\ and βι are two
such curves, then the new curves constructed in M' can be taken to be
disjoint. Apply this construction to all of the boundary curves; to all
the other arcs in M extend straight outwards to dM1. Let Γ denote
the new collection of curves in M1, and define a map G: Mf —> M'
extending g so that G~ι(Ά) = Γ and G{C) c intAf. Then clearly,
#Fix(G) = #Fix(#). Finally, remove these newly formed inessential
simple closed curves to obtain h, noting that M' is homeomorphic
to M . D

LEMMA 2.2. Suppose δ and η are curves in g~ι{A) with μ(δ) =
μ(η), and λ is an arc in M such that dλ meets each of δ, η and
intλ Π g~ι{A) = 0 . Let (U, UQ) be a closed regular neighborhood of
(λ, dλ) in (Mo, g~ι(A)) where Mo is the closure of the component of
M\g~ι(A) which contains int λ. If there is a disk X which contains
both g(U) and thesubarc of Aμ^δ) containing g(dλ) with XC\U = 0,
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then there is a map h homotopic to g with support on a neighborhood
of U such that Fix(h) = Fix(g) and

Proof. Let V be a regular neighborhood of U in M that meets
g~ι(A) in two arcs, and such that VnX = 0 and g(V) c l . Define
h so that it agrees with g on the set (M\V) U (g~ι(A)\Uo) and so
that h(dU\Uo) c Aμ^y Extend h to the rest of V by mapping
each of the three remaining disks into X\A. The result follows as

V = 0. D

Our mechanism for estimating MF[] is Theorem 2.3 given below
which is taken from Theorem 3.1 of [K2]. To apply this theorem we
will need some terminology regarding self-maps of M. An arc or
a simple closed curve, y, in M is said to be taut if dγ Π A = 0 ,
int γ meets W u A transversally in a finite number of points, Auγ
does not contain any inessential simple closed curves, and for each
/, int γ U (Wi\xo) does not contain any simple closed curves. This
last condition keeps the geometric intersection of γ and W minimal
up to isotopy (rel<9) in M\x0. A map f:M—>M is taut if each
component of f~λ{A) is a taut proper arc or a taut simple closed
curve, Fix(/) nA = 0 and f(M) c W. Let C denote the closure
of a component of M\(f~ι(A) U A). We say that C is a critical
region for / if f(C) meets the same component of M\A as does
C. We denote the topological fixed point index of / restricted by C
by index(C). A critical region is exceptional if it meets at least three
components of A. Note that up to homotopy, we may assume that
each critical region contains at most one fixed point depending on its
fixed point index. For what follows, we assume that each exceptional
critical region contains exactly one fixed point even if its index is zero.

A taut arc a contained in the interior of M is a simple merging
arc for f if it satisfies the following conditions.

(al) dαcFix(/) .
(a2) a meets f~ι(A) transversally and for each /, aUAi does not

contain any loops which bound disks in M.
(a3) If a0 is a component of {a\A), and τ is a component of

(f~ι(A)\A), with rΠαo being nonempty, then α0 and τ meet in
exactly one point and their closures intersect at least three components
of A.

(a4) f(a) meets the same components of A, in the same order,
as α.
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This definition is slightly different than the one given in [K2]. The
above was obtained by dropping the more general notion of a (non-
simple) merging sequence, and at the same time including condition
(a4) which was a property that simple merging arcs had (in that paper).
We will see that (a4) is very useful when it comes to applying Theorem
2.3. Note that (a4) implies that the endpoints of a simple merging arc
are Nielsen equivalent.

Suppose that a is a simple merging arc for / . We define a new
map g as follows: condition (a4) gives a natural pairing between the
finite sets a Π A and a Π f~ι(A). Given a point p in the latter,
let p' be its paired point in the former, and let ap be the subarc of
a joining the two. Let Cp be a disk which contains ap and meets
both of A and f~ι(A) in a number of arcs, one for each point in
apn{Auf~ι(A)). Let γp be the arc in Cpnf~ι(A) containing/?, let
Bp be the component of Cp\γp which contains p', and let ζp denote
the arc dCpΠBp. Replace γp with ζp to obtain a new curve. Loosely,
a "finger-push" of γp along ap has been performed to obtain this new
curve. If q is another point in aί)f~1(A) the disk Cq is chosen as
above with the additional requirement that the arc ζq is kept disjoint
from ζp . Repeating this for each point in α Π / " 1 (A) we obtain a new
collection of curves which is denoted by Γ. Then / is homotopic to
a map g, by a homotopy which is the identity outside a neighborhood
of α, such that Γ = g~λ(A). We say that g is obtained from f by
merging along a, and write / A g.

