ON THE METHOD OF CONSTRUCTING IRREDUCIBLE FINITE INDEX SUBFACTORS OF POPA

Florin Boca

Abstract

Let $U^{s}(Q)$ be the universal Jones algebra associated to a finite von Neumann algebra Q and $R^{s} \subset R$ be the Jones subfactors, $s \in\left\{\left.4 \cos ^{2} \frac{\pi}{n} \right\rvert\, n \geq 3\right\} \cup[4, \infty)$. We consider for any von Neumann subalgebra $Q_{0} \subset Q$ the algebra $U^{s}\left(Q, Q_{0}\right)$ defined as the quotient of $U^{s}(Q)$ through its ideal generated by $\left[Q_{0}, R\right]$ and we construct a Markov trace on $U^{s}\left(Q, Q_{0}\right)$. If $\mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right)=\mathbb{C}$ and Q contains $n \geq s+1$ unitaries $u_{1}=1, u_{2}, \ldots, u_{n}$, with $E_{Q_{0}}\left(u_{i}^{*} u_{j}\right)=\delta_{i j} 1,1 \leq i, j \leq n$, then we get a family of irreducible inclusions of type II_{1} factors $N^{s} \subset M^{s}$, with $\left[M^{s}: N^{s}\right]=s$ and minimal higher relative commutant. Although these subfactors are nonhyperfinite, they have the Haagerup approximation property whether $Q_{0} \subset Q$ is a Haagerup inclusion and if either Q_{0} is finite dimensional or $Q_{0} \subset \mathscr{Z}(Q)$.

Introduction. Let M be a finite factor with the normal finite faithful trace τ and denote by $L^{2}(M, \tau)$ the completion of M in the Hilbert norm $\|x\|_{2}=\tau\left(x^{*} x\right)^{1 / 2}, x \in M$. For $N \subset M$ subfactor of M $\left(1_{N}=1_{M}\right)$, the Jones index $[M ; N$] is defined as the Murray-von Neumann coupling constant $\operatorname{dim}_{N} L^{2}(M)$ of N in its representation on the Hilbert space $L^{2}(M, \tau)$. Jones [J] proved that [$M: N$] can only take the values $\left\{\left.4 \cos ^{2} \frac{\pi}{n} \right\rvert\, n \geq 3\right\} \cup[4, \infty]$ and constructed a one parameter family R^{s} of subfactors of the hyperfinite type II_{1} factor R with $\left[R: R^{s}\right]=s, s \in\left\{\left.4 \cos ^{2} \frac{\pi}{n} \right\rvert\, n \geq 4\right\} \cup[4, \infty)$.

When $s=[M: N]=4 \cos ^{2} \frac{\pi}{n}, n \geq 3$, the properties of the local index [J] imply that the pair $N \subset M$ is irreducible (i.e. $N^{\prime} \cap M=\mathbb{C}$). For $s \geq 4$ Jones' inclusions $R^{s} \subset R$ are reducible and the problem of characterizing the values $s \geq 4$ with the property that there exist inclusions $R_{0} \subset R$ with $\left[R: R_{0}\right]=s$ and $R_{0}^{\prime} \cap R=\mathbb{C}$ remained open.

The problem of finding all possible values of indices of irreducible finite index subfactors in arbitrary II_{1} factors was completely answered by Popa, who constructed in [P2] irreducible inclusions of nonhyperfinite type II_{1} factors $N^{s} \subset M^{s}$, with $\left[M^{s}: N^{s}\right]=s$, for all $s \in$ $\left\{\left.4 \cos ^{2} \frac{\pi}{n} \right\rvert\, n \geq 4\right\} \cup[4, \infty)$. His method consists in constructing certain traces, that he called Markov traces, on some universal algebras $U^{s}(Q)$ canonically associated with a given finite von Neumann algebra Q and
to the Jones sequence of projections $\left\{e_{i}\right\}_{i \geq 1}$ of trace $\tau\left(e_{i}\right)=s^{-1}$, subject to the commutation relations $\left[Q, e_{i}\right]=0, i \geq 2$. The algebras $U^{s}(Q)$ were called in [P2] universal Jones algebras. An interesting feature that this method of constructing subfactors is shown to have in [$\mathbf{P 2}$] is that any pair of subfactors (in particular hyperfinite) $N \subset M$ and $[M: N]=s$ arises this way, for an appropriate Markov trace tr on some universal algebra $U^{s}(Q)$. The enveloping algebra M_{∞} is in this case $\pi_{\operatorname{tr}}\left(U^{s}(Q)\right)^{\prime \prime}, M$ the smallest algebra containing $\tau_{\mathrm{tr}}(Q)$ and on which e_{1} implements by reduction a conditional expectation and N the commutant of e_{1} in M. Then he considered on $U^{s}(Q)$ the free trace τ defined by $\tau(w)=0$ for all words w with alternating letters $x_{i} \in Q, y_{i} \in R$ with $\tau_{Q}\left(x_{i}\right)=E_{R^{s}}\left(y_{i}\right)=0$ and proved that this is indeed a Markov trace with $\pi_{\tau}\left(U^{s}(Q)\right)^{\prime \prime}=M_{\infty}^{s}=\left(R^{s} \otimes Q\right) *_{R^{s}} R$, where $R=v N\left\{e_{i}\right\}_{i \geq 1}$ and $R^{s}=v N\left\{e_{i}\right\}_{i \geq 2}$ are the Jones factors, and that for any nonatomic finite von Neumann algebra Q and any $s \in\left\{\left.4 \cos ^{2} \frac{\pi}{n} \right\rvert\, n \geq 4\right\} \cup[4, \infty)$, the appropriate inclusion $N^{s} \subset M^{s}$ is an irreducible inclusion of II_{1} nonhyperfinite factors with standard matrix A_{n} for $s=4 \cos ^{2} \frac{\pi}{n}$ and A_{∞} for $s \geq 4$. Moreover, the factors M^{s} are always non Γ in the sense of Murray and von Neumann and do not have the property T of Connes [C].

In this paper we look for other Markov traces by factoring through certain ideals of $U^{s}(Q)$ which require parts of Q to commute with $R=v N\left\{e_{i}\right\}_{i \geq 1}$. More precisely, given a von Neumann subalgebra Q_{0} of Q, denote by $U^{s}\left(Q, Q_{0}\right)$ the quotient of the universal Jones algebra $U^{s}(Q)$ through the ideal generated by Q and R subject to the commutation relations $\left[Q, R^{s}\right]=\left[Q_{0}, R\right]=0$. Then, we prove in $\S 1$ that the trace τ on $U^{s}\left(Q, Q_{0}\right)$ defined by $\tau(w)=0$ for all words w with alternating letters $x_{i} \in Q, y_{i} \in R$ with $E_{Q_{0}}\left(x_{i}\right)=E_{R^{s}}\left(y_{i}\right)=0$ and $\tau\left(q_{0} r\right)=\tau_{Q}\left(q_{0}\right) \tau_{R}(r)$ for all $q_{0} \in Q_{0}, r \in R^{s}$ is a Markov trace. Following [P2], the algebras M^{s} and N^{s} are then defined as the smallest subalgebra of $\pi_{\tau}\left(U^{s}\left(Q, Q_{0}\right)\right)^{\prime \prime}$ containing $\pi_{\tau}(Q)$ and on which e_{1} implements by reduction a conditional expectation and respectively as the commutant of e_{1} in M^{s}.

We prove in $\S 2$ that if $\mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right)=\mathbb{C}$ and there exist $n \geq s+1$ unitaries $u_{1}=1, u_{2}, \ldots, u_{n}$ in Q such that $E_{Q_{0}}\left(u_{i}^{*} u_{j}\right)=\delta_{i j} 1$, $1 \leq i, j \leq n$, then we obtain irreducible inclusions of type II_{1} factors $N^{s} \subset M^{s}$ with $\left[M^{s}: N^{s}\right]=s$ and standard matrix A_{n} for $s=4 \cos ^{2} \frac{\pi}{n}$ and A_{∞} for $s \geq 4$.

Our initial motivation was to look for "finer" Markov traces on $U^{s}(Q)$ that would get us closer to the construction of irreducible hy-
perfinite subfactors. We fail in doing this and our subfactors are still non Γ (hence nonhyperfinite) and contain copies of the II_{1} factor associated with the free group on two generators $\mathscr{L}\left(\mathbb{F}_{2}\right)$, since our Markov traces are still free in some sense, namely the enveloping algebra of $N^{s} \subset M^{s}$ is in this case the amalgamated product von Neumann algebra $M_{\infty}^{s}=\pi_{\tau}\left(U^{s}\left(Q, Q_{0}\right)\right)^{\prime \prime}=\left(R^{s} \otimes Q\right) *_{R^{s} \otimes Q_{0}}\left(R \otimes Q_{0}\right)$, defined as in [P2, §3] (see also [V1] for the C^{*}-definition), with the free trace $\tau=\tau_{R^{s} \otimes Q^{*}} \tau_{R \otimes Q_{0}}$ (in fact M_{∞}^{s} is also a factor under the previous required conditions on $\left.Q_{0} \subset Q\right)$. However, we prove in $\S 3$ that in many cases (e.g. when $Q_{0} \subset Q$ has the relative Haagerup property and either Q_{0} is finite dimensional or $\left.Q_{0} \subset \mathscr{Z}(Q)\right)$, all the von Neumann algebras from the Jones tower $N^{s} \subset M^{s} \subset^{e_{1}} M_{1}^{s} \subset^{e_{2}} M_{2}^{s} \subset^{e_{3}} \ldots$ have the Haagerup approximation property, namely for any s there exists a net $\left(\Phi_{l}\right)_{l \in I}$ of trace preserving unital completely positive maps $\Phi_{l}: M^{s} \rightarrow M^{s}$ converging to $\mathrm{id}_{M^{s}}$ in the point- $\left\|\|_{2}\right.$ topology and inducing compact operators on $L^{2}\left(M^{s}, \tau_{M^{s}}\right)$; hence M^{s} are not very far from being hyperfinite and for any $s \geq 4$ there exists an irreducible inclusion of II_{1} factors with index $s, N^{s} \subset M^{s}$, with the Haagerup approximation property.

An important problem which is still open at this moment is to decide whether the factors M^{s}, or at least the enveloping algebras M_{∞}^{s}, are isomorphic or not for nonrigid Q. This problem seems to be related, at least for the isomorphism of the associated M_{∞}^{s} in the case $Q=$ $\mathscr{L}\left(\mathbb{F}_{\infty}\right)$ to Voiculescu's type isomorphisms $\mathscr{L}\left(\mathbb{F}_{\infty} * \mathbb{Z}_{n}\right) \simeq \mathscr{L}\left(\mathbb{F}_{\infty}\right)$ ([V4], [D], [R]).

We would like to thank Professor Sorin Popa for suggesting this problem and the idea of extending the results of $[\mathbf{P} 2$] in this way and Professor Edward Effros for useful discussions concerning §3.

1. The construction of $N^{s} \subset M^{s}$ and the Markov property of the free trace. Let $s \in\left\{\left.4 \cos ^{2} \frac{\pi}{n} \right\rvert\, n \geq 3\right\} \cup[4, \infty)$, denote $\lambda=s^{-1}$ and let $R=v N\left\{e_{i}\right\}_{i \geq 1}, R^{s}=v N\left\{e_{i}\right\}_{i \geq 2}, R_{-1}^{s}=v N\left\{e_{i}\right\}_{i \geq 3}$ be the appropriate Jones factors. Then $R_{-1}^{s} \subset R^{s} \subset^{e_{1}} R$ is the basic construction for $R_{-1}^{s} \subset R^{s}$. Let Q and $Q_{0} \quad\left(1_{Q}=1_{Q_{0}}\right)$ be finite von Neumann algebras with a normal faithful trace τ_{Q} and denote by $E_{Q_{0}}$ the trace preserving conditional expectation from Q onto Q_{0}. Then $E_{1}=$ $E_{Q_{0}} \otimes \mathrm{id}_{R^{s}}: Q \otimes R^{s} \rightarrow Q_{0} \otimes R^{s}$ and $E_{2}=\mathrm{id}_{Q_{0}} \otimes E_{R^{s}}: Q_{0} \otimes R \rightarrow Q_{0} \otimes R^{s}$ are trace preserving conditional expectations. Denote by M_{∞}^{s} the reduced amalgamated product $\left(Q \otimes R^{s}\right) * Q_{0} \otimes R^{s}\left(Q_{0} \otimes R\right)$ of $\left(Q \otimes R^{s}, E_{1}\right)$ and $\left(Q_{0} \otimes R, E_{2}\right)$, by τ the free trace on M_{∞}^{s} and by E the τ preserving conditional expectation from M_{∞}^{s} onto $Q_{0} \otimes R^{s}$. The
algebras Q and R are identified with $Q \otimes \mathbb{C} 1$ and respectively $\mathbb{C} 1 \otimes R$ in M_{∞}^{s}.

Note that, denoting by $U^{s}\left(Q, Q_{0}\right)$ the algebra generated by R and Q with the relations $\left[R, Q_{0}\right]=\left[R^{s}, Q\right]=0$ and by τ the trace on $U^{s}\left(Q, Q_{0}\right)$ defined by $\tau(w)=0$ for all words w with alternating letters $x_{i} \in Q, y_{i} \in R$ with $E_{Q_{0}}\left(x_{i}\right)=E_{R^{s}}\left(y_{i}\right)=0$ and $\tau\left(q_{0} x\right)=$ $\tau\left(q_{0}\right) \tau(x)$ for all $q_{0} \in Q_{0}, x \in R^{s}$, the von Neumann algebra M_{∞}^{s} can be also defined as $M_{\infty}^{s}=\pi_{\tau}\left(U^{s}\left(Q, Q_{0}\right)\right)^{\prime \prime}$.

Let $\left\{m_{k}\right\}_{k}$ be a Pimsner-Popa orthonormal basis of R^{s} over R_{-1}^{s} with $m_{1}=1$ and consider the unital completely positive map $\Phi: M_{\infty}^{-1}$ $\rightarrow M_{\infty}^{s}, \Phi(x)=\sum_{k} m_{k} e_{1} x e_{1} m_{k}^{*}, x \in M_{\infty}^{s}$. Then M^{s} is defined as the smallest Φ-invariant von Neumann subalgebra of M_{∞}^{s} that contains Q, i.e. if $B_{0}=Q$ and $B_{i+1}=\operatorname{Alg}\left(B_{i}, \Phi\left(B_{i}\right)\right), i \geq 0$, then $M^{s}=\overline{\bigcup_{i} B_{i}}$. Let $N^{s}=\left\{e_{1}\right\}^{\prime} \cap M^{s}$. One can easily check the following properties of the averaging map $\boldsymbol{\Phi}$ as in [P2, 6.1-6.3]:

Lemma 1.1. (i) $\boldsymbol{\Phi}\left(\left(R^{s}\right)^{\prime} \cap M_{\infty}^{s}\right) \subset\left(R^{s}\right)^{\prime} \cap M_{\infty}^{s}$. In particular $\left[M^{s}, R^{s}\right]$ $=0$ and $\left.\Phi\right|_{N^{s}}=\mathrm{id}_{N^{s}}$.
(ii) $e_{1} \Phi(x)=\Phi(x) e_{1}=e_{1} x e_{1}, x \in M_{\infty}^{s}$. Consequently $\Phi\left(M^{s}\right) \subset$ N^{s}.

The free amalgamated trace τ on M_{∞}^{s} has the remarkable property that it is a Markov trace, i.e. $\tau\left(x e_{1}\right)=\lambda \tau(x)$ for all $x \in M^{s}$. This can be proved following step by step the arguments in [P2, §5].

Sums of type $\sum_{k_{1}, \ldots, k_{r}} f\left(m_{k_{1}}, \ldots, m_{k_{r}}, m_{k_{1}}^{*}, \ldots, m_{k_{r}}^{*}\right)$ are denoted by $\sum^{\prime} f\left(m_{k_{1}}, \ldots, m_{k_{r}}, m_{k_{1}}^{*}, \ldots, m_{k_{r}}^{*}\right)$.

