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ON THE UNIQUENESS
OF REPRESENTATIONAL INDICES

OF DERIVATIONS OF C*-ALGEBRAS

EDWARD KISSIN

The paper considers some sufficient conditions for a closed
* -derivation of a C* -algebra, implemented by a symmetric operator,
to have a unique representational index.

1. Introduction. Let si be a C*-subalgebra of the algebra B(H)
of all bounded operators on a Hubert space H, and let a dense
*-subalgebra D(δ) of si be the domain of a closed *-derivation δ
from sf into B (H). A closed operator S on H implements δ if
D(S) is dense in H and if

AD(S)CD(S) and

δ(S)\D(S) = ι(&4 - A S ) b w for all Λ e D{δ).

If *S is symmetric (dissipative), it is called a symmetric (dissipative)
implementation of δ. If a closed operator Γ extends S and also
implements δ, then T is called a 5-extension of S. If 5 has no
^-extension, it is called a maximal implementation of <5.

If <J is implemented by a closed operator, it always has an infi-
nite set *y(δ) of implementations. However, not much can be said
about the structure of *f{δ). We do not even know whether it has
maximal implementations. The subsets S*(δ) and 2(δ) of <f{δ)
{^(δ) C 3f{δ)), which consist respectively of symmetric and of dis-
sipative implementations of δ, are more interesting. In [4] it was
shown that every symmetric implementation of δ extends to a maxi-
mal symmetric implementation of δ. Therefore if &{δ) Φ 0 , then
&{δ) as well as the set JH&iJji) of all maximal symmetric implemen-
tations of δ are infinite sets.

If S e ^5^{δ) and it is not selfadjoint, then the question arises
as to whether S has dissipative δ-extensions and, if so, whether there
exist maximal dissipative implementations of δ. This question was
partly answered in [5] where it was established that, under some con-
ditions on δ and S (for example, if max(/i_(Sf), n+(S)) < oo), the
maximal dissipative implementations of δ do exist.

97



98 EDWARD KISSIN

Let {%{$) be the set of all /-equivalence classes of /-symmetric
representations of the algebra D(δ) on Krein spaces. In [3] and [4]
it was shown that the deficiency space N(S) = N-(S) + N+(S) of
every operator S e S^(δ) is a Krein space and that there exists a
/-symmetric representation πδ

s of D{δ) on N(S). Thus there is a
mapping of &{δ) into 3ί{δ) , and different symmetric implementa-
tions may have corresponding representations which are /-equivalent.

The structure of the representations πδ

s can be extremely compli-
cated, partly due to the fact that they may have neutral invariant sub-
spaces. In [4] it was proved that π | has no neutral invariant sub-
spaces if and only if S is a maximal symmetric implementation of
δ. If S e JfS^iδ), we shall call the image of πf in &(δ) a repre-
sentational index of δ (relative to S), and denote it by iδ

s. In this
context the following problems naturally arise:

—finding simple characteristics of the representations π |
—the description of the images of S*(δ) and j£S?(δ) in 3Z{δ)\
—finding conditions on δ such that the image of JP<5"{δ) in &(δ)

consists of only one element.

The simplest characterization π | is the pair (n+(S), n~(S)) of
deficiency indices of the operator S. Different properties of these
indices were considered in [6-8]. In particular, if s/ is unital, if
S G J£9"(δ) and max(n+(S)9 n~(S)) < oo, then there are disjoint
sets of irreducible *-representations {π/}^=1 and {pj}q

j=x of sf such
that

P Q

n+(S) = Σ dim πz and n_ (S) = ] P dim pj.
i = l 7 = 1

Arveson [1] and Powers [12] studied the case when δ is the gener-
ator of a semigroup αt of endomorphisms of B{H) which has semi-
groups of intertwining isometries. If d is a generator of a semigroup
U(t) of such isometries, then the operator S = id implements δ,
it is a symmetric operator, N-(S) = {0}, and N(S) = N+(S) is a
Hubert space. In this case S e ΛK^(<5), n+(S) = oo, and π | is a
*-representation. Powers [12] defined the index of αt (relative to
U(t)) to be the multiplicity of π | . Arveson [1] gave another defini-
tion of the index of αt and Powers and Price [13] proved that the
Arveson's index is precisely the number of times the identity repre-
sentation of D(δ) on H occurs in the representation nδ

s.
Jorgensen and Price [3] studied the general case when N(S) is not

necessarily a Hubert space. They introduced the F-index as the di-
mension of the Krein space of operators V: H —• N(S), satisfying

