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KNOTTING TRIVIAL KNOTS AND
RESULTING KNOT TYPES

KiMiaiko MOTEGI

Let (V, K) be a pattern (i.e. V' is a standardly embedded solid
torus in oriented S*> and K is a knot in V') and f an orientation
preserving emdedding from 7 into S> such that f(V) is knotted.

In this paper answers to the following questions will be given de-
pending upon whether the winding number of K, in V is zero or
not.

(1) Suppose that K, is unknotted and K, is knotted in S*. Can
f(K;) be ambient isotopic to f(K;) in S> for some embedding f :
Ve S3?

(2) Suppose that K; and K, are both unknotted in S> . How are
(V, K1) and (V, K3) related if f(K;) is ambient isotopic to f(K>)
in S* for some embedding f:V — S° ?

1. Introduction. Let K be a knot in S3, which is contained in
a standardly embedded solid torus ¥ (C S3). Assume that K is
not contained in a 3-ball in V. Let f be an orientation preserving
embedding from ¥ into S3 such that f(C) is knotted in S3, here
C denotes a core of V. Then we get a new knot f(K) in S> called
a satellite knot with a companion knot f(C). The knot K is called
a preimage knot and we call the pair (¥, K) a pattern (see Figure 1
on the next page).

Throughout this paper for an embedding f from V into S3, we
assume that it is orientation preserving and f(C) is knotted in S3.

We concern ourselves with the following questions.

(1) Suppose that K; is unknotted and K, is knotted in S3. Can
f(K) be ambient isotopic to f(K,) in S3 for some embedding f :
Ve 83 7?

(2) Suppose that K; and K, are both unknotted in S3. How are
(V, K;) and (V, K3) related if f(K;) is ambient isotopic to f(K3)
in S3 for some embedding f:V — S3 ?

For two knots K; and K,, we write K; = K, provided that there
exists an orientation preserving self-homeomorphism of S3 carrying
K, to K, (or equivalently, K; and K, are ambient isotopic in S3).
For two patterns (V, K;) and (V, K3), if there exists an orienta-
tion preserving self-homeomorphism 4 of V' sending longitude to

371



372 KIMIHIKO MOTEGI

f{K)

FiGURE 1

+longitude which satisfies A(K;) = K,, then we write (V, K;) ~
(V, K3). In addition if the homeomorphism # sends longitude to
longitude , then we write (V, K;) = (V, K3). Itis known that (V, K;)
= (V, K,) if and only if K; and K, are ambient isotopic in V.
Throughout this paper longitude means preferred longitude.

The wrapping number of K in V—the minimal geometric inter-
section number of K with a meridian disk in V' —is denoted by
wrapy(K), and the winding number of K in V—the algebraic in-
tersection number of K with a meridian disk in V'—is denoted by
windy (K). (We may assume windy(K) > 0 by considering an ap-
propriate orientation of K .)

Now our main result is stated as follows.

THEOREM 1.1. Let (V, K;) (i = 1, 2) be a pattern. Suppose that
K, is unknotted in S? and windy(K,) # 0. If f(K;) = f(K;) in
S3 for some embedding f from V into S3, then (V, K{) ~(V, K3)
holds.

REMARK 1.2. (1) In this theorem the condition windy (K3) # 0 is
essential. The example below (Figure 2) demonstrates the necessity of
such a condition.

In this example K, is unknotted in S3 and K, is knotted (and
hence (V, K;) # (V, K3) ), but windy(K;) = 0. From them, we can
obtain the same knot f(K;) = f(K3).

The modification to recognize that f(K;) = f(K;) is given by Fig-
ure 3.
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(2) If K, is knotted, even when windy (K3) # 0, it is easy to con-
struct the example such that (V, K;) £ (V, K;) but f(K;) = f(K>)
in S3 (see Figure 4).

As consequences of the Theorem 1.1, we have Corollary 2.6 and
Theorem 3.1. By these results together with Remark 1.2 and Theo-
rem 3.3, we can answer the above questions depending upon whether
windy (K;) = 0 or not.

Throughout this paper N(X), X and int X denote the tubular
neighborhood of X, the boundary of X and the interior of X re-
spectively.