In general, / —• g where Λ = (λ\, . . . , λr) means there exist maps

fi .M^M with /o = / , fr = g, and f.x λ f. If int(λ/)nint(λ7 ) =
0 when / Φ j , we call Λ a merging sequence for / and note that Λ
is an ordered sequence as dλi may not be in Fix(/_2)

Finally, in order to state Theorem 2.3 an additional map defined in
[K2] is needed. Starting with a map f:M-+M (say as the end of
a merging sequence) there is an associated map, denoted fm[n, which
depends only on / . The actual definition of this map is omitted here
as it is not needed for our computations. Instead we state in Lemma
2.4 the one property of fmin that will be used. This lemma by-passes
the computation of fm[n by giving sufficient conditions as to when
a given fixed point of / will persist as a fixed point of fm[n. The
proof of this lemma follows immediately from the definition of the
map / m i n .

THEOREM 2.3. Given an endomorphism φ of %\{M, x0) there exist
a taut map g: M —• M, homotopic to fφ, and a simple merging
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sequence g A / such that #Fix(^ i n ) = MF[fφ]. Moreover, if h is
a map homotopic to fψ having MF[fφ] fixed points and such that
h~ι(A) is a I-dimensional proper submanifold of M, then g maybe
chosen so that g~ι(A) is isotopict by an isotopy which is the identity
on dM, to h-\A).

LEMMA 2.4. Let f be a taut map and suppose C is a critical region
for f. If for each arc ζ in dCπf~ι(A) it follows that Aμ^ is disjoint
from ζ Π A, then there is a unique critical region Cm{n for fm[n such
that

index(Cm i n, / m i n ) = index(C, / ) .

Moreover, if C and C are two such regions (C Φ C), then Cm{n

and C'min are distinct.

3. Bounded surfaces with rank(πi) = 2. In this section we assume
that M = D U Hi u H2 where D, Hγ, H2 are as defined as §2. By
convention, we assume that M\Hχ is orientable. Also, the only endo-
morphisms of π(M) which will be considered are those of the form:
φ{w\) is a nontrivial cyclically reduced word and φ{w2) = 1.

LEMMA 3.1. With M and φ as above, there is a map h, homotopic
to fφ, having MF[fφ] fixed points and such that each component of
h~ι(A) is isotopic to one of the following: (i) the simple closed curve
w2 > (ϋ) a simple closed curve which is isotopic to a boundary component
of M, (iii) an arc which is disjoint from A\Δw2^

Proof. Let h be a map satisfying the conclusions of Lemma 2.1
and suppose that β is a simple closed curve contained in h~ι{A).
Then [β] G ker φ, where [β] denotes the free homotopy class of loops
containing β. We consider the various surfaces in question. For the
pants surface, that β is isotopic to w2 is clear. The same holds when
M is a punctured Mόbius band. ^

Now, if M is the punctured torus, let M denote the torus^btained
by attaching a disk to dM. Let β be the inclusion of β in M and let
φ be the induced endomorphism. Then β is a (p, q) curve where
p, q are relatively prime integers. A direct calculation shows that
[β] G ker0 only when β is isotopic to either w2 or dM. Finally,
the argument for the punctured Klein bottle is the same, again yielding
either w2 or dM.
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For proper arcs in M, first consider a map g homotopic to h such
that g~ι(A) is properly isotopic to h~x{A), and each of its compo-
nents has minimal intersection with A U w2. We first consider the
case when M is either a punctured torus or punctured Klein bottle.
Suppose ζ is a proper arc in g~ι(A) which intersects A. By capping
off dM with a disk and extending ζ to a simple closed curve ζ' by
adding an arc in this disk, it is easy to see that ζ must traverse w2

as well.
At this point we need to reduce. Consider the finite set g~ι(A) n

w2. Since φ(w2) = 1, there are adjacent points p\, p2 in this set
with μ{p\) = μ(p2). Moreover, since this set lies on a circle, there is
another pair qx, q2 of adjacent points with μ(q\) — //(ft) Let Xp

