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KNOTTING TRIVIAL KNOTS AND
RESULTING KNOT TYPES

KlMIHIKO MOTEGI

Let (V, K) be a pattern (i.e. V is a standardly embedded solid
torus in oriented S3 and K is a knot in V) and / an orientation
preserving emdedding from V into S3 such that f(V) is knotted.

In this paper answers to the following questions will be given de-
pending upon whether the winding number of K2 in V is zero or
not.

(1) Suppose that K\ is unknotted and Ki is knotted in S3. Can
f(K\) be ambient isotopic to f(K2) in S3 for some embedding / :
V^S3 ?

(2) Suppose that K\ and K2 are both unknotted in S3. How are
(V9Kι) and (V, K2) related if f(Kγ) is ambient isotopic to f(K2)
in S3 for some embedding / : V -̂> S3 ?

1. Introduction. Let K be a knot in S3, which is contained in
a standardly embedded solid torus V ( c S3). Assume that K is
not contained in a 3-ball in V. Let / be an orientation preserving
embedding from V into S3 such that f(C) is knotted in S 3 , here
C denotes a core of V. Then we get a new knot f(K) in S3 called
a satellite knot with a companion knot f(C). The knot K is called
a preimage knot and we call the pair (V, K) a pattern (see Figure 1
on the next page).

Throughout this paper for an embedding / from V into S3 , we
assume that it is orientation preserving and f(C) is knotted in S3.

We concern ourselves with the following questions.
(1) Suppose that Kγ is unknotted and K2 is knotted in S3. Can

f(K\) be ambient isotopic to f(K2) in S3 for some embedding / :
V^S3 ?

(2) Suppose that K\ and K2 are both unknotted in S3. How are
(F, Kγ) and (V, K2) related if f(Kλ) is ambient isotopic to f(K2)
in S3 for some embedding / : V ^ S3 ?

For two knots K\ and K2 , we write K\ = K2 provided that there
exists an orientation preserving self-homeomorphism of S3 carrying
K\ to K2 (or equivalently, K\ and K2 are ambient isotopic in S3).
For two patterns (V, K\) and (V, K2), if there exists an orienta-
tion preserving self-homeomorphism h of V sending longitude to
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FIGURE 1

±longitude which satisfies h(K\) = K2, then we write (V9 K\) ~
(V, K2). In addition if the homeomorphism h sends longitude to
longitude, then we write (V, K{) = (V, K2). It is known that (V,K\)
= (V, K2) if and only if K\ and K2 are ambient isotopic in V.
Throughout this paper longitude means preferred longitude.

The wrapping number of K in V—the minimal geometric inter-
section number of K with a meridian disk in V—is denoted by
wrap F (AT), and the winding number of K in V—the algebraic in-
tersection number of K with a meridian disk in V—is denoted by
windκ(^) (We may assume windy (K) > 0 by considering an ap-
propriate orientation of K.)

Now our main result is stated as follows.

THEOREM 1.1. Let (V, Kf) (i = 1,2) be a pattern. Suppose that
K{ is unknotted in S3 and w i n d * ^ ) φ 0. // f{Kx) £ f(K2) in
S3 for some embedding f from V into S 3 , then (V 9 K\) - ( F , K2)
holds.

REMARK 1.2. (1) In this theorem the condition windκ(^) Φ 0 is
essential. The example below (Figure 2) demonstrates the necessity of
such a condition.

In this example K\ is unknotted in S3 and K2 is knotted (and
hence (V, K\) j> (V, K2)), but windκ(^2) = 0 From them, we can
obtain the same knot f(Kχ) = f(K2).

The modification to recognize that f(K\) = f{K2) is given by Fig-
ure 3.
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(2) If K\ is knotted, even when vtmάv(K2) Φ 0, it is easy to con-
struct the example such that ( F , Kλ) / ( F , K2) but f{Kx) = f(K2)
in S3 (see Figure 4).

As consequences of the Theorem 1.1, we have Corollary 2.6 and
Theorem 3.1. By these results together with Remark 1.2 and Theo-
rem 3.3, we can answer the above questions depending upon whether
windκ(^2) = 0 or not.

Throughout this paper N(X), dX and intX denote the tubular
neighborhood of X, the boundary of X and the interior of X re-
spectively.

2. Isotopy between satellite knots and equivalence of patterns. To
prove Theorem 1.1 we prepare some lemmas and give a necessary
condition for a pattern ( F , K) so that K is unknotted in S3 .