2. Isotopy between satellite knots and equivalence of patterns. To
prove Theorem 1.1 we prepare some lemmas and give a necessary
condition for a pattern (¥, K) so that K is unknotted in S3.

The next lemma is well known and we omit the proof here (see [7]).

LEMMA 2.1. Let W be a knotted solid torus in S® and K a knot
in W with wrapy (K) # 0. Then K is knotted in S3.

Consider a nontrivial knot exterior £ (i.e. E is homeomorphic to
S3 — int N(k) for some nontrivial knot k in S3) embedded
in V. Since E is compressible in V— int N(K), otherwise V =
(V— intE) U E has an incompressible torus OF, there exists an
embedded disk D in V- intE such that 0D is essential in
O(V —intE) = 0FE. Thus D is a meridian disk for the solid torus
W = S3— int E and is contained in ¥ . We call the disk D a meridian
disk for £ in V. The following lemma is a straightforward conse-
quence of Lemma 2.1.

LEMMA 2.2. Let (V, K) be a pattern such that K is unknotted in
S3 and E a nontrivial knot exterior embedded in V — K. Then the
algebraic intersection number of K and a meridian disk for E in V
is zero (see Figure 5).

Now we shall prove Theorem 1.1.

Proof of Theorem 1.1. Suppose that f(K;) = f(K;) in S? for two
patterns (V, K;) and (V, K;). Then there is an orientation preserv-
ing homeomorphism 4 of S3 carrying f(K;) to f(K5). It suffices to
show that by an isotopy of S3 which leaves f(K,) = A(f(K;)) fixed,
we can modify the homeomorphism 4 so that #(S3— int f(V)) = $3—
int f(V). To do this we need the next lemma, which was proved by
H. Schubert in [8], but since we rely heavily on this theorem, we give
a proof here using torus decompositions.
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FIGURE 5§

FIGURE 6

LeEMMA 2.3 ([8]). Let V; (i = 1, 2) be a knotted solid torus in S>
which contains a knot K with wrapy (K) # 0. Then by an ambient
isotopy of S3 which leaves K fixed, V> can be deformed so that one
of the following holds.

(1) dVinoV, =2

(2) there exist meridian disks D, and D, of both Vy and V, such
that the closure of one component of V; — Ule D; is a knotted 3-ball
in the closure of some component of V5 — Ule D; (see Figure 6).

Proof of Lemma 2.3. If V;— int N(K) is homeomorphic to S! x
S!x I for i=1 or 2, then K is a core of ¥; and we can deform V,
so that (1) in Lemma 2.3 holds. Now we assume that V;— int N(K)
is not homeomorphic to S! xS x I for i = 1, 2. Consider the torus
decomposition of S3*— int¥; and V;— int N(K) (i = 1,2) in the
sense of Jaco-Shalen [4] and Johannson [5]. Then each piece is Seifert
fibred or admits a complete hyperbolic structure of finite volume in
its interior by Thurston’s uniformization theorem [6]. Moreover, by
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Theorem VI 3.4 in [4], the Seifert part is one of torus knot spaces,
cable spaces and composing spaces. Let M, be the piece in S3—
int ¥; which contains 8V; (= 8(S3— int¥;)) and N; the piece in V;—
int N(K) which contains d¥;. We divide into two cases depending
upon whether one of 8V; (i = 1, 2) belongs to the minimal family
of tori J; defining a torus decomposition of S3>— int N(K) = (S3—
int ;) U (V;— int N(K)) or not.

Case (A). At least one of dV;(i =1, 2) belongs to Ji(i=1, 2).

In this case, by the uniqueness of the torus decomposition we can
deform 9V, so that Vi1 NdV, =@ or oV, =0V,. If 0V =oV,,
then isotoping OV, slightly off 97 in the normal direction so that
0ViNoV, =o. Thus (1) in Lemma 2.3 does hold.

Case (B). dV;(i =1, 2) does not belong to J;.