and X^ denote the components of M\g~ι(A) which have {p\, £2}
and {<7i, ft}, respectively, in the boundaries of their closures. Let
n be the number of proper arcs in g~ι(A) which are contained in
the boundary of the closure of Xp . First notice that n > 1, for if
ζ was a proper arc containing both of p\, p2 then a small deleted
neighborhood of ζ would map into a single component of M\A.
Also, as g~x(A) does not contain any boundary curves it must be
that n < 4. In case n is either 2 or 3, there is an arc in dM Π c\{Xp)
which joins an endpoint of the arc containing p\ to an endpoint of
the arc containing p2. In case n is 4, then M\XP must have two
components; each bounded by 2 arcs from dM and two arcs from
g"ι(A). Note that in this last case the closure of Xq contains only 2
arcs from g~ι(A).

Let X = cl(Xp) when n < 4, cl(X^) otherwise. Then there is an
arc in dM f)X which joins the paired curves in the boundary of X.
Let Y denote the closure of the component of h~ι (A) corresponding
to X an let r\\, η2 be corresponding paired curves. Let λ be an arc in
Y going from ^ to 2̂ and chosen close enough to dM so that the
hypotheses of Lemma 2.2 are satisfied. Apply the lemma to replace
r\x U η2 with two other arcs, noting that for the new corresponding
map g we will have reduced the cardinality of g~ι (A) Πw2 . Remove
any boundary curves and repeat until all curves in g~ι(A) have been
removed from w2.

If M denotes the pants surface, there is only one type of arc which
meets A . This arc traverses H2 once and has endpoints in the bound-
ary component of M which does not intersect H2 . The endpoints of
an innermost such curve are also the endpoints of an arc in dM which
misses all other components of g~ι(A). Lemma 2.2 can now be used
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as above to replace this arc with a boundary curve and a simple closed
curve isotopic to w2. On the other hand, if all of the proper arcs are
disjoint from A, Lemma 2.2 can be applied to make them disjoint
from w2 as well. Finally, for the punctured Mόbius band all arcs
are disjoint from A and by the same argument, can be made disjoint
from w2. Ώ

The above lemma says that very few types of curves need be con-
sidered when searching for a fixed point minimizing map. The next
result takes advantage of this to further reduce the possibilities. For
convenience, the following terminology will be adopted throughout the
rest of this paper. Any curve properly isotopic to Aγ will be referred
to as an a\-curve. An arc which is properly isotopic to an arc disjoint
from A and is not an a\-curve will be called an ao-curve. Similarly,
a mi-curve, i e {1, 2}, is a simple closed curve isotopic to wt.

PROPOSITION 3.2. Let M and φ be as in Lemma 3.1. Then there is
a map f homotopic to fφ such that, #Fix(/) = MF[fφ], and f~ι{A)
consists of either 2/ w2-curves if M is a punctured torus or punctured
Klein bottle, or 21 proper arcs, each of which is isotopic rel dM to an
arc contained in H\, otherwise.

Proof. Let / be a map homotopic to fφ which has MF[fφ] fixed
points and satisfies the conclusion of Lemma 3.1. Let's first consider
the case when M denotes either the punctured torus or punctured
Klein bottle. Note that in this case each αo-curve meets w2 alge-
braically in one point and so none occur. Thus, f~ι(A) consists
of QL\- and ^-curves. Now apply the collar construction, this time
adding to each a\-curve an arc in C so that the union forms a simple
closed curve isotopic to w2. Call the resulting map g. It has the
property that each component of g~ι(A) is isotopic to w2.

Since g#(w\) is conjugate to φ(w\), there must be at least 2/ of
these curves. If there are more than 2/, then there must be two curves
having the same //-values, which form the boundary of the closure of
the component T of M\g~ι(A). Clearly, the closure of T is an
annulus. Since each of A$ and A4 have nonzero intersection number
with w2, Γ n A must contain arcs λ$ c A$ and A4 c A4 whose
boundaries meet both components of the boundary of cl(T). As g(T)
is contained in M\A and g(dT) meets only one component of A, it
follows that g(λ$ UA4) meets only one component of A. Hence, one
of λ^Πg(λ^) or λ^f\g(λ^) must be empty. The hypotheses of Lemma
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2.2 are satisfied so dT can be replaced by a single inessential simple
closed curve which, by Lemma 2.1, is removed. After removing all
excess pairs in this manner we have the desired map / .