= πδ(A)V, VeD(δ).
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In [7] a sextuple ind(δ, S) was associated with every pair (δ, S).
All of its elements are either integers or infinity. If N-(S) = {0},
one of the elements of ind(<ϊ, S) is the Powers' index. The sextuple
is stable under perturbations of δ of the form σ{A) = δ{A) +
i(BA - AB) : ind(σ, S + B) = inά{δ, S), where B = B* e B(H).
Under some conditions on δ, ind(<J, S) = ind(δ, T) for all S, T G

This paper studies the conditions on 5 such that the image of
^5^{δ) in 3Z{δ) consists of only one element, i.e., all representa-
tions πδ

s, S G ̂ S^iβ) are /-equivalent. Obviously, only then can
one speak about the representational index of δ. In §3 we consider the
following problem: given a symmetric implementation S of <5, under
what conditions on π | are all the representational indices iδ

τ, which
correspond to different maximal symmetric (J-extensions T of S,
equal? Theorem 3.2 gives a partial solution to this problem and shows
that if the representation π | is finitely Π_-or Π+-decomposable, then
all representations πδ

τ, S c. T and T G JtS?{δ), are /-equivalent,
so that all the corresponding representational indices iδ

τ are equal.
As a corollary of this result, we obtain that if δ has a minimal

implementation S, and if the representation πδ

s is finitely Π_-or I n -
decomposable, then, for all maximal symmetric implementations T
of δ (and not only for those which (5-extend S), the representations
πδ

τ are /-equivalent, so that δ has a unique representational index.
Although the conditions imposed on δ are strong, the examples of

§3 demonstrate that these conditions are justified. Without assuming
the existence of a minimal symmetric implementation it is difficult to
"compare" different representations πδ

τ and πδ

τ , Γ, Tx G J?S"(δ)9

and to establish whether they are /-equivalent. This is especially so
if D{T) nD(T{) = {0}, as in Example 2 (see [13]). In the cases
studied in [1], [12] and [13] (see Example 2), minimal symmetric im-
plementations of the generators δ of semigroups of endomorphisms
of B{H) do not exist. Therefore the representational indices iδ

τ,
T = id, where d are the generators of semigroups U(t) of inter-
twining isometries, seem to depend on U{t) [13]. On the other hand,
in many interesting cases the derivations do have minimal symmetric
implementations. This is so, for example, if si contains the ideal of
all compact operators [6] (see Theorem 3.4 and Example 3).

The condition that πδ

s (S is a minimal symmetric implementa-
tion of δ) is finitely Π-decomposable is crucial for our attempt to
show that all representational indices of δ are equal. For every
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maximal symmetric implementation T of δ, there is a maximal
neutral invariant subspace L(T) in N(S) such that the represen-
tation πδ

τ is /-equivalent to the quotient representation (Π|) L ( Γ )
on L(T)^/L(T). Theorem 2.6 considers finitely Π-decomposable
representations π and proves that, for all maximal neutral invari-
ant subspaces L, the quotient representations πL on L^/L are
/-equivalent. Therefore it follows that all representational indices
of δ are equal. Example 4 shows that if πδ

s is Π-decomposable but
not finitely Π-decomposable, the derivation δ may have an infinite
number of distinct representational indices.

2. /-symmetric representations of *-algebras on Krein spaces.

2.1. Preliminaries. This section considers /-symmetric represen-
tations of *-algebras on Krein spaces. For the benefit of the reader
and for the sake of being reasonably self contained, we provide some
amount of detail about the theory of Krein spaces and /-symmetric
representations.

Let H be a Hubert space with a scalar product (x9y) and a norm
||x|| = ( c, x)ιl2. Let H = //_ φ H+ be a decomposition of H in the
orthogonal sum of subspaces //_ and H+. The involution / = [~J ®]
defines an indefinite form [x, y] = (Jx, y) on H. The space H
with this indefinite form [ , ] is called a Krein space. Let kj =
dimHj, d = ± , and k = min(/c_ , k+). If k < oc, then H is called a
Ilk-space.

Let H be a Krein space. A subspace L in /ί is called
(a) nonnegative if [x, x] > 0,
(b) positive if [x, x] > 0, x ^ 0,
(c) uniformly positive i f t h e r e i s r > 0 s u c h t h a t [x, x]> r(x, x ) ,
( d ) neutral {null) if [x, x] = 0,

for all x G L. The concept of nonpositive, negative and uniformly
negative subspaces are introduced analogously.