Definition 1.2 ([P2,§5]). A homogeneous reduced closed element is an element of the form $x=\sum^{\prime} w$ where $w=x_{0} y_{1} x_{1} \ldots y_{n} x_{n} \in M_{\infty}^{s}$ is an alternating word (i.e. $x_{i} \in Q, y_{j} \in R$) such that there exists a partition $\{1, \ldots, n\}=I \cup I^{*} \cup I_{0}$ with a bijection $I \ni i \leftrightarrow i^{*} \in I^{*}$ that satisfy:
(i) $i<i^{*}, \forall i \in I$;
(ii) If $i_{1}, i_{2} \in I, i_{1}<i_{2}$ then either $i_{i}^{*}<i_{2}$ or $i_{2}^{*}<i_{1}^{*}$;
(iii) For each $i_{0} \in I_{0}$ there exists $i \in I$ with $i<i_{0}<i^{*}$;
(iv) If $i \in I$ then $y_{i}=m_{k}(e-\lambda 1), y_{i^{*}}=(e-\lambda 1) m_{k}^{*}$ for some k;
(v) If $i_{0} \in I_{0}$ then $y_{i_{0}}=e-\lambda 1$;
(vi) $E_{Q_{0}}\left(x_{i}\right)=0$ for $0<i<n$ and for $0 \leq i \leq n$ either $x_{i} \in Q_{0}$ or $E_{Q_{0}}\left(x_{i}\right)=0$.

The set of homogeneous reduced closed elements is denoted by $H_{r, c}$.

Following the arguments in $[\mathbf{P 2}, \S 5]$ one can check that $\bigcup_{i} B_{i}=$ $Q+\operatorname{span} H_{r, c}$ and since $E\left(x\left(e_{1}-\lambda 1\right)\right)=0$ for all $x \in H_{r, c}$ one obtains

Proposition 1.3. $E\left(x e_{1}\right)=\lambda E(x)$ for all $x \in M^{s}$. In particular τ is a Markov trace on M^{s}.

Another proof of the markovianity of τ may be found in [B3].
2. Factoriality, index and irreducibility for $N^{s} \subset M^{s}$. Let M be a finite von Neumann algebra with a normal faithful trace (nff) τ. For each $a=a^{*} \in M$ denote, following [V1], by μ_{a} the linear functional $\mu_{a}: \mathbb{C}[X] \rightarrow \mathbb{C}, \mu_{a}\left(X^{n}\right)=\tau\left(a^{n}\right), n \geq 0$. Then μ_{a} can be viewed as a probability measure with compact support on \mathbb{R}.

Lemma 2.1. Let e_{1}, \ldots, e_{n} be τ-free projections in M with $\tau\left(e_{i}\right)=$ $\lambda \in(0,1), 1 \leq i \leq n$. Then

$$
\sigma\left(e_{1}+\cdots+e_{n}\right) \subset\{0\} \cup[a(n, \lambda), b(n, \lambda)] \cup\{n\}
$$

and

$$
\mu_{e_{1}+\cdots+e_{n}}=c_{0} \delta_{0}+c_{n} \delta_{n}+\phi(t) d t
$$

where

$$
\begin{aligned}
& a(n, \lambda)=(\sqrt{1-\lambda}-\sqrt{(n-1) \lambda})^{2} \\
& b(n, \lambda)=(\sqrt{1-\lambda}+\sqrt{(n-1) \lambda})^{2} ; \\
& c_{0}=\max (1-\lambda n, 0) ; \quad c_{n}=\max (1-(1-\lambda) n, 0) ; \\
& \phi(t)=\frac{n \sqrt{(1-\lambda n)^{2}+2(1+(n-2) \lambda) t-t^{2}}}{2 \pi t(n-t)}, \\
& \quad \text { for any } t \in[a(n, \lambda), b(n, \lambda)] .
\end{aligned}
$$

Proof. Denote $\mu=\mu_{e_{1}+\cdots+e_{n}}$. An elementary computation relying on the formulae and notations from [V2] yields:

$$
\begin{aligned}
R_{\mu_{e_{i}}}(z) & =\frac{-1+z \pm \sqrt{(1-z)^{2}+4 \lambda z}}{2 z}, \quad 1 \leq i \leq n ; \\
R_{\mu}(z) & =n R_{\mu_{e_{i}}}(z)=K_{\mu}\left(z^{-1}\right)-z^{-1} ; \\
K_{\mu}\left(z^{-1}\right) & =\frac{n z-(n-2) \pm \sqrt{(1-z)^{2}+4 \lambda z}}{2 z} .
\end{aligned}
$$

Since $G_{\mu}(z)=\int_{\mathbb{R}} \frac{d \mu(t)}{z-t}$ is the inverse of the function $z \rightarrow K_{\mu}\left(z^{-1}\right)$ one obtains

$$
G_{\mu}(z)=\frac{-(n-2) z-n(1-\lambda n) \pm n \sqrt{z^{2}-2(1+(n-2) \lambda) z+(1-\lambda n)^{2}}}{2 z(z-n)}
$$

the choice of the branch of the square root obeying the rule $\operatorname{Im} z>$ $0 \Rightarrow \operatorname{Im} G_{\mu}(z) \leq 0$. The measure μ is easily recovered from its Cauchy transform G_{μ} as in the statement.

Corollary 2.2. If $n \geq \max \left(\frac{1}{\lambda}, \frac{1}{1-\lambda}\right)$ in Lemma 2.1, then $a=a^{*}=$ $e_{1}+\cdots+e_{n}$ has support 1 and absolutely continuous spectrum; hence $\{a\}^{\prime \prime}$ is completely nonatomic.

Let P_{1} and P_{2} be finite von Neumann algebras with nff traces τ_{1} and $\tau_{2}, B \subset P_{1}, B \subset P_{2}$ be a common von Neumann subalgebra, E_{i} be the τ_{i}-preserving conditional expectation from P_{i} onto B, $P=P_{1} *_{B} P_{2}$ be the reduced amalgamated product of $\left(P_{1}, E_{1}\right)$ and $\left(P_{2}, E_{2}\right)$ and E the conditional expectation from P onto B which invariates the trace $\tau=\tau_{1} * \tau_{2}$. Denote $\|x\|_{2}=\tau\left(x^{*} x\right)^{1 / 2}, x \in P$.

If $P_{i}^{0}=\operatorname{Ker} E_{i}, i=1,2$, then $P_{i}=B \oplus P_{i}^{0}$ as B-bimodules and let P^{0} be the ${ }^{*}$-subalgebra of P spanned by the formal reduced words, i.e.

$$
P^{0}=B \oplus \bigoplus_{k \geq 1, i_{1} \neq \cdots \neq i_{k}} P_{i_{1}}^{0} \otimes_{B} \cdots \otimes_{B} P_{i_{k}}^{0} .
$$

Assume that there exist $u_{1}=1, u_{2}, \ldots, u_{n} \in \mathscr{U}\left(P_{1}\right)$ with $E\left(u_{i}^{*} u_{j}\right)$ $=\delta_{i j} 1,1 \leq i, j \leq n$. Then any $a \in P_{1}$ can be written as $a=$ $\sum_{i=1}^{n} u_{i} E\left(u_{i}^{*} a\right)+a^{\prime}$, where $E\left(u_{i}^{*} a^{\prime}\right)=0,1 \leq i \leq n$, and similarly $a=\sum_{i=1}^{n} E\left(a u_{i}\right) u_{i}^{*}+a^{\prime \prime}$, with $E\left(a^{\prime \prime} u_{i}\right)=0,1 \leq i \leq n$. Since $u_{1}=$ 1 we can talk about reduced elements from P^{0} beginning with u_{i}, $2 \leq i \leq n$, or with $a \in P_{1}$ orthogonal to $\left\{u_{i}\right\}_{1 \leq i \leq n}$, i.e. $E\left(u_{i}^{*} a\right)=0$, $1 \leq i \leq n$, or ending with $u_{i}^{*}, 2 \leq i \leq n$, or with $a \in P_{1}$ orthogonal to $\left\{u_{i}\right\}_{1 \leq i \leq n}$, i.e. $E\left(a u_{i}\right)=0,1 \leq i \leq n$.

For each reduced word $w=a_{1} \cdots a_{m} \in P^{0}, a_{j} \in P_{i_{j}}^{0}, i_{1} \neq \cdots \neq i_{m}$ denote $a_{1}=o(w), a_{m}=t(w)$ and define

$$
\begin{aligned}
& P^{i j}=\left\{w \in P^{0} \mid i_{1}=i, \quad i_{m}=j\right\}, \quad i, j=1,2 \\
& P_{u_{i}}^{12}=\operatorname{span}\left\{w \in P^{12} \mid o(w)=u_{i} b, \quad b \in B\right\}, \quad 2 \leq i \leq n \\
& P_{u_{i}}^{21}=\operatorname{span}\left\{w \in P^{21} \mid t(w)=b u_{i}^{*}, \quad b \in B\right\}, \quad 2 \leq i \leq n \\
& P_{*}^{12}=\operatorname{span}\left\{w \in P^{12} \mid E\left(u_{i}^{*} o(w)\right)=0, \quad 1 \leq i \leq n\right\} \\
& P_{*}^{21}=\operatorname{span}\left\{w \in P^{21} \mid E\left(t(w) u_{i}\right)=0, \quad 1 \leq i \leq n\right\}
\end{aligned}
$$

These subspaces give rise to the following direct sum of orthogonal vector spaces

$$
L^{2}(P, \tau)=L^{2}(N, \tau) \oplus \overline{P^{11}} \oplus \overline{P^{22}} \oplus \overline{P_{*}^{12}} \oplus \overline{P_{*}^{21}} \oplus \bigoplus_{i=2}^{n}\left(\overline{P_{u_{t}^{12}}^{12}} \oplus \overline{P_{u_{t}}^{21}}\right)
$$

with the suitable decomposition for each $x \in P^{0}$:

$$
x=E(x)+x^{11}+x^{22}+x_{*}^{12}+x_{*}^{21}+\sum_{i=2}^{n}\left(x_{u_{i}}^{12}+x_{u_{i}}^{21}\right) .
$$

Lemma 2.3. If there exist $u_{1}, \ldots, u_{n} \in \mathscr{U}\left(P_{1}\right)$ with $E_{1}\left(u_{i}^{*} u_{j}\right)=$ $\delta_{i j} 1,1 \leq i, j \leq n$, and $e \in \mathscr{P}\left(P_{2}\right)$ with $E_{2}(e)=\lambda \in(0,1)$, then $\left\{u_{i} e u_{i}^{*}\right\}_{1 \leq i \leq n}$ is a τ-free family in P.

Proof. Denote $e^{0}=e-\lambda 1$ and remark that

$$
\begin{aligned}
& \qquad \operatorname{Alg}\left\{u_{i} e u_{i}^{*}\right\}=\left\{\alpha 1+\beta u_{i} e^{0} u_{i}^{*} \mid \alpha, \beta \in \mathbb{C}\right\}, \quad 1 \leq i \leq n \quad \text { and } \\
& E\left(u_{i_{1}} e^{0} u_{i_{1}}^{*} u_{i_{2}} e^{0} u_{i_{2}}^{*} \ldots u_{i_{m}} e^{0} u_{i_{m}}^{*}\right)=0 \\
& \quad \text { for } i_{1}, \ldots, i_{m} \in\{1, \ldots, n\}, i_{1} \neq \cdots \neq i_{m}
\end{aligned}
$$

Lemma 2.4. With the assumptions of Lemma 2.3 and $n \geq 1+$ $\max \left(\frac{1}{\lambda}, \frac{1}{1-\lambda}\right)$, pick a $k_{0} \in\{1, \ldots, n\}$ and denote $a=\sum_{k \neq k_{0}} u_{k} e u_{k}^{*}$.

Then, there exists $a u \in \mathscr{U}\left(\{a\}^{\prime \prime}\right)$ with $E\left(u^{m}\right)=0$ for all $m \neq 0$ and $\left\{u, u_{k_{0}} e u_{k_{0}}^{*}\right\}$ a τ-free family. Moreover, if $i, j \in \mathbb{Z}, j \neq 0$ and $x \in P^{22}+P_{u_{k_{0}}}^{12}+P_{*}^{12}, x^{\prime} \in P^{22}+P^{21}$, then $E\left(u^{i} x u^{j} x^{\prime}\right)=0$.

Proof. Remark that for each nonnegative integer m there exists a finite set

$$
F_{m} \subset\left\{I=\left(i_{1}, \ldots, i_{l}\right) \mid i_{1} \neq \cdots \neq i_{l} \in\{1, \ldots, n\} \backslash\left\{k_{0}\right\}\right\}
$$

such that

$$
\begin{aligned}
a^{m} & =\left(\sum_{k \neq k_{0}} u_{k} e u_{k}^{*}\right)^{m} \\
& =\tau\left(a^{m}\right) 1+\sum_{I=\left(i_{1}, \ldots, i_{l}\right) \in F_{m}} \alpha_{I} u_{i_{1}} e^{0} u_{i_{1}}^{*} \cdots u_{i_{l}} e^{0} u_{i_{l}}^{*}, \quad \alpha_{I} \in \mathbb{C} .
\end{aligned}
$$

Then for each $f \in \mathbb{C}[X], f(a)$ can be written as

$$
f(a)=\tau(f(a)) 1+\sum_{I=\left(i_{1}, \ldots, i_{k}\right) \in F_{f}} \beta_{I} u_{i_{1}} e^{0} u_{i_{1}}^{*} \cdots u_{i_{k}} e^{0} u_{i_{k}}^{*},
$$

with F_{f} finite set and $i_{1}, \ldots, i_{k} \in\{1, \ldots, n\} \backslash\left\{k_{0}\right\}, i_{1} \neq \cdots \neq i_{k}$. Consequently, for any $x \in P^{22}+P_{u_{k_{0}}}^{12}+P_{*}^{12}, x^{\prime} \in P^{22}+P^{21}, f, g \in$
$\mathbb{C}[X]$ we get

$$
\begin{aligned}
& E\left(f(a) x g(a) x^{\prime}\right) \\
&= E\left(\left(\tau(f(a)) 1+\sum_{I \in F_{f}} \beta_{I} u_{i_{1}} \ldots u_{i_{k}} e^{0} u_{i_{k}}^{*}\right)\right. \\
&\left.\quad \cdot x\left(\tau(g(a)) 1+\sum_{J \in F_{g}} \gamma_{J} u_{j_{1}} e^{0} u_{j_{1}}^{*} \ldots u_{j_{l}} e^{0} u_{j_{l}}^{*}\right) x^{\prime}\right) \\
&= \tau(f(a)) \tau(g(a)) E\left(x x^{\prime}\right) \\
&+\tau(g(a)) E\left(\sum_{I \in F_{f}} \beta_{I} u_{i_{1}} e^{0} u_{i_{1}}^{*} \ldots u_{i_{k}} e^{0} u_{i_{k}}^{*} x x^{\prime}\right) \\
&= \tau(g(a)) E\left(f(a) x x^{\prime}\right) .
\end{aligned}
$$

The normality of E and τ yields $E\left(x_{1} x x_{2} x^{\prime}\right)=\tau\left(x_{2}\right) E\left(x_{1} x x^{\prime}\right)$ for $x_{1}, x_{2} \in\{a\}^{\prime \prime}$ and $E(x)=\tau(x) 1$ for $x \in\{a\}^{\prime \prime}$. By Lemmas 2.1 and $2.3\{a\}^{\prime \prime}$ is completely nonatomic; hence $\{a\}^{\prime \prime} \simeq L^{\infty}(\mathbb{T}, d \lambda)$ and there exists a $u \in \mathscr{U}\left(\{a\}^{\prime \prime}\right)$ with the required properties.