If M is either the pants surface or the punctured Mόbius band
proceed as follows. Starting with the αo-curve nearest H2 (if any
exist), connect points near the endpoints with an arc, passing through
the handle H2, chosen close to dM. Apply Lemma 2.2, so as to
replace the curve with a boundary curve and a u^-curve. Remove the
boundary curve and repeat until all αo-curves are gone. Now apply the
collar construction by attaching a collar to the boundary component
which is isotopic to w2. By adding ^-curves to C with //-values
assigned so that they pair up with the u^-curves already present, we
apply the "annulus" construction as in the previous case to remove all
of the w2-curves. As excess a\-curves must be paired, Lemma 2.2
can be used to convert each pair into a pair of boundary curves which
are then removed. Finally, to get the a\-curves isotopic rel dM,
add collars to the boundary components meeting H\ and extend each
curve by adding two arcs, one in each collar. D

We are now in a position to compute MF[] for maps whose in-
duced endomorphism of the fundamental group sends w2 to the triv-
ial word. To do so, for each positive integer n, consider the endo-
morphism φ(n), of π\{M, XQ) , defined by sending

w2 H-> 1.

By a straightforward computation it can be shown that, for each n,
the Nielsen number of fφ^ is equal to 1.

PROPOSITION 3.3. With φ(n) defined as above, MF[fφ^] > 2n-5.

Proof. Let h be a map homotopic to fφ^n) having the minimal
number of fixed points. By Proposition 3.2 and Theorem 2.3, we can

assume that there is a merging sequence g —* f with h = fm{n, and
such that g~ι(A) consists of An + 4 taut curves; ϊ/^-curves if m is
either a punctured torus or a punctured Klein bottle, a\-curves in H±
otherwise. The remainder of the proof is summarized as follows: we
show that there are at least 2n — 5 critical regions for g which (1)
have non-zero index and (2) are disjoint from Λ. Hence they are
critical regions for / . Finally, we appeal to Lemma 2.4 to show that
each of these regions corresponds to a fixed point of h .
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For the following, let X = D, if M is a punctured torus or a punc-
tured Klein bottle, otherwise let X = H\. Let R\, . . . , Rr denote
the critical regions for g which are contained in X such that Rj is
bounded by curves <?/, i , ci>2 with μ(cιj) = j . Assume that these re-
gions are indexed by their order along wx with R\ being nearest A\.
A direct index calculation shows that index(i?/) = ± 1 . The number
of such regions can be estimated as follows. Each curve in g~x(A)
with μ = 1 determines a unique critical region in X. At most two
are bounded by a second curve with μ e {3, 4}, and at most one of
these critical regions meets exactly one curve in g~ι(A). All others
are of the desired type and hence, r > In - 3.

The proof is completed by showing that, for 1 < i < r, i?z is
disjoint from Λ, together with the observation that each i?/ satisfies
the hypothesis of Lemma 2.4. Let λ\, . . . , λm denote the merging

arcs (in order) in Λ and first consider g -*> g\. If λ\ Π JR, Φ 0 , then
λ\ meets at least one of QJ and so g(λ\) meets Aj. By condition
(a4), we have that λ\ crosses Aj as well, implying that λ\ traverses
either Rι or i? r . As a result g(λ\), and hence λ\ as well, contains
a subarc in X which goes from A\ to A2 . This subarc of λ\ meets
every component of g~ι(A) and so its image under g traces out a
cyclic permutation of φ(n)(w\). As λγ must also contain a subarc
traversing A according to this permutation we obtain, for any n > 3,
a contradiction to Lemma 3.4 given below.

As a consequence of the above argument, λ\ meets at most one
curve τ in g~ι(A) which has μ(τ) e {1, 2} . Also, τ does not lie on
the boundary of any of R2, . . . , Rr-\ After merging along λ\, τ is
deformed to a curve in gγι(A) which only differs from τ by a "finger-
push" across Aμ^. This allows us to repeat the same argument to
establish that each of λ2, . . . , λm is disjoint from Rt when 1 < / < r.

LEMMA 3.4. Let g: M —> M be as in the proof of Proposition

3.3. If σ is an arc in M which traverses A in either the order

Au A2, AΪ9 A3, A4, Au A2, Ax of the order A2, Ax, A2, A3, AA,

A2, A\, A2, then σ cannot be a subarc of a merging arc for g.