Then it turns out that M;UN; is a composing space in S3— int N(K)
= (S3— intV;) U (¥V;— int N(K)). By the uniqueness of the torus de-
composition, we can isotope M, U N, so that M, U N, is one of de-
composing pieces defined by J;. (Notationally we do not distinguish
the original MU N, and isotoped MrUN,.) If MhbUN, # M{UN,,
then (1) in Lemma 2.3 holds. Now suppose that M, UN, = M UN;.
We note that 9] is a saturated torus (i.e. a union of fibres) in the
composing space M; U N;. Since a Seifert fibration of the composing
space M; U N; is unique up to isotopy, we may modify 90V, so that
it is also saturated. Consider the orbit manifold of M; U N;, which
is a disk with holes. The image of dVF; in this orbit manifold is an
essential circle C;. If we can modify C, so that C; N C, = @, then
we can also modify 8V, so that 0V; NdV, = @ and (1) in Lemma
2.3 holds. Assume we can not isotope C, so that C;NC, = @. Then
isotope C, so that the number of points of C; N C, is minimal. Let
T be the component of d(M;UN;) separating d N(K) and M;UN; .
In S3, T bounds a solid torus W containing K, whose meridian
coincides with the regular fibre of M; U N;. In the orbit manifold we
can find arcs 4; and A, joining a point in C;NC, and the boundary
circle C which is the image of T (see Figure 7 (1)).

These arcs A; and A, are corresponding to saturated annuli Al
and A2 From A and meridian disk D of W, we can construct
a meridian disk A U D of both V; and V,. Finally consider the
boundary circle C’ of the orbit manifold depicted in Figure 7 (1),
which corresponds to the torus boundary 7’. Since 7’ bounds a



KNOTTING TRIVIAL KNOTS AND RESULTING KNOT TYPES 377

(1)

FIGURE 7

nontrivial knot exterior in V>— int V] (see Figure 7 (2)), we get just
a situation for (2) in Lemma 2.3, and this completes the proof. O

Let us study the relationship between two solid tori A(f(V)) and
f(V) using Lemma 2.3. By an ambient isotopy of S3 which leaves
f(K3) = h(f(K;)) fixed we can deform A(f(V)) into the position
such that either dA(f(V)) NI f(V) = @ or there exist meridian disks
D, and D, of both f(V) and A(f(V)) such that one component of
the closure of f(V) — U,g=1 D; is a knotted 3-ball in some component

of the closure of A(f(V))—U~, D;.

LEMMA 2.4. We can deform h(f(V)) into the position such that
Oh(f(V)nof(V)=2.

Proof of Lemma 2.4. If not, the second situation in the above occurs.
Then we get a solid torus W’ (D A(f(K})) = f(K3)) in inth(f(V)),
whose core Cy satisfies wrap sy (Cy) = 1 and is not a core of
h(f(V)). It follows that the solid torus ¥ also contains a knotted
solid torus W (D K;) in its interior such that wrapy (Cy) = 1 for
the core Cy of W . Since wrapy (K;) # 0, K; cannot be unknotted
in S3 by Lemma 2.1 and this contradicts the assumption. Hence we
can deform A(f(V)) so that dA(f(V))Nof(V)=2. O

Now we have following three possibilities.

(1) h(S3— int f(V)) C int(S3— int f(V))

(2) inth(S3— int f(V)) D S3— int f(V)

(3) h(S3— int f(V)) C int f(V)

In (1) (or (2), resp.), assume (S>—iint f(V))—int(A(S3—int f(V)))
(or A(S3— int f(V))— int(S3— int f(V)), resp.) is homeomorphic
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to S! x 8! x I. Then by an isotopy which leaves f(K,) fixed, we
may modify 4 so that A(S3— int f(V)) = S3— int f(V) and also
h(f(V)) = f(V) with h(f(K;)) = f(K;). For homological reasons,
h(longitude) = +longitude. Hence f~loho f:V — V is an orien-
tation preserving homeomorphism carrying K; to K, and longitude
to +longitude. So we get (V, K;) ~ (V, K3).

Let us consider the case where A(S3—int f(V)) C int(S3 —int f(V))
and (S3— int f(V))— int (h(S3— int f(V))) is not homeomorphic to
S! x S x I. Then using the homeomorphism A|g_; . vy from S3—
int f(V) to h(S3— int f(V)), we get mutually nonparallel incompress-
ible tori {A*(0f(V))} in S3— int f(V) for any positive integer n.
This contradicts Haken’s finiteness theorem. The similar argument
can be applied in the case where int 2(S3— int f(V)) D S3— int f(V)
and A(S3- int f(V))— int(S3— int f(V)) is not homeomorphic to
S1 x 8! x I', and again we get a contradiction.