Proposition 2.5. Let $P=P_{1} *_{B} P_{2}$ be the reduced amalgamated product of $\left(P_{1}, E_{1}\right)$ and $\left(P_{2}, E_{2}\right)$ and assume that there exist $e \in$ $\mathscr{P}\left(P_{2}\right)$ with $\lambda=E_{2}(e) \in(0,1)$ and $u_{1}=1, u_{2}, \ldots, u_{n} \in \mathscr{U}\left(P_{1}\right)$ with $n \geq 1+\max \left(\frac{1}{\lambda}, \frac{1}{1-\lambda}\right), E_{1}\left(u_{i}^{*} u_{j}\right)=\delta_{i j} 1,1 \leq i, j \leq n$. Then there exist $x_{1}, \ldots, x_{n} \in P$ such that for any $\varepsilon>0$, there is a $\delta>0$ with $x \in P,\|x\| \leq 1,\left\|\left[x, x_{i}\right]\right\|_{2} \leq \delta, 1 \leq i \leq n \Rightarrow\left\|x-E_{B}(x)\right\|_{2} \leq \varepsilon$.

Proof. For each $i \in\{2, \ldots, n\}$ denote by v_{i} the suitable unitary for i given by 2.3. Take $x_{1}=e^{0}=e-\lambda 1$ and $x_{i}=v_{i}, 2 \leq i \leq n$. Since P^{0} is dense in P we can assume by Kaplansky's density theorem that $x \in P^{0}$. Let $\varepsilon, \varepsilon^{\prime}>0$ such that $\varepsilon^{\prime}<\varepsilon^{2} / \phi(n, \lambda)$, where

$$
\phi(n, \lambda)=8(n-1)+\frac{1+4(1-\lambda) \sqrt{2(n-1)}}{2\left(\lambda-\lambda^{2}\right)}
$$

and r be an integer with $1 \leq(2 r+1) \varepsilon^{\prime}$. Assume that $x \in P^{0}$ satisfies $\left\|\left[x, v_{i}\right]\right\|_{2} \leq \frac{2 \varepsilon^{\prime}}{r+1}, 2 \leq i \leq n$ and $\|[x, e]\|_{2} \leq \sqrt{\varepsilon^{\prime}}$.

Denote $x_{i}^{\prime \prime}=x^{22}+x_{*}^{12}+x_{u_{i}}^{12}, x_{i}^{\prime}=x-x_{i}^{\prime \prime}$, for $2 \leq i \leq n$. Since

$$
\begin{aligned}
\left\|\left[x, v_{i}^{k}\right]\right\|_{2} & =\left\|x-v_{i}^{k} x v_{i}^{-k}\right\|_{2} \leq\left\|x-v_{i}^{k-1} x v_{i}^{-(k-1)}\right\|_{2}+\left\|x-v_{i} x v_{i}^{*}\right\|_{2} \\
& =\left\|\left[x, v_{i}^{k-1}\right]\right\|_{2}+\left\|\left[x, v_{i}\right]\right\|_{2}
\end{aligned}
$$ we obtain that $\left\|\left[x, v_{i}^{k}\right]\right\|_{2} \leq|k| \cdot\left\|\left[x, v_{i}\right]\right\|_{2}$ and

$$
\begin{aligned}
\left\|x-\frac{1}{2 r+1} \sum_{k=-r}^{r} v_{i}^{k} x v_{i}^{-k}\right\|_{2} & \leq \frac{1}{2 r+1} \sum_{k=-r}^{r}\left\|x-v_{i}^{k} x v_{i}^{-k}\right\|_{2} \\
& \leq \frac{\sum_{k=-r}^{r}|k|}{2 r+1}\left\|\left[x, v_{i}\right]\right\|_{2} \\
& =\frac{r(r+1)}{2 r+1}\left\|\left[x, v_{i}\right]\right\|_{2} \leq \varepsilon^{\prime}
\end{aligned}
$$

Consequently

$$
\begin{aligned}
\|x\|_{2} & \leq\left\|\frac{1}{2 r+1} \sum_{k=-r}^{r} v_{i}^{k} x v_{i}^{-k}\right\|_{2}+\left\|x-\frac{1}{2 r+1} \sum_{k=-r}^{r} v_{i}^{k} x v_{i}^{-k}\right\|_{2} \\
& \leq \varepsilon^{\prime}+\left\|\frac{1}{2 r+1} \sum_{k=-r}^{r} v_{i}^{k} x_{i}^{\prime} v_{i}^{-k}\right\|_{2}+\left\|\frac{1}{2 r+1} \sum_{k=-r}^{r} v_{i}^{k} x_{i}^{\prime \prime} v_{i}^{-k}\right\|_{2} \\
& \leq \varepsilon^{\prime}+\left\|x_{i}^{\prime}\right\|_{2}+\left\|\frac{1}{2 r+1} \sum_{k=-r}^{r} v_{i}^{k} x_{i}^{\prime \prime} v_{i}^{-k}\right\|_{2}
\end{aligned}
$$

By Lemma $2.4\left\{v_{i}^{k} x_{i}^{\prime \prime} v_{i}^{-k}\right\}_{-r \leq k \leq r}$ are mutually orthogonal in $\left\|\|_{2}\right.$; hence

$$
\begin{aligned}
\left\|\frac{1}{2 r+1} \sum_{k=-r}^{r} v_{i}^{k} x_{i}^{\prime \prime} v_{i}^{-k}\right\|_{2}^{2} & =\frac{1}{(2 r+1)^{2}} \sum_{k=-r}^{r}\left\|v_{i}^{k} x_{i}^{\prime \prime} v_{i}^{-k}\right\|_{2}^{2} \\
& =\frac{\left\|x_{i}^{\prime \prime}\right\|_{2}^{2}}{2 r+1} \leq \frac{1}{2 r+1} \leq \varepsilon^{\prime}
\end{aligned}
$$

and

$$
\|x\|_{2} \leq 2 \varepsilon^{\prime}+\left\|x_{i}^{\prime}\right\|_{2}
$$

The last inequality shows that

$$
\begin{gathered}
\left\|x_{i}^{\prime \prime}\right\|_{2}^{2}=\left(\|x\|_{2}-\left\|x_{i}^{\prime}\right\|_{2}\right)\left(\|x\|_{2}+\left\|x_{i}^{\prime}\right\|_{2}\right) \leq 4 \varepsilon^{\prime} \quad \text { and } \\
\max \left(\left\|x^{22}\right\|_{2},\left\|x_{*}^{12}\right\|_{2},\left\|x_{u_{i}}^{12}\right\|_{2}\right) \leq\left\|x_{i}^{\prime \prime}\right\|_{2} \leq 2 \sqrt{\varepsilon^{\prime}}, \quad \text { for } 2 \leq i \leq n
\end{gathered}
$$

Since $\left\{v_{i}^{k}\left(x^{22}+x_{*}^{21}+x_{u_{t}}^{21}\right) v_{i}^{-k}\right\}_{-r \leq k \leq r}$ are still mutually orthogonal by Lemma 2.4, a similar computation yields

$$
\max \left(\left\|x^{22}\right\|_{2},\left\|x_{*}^{21}\right\|_{2},\left\|x_{u_{i}}^{21}\right\|_{2}\right) \leq 2 \sqrt{\varepsilon^{\prime}}
$$

We obtain

$$
\begin{aligned}
\left\|x-E_{B}(x)-x^{11}\right\|_{2}^{2}= & \left\|x^{22}\right\|_{2}^{2}+\left\|x_{*}^{12}\right\|_{2}^{2}+\left\|x_{*}^{21}\right\|_{2}^{2} \\
& +\sum_{i=2}^{n}\left(\left\|x_{u_{i}}^{12}\right\|_{2}^{2}+\left\|x_{u_{i}}^{21}\right\|_{2}^{2}\right) \\
& \leq 4 \varepsilon^{\prime}+4 \varepsilon^{\prime}+4(2 n-4) \varepsilon^{\prime}=\varepsilon_{0}^{2} .
\end{aligned}
$$

The end of the proof is the same as in [$\mathbf{P 2}$, Theorem 7.1]. Since $x^{11} x_{1} \in P^{12}$ and $x_{1} x^{11} \in P^{21}$, they are orthogonal in $\left\|\|_{2}\right.$; hence

$$
\begin{aligned}
\left\|\left[x^{11}, x_{1}\right]\right\|_{2}^{2} & =\left\|x^{11} x_{1}\right\|_{2}^{2}+\left\|x_{1} x^{11}\right\|_{2}^{2} \\
& =\tau\left(x^{11} x_{1} x_{1}^{*} x^{11 *}\right)+\tau\left(x^{11 *} x_{1}^{*} x_{1} x^{11}\right) \\
& =\tau\left(x^{11} E_{B}\left(x_{1} x_{1}^{*}\right) x^{11 *}\right)+\tau\left(x^{11 *} E_{B}\left(x_{1}^{*} x_{1}\right) x^{11}\right) \\
& =2\left\|x_{1}\right\|_{2}^{2}\left\|x^{11}\right\|_{2}^{2}=2\left(\lambda-\lambda^{2}\right)\left\|x^{11}\right\|_{2}^{2} .
\end{aligned}
$$

Since $\left[E_{B}(x), x_{1}\right] \in P_{2}^{0}$ is orthogonal on $x_{1} x^{11}$ and on $x^{11} x_{1}$, one obtains

$$
\begin{aligned}
\sqrt{\varepsilon^{\prime}} & \geq\|[x, e]\|_{2}=\left\|\left[x, x_{1}\right]\right\|_{2} \\
& \geq\left\|\left[E_{B}(x)+x^{11}, x_{1}\right]\right\|_{2}-\left\|\left[x-E_{B}(x)-x^{11}, x_{1}\right]\right\|_{2} \\
& \geq\left\|\left[E_{B}(x)+x^{11}, x_{1}\right]\right\|_{2}-2 \varepsilon_{0}\left\|x_{1}\right\| \\
& =\left(\left\|\left[E_{B}(x), x_{1}\right]\right\|_{2}^{2}+\left\|\left[x^{11}, x_{1}\right]\right\|_{2}^{2}\right)^{1 / 2}-2 \varepsilon_{0}\left\|x_{1}\right\| \\
& =\left(\left\|\left[E_{B}(x), x_{1}\right]\right\|_{2}^{2}+2\left(\lambda-\lambda^{2}\right)\left\|x^{11}\right\|_{2}^{2}\right)^{1 / 2}-2 \varepsilon_{0}\left\|x_{1}\right\| .
\end{aligned}
$$

In particular

$$
\left\|x^{11}\right\|_{2}^{2} \leq \frac{\left(\sqrt{\varepsilon^{\prime}}+2 \varepsilon_{0}\left\|x_{1}\right\|\right)^{2}}{2\left(\lambda-\lambda^{2}\right)}=\frac{(1+4 \sqrt{2(n-1)}(1-\lambda)) \varepsilon^{\prime}}{2\left(\lambda-\lambda^{2}\right)}
$$

and

$$
\left\|\left[E_{B}(x), x_{1}\right]\right\|_{2}=\left\|\left[E_{B}(x), e\right]\right\|_{2} \leq(1+4 \sqrt{2(n-1)}(1-\lambda)) \sqrt{\varepsilon^{\prime}} .
$$

Consequently

$$
\left\|x-E_{B}(x)\right\|_{2}^{2}=\left\|x-E_{B}(x)-x^{11}\right\|_{2}^{2}+\left\|x^{11}\right\|_{2}^{2} \leq \phi(n, \lambda) \varepsilon^{\prime} \leq \varepsilon^{2} .
$$

Corollary 2.6. If there exist $e \in \mathscr{P}\left(P_{2}\right)$ with $E_{2}(e)=\lambda 1 \in\left(0, \frac{1}{2}\right]$, n unitaries $u_{1}=1, u_{2}, \ldots, u_{n} \in \mathscr{U}\left(P_{1}\right)$ with $E_{1}\left(u_{i}^{*} u_{j}\right)=\delta_{i j} 1,1 \leq$ $i, j \leq n, n \geq 1+\frac{1}{\lambda}$ and $\mathscr{Z}(B) \cap \mathscr{Z}\left(P_{1}\right)=\mathbb{C}$ or $\mathscr{Z}(B) \cap \mathscr{Z}\left(P_{2}\right)=\mathbb{C}$, then P is a factor and contains a copy of $\mathscr{L}\left(\mathbb{F}_{2}\right)$.

Proof. By the previous proposition there exist $x_{1}, \ldots, x_{n} \in P$ such that $\left\{x_{1}, \ldots, x_{n}\right\}^{\prime} \cap P \subset B$; hence $\mathscr{Z}(P)=P^{\prime} \cap P \subset B \cap P^{\prime} \subset B \cap P_{i}^{\prime}=$ $\mathscr{Z}(B) \cap \mathscr{Z}\left(P_{i}\right)=\mathbb{C}$.

By Lemma 2.3 we obtain a τ-free family of n projections $\left\{u_{i} e u_{i}^{*}\right\}_{1 \leq i \leq n}$. According to Corollary $2.2\left\{u_{i} e u_{i}^{*}\right\}_{2 \leq i \leq n}^{\prime \prime}$ contains a copy of $L^{\infty}(\mathbb{T}, d \lambda) \simeq \mathscr{L}(\mathbb{Z})$; hence P contains a copy of the von Neumann algebra $\mathscr{L}(\mathbb{Z}) * \mathbb{C}(\mathbb{C} e \oplus \mathbb{C}(1-e))$.

Pick $2 N$ unitaries $u_{i} \in \mathscr{L}(\mathbb{Z})$ with $N \geq \frac{1}{\lambda}$ and $\tau\left(u_{i}^{*} u_{j}\right)=\delta_{i j} 1$, $1 \leq i, j \leq n$. Using again Lemma 2.3 we obtain $2 N \tau$-free projections $\left\{e_{i}\right\}_{1 \leq i \leq 2 N}$ of trace $\frac{1}{\lambda}$ and by Corollary $2.2\left(N \geq \frac{1}{\lambda}\right)$ two unitaries $u \in \mathscr{U}\left(\left\{e_{1}+\cdots+e_{N}\right\}^{\prime \prime}\right)$ and $v \in \mathscr{U}\left(\left\{e_{N+1}+\cdots+e_{2 N}\right\}^{\prime \prime}\right)$ such that $\tau\left(u^{k}\right)=\tau\left(v^{k}\right)=0, \forall k \neq 0$.

Since $\{u, v\}$ is τ-free, it follows that $\{u, v\}^{\prime \prime} \simeq \mathscr{L}(\mathbb{Z} * \mathbb{Z})=$ $\mathscr{L}\left(\mathbb{F}_{2}\right)$.

Define

$$
\begin{gathered}
M_{-1}^{s}=N^{s}, \quad M_{0}^{s}=M^{s}, \quad M_{1}^{s}=v N\left(M^{s}, e_{1}\right), \\
M_{k}^{s}=v N\left(M_{k-1}^{s}, e_{k}\right)=v N\left(M^{s}, e_{1}, \ldots, e_{k}\right), \quad k \geq 1 .
\end{gathered}
$$

Sometimes we simply denote M_{k} instead of $M_{k}^{s}, k \geq-1$.
Corollary 2.7. If Q contains $n \geq s+1$ unitaries $u_{1}=1, u_{2}, \ldots$, u_{n} with $E_{Q_{0}}\left(u_{i}^{*} u_{j}\right)=\delta_{i j} 1,1 \leq i, j \leq n$, then

$$
\mathscr{Z}\left(M_{k}^{S}\right)=\mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right), \quad \text { for all } k \geq 1
$$

Proof. Applying Proposition 2.5 for $P_{1}=Q \otimes R^{s}, P_{2}=Q_{0} \otimes R$, $B=Q_{0} \otimes R^{s}$ we get $x_{1}, \ldots, x_{n} \in M_{1}$ with $\left\{x_{1}, \ldots, x_{n}\right\}^{\prime} \cap M_{\infty} \subset$ $Q_{0} \otimes R^{s}$; hence

$$
\begin{align*}
\mathscr{Z}\left(M_{1}\right) & =M_{1}^{\prime} \cap M_{1} \subset\left(Q_{0} \otimes \mathscr{N}\right) \cap Q^{\prime} \cap\{e\}^{\prime} \cap M_{1} \tag{2.1}\\
& =\left(\left(\mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right)\right) \otimes \mathscr{N}_{-1}\right) \cap M_{1} .
\end{align*}
$$

Let $B_{i}, i \geq 0$ as in $\S 1$. Clearly

$$
\left[\mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right), B_{0}\right]=\left[\mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right), Q\right]=0 .
$$

Assume that $\left[\mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right), B_{i}\right]=0$ for $i \geq 0$. Since $\left[Q_{0}, R\right]=0$ it follows that for any $x \in \mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right), y \in B_{i}$ we have

$$
\begin{aligned}
x \Phi(y) & =\sum_{k} x m_{k} \text { eyem }_{k}^{*}=\Phi(x y)=\Phi(y x) \\
& =\sum_{k} m_{k} \text { eyem }_{k}^{*} x=\Phi(y) x .
\end{aligned}
$$

Thus $\left[\mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right), \Phi\left(B_{i}\right)\right]=0$. But $B_{i+1}=\operatorname{Alg}\left(B_{i}, \Phi\left(B_{i}\right)\right)$ and $M_{0}=\overline{\bigcup_{i} B_{i}}$; hence $\left[\mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right), M_{0}\right]=0$ and therefore $\left[\mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right), M_{1}\right]=0$.