A nonnegative subspace is called maximal nonnegative if it is not
properly contained in any other nonnegative subspace. In the same
way this concept of maximality can be introduced for all other types
of subspaces.

Law of inertia [9]. If L is a maximal nonnegative (nonpositive) sub-
space in H, then dimL = dim/7+ (dim//_).

The subspace

L [ i l = {y G H: [JC, y] = 0 for all x e L}

is called the J-orthogonal complement of L.
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The geometry of Krein spaces is more complicated than the geom-
etry of Hubert spaces and the decomposition

(1) H = L[+]L^

does not always exist (the symbol [+] means that the sum is direct
and the summands are /-orthogonal).

THEOREM 2.1 [9]. (i) Let L be a nonnegative (nonpositive) sub-
space of H. The decomposition (1) holds if and only if L is uniformly
positive {negative).

(ii) If L is an indefinite space, then (1) holds if and only if L
decomposes into a direct sum of two uniformly definite subspaces.

(in) ([9], page 118) Let Q be the orthoprojection on L. The de-
composition (1) holds if and only if the symmetric operator G = QJQ
has a bounded inverse.

(iv) (Iohvidov and Ginzburg, see [9, page 118].) Let k+ = oo. All
positive subspaces of H are uniformly positive if and only if k- < oo.

Every subspace L is decomposable into a simultaneously orthogo-
nal and /-orthogonal direct sum

(2) L = L_4-L 0 + L + , LO = LΠL^

in which the summands are respectively negative, neutral and positive
subspaces, or reduce to zero (see [9], p. 118).

A representation π of a *-algebra J / ona Krein space H is called
J-symmetric if

π(A*) = Jπ(A)*J, i.e., [π(A)x,y] = [x, π{A)*y], x,yeH.

If a subspace L is invariant for π, then L [ ± 1 is also invariant for π.
By ΆL we shall denote the restriction of π to L.

Let N and P be respectively uniformly negative and uniformly
positive subspaces of H invariant for π. Then

(χ,y)N = -[χ,y], χ,yeN a n d

are definite scalar products on N and P. Set

\\x\\}r = (x,x)N, xeN, and \\x\\p = (x,x)p9 xeP.

Since N and P are uniformly definite subspaces, the norms || \\N and
|| ||p are equivalent to the original norm || || on H. Therefore iV and
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P are Hubert spaces with respect to the scalar products ( , )JV and
( , ) / > . Then π# and πp are *-representations of si on N and P
with respect to these scalar products.

Let G be a bounded self adjoint operator on a Hubert space H.
Similar to the involution / , the operator G defines an indefinite met-
ric on H

[x,yh = (Gx,y).

A representation π of a *-algebra si on H is called G-symmetric if

? i.e., Gπ(Λ*) = π(Λ)*G, x,yeH.

LEMMA 2.2. Lei π be a G-symmetric representation of si on H.
(i) ([11], /?α#e 77). 7f (7 λαs α bounded inverse, then there are a

new scalar product ( , )i and an involution JQ on H such that the
norm || ||i = ( , )J^2 is equivalent to the original norm on H, that

T is a JG-symmetric representation of

(ii) [8]. Lei Q be the orthoprojection on a subspace L invariant
for π and let G\ = QGQ. The representation UL of si on L is
G\-symmetric and [x, y]g = [x, y]g.

2.2. Neutral invariant subspaces of J-symmetric representations. In
general the structure of neutral invariant subspaces of /-symmetric
representations π of *-algebras on Krein spaces H can be very com-
plicated. In some cases, however, it is possible to obtain some useful
information about their structure.

Let π be a /-symmetric representation on 77, let TV be a uniformly
negative (positive) invariant subspace and let N^ be a Π^-space. It
is proved in [8, Lemma 3.2] that if L is a neutral invariant subspace
in H, then there exist a nonnegative (nonpositive) invariant subspace
P in N^ and a bounded operator T from P onto an invariant
subspace K of N such that

L = {Tx + x:xeP} and πκT = TπP.

LEMMA 2.3. Let N have no finite-dimensional invariant subspaces.
If L is a maximal neutral invariant subspace in H, then KerΓ =
L n N^ is a maximal neutral invariant subspace in N^.