Let us consider the case (3). The assumption implies that the non-
trivial knot exterior E = A~1(S3— int f(V)) is contained in int f(V').
Since windy (K3) # 0, we have wind;;)(f(K3)) # 0 and so we have
windh_n(f(V))(h"(f(Kz))) # 0. It follows that wind(ss_imE)(f(Kl))

is also not zero. On the other hand since K; is unknotted in S3,
by Lemma 2.2, the algebraic intersection number of K; and a merid-
ian disk for the nontrivial knot exterior f~!(E) in ¥ must be zero.
Hence we get wind( S —intE) (f(Ky)) = 0. This is a contradiction. O

In Theorem 1.1, if f(C) is a noninvertible knot, where C is a core
of ¥V, then more precisely we have the following.

THEOREM 2.5. Let (V, K;) be a pattern. Suppose that K, is un-
knotted in S3, and windy (K,) # 0. If f(K,) = f(K;) in S* for some
embedding f from V into S3 such that f(C) is noninvertible, then
V,Ky) =V, K,), thatis K| and K, are ambient isotopic in V .

Proof. In the proof of Theorem 1.1, we have an orientation pre-
serving homeomorphism 4 of S3 satisfying A(f(V)) = f(V)
and A(f(K;)) = f(K;). For homological reasons, h(longitude) =
+longitude. In addition since f(C) is noninvertible, we get
h(longitude) = longitude (see 3.19. Proposition in [1]). It follows that
fYohof:V — V is an orientation preserving homeomorphism
carrying K; to K, and longitude to longitude. Thus we conclude
V,K) =V, K). 0
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As an application of Theorem 1.1, we have the following corollary.

COROLLARY 2.6. Let (V, K;) be a pattern. Suppose that K; is
unknotted and K, is knotted in S® and windy (K,) # 0. Then for
any embedding f from V into S3, f(K|) % f(K,) in S3.

Proof. If f(K;)= f(K,) for some embedding f from V into S3,
then (V, K;) ~ (V, K;) must hold by Theorem 1.1. Extending the
orientation preserving homeomorphism 4 of V' to that of S3, we get
K, = K, . This is a contradiction. O

Concluding this section, we give the following proposition which is
an implicit corollary of Soma’s sum formula for the Gromov invari-
ants [10]. We denote the Gromov invariant of X by | X]|.

ProposiTiON 2.7. Let (V, K;) (i = 1,2) be a pattern such that
IV —int N(Ky)|| # |V — int N(K>)||. Then f(Ky) # f(K3) for any
embedding f from V into S3.

So we see that, with no conditions on K; and K, if f(K;) = f(K3)
then the Gromov invariants of their complements in V' are the same.

3. Classification of satellite knots constructed from trivial knots. As
a special case of Theorem 1.1, we have

THEOREM 3.1. Let (V, K;) be a pattern and K; a trivial knot in
S3 (i =1,2). Suppose that windy(K,) # 0 or windy(K,) # 0. If
f(Ky) = f(K;) in S3 for some embedding f from V into S3, then
(V, Kl) ~ (V, K2) holds.

The winding numbers and the wrapping numbers of knots in a solid
torus are elementary invariants for them. Particularly for a faithful
(i.e. sending longitude to longitude) embedding f :V — S3, winding
number of K in V' has an important role for Alexander polynomial
of f(K), as is shown by Seifert’s formula [9] ([1]). However if K is
unknotted and f(C) has a trivial Alexander polynomial, then f(K)
has also a trivial one independent of windy(K). Moreover when
K; = K, and windy (K;) = windy(K3), f(K;) and f(K;,) have the
same Alexander polynomial.

As a consequence of Theorem 3.1, we have the following result for
satellite knots constructed from trivial knots.
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COROLLARY 3.2. Suppose K; is a trivial knot contained in a stan-
dardly embedded solid torus V in S3 (i=1,2).

(1) If windy (K;) # windy (K3), then f(K;) % f(K>) in S3 for any
embedding f from V into S3.

(2) When windy (K;)=windy (K3) # 0, if wrapy (K)#wrapy(K3),
then f(K,) % f(K,) in S? for any embedding f from V into S3.