By Lemma $1.1\left[R_{-1}^{s}, M_{1}\right]=0$ and thus

$$
\left[\left(\mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right)\right) \otimes R_{-1}^{s}, M_{1}\right]=0 .
$$

We get

$$
\begin{aligned}
& \left(\left(\mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right)\right) \otimes R_{-1}^{s}\right) \cap M_{1} \subset \mathscr{Z}\left(\left(\mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right)\right) \otimes R_{-1}^{s}\right) \\
& \quad=\mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right) ;
\end{aligned}
$$

hence according to $(2.1) \mathscr{Z}\left(M_{1}\right) \subset \mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right)$.
The other inclusion was already proved.
Denote $A_{k}^{i}=v N\left\{e_{j}\right\}_{i \leq j \leq k}$ for $1 \leq k \leq \infty$. Arguing as before we obtain

$$
\begin{align*}
\mathscr{Z}\left(M_{k}\right) & \subset\left(\left(\mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right)\right) \otimes R_{-1}^{s}\right) \cap\left(A_{k}^{1}\right)^{\prime} \cap M_{k} \tag{2.2}\\
& =\left(\left(\mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right)\right) \otimes R_{-k}^{s}\right) \cap M_{k} .
\end{align*}
$$

Since $\left[\mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right), M\right]=\left[Q_{0}, A_{k}^{1}\right]=0$ and $\left[R_{-k}^{s}, A_{k}^{1}\right]=$ $\left[R_{-k}^{s}, M\right]=0$, we get $\left[\left(\mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right)\right) \otimes R_{-k}^{s}, M_{k}\right]=0$; hence

$$
\begin{aligned}
& \left(\left(\mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right)\right) \otimes R_{-k}^{s}\right) \cap M_{k} \subset \mathscr{Z}\left(\left(\mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right)\right) \otimes R_{-k}^{s}\right) \\
& \quad=\mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right) .
\end{aligned}
$$

According to (2.2) this yields $\mathscr{Z}\left(M_{k}\right) \subset \mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right)$.
The other inclusion is straightforward since $Q \subset M_{k},\left[Q_{0}, A_{k}^{1}\right]=0$ and $\left[\mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right), M\right]=0$.

The following is a rewriting of Lemma 6.4 in [P2].
Lemma 2.8. If Q contains a partition of unity $\left\{p_{i}\right\}_{i \in I}$ with $E_{Q_{0}}\left(p_{i}\right)$ $=\tau\left(p_{i}\right) \leq \lambda$ or if $Q_{0} \subset Q$ is as in 2.7, then
(i) $M_{i}=\overline{\operatorname{span}} M_{i-1} e_{i} M_{i-1}, i \geq 1 \quad\left(M_{0}=M, M_{-1}=N\right)$;
(ii) $\tau\left(e_{i} x\right)=\tau\left(e_{i}\right) \tau(x)=\lambda \tau(x), x \in M_{i-1}, i \geq 1$;
(iii) $e_{i} x e_{i}=E_{M_{i-2}}(x) e_{i}, x \in M_{i-1}$ and $M_{i-2}=\left\{e_{i}\right\}^{\prime} \cap M_{i-1}, i \geq 1$.

Proof. In the first case the computation from the end of [V3] shows that $\tau\left(s\left(p_{i} e p_{i}\right)\right)=\tau\left(p_{i}\right)$; hence one obtains $a \in \overline{\operatorname{span}} Q e_{1} Q$ with support 1. When $Q_{0} \subset Q$ is as in 2.7, such an element is produced by 2.1 and 2.3. Then the proof in [P2] applies literally.

Remark 2.9. Under the assumptions of Lemma 2.8 the tower of von Neumann algebras

$$
\begin{aligned}
M= & M_{0} \subset^{e_{1}} M_{1} \subset^{e_{2}} \cdots \subset^{e_{i-1}} M_{i-1} \subset^{e_{i}} M_{i} \subset \cdots \quad \text { satisfies } \\
e_{i} x e_{i}= & E_{M_{t-2}}(x) e_{i}, \quad x \in M_{i-1} ; \quad M_{i}=\operatorname{span} M_{i-1} e_{i} M_{i-1} ; \\
& {\left[e_{i}, M_{i-2}\right]=0 ; \quad E_{M_{i-1}}\left(e_{i}\right)=\lambda 1, \quad i \geq 1 ; }
\end{aligned}
$$

hence the arguments of [PiPo, Proposition 2.1] apply and we get

$$
\lambda=\max \left\{\mu \in \mathbb{R}_{+} \mid E_{M_{i-1}}(x) \geq \mu x, x \in M_{i}^{+}\right\}
$$

This shows that the probabilistic index of the trace preserving conditional expectation $E_{M_{i-1}}$ from M_{i} onto M_{i-1} is always s when $Q_{0} \subset Q$ is as in 2.8.

Corollary 2.10. If the hypotheses of 2.7 are fulfilled then

$$
M_{i}^{\prime} \cap M_{j}=\left(\mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right)\right) \otimes A_{j}^{i+2}, \quad 1 \leq i \leq j \leq \infty
$$

Proof. It is obvious that

$$
M_{1}^{\prime} \cap M_{\infty} \subset\left(\mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right)\right) \otimes R_{-1}^{s}=\left(\mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right)\right) \otimes A_{\infty}^{3} .
$$

Since $A_{k}^{3}=\operatorname{span} A_{k-1}^{3} e_{k} A_{k-1}^{3}, A_{k-1}^{1} \subset M_{k-1}$ and $E_{M_{k-1}}\left(e_{k}\right)=$ $\lambda 1$, it follows that $E_{M_{k-1}}\left(A_{k}^{3}\right)=A_{k-1}^{3}, k \geq 1$; thus for any $k \geq$ i we obtain $E_{M_{1}^{\prime} \cap M_{i}}\left(A_{k}^{3}\right)=E_{M_{1}^{\prime} \cap M_{1}} E_{M_{i}} E_{M_{i+1}} \cdots E_{M_{k-1}}\left(A_{k}^{3}\right)=\cdots=$ $E_{M_{1}^{\prime} \cap M_{i}}\left(A_{i}^{3}\right)=A_{i}^{3}$ and consequently $E_{M_{1}^{\prime} \cap M_{i}}\left(A_{\infty}^{3}\right)=A_{i}^{3}$.

Moreover, since $M_{1}^{\prime} \cap M_{\infty} \subset\left(\mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right)\right) \otimes A_{\infty}^{3}$ and $\mathscr{Z}(Q) \cap$ $\mathscr{Z}\left(Q_{0}\right) \subset M_{1}^{\prime} \cap M_{i}$, it follows that

$$
\begin{aligned}
& M_{1}^{\prime} \cap M_{i}=E_{M_{1}^{\prime} \cap M_{i}}\left(M_{\infty}\right)=E_{M_{1}^{\prime} \cap M_{i}}\left(M_{1}^{\prime} \cap M_{\infty}\right) \\
& \quad \subset E_{M_{1}^{\prime} \cap M_{i}}\left(\left(\mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right)\right) \otimes A_{\infty}^{3}\right)=\left(\mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right)\right) \otimes A_{i}^{3} .
\end{aligned}
$$

On the other side, the inclusion $\left(\mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right)\right) \otimes A_{i}^{3} \subset M_{1}^{\prime} \cap M_{i}$ is obvious. A similar argument yields

$$
M_{i}^{\prime} \cap M_{j}=\left(\mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right)\right) \otimes A_{j}^{i+2}, \quad 1 \leq i \leq j \leq \infty
$$

Corollary 2.11. Let $Q_{0} \subset Q$ as in 2.7 with $\mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right)=$ \mathbb{C}. Then $N^{s} \subset M^{s}$ are II_{1} factors with $\left[M^{s}: N^{s}\right]=s$. Moreover, $\left(N^{s}\right)^{\prime} \cap M_{i}^{s}=A_{i}^{1}, \quad i \geq 0\left(M_{0}^{s}=M^{s}\right)$ and the enveloping algebra of $N^{s} \subset M^{s}$ is $M_{\infty}^{s}=\left(R^{s} \otimes Q\right) *_{R^{s} \otimes Q_{0}}\left(R \otimes Q_{0}\right)$.

Proof. The arguments from the proof of Theorem 6.7 in [P2] apply in our case, due to 2.7, 2.8 and 2.10.

Corollary 2.12. Let $Q_{0} \subset Q$ as in 2.7 and $\mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right)=\mathbb{C}$. Then $M_{i}^{s}, i \geq-1,\left(M_{-1}^{s}=N^{s}\right)$ are non Γ factors.

Proof. By 2.5, if $x \in M_{1}^{s}$ almost commutes with the elements $x_{1}=$ $e_{1}, x_{2}, \ldots, x_{n} \in M_{i}^{s}$, then x is "concentrated" on $\left(\mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right)\right) \otimes$
R^{s} and the arguments in [$\left.\mathbf{P 2}, 7.1\right]$ show that x is "concentrated" on $\left(\mathscr{Z}(Q) \cap \mathscr{Z}\left(Q_{0}\right)\right) \otimes R_{-1}^{s}=R_{-1}^{s}$.
Since $\left[M_{1}^{s}, R_{-1}^{s}\right]=0$ it follows that $E_{R_{-1}^{s}}(a)=\tau(a) 1$ for all $a \in$ M_{1}^{s}; hence x is "concentrated" on \mathbb{C}. By [PiPo, 1.11] each M_{i}^{s}, $i \geq-1$ is non Γ.

Remark 2.13. The analogue of Theorem 6.10 in [$\mathbf{P} 2$] is also true, namely if $Q_{0} \subset Q \subset Q_{1}$ are finite von Neumann algebras and $N^{s, i} \subset$ $M^{s, i} \subset M_{1}^{s, i} \subset \cdots \subset M_{\infty}^{s, i}, i=1,2$, is the tower of factors associated to $Q_{0} \subset Q_{1}$ respectively $Q_{0} \subset Q_{2}$ and the inclusion $M_{\infty}^{s, 1} \subset M_{\infty}^{s, 2}$ is implemented by $Q_{1} \subset Q_{2}$, then $M_{j}^{s, 1} \subset M_{j}^{s, 2}$, for all $j \geq-1$ ($M_{-1}^{s, i}=N^{s, i}$) and
(i) $E_{M_{,}^{5,1}} E_{Q_{2}}=E_{Q_{1}}, 0 \leq j \leq \infty$;
(ii) $E_{M_{j}^{s, 1}} E_{M_{i}^{s, 2}}=E_{M_{i}^{s, 1}},-1 \leq i \leq j \leq \infty$.
3. Haagerup type approximation property for M^{s}. Since the hyperfinite II_{1}-factor \mathscr{R} is an increasing limit of finite dimensional matrix algebras, its identity can be approximated in the point- $\left\|\|_{2}\right.$ topology by a net of conditional expectations of \mathscr{R} onto finite dimensional subalgebras. One can replace this property for a finite von Neumann algebra M with trace τ, assuming only the existence of a net of τ preserving unital completely positive maps $\Phi_{l}: M \rightarrow M, l \in I$, such that $\lim _{l \in I}\left\|\Phi_{l}(x)-x\right\|_{2}=0, x \in M$, and each Φ_{l} induces a compact operator on $L^{2}(M, \tau)$. An important example, the II_{1}-factor $\mathscr{L}\left(\mathbb{F}_{n}\right)$ associated with the free group on n generators ($n \in \mathbb{N} \cup\{\infty\}$, $n \geq 2$), was pointed out by Haagerup ($[\mathbf{H}]$). It is known by [CJ] (see also [P1]) that the von Neumann algebras with this property don't contain subfactors with the property T of Connes.

In this section we prove that the algebras $M_{i}^{s}, i \geq-1$, constructed in $\S 1$ from pairs $Q_{0} \subset Q$ satisfying a property that we call the relative Haagerup property with Q_{0} finite dimensional or with $Q_{0} \subset \mathscr{Z}(Q)$ have the Haagerup approximation property. In particular the subfactors M^{s} constructed in $[\mathbf{P 2}]$ starting with a nonatomic finite von Neumann algebra Q (or with an algebra Q that contains $n \geq s+1$ unitaries orthogonal in the trace as in Chapter 2) have the Haagerup approximation property if and only if Q has this property. In order to do this, we shall use the method of construction of completely positive maps on amalgamated C^{*}-products from [B1] and [B2]. As a consequence, it follows (from [CJ] or [P1]) that in these cases the von Neumann algebras M_{i}^{s} don't contain subfactors with the property T.

We define first a Haagerup type property for inclusions of finite von Neumann algebras. Let $N \subset M$ be finite von Neumann algebras, τ be a fixed normal faithful trace on M, which acts by left multiplication on $L^{2}(M, \tau)$ in the GNS representation of τ. Let $x_{\tau} \in L^{2}(M, \tau)$ be the appropriate vector for each $x \in M$ and let E_{N} be the τ-preserving conditional expectation from M onto N.
Let $\Phi: M \rightarrow M$ be a E_{N}-preserving N-bimodule unital completely positive map. Then the Cauchy-Schwarz type inequality $\boldsymbol{\Phi}(x)^{*} \Phi(x) \leq$ $\Phi\left(x^{*} x\right), x \in M$, yields the contraction $T_{\Phi} \in \mathscr{B}\left(L^{2}(M, \tau)\right), T_{\Phi}\left(x_{\tau}\right)$ $=(\Phi x)_{\tau}, x \in M$.
The N-linearity of Φ yields $T_{\Phi}\left(x_{\tau}\right)=\Phi(x)_{\tau}=x_{\tau}, x \in N$; hence $\left.T\right|_{L^{2}(N, \tau)}=I_{L^{2}(N, \tau)}$. We check that $T_{\Phi}^{*}\left(x_{\tau}\right)=x_{\tau}, x \in N$. Indeed, for $a \in M, x \in N$ one obtains

$$
\begin{aligned}
\left\langle T_{\Phi}\left(a_{\tau}\right), x_{\tau}\right\rangle_{2, \tau} & =\tau\left(x^{*} \Phi(a)\right)=\tau\left(E_{N}\left(x^{*} \Phi(a)\right)\right) \\
& =\tau\left(x^{*} E_{N}(a)\right)=\tau\left(x^{*} a\right)=\left\langle a_{\tau}, x_{\tau}\right\rangle_{2, \tau} .
\end{aligned}
$$

Consequently $T=\left(\begin{array}{cc}I & 0 \\ 0 & T^{0}\end{array}\right)$ subject to the orthogonal decomposition $L^{2}(M, \tau)=L^{2}(N, \tau) \oplus L^{2}(N, \tau)^{\perp}$. Note also that $T_{E_{N}}=e_{N}=$ $P_{L^{2}(N, \tau)}^{L^{2}(M, \tau)}$. An operator $a e_{N} b, a, b \in M$, acts on $L^{2}(M, \tau)$ by $a e_{N} b x_{\tau}=\left(a E_{N}(b x)\right)_{\tau}, x \in M$.