The next lemma is well known and we omit the proof here (see [7]).

LEMMA 2.1. Let W be a knotted solid torus in S3 and K a knot
in W with vίτdφw{K)φ0. Then K is knotted in S3.

Consider a nontrivial knot exterior E (i.e. E is homeomorphic to
S3 - intiV(fc) for some nontrivial knot k in S3) embedded
in F . Since dE is compressible in V— int N(K)9 otherwise V =
( F - mXE) UE has an incompressible torus dE, there exists an
embedded disk D in V— int Is such that dD is essential in
d(V — int2?) = dE. Thus D is a meridian disk for the solid torus
W = S3— intE and is contained in V. We call the disk D a meridian
disk for E in V. The following lemma is a straightforward conse-
quence of Lemma 2.1.

LEMMA 2.2. Let (V, K) be a pattern such that K is unknotted in
S3 and E a nontrivial knot exterior embedded in V - K. Then the
algebraic intersection number of K and a meridian disk for E in V
is zero {see Figure 5).

Now we shall prove Theorem 1.1.

Proof of Theorem 1.1. Suppose that f(Kx) = f(K2) in S3 for two
patterns (V, K\) and ( F , K2). Then there is an orientation preserv-
ing homeomorphism h of S 3 carrying f(K\) to f(K2). It suffices to
show that by an isotopy of S3 which leaves f(K2) = h(f(K\)) fixed,
we can modify the homeomorphism h so that h(S3- int/(F)) = S3-
i n t / ( F ) . To do this we need the next lemma, which was proved by
H. Schubert in [8], but since we rely heavily on this theorem, we give
a proof here using torus decompositions.
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FIGURE 5

FIGURE 6

LEMMA 2.3 ([8]). Let Vt (/ = 1, 2) be a knotted solid torus in S3

which contains a knot K with wraρF(X) φ 0. Then by an ambient
isotopy of S3 which leaves K fixed, V2 can be deformed so that one
of the following holds.

(1) dVιΠdv2 = 0
(2) there exist meridian disks Dx and D2 of both Vx and V2 such

that the closure of one component of V\ - U?=i A is a knotted 3-ball
in the closure of some component of V2- \jj=ι Di {see Figure 6).

Proof of Lemma 2.3. If Vι- \xAN{K) is homeomorphic to Sι x
Sι x / for i = 1 or 2, then K is a core of V\ and we can deform V2

so that (1) in Lemma 2.3 holds. Now we assume that V\- int JV(ϋΓ)
is not homeomorphic to Sι x S 1 x / for i = 1, 2. Consider the torus
decomposition of S 3 - i n t ^ and Ĵ — int N(K) (i = 1,2) in the
sense of Jaco-Shalen [4] and Johannson [5]. Then each piece is Seifert
fibred or admits a complete hyperbolic structure of finite volume in
its interior by Thurston's uniformization theorem [6]. Moreover, by
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Theorem VI 3.4 in [4], the Seifert part is one of torus knot spaces,
cable spaces and composing spaces. Let M; be the piece in S3-
intVi which contains dVx (=d(S3- i n t ^ )) a n ( * fy the piece in P/—
int N(K) which contains d V\. We divide into two cases depending
upon whether one of dVx (i = 1, 2) belongs to the minimal family
of tori Ji defining a torus decomposition of S3- int N(K) = (S3-
mtVi)U(Vi- intN{K)) or not.

Case (A). At least one of dV^i = 1 , 2 ) belongs to //(/ = 1 , 2 ) .

In this case, by the uniqueness of the torus decomposition we can

deform dV2 so that dVx ΠdV2 = 0 or dVx = dV2. If dVx = dV2,
then isotoping dV2 slightly off dV\ in the normal direction so that
d Vι Π d V2 = 0. Thus (1) in Lemma 2.3 does hold.

Case (B). dVj(i = 1, 2) does not belong to //.