Proof. Let & denote the subarc of a going from A^ to A4 in H2.
From condition (a2), we see that σ' is disjoint from g~ι(A). By the
definition of σ and the structure of the collection of curves g~ι(A),
it is easy to see that each component of σ\σ' must intersect g~ι{A).
Let GQ be the maximal subarc of σ containing σ', and having interior
disjoint from g~ι(A).
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Now, if σ were a merging arc, then both endpoints of σ$ would be
contained in the same component of g~ι(A). Hence, g(σo) has end-
points in some A[ and interior disjoint from A, and thus σ would
contain a subarc with the same property. But this contradicts condi-
tion (a2) of the definition of merging arc. D

4. Boundary-preserving maps. In this section we give two distinct
results concerning boundary-preserving maps of surfaces. The first
extends the known family of totally non-bW surfaces. The second,
Theorem 4.3, shows that the pants surface is exceptional in regards to
boundary-preserving maps in that it is the only known surface which
is almost bW but not bW.

THEOREM 4.1. Let r be a positive integer and let Y be a connected,
closed surface other than the two sphere or the projective plane. If X
denotes the surface obtained by deleting r open discs from Y, then X
is totally non-bW.

Proof. Observe that for each n, the map φ(n) given in §3 is homo-
topic to a boundary-preserving map if M is either a punctured torus
or a punctured Klein bottle. Thus, as a result of Proposition 3.3, these
two spaces are totally non-bW.

Now, if Y is anything other than the connected sum of either two
or three projective planes, then Theorem 3.1 of [BS] says that X is
totally non-bW. Their proof is based on the fact that there are two
simple closed curves a, β embedded nicely (their union is injective
on homology) in X so that a regular neighborhood of aUβ in X is the
pants surface—together with the fact that the pants surface is totally
non-Wecken. Proposition 3.3 can be used to generalize that proof.
Namely, if a u β has a regular neighborhood which is a totally non-
Wecken surface with fundamental group having rank two, then their
argument goes through. If Y is the connected sum of two projective
planes, then a and β can be chosen so that their regular neighborhood
is a punctured Klein bottle. For three projective planes, the resulting
surface is a punctured torus. D

Suppose / : (X, dX) —• (X, dX) is given where X is a compact
surface with nonempty boundary. Analogous to Lemma 2.1, there
is a map h: (X, dX) -* (X, dX) having MFd[f] fixed points with
h~ι (A) being a proper 1-dimensional submanifold of X . In addition,
we may also assume that no inessential simple closed curves appear.
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Also, for the following, we assume that for all boundary-preserving
maps under consideration, the map f\dX has the minimal number of
fixed points possible. This is determined by the degree of the restricted
mapping on each invariant component.

By slightly altering the definition of a merging arc to allow for its
endpoints to be fixed points in dX, the proof of [K2; Theorem 3.1]
goes through unchanged (except, of course, making sure that all maps
are boundary-preserving) in the boundary-preserving setting to give us
the following

THEOREM 4.2. Let f: (X, dX) -+ (X, dX) be such that f\dX has
the minimal number of fixed points. Then there is a taut map g,

homotopic to f, and a simple merging sequence g —• g such that
#Fix(£m i n) = MFd[f]. Moreover, ifh is a map homotopic to f having
MFd[f] fixed points and such that h~ι(A) is a l-dimensional proper
submanifold of M, then g may be chosen so that g~ι(A) is isotopic,
by an isotopy which is the identity on dM, to h~ι(A).

Let P denote the pants surface with a handle structure as given in
§§2 and 3. Without loss we assume that W\ and u>2 are chosen so
that the loop W\W2 is homotopic to a simple closed curve in P. Let
Co, C\, C2 be the components of dP indexed so that C\ Π H2 = 0
and C2ΠH1 = 0. Fix orientations on these curves using the following
convention; C\ is homotopic to W\, C2 is homotopic to u>2, and CQ
is homotopic to W\W2. For / e {1, 2}, choose points X/ on C, Π ΰ ,
and oriented arcs σz in D going from XQ to JC/ , with int(σ, )n W = 0 .
Define a map b: (P, dP) -> (P, dP) requiring that:

(1) CQ I-* C2 by an orientation preserving homeomorphism,
(2) C\ H+ C2 by an o.p. homeomorphism which takes x\ to X2,
(3) C 2 H - > { * 2 } ,

(4) XQ H+ XQ , ϋ\ ι-+ W\W2

 xW\ϋ2 and σ2 »-> σ2 .