Set $\mathscr{F}_{N}(M)=\left\{T \in N^{\prime} \cap \mathscr{B}\left(L^{2}(M, \tau)\right) \mid T=\sum_{i \in F} a_{i} e_{N} b_{i}, F\right.$ finite set, $\left.a_{i}, b_{i} \in M\right\}$ and let $\mathscr{K}_{N}(M)$ be the norm closure of $\mathscr{F}_{N}(M)$ in $\mathscr{B}\left(L^{2}(M, \tau)\right)$.

Definition 3.1. The finite von Neumann algebra inclusion $N \subset M$ has the Haagerup property (or is of Haagerup type) if there exists a net $\left\{\Phi_{l}\right\}_{l \in I}$ of E_{N}-preserving N-bimodules unital completely positive maps $\Phi_{i}: M \rightarrow M$ such that:
(i) $\lim _{l}\left\|\Phi_{l}(x)-x\right\|_{2}=0, x \in M$;
(ii) $T_{\Phi_{i}} \in \mathscr{R}_{N}(M)$.

Remark 3.2. If $N=\mathbb{C}$, the usual definition of the Haagerup approximation property of M is recovered. Note that, in the literature, the condition $\tau \Phi=\tau$ is sometimes replaced by $\tau\left(\Phi\left(x^{*} x\right)\right) \leq \tau\left(x^{*} x\right)$, $x \in M$, that ensures the contractivity of T_{Φ}.

Remark 3.3. Assume that the maps Φ_{l} are as in Definition 3.1 and let $\Phi_{l, \varepsilon}=\frac{1}{1+\varepsilon}\left(\Phi_{l}+\varepsilon E_{N}\right), \varepsilon \geq 0$.

Clearly $\Phi_{l, \varepsilon}$ are E_{N}-preserving N-linear unital completely positive maps with $\lim _{(l, \varepsilon) \in I_{+}}\left\|\Phi_{l, \varepsilon}(x)-x\right\|_{2}=0, x \in M$, where $I_{*}=I \times \mathbb{R}_{+}$ endowed with the order $\left(l_{1}, \varepsilon_{1}\right) \leq\left(l_{2}, \varepsilon_{2}\right) \Leftrightarrow l_{1} \leq l_{2}$ and $\varepsilon_{2} \leq \varepsilon_{1}$.

We obtain $T_{\Phi_{t, \varepsilon}}^{0}=\frac{1}{1+\varepsilon} T_{\Phi_{i}}^{0}$ and consequently $\left\|T_{\Phi_{t, \varepsilon}}^{0}\right\|<1$. This remark shows that we always are allowed to assume that $\left\|T_{\Phi_{1}}^{0}\right\|<1$ in the definition of the Haagerup property.

Remark 3.4. Let $N \subset M$ be a Haagerup inclusion and P be a von Neumann algebra with $N \subset P \subset M$. Then $N \subset P$ is still a Haagerup inclusion (with respect to the trace induced on P from M).

Proof. Let $\Phi_{l}: M \rightarrow M$ be as in Definition 3.1 and let $\Psi_{l}: P \rightarrow P$, $\Psi_{l}=\left.E_{P} \Phi_{l}\right|_{P}$. Then

$$
\begin{aligned}
\left\|\Psi_{l}(x)-x\right\|_{2} & =\left\|E_{P}\left(\Phi_{l} x\right)-x\right\|_{2} \\
& =\left\|E_{P}\left(\Phi_{l} x-x\right)\right\|_{2} \leq\left\|\Phi_{l} x-x\right\|_{2}, \quad x \in P ; \\
& T_{\Psi_{l}}=\left.e_{P} T_{\Phi_{l}}\right|_{L^{2}(P, \tau)}=e_{P} T_{\Phi_{i}} e_{P} .
\end{aligned}
$$

Since $e_{P} x e_{N} y e_{P}=e_{P} x e_{P} e_{N} e_{P} y e_{P}=E_{P}(x) e_{N} E_{P}(y), x, y, \in M$, we get

$$
\begin{aligned}
\left\|T_{\Psi_{i}}-\sum_{i} E_{P}\left(a_{i}\right) e_{N} E_{P}\left(b_{i}\right)\right\| & =\left\|e_{P} T_{\Phi_{i}} e_{P}-\sum_{i} e_{P}\left(a_{i} e_{N} b_{i}\right) e_{P}\right\| \\
& \leq\left\|T_{\Phi_{i}}-\sum_{i} a_{i} e_{N} b_{i}\right\|
\end{aligned}
$$

Moreover, since $e_{P} \in N^{\prime}$ we get $\left.\sum_{i} E_{P}\left(a_{i}\right) e_{N} E_{P}\left(b_{i}\right)\right|_{\left.L^{2}(P, \tau)\right)} \in N^{\prime} \cap$ $\mathscr{B}\left(L^{2}(P, \tau)\right)$ and $T_{\Psi} \in \mathscr{K}_{N}(P)$.

At this moment we recall some facts about completely positive maps on amalgamated products. Let P_{1} and P_{2} be finite von Neumann algebras with fixed traces τ_{1} and respectively τ_{2} and let N be a common von Neumann subalgebra of P_{1} and P_{2}. Denote by $E_{i}: P_{i} \rightarrow N$, $i=1,2$, the τ_{i}-preserving conditional expectations of P_{i} onto N.

Denote $P_{j}^{0}=\operatorname{Ker} E_{j}, j=1,2$, and consider the $*$-algebra

$$
P_{0}^{0}=N \oplus \bigoplus_{n \geq 1 ; i_{1} \neq \cdots \neq i_{n}} P_{i_{1}}^{0} \otimes_{N} \cdots \otimes_{N} P_{i_{n}}^{0}
$$

Following [P2,§3], consider the canonical "projection" E_{0} from P_{0}^{0} onto N, that agrees with E_{i} when restricted to P_{i}, defined by

$$
E_{0}(x)= \begin{cases}x, & \text { for } x \in N, \\ 0, & \text { for } x=a_{1} \ldots a_{n}, \quad a_{j} \in P_{i_{j}}^{0}, \quad i_{1} \neq \cdots \neq i_{n}\end{cases}
$$

the trace $\tau=\tau_{1} E_{0}=\tau_{2} E_{0}$ on P_{0}^{0} and the finite von Neumann algebra $P=P_{1} *_{N} P_{2}=\pi_{\tau}\left(P_{0}^{0}\right)^{\prime \prime}$ acting on

$$
\begin{aligned}
& L^{2}(P, \tau)=L^{2}(N, \tau) \\
& \qquad \bigoplus_{n \geq 1 ; i_{1} \neq \cdots \neq i_{n}}\left(L^{2}\left(P_{i_{1}}, \tau\right) \ominus L^{2}(N, \tau)\right) \\
& \\
& \quad \otimes_{N} \cdots \otimes_{N}\left(L^{2}\left(P_{i_{n}}, \tau\right) \ominus L^{2}(N, \tau)\right)
\end{aligned}
$$

Then P_{0}^{0} is a weakly dense $*$-subalgebra of P and E_{0} extends to a τ-preserving conditional expectation $E: P \rightarrow N$.

The following lemma shows a proof of the Cauchy-Schwarz type inequality for unital completely positive maps on (unital) $*$-algebras without using Stinespring dilations.

Lemma 3.5. If A is a unital *-algebra and $\Phi: A \rightarrow \mathscr{B}(\mathscr{H})$ is a unital completely positive map, then $\Phi(x)^{*} \Phi(x) \leq \Phi\left(x^{*} x\right), x \in A$.

Proof. Consider $K: A \times A \rightarrow \mathscr{B}(\mathscr{H})$ defined by $K(x, y)=\Phi\left(y^{*} x\right)$, $x, y \in A$. Then the kernel K is positively defined, since

$$
\begin{aligned}
& \sum_{i, j=1}^{n}\left\langle K\left(a_{i}, a_{j}\right) \xi_{i}, \xi_{j}\right\rangle=\sum_{i, j=1}^{n}\left\langle\Phi\left(a_{j}^{*} a_{i}\right) \xi_{i}, \xi_{j}\right\rangle \geq 0 \\
& a_{1}, \ldots, a_{n} \in A, \xi_{1}, \ldots, \xi_{n} \in \mathscr{H}
\end{aligned}
$$

Consequently Kolmogorov's theorem yields a vector space \mathscr{K} and $V_{x} \in \mathscr{B}(\mathscr{H}, \mathscr{K}), x \in A$, such that $K(x, y)=V_{y}^{*} V_{x}, x, y \in A$.

Since $K(1,1)=I_{\mathscr{H}}, V_{1}$ is an isometry and we obtain

$$
\begin{aligned}
\Phi(x)^{*} \Phi(x) & =K(x, 1)^{*} K(x, 1)=\left(V_{1}^{*} V_{x}\right)^{*} V_{1}^{*} V_{x} \\
& =V_{x}^{*} V_{1} V_{1}^{*} V_{x} \leq V_{x}^{*} V_{x}=\Phi\left(x^{*} x\right), \quad x \in A .
\end{aligned}
$$

Let $\Phi_{i}: P_{i} \rightarrow P_{i}, i=1,2$, be E_{N}-preserving N-bimodule unital completely positive maps. Consider the N-linear map $\Phi_{0}: P_{0}^{0} \rightarrow P_{0}^{0}$
defined by

$$
\Phi_{0}(x)= \begin{cases}x, & \text { for } x \in N, \\ \Phi_{i_{1}}\left(a_{1}\right) \ldots \Phi_{i_{n}}\left(a_{n}\right), & \text { for } x=a_{1} \ldots a_{n}, a_{j} \in P_{i_{j}}^{0} \\ & i_{1} \neq \cdots \neq i_{n} .\end{cases}
$$

Then Φ_{0} is known to be completely positive on P_{0}^{0} ([B1], [B2]) and since $\Phi_{j}\left(P_{j}^{0}\right) \subset P_{j}^{0}, j=1,2$, we get $E_{0} \Phi_{0}=E_{0}$. This last equality together with Lemma 3.5 yield $E\left(\Phi_{0}(x)^{*} \Phi_{0}(x)\right) \leq E\left(x^{*} x\right), x \in P_{0}^{0}$, and since E is τ-preserving we get $\tau\left(\Phi_{0}(x)^{*} \Phi_{0}(x)\right) \leq \tau\left(x^{*} x\right), x \in A$. The following lemma shows that Φ_{0} extends to a strongly continuous N-linear unital completely positive map $\boldsymbol{\Phi}=\Phi_{1} *_{E} \Phi_{2}: P_{1} *_{N} P_{2} \rightarrow$ $P_{1} *_{N} P_{2}$ and has been proved in [B2].

Lemma 3.6. Let P be a finite von Neumann algebra with a nff trace τ, acting on $L^{2}(P, \tau)$ by left multiplication, let P_{0} be a unital weakly dense ${ }^{*}$-subalgebra of P and $\Phi_{0}: P_{0} \rightarrow P_{0}$ be a unital linear map such that $\omega_{1_{\tau}} \Phi_{0}=\omega_{1_{\tau}}$ and $\Phi_{0}(x)^{*} \Phi_{0}(x) \leq \Phi_{0}\left(x^{*} x\right), x \in P_{0}$. Then Φ_{0} extends to a strongly continuous contractive map $\Phi: P \rightarrow P$. If Φ_{0} is completely positive on the $*$-algebra P_{0}, then Φ is completely positive on P.

For any contraction $T_{i} \in \mathscr{B}\left(L^{2}\left(P_{i}, \tau\right)\right)$ with $T_{i}=I_{L^{2}(N, \tau)} \oplus T_{i}^{0}$ in the decomposition $L^{2}\left(P_{i}, \tau\right)=L^{2}(N, \tau) \oplus L^{2}\left(P_{i}^{0}, \tau\right)$, we define as in [V1, §5] the contraction $T=T_{1} * T_{2} \in \mathscr{B}\left(L^{2}(P, \tau)\right)$ by

$$
\begin{aligned}
& \left.T\right|_{L^{2}(N, \tau)=I_{L^{2}(N, \tau)}} ; \\
& \left.T\right|_{L^{2}\left(P_{i_{1}}^{0}, \tau\right) \otimes \cdots \otimes L^{2}\left(P_{t_{n}}^{0}, \tau\right)}=T_{i_{1}}^{0} \otimes \cdots \otimes T_{i_{n}}^{0} \quad \text { for } i_{1} \neq \cdots \neq i_{n} .
\end{aligned}
$$

Denote $E_{1}\left(b_{1} x_{1}\right)=E_{N}\left(b_{1} x_{1}\right)$ and $E_{n}\left(b_{1}, \ldots, b_{n}, x_{1}, \ldots, x_{n}\right)=$ $E_{N}\left(b_{n} E_{n-1}\left(b_{1}, \ldots, b_{n-1}, x_{1}, \ldots, x_{n-1}\right) x_{n}\right)$ for $n \geq 2, x_{j}, b_{j} \in P$, $1 \leq j \leq n$.

Lemma 3.7. If $x_{j} \in P_{i_{j}}^{0}, b_{j} \in P_{i_{j}}, 1 \leq j \leq n, i_{1} \neq \cdots \neq i_{n}$, then $E_{N}\left(b_{n} \cdots b_{1} x_{1} \cdots x_{n}\right)=E_{n}\left(b_{1}, \ldots, b_{n}, x_{1}, \ldots, x_{n}\right)$.

Proof. For any $x \in P$, denote $x^{0}=x-E_{N}(x)$. Since the length of $\left(b_{1} x_{1}\right)^{0} x_{2} \cdots x_{n}$ is n and $b_{n} \cdots b_{2}$ is a sum of words of length $\leq n-1$, then $E_{N}\left(b_{n} \cdots b_{2}\left(b_{1} x_{1}\right)^{0} x_{2} \cdots x_{n}\right)=0$ and

$$
E_{N}\left(b_{n} \cdots b_{1} x_{1} \cdots x_{n}\right)=E_{N}\left(b_{n} \cdots b_{2} E_{N}\left(b_{1} x_{1}\right) x_{2} \cdots x_{n}\right) .
$$

Denote

$$
\begin{aligned}
& \widetilde{E}_{i}\left(b_{1}, \ldots, b_{n}, x_{1}, \ldots, x_{n}\right) \\
& \quad=E\left(b_{n} \cdots b_{i+1} E_{i}\left(b_{1}, \ldots, b_{i}, x_{1}, \ldots, x_{i}\right) x_{i+1} \cdots x_{n}\right) \\
& \\
& \quad 1 \leq i \leq n-1
\end{aligned}
$$

and assume that

$$
E_{N}\left(b_{n} \cdots b_{1} x_{1} \cdots x_{n}\right)=\widetilde{E}_{i}\left(b_{1}, \ldots, b_{n}, x_{1}, \ldots, x_{n}\right)
$$

for some $i \leq n-2$.
The length of $\left(b_{i+1} E_{i}\left(b_{1}, \ldots, b_{i}, x_{1}, \ldots, x_{i}\right) x_{i+1}\right)^{0} x_{i+2} \cdots x_{n}$ is $n-i$ and $b_{n} \cdots b_{i+2}$ is a sum of words of length $\leq n-i-1$, thus $E_{N}\left(b_{n} \cdots b_{i+2}\left(b_{i+1} E_{i}\left(b_{1}, \ldots, b_{i}, x_{1}, \ldots, x_{i}\right) x_{i+1}\right)^{0} x_{i+2} \cdots x_{n}\right)=$ 0 and

$$
\begin{aligned}
& E_{N}\left(b_{n} \cdots b_{1} x_{1} \cdots x_{n}\right) \\
& \quad=E_{N}\left(b_{n} \cdots b_{i+2} E_{N}\left(b_{i+1} E_{i}\left(b_{1}, \ldots, b_{i}, x_{1}, \ldots, x_{i}\right) x_{i+1}\right) x_{i+2} \cdots x_{n}\right) \\
& \quad=\widetilde{E}_{i+1}\left(b_{1}, \ldots, b_{n}, x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

Finally

$$
\begin{aligned}
E_{N}\left(b_{n} \cdots b_{1} x_{1} \cdots x_{n}\right) & =\widetilde{E}_{n-1}\left(b_{1}, \ldots, b_{n}, x_{1}, \ldots, x_{n}\right) \\
& =E_{n}\left(b_{1}, \ldots, b_{n}, x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

Lemma 3.8. Let $X_{j}^{0}=\sum_{k_{j} \in F_{j}} a_{j k_{j}} e_{N} b_{j k_{j}} \in N^{\prime} \cap B\left(L^{2}\left(P_{j}^{0}, \tau\right)\right)$ with F_{j} finite sets and $a_{j k_{j}}, b_{j k_{j}} \in P_{j}$. Then
(3.1) $\quad X_{i_{1}}^{0} \otimes \cdots \otimes X_{i_{n}}^{0}$

$$
=\left.\sum_{j=1}^{n} \sum_{k_{j} \in F_{J}} a_{i_{1} k_{t_{1}}} \cdots a_{i_{n} k_{i_{n}}} e_{N} b_{i_{n} k_{t_{n}}} \cdots b_{i_{1} k_{t_{1}}}\right|_{L^{2}\left(P_{t_{1}}^{0}, \tau\right) \otimes \cdots \otimes L^{2}\left(P_{t_{n}}^{0}, \tau\right)}
$$

for all $i_{1} \neq \cdots \neq i_{n}, \quad n \geq 1$.