Then it turns out that M/UJV/ is a composing space in S3- int N(K)
= (S3- int Vi) U (Vi- int N(K)). By the uniqueness of the torus de-
composition, we can isotope M2 u N2 so that M2 U Λ^ is one of de-
composing pieces defined by J\. (Notationally we do not distinguish
the original M2UN2 and isotoped M2UN2.) If M2UN2φ MγUNx,
then (1) in Lemma 2.3 holds. Now suppose that M2 U N2 = M\ U N\.
We note that d V\ is a saturated torus (i.e. a union of fibres) in the
composing space M\ u N\. Since a Seifert fibration of the composing
space M\ u iVi is unique up to isotopy, we may modify d V2 so that
it is also saturated. Consider the orbit manifold of M\\JN\, which
is a disk with holes. The image of d Vi in this orbit manifold is an
essential circle C,. If we can modify C2 so that C\ Π C2 = 0 , then
we can also modify 9^2 so that dVιΠdV2 = 0 and (1) in Lemma
2.3 holds. Assume we can not isotope C2 so that C\ Π C2 = 0 . Then
isotope C2 so that the number of points of C\ n C2 is minimal. Let
T be the component of d{Mx \jNχ) separating dN(K) and MιUNχ.
In AS3 , Γ bounds a solid torus W containing K, whose meridian
coincides with the regular fibre of M\ U N\. In the orbit manifold we
can find arcs A\ and A2 joining a point in C\ CιC2 and the boundary
circle C which is the image of T (see Figure 7(1)).

These arcs A\ and A2 are corresponding to saturated annuli Aγ
and ^2 From Aj and meridian disk Dj of ^ , we can construct
a meridian disk ^47 u Dj of both Fi and V2. Finally consider the
boundary circle C of the orbit manifold depicted in Figure 7(1),
which corresponds to the torus boundary V. Since V bounds a
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nontrivial knot exterior in V2— int V\ (see Figure 7 (2)), we get just
a situation for (2) in Lemma 2.3, and this completes the proof. D

Let us study the relationship between two solid tori h(f(V)) and
f(V) using Lemma 2.3. By an ambient isotopy of S3 which leaves
f{K2) = h{f(K\)) fixed we can deform h(f(V)) into the position
such that either dh(f(V))n df(V) = 0 or there exist meridian disks
D\ and D2 of both f(V) and h{f{V)) such that one component of
the closure of f(V) - (J^=1 A is a knotted 3-ball in some component
of the closure of h{f{V)) - (J?=1 A .

LEMMA 2.4. We can deform h(f(V)) into the position such that
dh(f(V))ndf(V) = 0.

Proof of Lemma 2.4. If not, the second situation in the above occurs.
Then we get a solid torus W (D h{f{Kx)) = f(K2)) in intΛ(/(K)),
whose core Cw> satisfies wrap/Z(/(F))(CW/0 = 1 and is not a core of
h(f(V)). It follows that the solid torus V also contains a knotted
solid torus W (D K\) in its interior such that wrapF(CV) = 1 for
the core Cw of W. Since wrap^(^i) jίθ9 K\ cannot be unknotted
in S3 by Lemma 2.1 and this contradicts the assumption. Hence we
can deform h{f(V)) so that dh(f(V)) ndf(V) = 0. Π

Now we have following three possibilities.
(1) h(S3- in t/(F))c int(S3- int/(F))
(2)inth(S3- intf(V))DS3- int/(F)
(3) h(S3- in t/(F))c int/(F)
In (1) (or (2), resp.), assume (,S3-/int/(F))-int(Λ(S3-int/(F)))

(or h(S3- int/(F))- i n t ^ 3 - int/(V)), resp.) is homeomorphic
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to Sι x Sι x I. Then by an isotopy which leaves f(K2) fixed, we
may modify h so that h(S3- int/(F)) = S3- int/(F) and also
h(f(V)) = /(F) with h{f{Kx)) = /(A2) For homological reasons,
h(longitude) = ±longitude. Hence /~* o /* o / : F —• F is an orien-
tation preserving homeomorphism carrying K\ to A2 and longitude
to ±longitude. So we get (F, AΊ) ~ ( F , ^ ) -

Let us consider the case where h(S3 - int/(F)) c int(S3 - int/(F))
and ( S 3 - int/(F))- int(A(,S3- int/(F))) is not homeomorphic to
S1 x S1 x / . Then using the homeomorphism h\s3-mtf(v) fr°m ^3~~
int /(V) to h(S3- int /(F)), we get mutually nonparallel incompress-
ible tori {hn{df{V))} in S 3 - int/(F) for any positive integer w.
This contradicts Haken's finiteness theorem. The similar argument
can be applied in the case where int A(S3- int/(F)) D S3- int/(F)
and h(S3- int/(F))- int(S 3 - int/(F)) is not homeomorphic to
Sι x Sι x /, and again we get a contradiction.