It is easy to check that (l)-(4) can be extended to a boundary-
preserving self-map of P. On the level of integral homology the en-
domorphism b* of H\(P\Z) sends W\ H+ W2 and w2 H+ 1. Thus
the Lefschetz number L(b) is equal to one. Furthermore, it is shown
in case (iii) of the proof of Theorem 4.10 in [BS], that Nβ(b) = 1.
On the contrary we show that

THEOREM 4.3. MFd[b] = 2 and hence, the pants surface is not
boundary - Wecken.
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Proof. Let h be a fixed point minimizing map which is homotopic
to b through a boundary-preserving homotopy, and such that h"ι(A)
is a 1-dimensional proper submanifold of P which does not con-
tain any inessential simple closed curves. Without loss of generality,
we assume that /z(C2) = Xι and h\Q: Q —• C 2 , / e {0, 1}, is a
homeomorphism with the property that h(Ci\H\) C (C2 Π ΰ ) , and
λ(jci) = #2. It is then clear that h~ι(A) consists of two proper arcs
each going from Q to C\, together with a number of essential sim-
ple closed curves. Due to the presence of the arcs, the only possible
simple closed curves are u>2-curves.

We now go back to constructions given in previous sections to get
more control on the curves in h~ι(A). First the collar construction
(given in the proof of Lemma 2.1) can be used to produce a new
map in the same boundary-preserving homotopy class as b as follows:
Add collars to each of Q and C\ to obtain P'. Extend the proper
arcs of h~λ{A) in the collars so that the new arcs in Pr are isotopic
{τzldP') to arcs contained in H\. Now define h on the new boundary
components so that h\C\ has the same properties as h\Q. Extend to
the rest of the collars by mapping into a neighborhood of C 2 , and
finish by adjusting the map on a neighborhood of Q U C\ so that
these curves are now mapped into the interior of Pf. The fact that
h(Co U C\) c C2 ensures that when constructing this new map (which
by abuse of notation we still call h) no fixed points are added. For
the simple closed curves, condition (4) in the definition of b implies
that there must be at least six. If there are any more, the excess must
be paired and so the annulus construction (in the proof of Proposition
3.2) can be used to remove them. According to the definition of b,
the //-values of the six i^-curves read 2, 1 , 3 , 4 , 2 , 1 in order along
the arc σ f ^

Let g be a taut map with g~ι(A) isotopic reldP to h~ι(A). By

Theorem 4.2, we may assume that there is a merging sequence g —• g
with h = gm[n. Let Rj, i € {1, 2}, be the component of D\g~ι(A)
meeting Q. By construction, g(Ri) c D and so each is a critical
region for g. Clearly, i?2 contains the fixed point Xι. We claim
that R\ must contain a fixed point as well. To see this, let YQ denote
the u?2-curve furthest away from C2 and let Y denote the annulus
in P which is bounded by YQ and C 2 . Thus, Y contains all of
the ^-curves in g~ι(A). Let g' be a non-boundary-preserving map
which agrees with g on P\Y, and which maps all of Y into A2.
Then gr is homotopic to g and thus L(gr) = 1. The claim is now
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established by noting that gf has no fixed points in P\R\. Hence

It is easy to see that P\{A U g~ι(A)) has a total of 17 components;
3 in H\, 7 in D, 7 in Hi. Of these, exactly five are critical regions
for g . Aside from R\ and i?2, each of the others is contained in the
interior of Y and is bounded by subarcs from two u^-curves, a subarc
of A$ and a subarc of A4. Suppose that λ is a merging arc for g.
If λo is a component of λ\A, then condition (a3) says that AQ meets
a incurve only when one of its endpoints is also an endpoint of λ
and the other is contained in ^ U ^ This, together with condition
(a4), guarantees that none of the three critical regions in the interior
of Y contains an endpoint of λ. Thus, the endpoints of λ must
be %2 and the fixed point in R\. Starting with the endpoint xι 9

λ must first traverse each of the six i^-curves with //-values in the
order 1 , 2 , 4 , 3 , 1 , 2 . Thus g(λ) must contain a subarc starting at
X2 and traversing A in the order A\, A2, A4 9 A$, A\, Aι and hence,
λ must contain such a subarc as well. But this is a contradiction, as
any curve starting at Xι and traversing A in that order must have self
crossings. Thus, Λ must be empty and g = g. By Lemma 2.4, the
critical region for h corresponding to R\ has nonzero index and so
it must contain a fixed point which is in the interior P. π
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