Proof. The equality is done by induction on n. The case $n=1$ is obvious. Assume that (3.1) is true for $i_{1} \neq \cdots \neq i_{n}$ and take $i_{n+1} \neq i_{n}$. Using the N-linearity of $X_{i_{n+1}}^{0}$ and Lemma 3.7 we obtain
for any $x_{j} \in P_{i_{j}}^{0}, 1 \leq j \leq n+1$:

$$
\begin{aligned}
& \left(X_{i_{1}}^{0} \otimes \cdots \otimes X_{i_{n+1}}^{0}\right)\left(\left(x_{1}\right)_{\tau} \otimes \cdots \otimes\left(x_{n+1}\right)_{\tau}\right) \\
& \quad=X_{i_{1}}^{0}\left(\left(x_{1}\right)_{\tau}\right) \otimes \cdots \otimes X_{i_{n+1}}^{0}\left(\left(x_{n+1}\right)_{\tau}\right) \\
& \quad=\left(\sum_{k_{1}, \ldots, k_{n}} a_{i_{1} k_{t_{1}}} \cdots a_{i_{n} k_{t_{n}}} E_{N}\left(b_{i_{n} k_{t_{n}}} \cdots b_{i_{1} k_{t_{1}}} x_{1} \cdots x_{n}\right)\right. \\
& \left.\quad \cdot \sum_{k_{n+1}} E_{N}\left(b_{i_{n+1} k_{t_{n+1}}} x_{n+1}\right)\right)_{\tau} \\
& \quad=\left(\sum_{k_{1}, \ldots, k_{n+1}} a_{i_{1} k_{t_{1}}} \cdots a_{i_{n+1} k_{i_{n+1}}} E_{N}\left(b_{i_{n+1} k_{i_{n+1}}} \cdots b_{i_{1} k_{t_{1}}} x_{1} \cdots x_{n+1}\right)\right)_{\tau} \\
& \quad=\sum_{k_{1}, \ldots, k_{n+1}} a_{i_{1} k_{t_{1}}} \cdots a_{i_{n+1} k_{t_{n+1}}} e_{N} b_{i_{n+1} k_{t_{n+1}}} \\
& \cdots b_{i_{1} k_{i_{1}}}\left(\left(x_{1}\right)_{\tau} \otimes \cdots \otimes\left(x_{n+1}\right)_{\tau}\right)
\end{aligned}
$$

Proposition 3.9. If $N \subset P_{1}, N \subset P_{2}$ have the Haagerup property, then the inclusion $N \subset P=P_{1}{ }_{N} P_{2}$ has the Haagerup property (with respect to the free trace $\tau_{P_{1}} * \tau_{P_{2}}$).

Proof. Using the product net we can assume that the completely positive maps which approximate the unit in P_{1} and respectively P_{2} are indexed by the same set I. Let $\left(\Phi_{1, l}\right)_{l \in I}$ and $\left(\Phi_{2, l}\right)_{l \in I}$ be the appropriate nets of completely positive maps for $N \subset P_{1}$ and $N \subset P_{2}$ according to Definition 3.1. By a previous remark we can also assume that $\rho_{l}=\max \left(\left\|T_{\Phi_{1, l}}^{0}\right\|,\left\|T_{\Phi_{2, l}}^{0}\right\|\right)<1, l \in I$, where

$$
T_{\Phi_{j, t}}=\left(\begin{array}{cc}
I & 0 \\
0 & T_{\Phi_{J, l}^{0}}^{0}
\end{array}\right)
$$

according to $L^{2}\left(P_{j}, \tau\right)=L^{2}(N, \tau) \oplus L^{2}\left(P_{j}^{0}, \tau\right), j=1,2$.
Denote $\Phi_{l}=\Phi_{1, l} * \Phi_{2, l}$. By the previous comments $E_{N} \Phi_{l}=E_{N}$, $\Phi_{l}: P \rightarrow P$ is a N-bimodule unital completely positive map and

$$
T_{\Phi_{1}}=T_{\Phi_{1, i}} * T_{\Phi_{2, i}}=I_{L^{2}(N, \tau)} \oplus \bigoplus_{n \geq 1, i_{1} \neq \cdots \neq i_{n}} T_{\Phi_{i_{1}, t}^{0}}^{0} \otimes \cdots \otimes T_{\Phi_{\iota_{n}, t}}^{0}
$$

Since $\left\|T_{\Phi}\right\| \leq 1$, the equality $\lim _{l \in I}\left\|\Phi_{l}(x)-x\right\|_{2}=0, x \in P$, should be checked only on finite sums of reduced words. Since $L^{2}(P, \tau)$ decomposes in an orthogonal direct sum according to the
type of the words, it is enough to check that equality only for reduced words x and in this case it follows by the definition of Φ_{l} and by $\lim _{l \in I}\left\|\Phi_{j, l}(a)-a\right\|_{2}=0, a \in P_{j}, j=1,2$.

It remained to check only that $T_{\Phi_{i}} \in \mathscr{K}_{N}(P), l \in I$. Fix an index $l \in I$ and denote $T_{j}=T_{\Phi_{j, 1}}, j=1,2$. For any $0<\varepsilon<1-\rho_{l}$ let $X_{j} \in \mathscr{F}_{N}(M)$ with $\left\|T_{j}-X_{j}^{\prime}\right\| \leq \varepsilon,\left\|X_{j}\right\|<1, j=1,2$, and denote $X_{j}^{0}=\left(1-e_{N}\right) X_{j}\left(1-e_{N}\right)$.

Then $X_{j}^{0} \in \mathscr{F}_{N}(M), X_{j}^{0}\left(L^{2}\left(P_{j}^{0}, \tau\right)\right) \subset L^{2}\left(P_{j}^{0}, \tau\right),\left\|X_{j}^{0}\right\|<1$, $\left\|T_{j}^{0}-X_{j}^{0}\right\| \leq \varepsilon, j=1,2$, and we get for all $i_{1} \neq \cdots \neq i_{n}$

$$
\begin{aligned}
\| T_{i_{1}}^{0} \otimes & \cdots \otimes T_{i_{n}}^{0}-X_{i_{1}}^{0} \otimes \cdots \otimes X_{i_{n}}^{0} \| \\
\leq & \left\|T_{i_{1}}^{0}-X_{i_{1}}^{0}\right\|\left\|T_{i_{2}}^{0}\right\| \cdots\left\|T_{i_{n}}^{0}\right\|+\left\|X_{i_{1}}^{0}\right\|\left\|T_{i_{2}}^{0}-X_{i_{2}}^{0}\right\|\left\|T_{i_{3}}^{0}\right\| \cdots\left\|T_{i_{n}}^{0}\right\| \\
& \quad+\cdots+\left\|X_{i_{1}}^{0}\right\| \cdots\left\|X_{i_{n-1}}^{0}\right\|\left\|T_{i_{n}}^{0}-X_{i_{n}}^{0}\right\| \\
\leq & \varepsilon\left(\rho_{l}^{n-1}+\rho_{l}^{n-2}+\cdots+\rho_{l}+1\right) \leq \frac{\varepsilon}{1-\rho_{l}}
\end{aligned}
$$

hence $\left\|T_{\Phi_{l}}-Y_{m}\right\| \leq \max \left(\frac{\varepsilon}{1-\rho_{l}}, \rho_{l}^{m+1}\right)$.
By Lemma $3.8 Y_{m}=I_{L^{2}(N, \tau)} \oplus \bigoplus_{n \leq m ; i_{1} \neq i_{n}} X_{i_{1}}^{0} \otimes \cdots \otimes X_{i_{m}}^{0} \in \mathscr{F}_{N}(P)$ and consequently $T_{\Phi_{1}} \in \mathscr{K}_{N}(P)$.

The following lemma contains a couple of immediate examples of inclusions of von Neumann algebras with the Haagerup property.

Lemma 3.10. (i) If $Q_{0} \subset Q$ is an inclusion with the Haagerup property, then $N \otimes Q_{0} \subset N \otimes Q$ is a Haagerup pair for any finite von Neumann algebra N.
(ii) If $N \subset M$ is an inclusion of finite factors with $[M: N]$ finite, then $N \subset M$ is a Haagerup pair.
(iii) If $N \otimes Q_{0} \subset M$ is a Haagerup pair with N, M finite von Neumann algebras and Q_{0} is finite dimensional then $N \subset M$ is a Haagerup pair.
(iv) If $N \subset M$ is a Haagerup pair with N finite factor and $N_{0} \subset N$ is a subfactor with finite index, then $N_{0} \subset M$ is a Haagerup pair.
(v) If $P_{0} \subset P_{1} \subset P_{2} \subset \cdots$ are type II_{1} factors with $\left[P_{i}: P_{0}\right]<\infty$, $i \geq 0$, and $P_{\infty}=\overline{\bigcup P_{n}}$, then $P_{0} \subset P_{\infty}$ has the Haagerup property.
(vi) If Q is finite dimensional, then $Q_{0} \subset Q$ is a Haagerup pair.

Proof. (i) Let $\Phi_{l}: Q \rightarrow Q$ be $E_{Q_{0}}$-preserving Q_{0}-bimodule unital completely positive maps with $T_{\Phi_{i}} \in \mathscr{K}_{Q_{0}}(Q)$ and

$$
\lim _{i \in I}\left\|\Phi_{l}(x)-x\right\|_{2}=0, \quad x \in Q
$$

Then $\Psi_{l}=\mathrm{id}_{N} \otimes \Phi_{l}, l \in I$, satisfy the required properties for the pair $N \otimes Q_{0} \subset N \otimes Q$.
(ii) Follows from the equality $\operatorname{id}_{M}=\sum_{i} m_{i} e_{N} m_{i}^{*}$, where $\left\{m_{i}\right\}_{i}$ is an orthonormal basis of M over N with $m_{1}=1$.
(iii) Since Q_{0} is finite dimensional, it is isomorphic to $\bigoplus_{k=1}^{m} M_{k}$. Let $\left\{e_{i r r}\right\}_{1 \leq i \leq m, 1 \leq r, s \leq k_{1}}$ be a matrix unit for Q_{0}. Since the conditional expectation onto $N \otimes Q_{0}$ is

$$
E_{N \otimes Q_{0}}(x)=\sum_{i=1}^{m} \sum_{r, s=1}^{k_{1}} \frac{1}{\tau\left(e_{i r r}\right)} e_{i r s} E_{N}\left(e_{i s r} x\right), \quad x \in M,
$$

then

$$
e_{N \otimes Q_{0}}=\sum_{i=1}^{m} \sum_{r, s=1}^{k_{i}} \frac{1}{\tau\left(e_{i r r}\right)} e_{i r s} e_{N} e_{i s r}
$$

as operators on $L^{2}(M, \tau)$. Consequently $\mathscr{F}_{N \otimes Q_{0}}(M) \subset \mathscr{F}_{N}(M)$; thus any net that approximates the unit in $N \otimes Q_{0}$ as in Definition 3.1 satisfies automatically the same property for $N \subset M$.
(iv) Since $e_{N}=\sum_{i} m_{i} e_{N_{0}} m_{i}^{*}$ as operators on $L^{2}(M, \tau)$ for any orthonormal basis $\left\{m_{i}\right\}_{i}$ of N over N_{0}, then $\mathscr{F}_{N}(M) \subset \mathscr{F}_{N_{0}}(M)$.
(v) The trace preserving conditional expectations $\Phi_{i}=E_{P_{+}}^{P_{\infty}}, i \geq$ 0 , satisfy Definition 3.1.
(vi) By Proposition 3.1.5(iv) in [J], the central support of $e_{Q_{0}}$ in $\left\langle Q, e_{Q_{0}}\right\rangle$ is 1 i.e. $\bigvee_{u \in \mathscr{U}(Q)} u e_{Q_{0}} u^{*}=1$ and since Q is finite dimensional it follows that $Q=\operatorname{span}\left\{\sum_{i \in F} a_{i} e_{Q_{0}} b_{i} \mid a_{i}, b_{i} \in Q, F\right.$ finite $\}$. Consequently $\mathrm{id}_{Q} \in \mathscr{F}_{Q_{0}}(Q)$ and we set $\Phi_{l}=\operatorname{id}_{Q}, l \in I$.

Proposition 3.11. Let $(Q \subset N \subset M ; Q \subset P \subset M)$ be a commutative square such that $N \subset M$ has the Haagerup property and Q is finite dimensional. Then P has the Haagerup approximation property.

Proof. Let $\left(\Phi_{i}\right)_{t \in I}$ be a net of unital N-linear completely positive maps $\Phi_{l}: M \rightarrow M$ with $E_{N} \Phi_{l}=E_{N}, \lim _{l \in I}\left\|\Phi_{l}(x)-x\right\|_{2}=0, x \in$ M and $T_{\Phi_{l}} \in \mathscr{K}_{N}(M)$. Consider $\tilde{\Phi}_{l}=E_{P}^{M} \Phi_{l} \mid P: P \rightarrow P, l \in I$, which are unital Q-linear completely positive maps, $\tau \widetilde{\Phi}_{l}=\tau$ and $\left\|\widetilde{\Phi}_{l}(x)-x\right\|_{2}=\left\|E_{P}^{M}\left(\Phi_{l}(x)\right)-E_{P}^{M}(x)\right\|_{2} \leq\left\|\Phi_{l}(x)-x\right\|_{2}, x \in P$.

Finally, we have to check that $T_{\widetilde{\Phi}_{i}} \in \mathscr{K}\left(L^{2}(P, \tau)\right)$. Since $T_{\Phi_{i}} \in$ $\mathscr{F}_{N}(M)$, it follows that for any $\varepsilon>0$ there exists $T=\sum_{i} a_{i} e_{N}^{M} b_{i} \in$ $\mathscr{F}_{N}(M)$ such that $\left\|T_{\Phi_{i}}-T\right\| \leq \varepsilon$ and consequently $\left\|T_{\Phi_{i}}-e_{P}^{M} T e_{P}^{M}\right\|=$ $\left\|e_{P}^{M}\left(T_{\Phi}-T\right) e_{P}^{M}\right\| \leq \varepsilon$.

Therefore we have only to check that $e_{P}^{M} T e_{P}^{M} \in \mathscr{K}\left(L^{2}(P, \tau)\right)$. Let $\left(\eta_{j}\right)_{j \in J} \subset L^{2}(N, \tau)$ be an orthonormal basis of N over Q (cf. [P3, 1.1.3]) with $f_{j}=E_{Q}\left(\eta_{j}^{*} \eta_{j}\right) \in \mathscr{P}(Q)$. Since $x=\sum_{j} \eta_{j} E_{Q}\left(\eta_{j}^{*} x\right)$ for all $x \in N$, it follows that

$$
e_{N}^{M} \leq p=\sum_{j} \eta_{j} e_{P}^{M} \eta_{j}^{*}
$$

where p is the orthogonal projection from $L^{2}(M, \tau)$ onto $\bigoplus_{j} \eta_{j} L^{2}(P, \tau)$.