In the case windy (K;) = windy(K3) = 0, we have

THEOREM 3.3. For any faithful embedding f from V into S3 (ie
f sends a longitude of V to a longitude of f(V)), there exist patterns
(V, K;) and (V, K;) such that both K, and K, are unknotted in
S3, which satisfy the following properties:

(1) windy(K;) =windy(K3) =0 and (V, Ky) £ (V, K3).

(2) f(Ky) = f(Ky) in S3.

Proof. Let us consider a 3-components Brunnian link L = kUL,UL,
depicted in Figure 8.

oy
S

FIGURE 8

We denote the meridian-longitude pair of L; by (m;, ;) (i =
1,2). Let ¢t be a knot ambient isotopic to f(C), where C is a
core of V', and (m,!) a meridian-longitude pair of ¢. To obtain
the required pattern, remove a tubular neighborhood N(L;) and glue
the knot exterior E(f) = S3— int N(¢) so that m; =/ and [; = m.
Then, for i = 1, 2, the result (S3— int N(L;)) U, (S3— int N(¢))

is again S3, and we have new knots K;_; and L;_; as the images
of k£ and L;_; respectively. It is easy to see that both K3_; and
L;_; are unknotted in S3. Thus the exterior ¥ of i3_,- contain-
ing K3_; forms a pattern (V, K3_;). In this way we get two pat-
terns (V, K;) and (V, K;). By the construction, for the faithful
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embedding f: V — §3, f(K;) = f(K;) does hold in S3. In fact,
Sf(K1) = f(K3) can be described as the knot obtained from & in Fig-
ure 8 by simultaneously replacing a neighborhood of a meridian disk
of each of L; and L, by a tube knotted according to the given knot
t.

From now on we prove (V, K;) # (V, K;) by showing wrap (K;)
# wrapy(K3). Clearly wrapy(K;) < 2 and wrapy,(K;) < 4. Since
windy (K>) =0, wrapy (K;,) must be even. Now we assume wrapy (K>)
= 2. Then there exists a disk D, in

V = (S~ intN(Ly)) Un (8%~ int N()) ~ int N(Ly)

such that D,NK; = D, Nk consists of two points and 8D, = I,. Ex-
tending D, , we may assume 0D, = L,. Let D, be the disk depicted
in Figure 9 (1), such that 0D, = k. We remark that D, N L, consists
of four points p;, p,, g1, g2 (see Figure 9 (1)).

(1

9

(3)
FIGURE 9

From the assumption we see that the boundary of arc components of
DyNDy in Dy consists of six points p;, py, g1, g2, X, ¥ (see Figure
9 (2)). Considering the orientations, there exists an arc component o
of D, N Dy joining p; and g; for some i, j (see Figure 9 (2)(3)).
Let B be an arc of L, connecting p; and qj,and D adisk in D,
bounded by aU . Then aU B clearly has winding number one in
the solid torus S3— int N(L;), which is knotted as N(¢) in S3> V.
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This contradicts, via Lemma 2.1, that a U # = dD. Hence we can
conclude wrapy (K;) # 2, and applying the same argument we get also
wrapy (K3) # 0. It follows that wrapy (K;) = 4. We see wrapy (K;) =
2 easily as follows. If wrap,(K;) # 2, then wrapy,(K;) = 0. How-
ever this means wrapy(K;,) = 0, thus wrapy,(K;) = 2.

In this way we get the required patterns. O

This result can be generalized to

COROLLARY 3.4. For any knot K in S* and any faithful embedding
f from V into S3, there exist patterns (V , K,) and (V , K;) such
that K; =K in S® (i =1, 2), which satisfy the following properties:

(1) (V, K) £ (V, K2).

(2) f(Ky) = f(K>) in S3 for the embedding [ from V into S3.

Proof. Let (V, k) and (V, k) be the patterns constructed in The-
orem 3.3 depending upon the embedding f. Since k; (i=1,2)is
trivial in S3, we can locally replace an unknotted arc of k; by a
knotted arc (with a suitable direction) so that the resulting knot K;
represents K in S3. Then it follows from the choice of (V, k;) and
(V, ky) that (V, K;) and (V, K;) are the required patterns. o
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