Let us consider the case (3). The assumption implies that the non-
trivial knot exterior E = h~ι(S3- int/(F)) is contained in int/(F).
Since windκ(^2) 7̂  0, we have wind/(^)(/(A2)) φ 0 and so we have
wmdh-l{f{v))(h-ι(f(K2))) φ 0. It follows that w i n d ^ . ^ ^ C / ^ ) )
is also not zero. On the other hand since K\ is unknotted in S3,
by Lemma 2.2, the algebraic intersection number of K\ and a merid-
ian disk for the nontrivial knot exterior f~x{E) in F must be zero.
Hence we get wind(5,3_int£:)(/(j£i)) = 0. This is a contradiction. α

In Theorem 1.1, if /(C) is a noninvertible knot, where C is a core
of F , then more precisely we have the following.

THEOREM 2.5. Let ( F , Kf) be a pattern. Suppose that Kx is un-
knotted in S3,and windv(K2) φθ. If f(Kx) = f(K2) in S3 for some
embedding f from V into S3 such that f{C) is noninvertible, then
(V, Kι) = (V, K2), that is Kx and K2 are ambient isotopic in V.

Proof. In the proof of Theorem 1.1, we have an orientation pre-
serving homeomorphism h of S3 satisfying A(/(F)) = f(V)
and h(f(K{)) = f(K2). For homological reasons, h(longitude) =
±longitude. In addition since f(C) is noninvertible, we get
h(longitude) = longitude (see 3.19. Proposition in [1]). It follows that
f~ιohof: V -» F is an orientation preserving homeomorphism
carrying K\ to K2 and longitude to longitude. Thus we conclude

Ώ
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As an application of Theorem 1.1, we have the following corollary.

COROLLARY 2.6. Let (V, Kt) be a pattern. Suppose that K{ is
unknotted and K2 is knotted in S3 and w\nάγ(K2) Φ 0. Then for
any embedding f from V into S3, f{Kx)φf{K2) in S3.

Proof. If f(Kx) = f(K2) for some embedding / from V into S3,
then (V,K{) ~(V,K2) must hold by Theorem 1.1. Extending the
orientation preserving homeomorphism h of V to that of S3, we get
K\ = K2. This is a contradiction. D

Concluding this section, we give the following proposition which is
an implicit corollary of Soma's sum formula for the Gromov invari-
ants [10]. We denote the Gromov invariant of X by

PROPOSITION 2.7. Let (V, K{) (i = 1, 2) be a pattern such that
\\V - in\N(Kx)\\ φ\\V- i n t t f ( * 2 ) | | . Then f(Kx) ψ f(K2) for any
embedding f from V into S3.

So we see that, with no conditions on K\ and K2, if f(K\) = f(K2)
then the Gromov invariants of their complements in V are the same.

3. Classification of satellite knots constructed from trivial knots. As
a special case of Theorem 1.1, we have

THEOREM 3.1. Let (V, K{) be a pattern and Kj a trivial knot in
S3 (i = l , 2 ) . Suppose that windF(#i) φ 0 or windκ(^2) φθ. If
f{Kx) =* f(K2) in S3 for some embedding f from V into S3, then
(V,Kι)~(V9K2) holds.

The winding numbers and the wrapping numbers of knots in a solid
torus are elementary invariants for them. Particularly for a faithful
(i.e. sending longitude to longitude) embedding / : V c-> S3, winding
number of K in V has an important role for Alexander polynomial
of f(K), as is shown by Seifert's formula [9] ([1]). However if K is
unknotted and f(C) has a trivial Alexander polynomial, then f(K)
has also a trivial one independent of windκ(^) Moreover when
Kx =- K2 and w i n d ^ ^ i ) = windy(K2), f(K{) and f(K2) have the
same Alexander polynomial.

As a consequence of Theorem 3.1, we have the following result for
satellite knots constructed from trivial knots.
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COROLLARY 3.2. Suppose Ki is a trivial knot contained in a stan-
dardly embedded solid torus V in S3 (i = 1, 2).

(1) //windκ(^i) φ w i n d ^ ) , then f(Kx) ψ f(K2) in S3 for any
embedding f from V into S3.

(2) When vtmav{Ki) = vtmav{K2) φθ, if vίτdφv(Kχ)φvϊΐ2φv(K2),
then f(Kι) φ f(K2) in S3 for any embedding f from V into S3.