For any $a, b \in M$ we get

$$
\begin{aligned}
e_{P}^{M} a e_{N}^{M} b e_{P}^{M} & =\sum_{j, k} e_{P}^{M} a \eta_{j} e_{P}^{M} \eta_{j}^{*} e_{N}^{M} \eta_{k} e_{P}^{M} \eta_{k}^{*} b e_{P}^{M} \\
& =\sum_{j, k} E_{P}\left(a \eta_{j}\right) e_{P}^{M} e_{N}^{M} \eta_{j}^{*} \eta_{k} e_{N}^{M} e_{P}^{M} E_{P}\left(\eta_{k}^{*} b\right) \\
& =\sum_{j, k} E_{P}\left(a \eta_{j}\right) E_{Q}\left(\eta_{j}^{*} \eta_{k}\right) e_{Q}^{P} E_{P}\left(\eta_{k}^{*} b\right) \\
& =\sum_{j} E_{P}\left(a \eta_{j}\right) f_{j} e_{Q}^{P} f_{j} E_{P}\left(\eta_{j}^{*} b\right) \\
& =\sum_{j} E_{P}\left(a \eta_{j}\right) e_{Q}^{P} E_{P}\left(\eta_{j}^{*} b\right)
\end{aligned}
$$

Since Q is finite dimensional and

$$
\begin{aligned}
& \sum_{j}\left\|E_{P}\left(a \eta_{j}\right)\right\|_{2}^{2}=\left\|P \begin{array}{c}
L^{2}(M, \tau) \\
\bigoplus_{j} L^{2}(P, \tau) \eta_{j}
\end{array}\left(a_{\tau}\right)\right\|_{2}^{2} \leq\|a\|_{2, \tau}^{2}<\infty \\
& \sum_{j}\left\|E_{P}\left(\eta_{j}^{*} b\right)\right\|_{2}^{2}=\left\|P \begin{array}{l}
L^{2}(M, \tau) \\
\bigoplus_{j} \eta_{j} L^{2}(P, \tau)
\end{array}\left(b_{\tau}\right)\right\|_{2}^{2} \leq\|b\|_{2, \tau}^{2}<\infty
\end{aligned}
$$

it follows that $e_{P}^{M} T e_{P}^{M}$ is a compact operator on $L^{2}(P, \tau)$.
REMARKs. (1) The previous computations show that if $Q \subset N$ has a finite orthonormal basis, then $Q \subset P$ is also a Haagerup inclusion.
(2) The proof didn't use the fact that $T_{\Phi_{t}} \in N^{\prime}$. In fact that condition is important only to achieve Proposition 3.9.

Corollary 3.12. If $N \subset M$ is a Haagerup inclusion and the center of N is finite dimensional, then the relative commutant $N^{\prime} \cap M$ has the Haagerup approximation property.

Corollary 3.13. If Q_{0} is finite dimensional and $Q_{0} \subset Q$ is a Haagerup inclusion, then all the von Neumann algebras $M_{-1}^{s}=N^{s}$,
$M_{0}^{s}=M^{s}, M_{i+1}^{s}=v N\left(M_{i}^{s}, e_{i+1}\right), i \geq-1$, with M^{s} and N^{s} defined as in Chapter 1 (not necessarily factors), have the Haagerup approximation property (the trace on each M_{i}^{s} is the restriction of the free trace on M_{∞}^{s}).

Proof. By Lemma $3.10 R^{s} \otimes Q_{0} \subset R^{s} \otimes Q$ and $R^{s} \otimes Q_{0} \subset R \otimes Q_{0}$ are Haagerup inclusions and by Proposition 3.9 the inclusion $R^{s} \otimes Q_{0} \subset$ $M_{\infty}^{s}=\left(R^{s} \otimes Q\right) *_{R^{s} \otimes Q_{0}}\left(R \otimes Q_{0}\right)$ is also of Haagerup type. Since Q_{0} is finite dimensional and $\left[R^{s}: R_{-i}^{s}\right]<\infty, i \geq 0$, the same property is still true for $R_{-i}^{s}=A_{\infty}^{i+2} \subset M_{\infty}^{s}$. According to Corollary 3.12, the von Neumann algebra $\left(R_{-i}^{s}\right)^{\prime} \cap M_{\infty}^{s}$ has the Haagerup approximation property. But $\left[M^{s}, R^{s}\right]=0$; hence $M_{i}^{s} \subset\left(R_{-i}^{s}\right)^{\prime} \cap M_{\infty}^{s}$ and M_{i}^{s} has itself the Haagerup property for all $i \geq-1$.

Corollary 3.14. If Q is finite dimensional, then all the von Neumann algebras $M_{i}^{s}, i \geq-1$, have the Haagerup approximation property.

Proof. It follows by Corollary 3.13 and by Lemma 3.10(vi).
Corollary 3.15. If $Q_{0} \subset \mathscr{Z}(Q)$ and $Q_{0} \subset Q$ is a Haagerup inclusion, then the von Neumann algebras $M_{i}^{s}, i \geq-1$, have the Haagerup property.

Proof. Since Q commutes with Q_{0}, it follows that [$M^{s}, R^{s} \otimes Q_{0}$] $=$ 0 and consequently [$M_{i}^{s}, R_{-i}^{s} \otimes Q_{0}$] $=0$. Since $R_{-i}^{s} \otimes Q_{0} \subset R^{s} \otimes Q_{0}$ is a Haagerup inclusion it follows that M_{i}^{s} has the Haagerup property.

Corollary 3.16. If $Q_{0}=\mathbb{C}$, then the corresponding algebras M_{i}^{s}, $i \geq-1$, have the Haagerup property if and only if Q has this property.

Corollary 3.17. If Q_{0} and Q are as in Corollary 3.13 or Corollary 3.15, then none of the von Neumann algebras $M_{i}^{s}, i \geq-1$, contains a rigid subfactor.

Proof. It follows by Corollaries 3.13 and 3.15 and by the arguments from [CJ, Theorem 3] or [P1, Theorem 4.3.1].

At the end of this chapter we show that the Haagerup property for an inclusion of group von Neumann algebras is related to the existence of certain positive definite functions on the group, with some special properties.

Let G be a discrete countable group with unit e. The group von Neumann algebra $\mathscr{L}(G)$ associated with G is defined as follows: let G acting on $l^{2}(G)$ by $g \cdot f=\delta_{g} * f, f \in l^{2}(G), g \in G$ (δ_{g} is the evaluation function in g) and denote by u_{g} the unitary operator on $l^{2}(G)$ given by $u_{g} f=\delta_{g} * f, f \in l^{2}(G), g \in G$.

Then $\mathscr{L}(G)$ is the bicommutant of $\left\{u_{g}\right\}_{g \in G}$ in $\mathscr{B}\left(l^{2}(G)\right)$. Note that this action of G on $l^{2}(G)$ extends to a *-representation $\lambda: \mathbb{C}[G]$ $\rightarrow \mathscr{B}\left(l^{2}(G)\right)$ of the group algebra $\mathbb{C}[G]$ on $l^{2}(G)$ defined by:

$$
\lambda\left(\sum_{g \in G}^{\prime} a_{g} \delta_{g}\right)=\sum_{g \in G}^{\prime} a_{g} u_{g}, \quad a_{g} \in \mathbb{C}
$$

The use of the notation \sum^{\prime} signifies that only a finite number of a_{g} 's are nonzero.

The linear functional $\tau: \lambda(\mathbb{C}[G]) \rightarrow \mathbb{C}$ defined by $\tau\left(\sum_{g \in G}^{\prime} a_{g} u_{g}\right)=$ $a_{e}, a_{g} \in \mathbb{C}$, extends to a nff trace on $\mathscr{L}(G)$ and this will be the trace considered on $\mathscr{L}(G)$ from now on.

For G_{0} subgroup of $G, \mathscr{L}\left(G_{0}\right)$ is isomorphic to the weak closure of $\lambda\left(\mathbb{C}\left[G_{0}\right]\right)$ in $\mathscr{L}(G)$ and the map $E: \lambda(\mathbb{C}[G]) \rightarrow \mathscr{L}\left(G_{0}\right)$, defined by $E\left(\sum_{g \in G}^{\prime} a_{g} u_{g}\right)=\sum_{g \in G_{0}}^{\prime} a_{g} u_{g}, a_{g} \in \mathbb{C}$, extends to the τ-preserving conditional expectation $E=E_{\mathscr{L}\left(G_{0}\right)}: \mathscr{L}(G) \rightarrow \mathscr{L}\left(G_{0}\right)$.

Proposition 3.18. If $\mathscr{L}\left(G_{0}\right) \subset \mathscr{L}(G)$ is a Haagerup inclusion, then there exists a net $\left(\phi_{l}\right)_{l \in I}$ of G_{0}-bivariant positive defined functions on G such that
(i) $\phi_{l}(e)=1, l \in I$;
(ii) $\lim _{l \in I} \tilde{\phi}_{l}(x)=\lim _{\imath \in I} \tilde{\tilde{\phi}}_{l}(y)=1$, for all $x \in G / G_{0}, y \in G_{0} \backslash G$, where $\tilde{\phi}_{l}$ (respectively $\tilde{\tilde{\phi}}_{l}$) denotes the map induced by the G_{0}-invariant map ϕ_{l} on the left cosets G / G_{0} (respectively on the right cosets $\left.G_{0} \backslash G\right)$.
(iii) Each $\tilde{\phi}_{l}$ (respectively $\tilde{\tilde{\phi}}_{l}$) vanishes at infinity on G / G_{0} (respectively on $G_{0} \backslash G$) i.e. for any $l \in I, \varepsilon>0$, there exists a finite set $F_{l, \varepsilon}^{1} \subset G / G_{0}$ (respectively $\left.F_{l, \varepsilon}^{2} \subset G_{0} \backslash G\right)$ such that $\left|\tilde{\phi}_{l}(x)\right|<\varepsilon$, for $x \in\left(G / G_{0}\right) \backslash F_{l, \varepsilon}^{1}$ (respectively $\left|\tilde{\tilde{\phi}}_{i}(y)\right|<\varepsilon$, for $\left.x \in\left(G_{0} \backslash G\right) \backslash F_{l, \varepsilon}^{2}\right)$.

Proof. Let $\Phi_{l}: \mathscr{L}(G) \rightarrow \mathscr{L}(G), l \in I$, be a net of $\mathscr{L}\left(G_{0}\right)$-linear unital completely positive maps and define the functions $\phi_{l}: G \rightarrow \mathbb{C}$, $\phi_{l}(g)=\tau\left(u_{g}^{*} \Phi_{l}\left(u_{g}\right)\right), g \in G$.

The $\mathscr{L}\left(G_{0}\right)$-linearity of Φ_{l} yields for any $g \in G, g_{0} \in G_{0}$:

$$
\begin{aligned}
\phi_{l}\left(g g_{0}\right) & =\tau\left(u_{v_{0}}^{*} u_{g}^{*} \Phi_{l}\left(u_{g}\right) u_{g_{0}}\right)=\tau\left(u_{g}^{*} \Phi_{l}\left(u_{g}\right)\right) \\
& =\phi_{l}(g)=\tau\left(\left(u_{g_{0}} u_{g}\right)^{*} \Phi_{l}\left(u_{g_{0}} u_{g}\right)\right)=\phi_{l}\left(g_{0} g\right) .
\end{aligned}
$$

Since ϕ_{l} are G_{0}-invariant, (ii) is equivalent to $\lim _{l \in I} \phi_{l}(g)=1$, for all $g \in G$, and this follows by

$$
\left|\phi_{l}(g)-1\right|=\left|\left\langle\Phi_{l}\left(u_{g}\right)-u_{g}, u_{g}\right\rangle_{\tau}\right| \leq\left\|\Phi_{l}\left(u_{g}\right)-u_{g}\right\|_{2}
$$

and by $\lim _{l \in I}\left\|\Phi_{l}\left(u_{g}\right)-u_{g}\right\|_{2}=0, g \in G$.
Fix $l \in I$ and denote $\boldsymbol{\Phi}=\boldsymbol{\Phi}_{l}, \phi=\phi_{l}$. Clearly $\phi(e)=1$ and the complete positivity of Φ yields

$$
\begin{aligned}
\sum_{i, j=1}^{n} \lambda_{i} \bar{\lambda}_{j} \phi\left(g_{j}^{-1} g_{i}\right) & =\sum_{i, j=1}^{n} \tau\left(\left(\lambda_{j} u_{g_{j}}\right) \Phi\left(u_{g_{j}}^{*} u_{g_{i}}\right) \bar{\lambda}_{i} u_{g_{i}^{-1}}\right) \\
& =\sum_{i, j=1}^{n}\left\langle\Phi\left(u_{g_{j}}^{*} u_{g_{i}} \bar{\lambda}_{i} u_{g_{i}^{-1}}, \bar{\lambda}_{j} u_{g_{j}^{-1}}\right\rangle_{\tau} \geq 0,\right.
\end{aligned}
$$

for all $g_{1}, \ldots, g_{n} \in G, \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$; hence ϕ is positive defined on G.

Finally, let us check that $\tilde{\phi}$ vanishes at infinity on G / G_{0}. Let S be a complete system of representations in G for G / G_{0}. Since $\left\{u_{g}\right\}_{g \in G}$ is a left orthonormal basis of $\mathscr{L}(G)$ over $\mathscr{L}\left(G_{0}\right)$, we get

$$
\begin{aligned}
b & =\sum_{g \in S} u_{g} E_{\mathscr{L}\left(G_{0}\right)}\left(u_{g}^{*} b\right), \quad b \in \mathscr{L}(G) \quad \text { and } \\
\|b\|_{2} & =\sum_{g \in S}\left\|u_{g} E_{\mathscr{L}\left(G_{0}\right)}\left(u_{g}^{*} b\right)\right\|_{2}^{2}=\sum_{g \in S}\left\|E_{\mathscr{L}\left(G_{0}\right)}\left(u_{g}^{*} b\right)\right\|_{2}^{2} .
\end{aligned}
$$

Let $\varepsilon>0$. Then there exists a finite set $F_{b, \varepsilon} \subset S$ such that

$$
\sum_{g \in S \backslash F_{b, \varepsilon}}\left\|E_{\mathscr{L}\left(G_{0}\right)}\left(u_{g}^{*} b\right)\right\|_{2}^{2} \leq \varepsilon^{2} .
$$

Since $T_{\Phi} \in \mathscr{K}_{\mathscr{L}\left(G_{0}\right)}(\mathscr{L}(G))$, there exist $a_{i}, b_{i} \in \mathscr{L}(G), 1 \leq i \leq n$, such that $\left\|T_{\Phi}-\sum_{i=1}^{n} a_{i} e_{\mathscr{L}\left(G_{0}\right)} b_{i}\right\| \leq \varepsilon$. In particular

$$
\left\|\Phi\left(u_{g}\right)-\sum_{i=1}^{n} a_{i} E_{\mathscr{L}\left(G_{0}\right)}\left(b_{i} u_{g}\right)\right\|_{2} \leq \varepsilon, \quad g \in G
$$

and

$$
\begin{aligned}
|\phi(g)|= & \left|\tau\left(\Phi\left(u_{g}\right) u_{g}^{*}\right)\right| \\
\leq & \left|\tau\left(\left(\Phi\left(u_{g}\right)-\sum_{i=1}^{n} a_{i} E_{\mathscr{L}\left(G_{0}\right)}\left(b_{i} u_{g}\right)\right) u_{g}^{*}\right)\right| \\
& +\sum_{i=1}^{n}\left|\tau\left(a_{i} E_{\mathscr{L}\left(G_{0}\right)}\left(b_{i} u_{g}\right) u_{g}^{*}\right)\right| \\
\leq & \varepsilon+\sum_{i=1}^{n}\left\|a_{i}\right\|_{2}\left\|E_{\mathscr{L}\left(G_{0}\right)}\left(b_{i} u_{g}\right)\right\|_{2} \\
= & \varepsilon+\sum_{i=1}^{n}\left\|a_{i}\right\|_{2}\left\|E_{\mathscr{L}\left(G_{0}\right)}\left(u_{g}^{*} b_{i}^{*}\right)\right\|_{2}, \quad \text { for all } g \in G .
\end{aligned}
$$

Denote $M=\max _{1 \leq i \leq n}\left\|a_{i}\right\|_{2}$ and let $\varepsilon_{0}=\frac{\varepsilon}{M \sqrt{n}}, F_{\varepsilon}=\bigcup_{i=1}^{n} F_{b_{i}^{*}, \varepsilon_{0}}$. The previous inequality yields $|\phi(g)| \leq 2 \varepsilon, \forall g \in G \backslash F_{\varepsilon} G_{0}$.