In the case windκ(^i) = wind^C^) = 0, we have

THEOREM 3.3. For any faithful embedding f from V into S3 (i.e.
f sends a longitude of V to a longitude of f(V)), there exist patterns
( F , K\) and ( F , K2) such that both Kx and K2 are unknotted in
S3, which satisfy the following properties:

(1) windF(^i) = windv(K2) = 0 and (V, Kx) / (V,K2).
(2) f(Kx) = f(K2) in S3.

Proof. Let us consider a 3-components Brunnian link L = kuL\ UL2

depicted in Figure 8.

r.

FIGURE 8

We denote the meridian-longitude pair of L, by (m, , //) (/ =
1,2). Let t be a knot ambient isotopic to / ( C ) , where C is a
core of V, and (m, /) a meridian-longitude pair of t. To obtain
the required pattern, remove a tubular neighborhood iV(Lf ) and glue
the knot exterior E{t) = S3- inX N{t) so that m\ — l and // = m.
Then, for i = 1,2, the result ( S 3 - intiV(L/)) u«,w (^ 3 - intiV(ί))

lι=m

is again S3, and we have new knots K^-i and L^-i as the images
of k and L3_; respectively. It is easy to see that both K^-i and
L^-i are unknotted in S3. Thus the exterior V of L3_; contain-
ing K$_i forms a pattern ( F , -SΓ3-./). In this way we get two pat-
terns (V, K\) and ( F , K2). By the construction, for the faithful
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embedding / : V <-> S3, f(Kx) s f(K2) does hold in S3. In fact,
f(Kx) = /(^2) can be described as the knot obtained from k in Fig-
ure 8 by simultaneously replacing a neighborhood of a meridian disk
of each of Lx and L2 by a tube knotted according to the given knot
t.

From now on we prove (V, Kx) / (V, # 2 ) by showing wrap^ϋΓ!)
^ wrapF(u:2). Clearly w r a p ^ O < 2 and wrapF(iξ>) < 4. Since
windκ(^2) = 0> wrapF(A^2) must be even. Now we assume wrapv(K2)
= 2. Then there exists a disk D2 in

such that Z>2 Π K2 = D 2 n A: consists of two points and dD2 = l2. Ex-
tending D2, we may assume dZ)2 = ^2 - Let Dk be the disk depicted
in Figure 9(1), such that dDk = k. We remark that DkΓ\L2 consists
of four points P\,p2,q\, q2 (see Figure 9(1)).

(1)

(3)

FIGURE 9

From the assumption we see that the boundary of arc components of
D2Γ)Dk in Dk consists of six points px, p2, qx, q2, x, y (see Figure
9 (2)). Considering the orientations, there exists an arc component a
of D2ΠDk joining pt and #, for some /, j (see Figure 9 (2)(3)).
Let β be an arc of L2 connecting pt and <?,, and D a disk in D2

bounded by α U β. Then α U /? clearly has winding number one in
the solid torus S3- int N(LX), which is knotted as N(t) in S3 D V.
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This contradicts, via Lemma 2.1, that aU β = dD. Hence we can
conclude wrapv(K2) φ 2, and applying the same argument we get also
wrapv(K2) φ 0. It follows that v^X2φv{K2) = 4. We see wrapr(AΊ) =
2 easily as follows. If wrzpv(K\) Φ 2, then wrap κ (#i) = 0. How-
ever this means wrap v (K2) = 0, thus wrapj/(ΛΓi) = 2.

In this way we get the required patterns. D

This result can be generalized to

COROLLARY 3.4. For any knot K in S3 and any faithful embedding
f from V into S3

 f there exist patterns (V, K\) and (V, K2) such
that Ki = K in S3 (i = 1, 2), which satisfy the following properties:

(1) (K.tfO/CK,^).
(2) f{Kx) s f(K2) in S3 for the embedding f from V into S3.

Proof. Let (V, k\) and (V, k2) be the patterns constructed in The-
orem 3.3 depending upon the embedding / . Since ki (1 = 1, 2) is
trivial in S3, we can locally replace an unknotted arc of kj by a
knotted arc (with a suitable direction) so that the resulting knot Kt

represents K in S 3 . Then it follows from the choice of (V, kγ) and
{V, k2) that (V, K\) and (V, K2) are the required patterns. D
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