Remark that in order to prove the previous statement we used only that $T_{\Phi_{i}} \in \overline{\operatorname{span}}\| \|\left\{a e_{\mathscr{L}\left(G_{0}\right)} b \mid a, b \in \mathscr{L}(G)\right\}$.

Consider the action $h \cdot g G_{0}=h g G_{0}, h \in G_{0}, g \in G$ of G_{0} on the left cosets G / G_{0}. The orbit of an element $g G_{0} \in G / G_{0}$ under this action is $\left\{w g G_{0} \mid w \in G_{0}\right\}$. If G_{0} is normal in G, then G_{0} acts trivially on G / G_{0}, the orbit of each element $g G_{0}$ being $\left\{g G_{0}\right\}$.

Proposition 3.19. Let G_{0} be a subgroup of the countable discrete group G. Assume that the orbit of each element $g G_{0} \in G / G_{0}$ under the action of G_{0} is finite and there exists a net of G_{0}-bivariant positive defined functions $\phi_{l}: G \rightarrow \mathbb{C}$ such that
(i) $\phi_{l}(e)=1$;
(ii) $\lim _{l \in I} \phi_{l}(g)=1, g \in G$;
(iii) each $\tilde{\phi}_{l}$ vanishes at infinity on G / G_{0}.

Then the inclusion $\mathscr{L}\left(G_{0}\right) \subset \mathscr{L}(G)$ has the Haagerup property.

Proof. Define $\Phi_{l}: \lambda(\mathbb{C}[G]) \rightarrow \lambda(\mathbb{C}[G])$ by

$$
\Phi_{l}\left(\sum_{g \in G}^{\prime} a_{g} u_{g}\right)=\sum_{g \in G}^{\prime} \phi_{l}(g) a_{g} u_{g}, \quad a_{g} \in \mathbb{C} .
$$

In order to check that each Φ_{l} is completely positive on $\lambda(\mathbb{C}[G])$, let $\xi_{i} \in l^{2}(G)$ and

$$
x_{i}=\sum_{g \in G}^{\prime} a_{g, i} u_{g} \in \lambda(\mathbb{C}[G]), \quad 1 \leq i \leq n
$$

Denote $\eta_{g}=\sum_{i=1}^{n} a_{g, i} u_{g} \xi_{i} \in l^{2}(G), g \in G$. We obtain

$$
\begin{aligned}
\sum_{i, j=1}^{n}\left\langle\Phi_{l}\left(x_{j}^{*} x_{i}\right) \xi_{i}, \xi_{j}\right\rangle & =\sum_{i, j=1}^{n} \sum_{g, h \in G}^{\prime}\left\langle\overline{a_{g, j}} a_{g, i} \Phi_{l}\left(u_{h}^{*} u_{g}\right) \xi_{i}, \xi_{j}\right\rangle \\
& =\sum_{i, j=1}^{n} \sum_{g, h \in G}^{\prime} \overline{a_{h, j}} a_{g, i} \phi_{l}\left(h^{-1} g\right)\left\langle u_{h}^{*} u_{g} \xi_{i}, \xi_{j}\right\rangle \\
& =\sum_{g, h \in G}^{\prime} \phi_{l}\left(g^{-1} h\right)\left\langle\eta_{g}, \eta_{h}\right) \geq 0
\end{aligned}
$$

since the (finite) matrix $\left[\phi_{l}\left(g^{-1} h\right) \cdot\left\langle\eta_{g}, \eta_{h}\right\rangle\right]_{g, h \in G}$ is positive, as the pointwise product of the positive matrices $\left[\phi_{l}\left(g^{-1} h\right)\right]_{g, h \in G}$ and $\left[\left\langle\eta_{g}, \eta_{h}\right\rangle\right]_{g, h \in G}$ and the sum of the entries of a positive matrix is positive.

Since $\phi_{l}(g)=1, g \in G_{0}$, it follows that $E_{\mathscr{L}\left(G_{0}\right)} \Phi_{l}=E_{\mathscr{L}\left(G_{0}\right)}$ and each Φ_{l} extends to a $E_{\mathscr{L}\left(G_{0}\right)}$-preserving unital completely positive map $\Phi_{1}: \mathscr{L}(G) \rightarrow \mathscr{L}(G)$ (cf. [H, Proposition 1]). The G_{0}-bivariance of ϕ_{l} implies the $\mathscr{L}\left(G_{0}\right)$-linearity of Φ_{l}.

In order to check $\lim _{l \in I}\left\|\Phi_{l}(x)-x\right\|_{2}=0, x \in \mathscr{L}(G)$, note that, since $\left\|T_{\Phi}\right\| \leq 1$, it is enough to consider only the case $x=u_{g}$, $g \in G$, and the equality follows by $\lim _{l \in I} \phi(g)=1, g \in G$, and by

$$
\begin{aligned}
\left\|\Phi_{l}\left(u_{g}\right)-u_{g}\right\|_{2}^{2} & =\left\|\Phi_{l}\left(u_{g}\right)\right\|_{2}^{2}+\left\|u_{g}\right\|_{2}^{2}-2 \operatorname{Re}\left\langle\Phi_{l}\left(u_{g}\right), u_{g}\right\rangle_{\tau} \\
& \leq 2-2 \operatorname{Re} \tau\left(u_{g}^{*} \Phi_{l}\left(u_{g}\right)\right)=2-2 \operatorname{Re} \phi_{l}(g) .
\end{aligned}
$$

 denote $\phi=\phi_{l}, \Phi=\Phi_{l}$. Let S be a complete system of representants
for G / G_{0} in G and let $X_{i} G_{0}, i \geq 1$ be the orbits of G / G_{0} under the action of G_{0}, with X_{i} finite subsets of $S, i \geq 1$, and $\bigcup_{i \geq 1} X_{i}=S$. Note that $X_{i} G_{0}=g_{0} X_{i} G_{0}, g_{0} \in G_{0}, i \geq 1$.

For each orbit $X G_{0}$ of G / G_{0} under the action of G_{0}, we check that $\sum_{g \in X} u_{g} e_{\mathscr{L}\left(G_{0}\right)} u_{g}^{*} \in \mathscr{L}\left(G_{0}\right)^{\prime}$.

Indeed, for any $g_{0} \in G_{0}, x=\sum_{w \in G}^{\prime} a_{w} u_{w}, a_{w} \in \mathbb{C}$, we have

$$
\begin{aligned}
\sum_{g \in X} & u_{g} e_{\mathscr{L}\left(G_{0}\right)} u_{g}^{*} u_{g_{0}} x_{\tau} \\
& =\sum_{g \in X} \sum_{w \in G}^{\prime} a_{w} u_{g} E_{\mathscr{L}\left(G_{0}\right)}\left(u_{g^{-1} g_{0} w}\right)=\sum_{g \in X} \sum_{w \in G_{0}}^{\prime} a_{g_{0}-1} g w \\
& =\sum_{g \in X G_{0}}^{\prime} a_{g_{0}^{-1}} u_{g}=\sum_{g \in g_{0} X G_{0}}^{\prime} a_{g_{0}^{-1} g} u_{g}=\sum_{g \in X G_{0}}^{\prime} a_{g} u_{g_{0} g} \\
& =\sum_{g \in X} \sum_{w \in G_{0}}^{\prime} a_{g w} u_{g_{0} g w}=\sum_{g \in X} \sum_{w \in G}^{\prime} a_{w} u_{g_{0} g} E_{\mathscr{L}\left(G_{0}\right)}\left(u_{g^{-1} w}\right) \\
& =u_{g_{0}} \sum_{g \in X} u_{g} e_{\mathscr{L}\left(G_{0}\right)} u_{g}^{*} x_{\tau}
\end{aligned}
$$

Since

$$
u_{g} e_{\mathscr{L}\left(G_{0}\right)} u_{g}^{*}\left(\sum_{w \in G}^{\prime} a_{w} u_{w}\right)_{\tau}=\sum_{w \in G_{0}}^{\prime} a_{g w} u_{g w}
$$

we get

$$
\sum_{g \in X} u_{g} e_{\mathscr{L}\left(G_{0}\right)} u_{g}^{*}=P_{l^{2}\left(X G_{0}\right)}^{l^{2}(G)}
$$

Let $S_{n}=\bigcup_{i=1}^{n} X_{i} \subset S$ and define $T_{n}=\sum_{g \in S_{n}} \phi(g) u_{g} e_{\mathscr{L}\left(G_{0}\right)} u_{g}^{*}=$ $\sum_{g \in S_{n}} \phi(g) P_{l^{2}(g G)}^{l^{2}(G)}$. Note that, since ϕ is G_{0}-bivariant, it is constant on each orbit X_{i}, and hence $T_{n} \in \mathscr{L}\left(G_{0}\right)^{\prime}$. Since ϕ is positive defined and $\phi(e)=1$, one easily checks that $|\phi(g)| \leq 1, g \in G$, and hence $\left\|T_{n}\right\| \leq 1$.

Since $\tilde{\phi}$ vanishes at infinity on G / G_{0}, there exists a subsequence $\left\{k_{n}\right\}_{n \geq 1}$ such that $\sup _{g \in S \backslash S_{k_{n}}}|\phi(g)| \leq \frac{1}{n}$.

Let $x \in \mathscr{L}(G)$. Since $\left\{u_{g}\right\}_{g \in S}$ is a left orthonormal basis for $\mathscr{L}(G)$ over $\mathscr{L}\left(G_{0}\right)$, it follows that for any $\varepsilon>0$, there exists $k(\varepsilon) \geq$ 1 such that $\left\|x-\sum_{g \in S_{k}} u_{g} E_{\mathscr{L}\left(G_{0}\right)}\left(u_{g}^{*} x\right)\right\|_{2} \leq \varepsilon\|x\|_{2}$, for all $k \geq k(\varepsilon)$.

Then, pick an $n \geq 1$ and assume that $k(\varepsilon) \geq k_{n}$. We obtain

$$
\begin{aligned}
& \left\|T_{\Phi} x_{\tau}-T_{k_{n}} x_{\tau}\right\|_{2}=\left\|\Phi(x)_{\tau}-T_{k_{n}} x_{\tau}\right\|_{2} \\
& \quad \leq \varepsilon+\left(\sum_{g \in S_{k(\varepsilon)}} \Phi\left(u_{g} E_{\mathscr{L}\left(G_{0}\right)}\left(u_{g}^{*} x\right)\right)-\sum_{g \in S_{k_{n}}} \phi(g) u_{g} E_{\mathscr{L}\left(G_{0}\right)}\left(u_{g}^{*} x\right) \|_{2}\right. \\
& \quad=\varepsilon+\sum_{g \in S_{k(\varepsilon)} \backslash S_{k_{n}}}\left\|\phi(g) u_{g} E_{\mathscr{L}\left(G_{0}\right)}\left(u_{g}^{*} x\right)\right\|_{2} \\
& \quad=\varepsilon+\left(\sum_{g \in S_{k(\varepsilon)} \backslash S_{k_{n}}}\left\|\phi(g) u_{g} E_{\mathscr{L}\left(G_{0}\right)}\left(u_{g}^{*} x\right)\right\|_{2}^{2}\right)^{1 / 2} \\
& \quad \leq \varepsilon+\left(\sum_{g \in S \backslash S_{k_{n}}}|\phi(g)|^{2}\left\|E_{\mathscr{L}\left(G_{0}\right)}\left(u_{g}^{*} x\right)\right\|_{2}^{2}\right)^{1 / 2} \\
& \quad \leq \varepsilon+\frac{1}{n}\left(\sum_{g \in S \backslash S_{k_{n}}}\left\|E_{\mathscr{L}\left(G_{0}\right)}\left(u_{g}^{*} x\right)\right\|_{2}^{2}\right)^{1 / 2} \leq\left(\varepsilon+\frac{1}{n}\right)\|x\|_{2}
\end{aligned}
$$

Consequently $\left\|T_{\Phi}-T_{k_{n}}\right\| \leq \frac{1}{n}$ and $T_{\Phi} \in \mathscr{K}_{\mathscr{L}\left(G_{0}\right)}(\mathscr{L}(G))$.
Corollary 3.20. If G_{0} is a normal subgroup of the discrete countable group G, then $\mathscr{L}\left(G_{0}\right) \subset \mathscr{L}(G)$ has the Haagerup property if and only if there exists a net $\left(\phi_{l}\right)_{t \in I}$ of unital positive defined functions on the quotient group G / G_{0} that vanish at infinity on G / G_{0} and such that $\lim _{l \in I} \phi_{l}(g)=1$, for all $g \in G / G_{0}$.

The Propositions 3.18 and 3.19 were proved in $[\mathbf{C h}]$ for $G_{0}=\{e\}$.

References

[B1] F. Boca, Free products of completely maps and spectral sets, J. Funct. Anal., 97 (1991), 251-263.
[B2] , Completely positive maps on amalgamated product C^{*}-algebras, to appear in Math. Scand.
[B3] - dissertation, UCLA, in preparation.
[Ch] M. Choda, Group factors of the Haagerup type, Proc. Japan Acad., 59 (1983), 174-177.
[C] A. Connes, Classification des facteurs, Proc. Symp. Pure Math., 38 (1982), 43-109.
[CJ] A. Connes and V. Jones, Property T for von Neumann algebras, Bull. London Math. Soc., 17 (1985), 57-62.
[Dix] J. Dixmier, Les Algèbres d'Opérateurs dans l'Espace Hilbertien, GauthierVillars, Paris, 1957.
[D] K. Dykema, On certain free product factors via an extended matrix model, J. Funct. Anal., 112 (1993), 31-60.
[H] U. Haagerup, An example of a non nuclear C^{*}-algebra, which has the metric approximation property, Invent. Math., 50 (1979), 279-293.
[J] V. Jones, Index for subfactors, Invent. Math., 72 (1983), 1-25.
[PiPo] M. Pimsner and S. Popa, Entropy and index for subfactors, Ann. Sci. Ec. Norm. Sup., 19 (1986), 57-106.
[P1] S. Popa, Correspondences, preprint INCREST, 1986.
[P2] , Markov traces on universal Jones algebras and subfactors of finite index, Invent. Math., 111 (1993), 375-405.
[P3] __, Classification of amenable subfactors of type II, preprint IHES, 1991.
[R] F. Rădulescu, The fundamental group of $\mathscr{L}\left(\mathbb{F}_{\infty}\right)$ is $\mathbb{R}_{+} \backslash\{0\}$, J. Amer. Math. Soc., 5 (1992), 517-532.
[V1] D. Voiculescu, Symmetries of some reduced free product C^{*}-algebras, in $O p$ erator Algebras and their Connections with Topology and Ergodic Theory, Lecture Notes in Math., vol. 1132, Springer Verlag 1985, 556-588.
[V2] , Addition of certains non-commuting random variables, J. Funct. Anal., 66 (1986), 323-346.
[V3] _, Multiplication of certains non-commuting random variables, J. Operator Theory, 18 (1987), 223-235.
[V4] _, Circular and semicircular systems and free product factors, in Operator Algebras, Unitary Representations, Enveloping Algebras and Invariant Theory, Progress in Math., vol. 92, Birkhäuser, 1990, 45-60.

Received December 19, 1991 and in revised form, July 16, 1992.
University of California
Los Angeles, CA 90024-1555