Proof. Let N be uniformly negative. Since L is a neutral space,

[x,x] + [Tx, Tx] = 0, xeP.
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Hence

(3) \\Tx\\2

N =

By (2), P = PQ + P+ > where PQ and P+ are neutral and positive
subspaces. Since N^ is a Π^-space, it follows from Theorem 2.1
(iv) that P+ is uniformly positive. By (3), Po = Ker T and \\Tx\\N =
\\x\\p for all x G P+, so that Γ is an isometry from P+ onto AT.
Therefore

L = {ΓX + J C : J C G P + } [ + ] P 0 and P0 = L

Since πjζT = Tnp, PQ is a neutral invariant subspace in N^ and we
only have to prove that PQ is a maximal invariant subspace in

Assume that there exists a neutral invariant subspace M in
larger than Po Since P+ is uniformly positive, by Theorem 2.1(i),

and P0QRnM,

where R is the /-orthogonal complement of P+ in
Let pW be the /-orthogonal complement of P in JV^. Then

P ' 1 ' C i? and P[J-1 is invariant for π, since P and N^ are invariant
for 7Γ. The subspace RnM is /-orthogonal to P + and to PQ. Hence
i? Π M c P t 1 ! , so that i? n Λf = P ^ n Af. Thus i? Π Mis a neutral
invariant subspace. If PQΦ RnM, then

Z,! = {ΓJC + x : x € P+}[+](i? n M)

is a neutral invariant subspace in H larger than L. This contradiction
shows that P0 = RnM.

By Law of inertia, d imM < k. Since P+ Π Λf = {0}, M =
{z+y : j ; E MR , z e Afp}, where MR and Λ/p are finite-dimensional
subspaces in R and P + respectively and where y — 0 implies z = 0.
Since M is larger than Po and since Po = i? Π M, Af/> ^ {0} and
z = 0 implies j ; € Po.

We shall show that the subspace PQ[+]MP is invariant for π. Since
M is a neutral subspace and since Mp C P + , every y in Λ/# is
/-orthogonal to P . Therefore MR C pi-1-]. Since P [ J- ] is invariant
for π and since P [ ± ] c R, π ( ^ ) j e i? for every y G Λf̂  and A e srf .
Then, for all z + y € M,

+ >;) = π(A)z + π(A)y = z

so that π(A)z-zχ = yi — π(-4)y. Since π(^4)z G P , since y\-π{A)y G
i? and since P n R = Po, we have that π(A)z - z\ G Po. Hence
π(A)z G Po[+]Λ/p and the subspace Po[+]Mp is invariant for π.
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Since T is an isometry from P+ onto K,

T(P0[+]MP) = TMP = {Tx:xe MP}

is a finite-dimensional subspace in K. Since π^Γ = Γπ/>, ΓMp is
a finite-dimensional invariant subspace in N which contradicts the
assumption that TV does not have such subspaces. Hence PQ is a
maximal neutral invariant subspace in TV[±]. The proof is complete.

The following lemma compares two maximal neutral invariant sub-
spaces.

LEMMA 2.4. Let L and K be maximal neutral invariant subspaces
in H. Then LnK = LnK^ = i W nK and dimL = άimK.

Proof. Set M = LnK. The subspace LnK^ is neutral, invariant
and /-orthogonal to K. If L n K^ <£ K, then # + (L n K^) is a
neutral invariant subspace larger than K. This contradiction shows
that LΠKM C U: . Therefore M = LnK^ . Similarly M = L^nK.

If M = {0}, then L n # [ ± 1 = L^l n i = {0}. Hence, for every
x e L there is y e K such that [x, y] Φ 0 and vice versa. Therefore
dimL = dim^Γ.

If M φ {0}, then

dim L = dim M + dim(L/M) = dim M + dim(#/M) = dim K,

since L/Af and AΓ/Af are maximal neutral invariant subspaces in
and since (L/M) Π (A/Af) = {0}. The lemma is proved.

2.3. Quotient J-symmetric representations. Let n be a /-sym-
metric representation of a *-algebra J / on a Krein space i ί . For
every neutral invariant subspace L, L C L[J-] and we can consider the
quotient representation nL of stf on the quotient space L = ti-^/L.
Making use of Phillips' approach ([11], Lemmas 4.2 and 4.3), it is
easy to show that πL is /-symmetric. Let L and M be different
maximal neutral invariant subspaces in H. We shall investigate the
question of when the representations πL and πM are equivalent. In
order to answer this question we shall consider the following definition
of equivalence of two representations.

DEFINITION. We say that a G-symmetric representation π of J /

on H is J-equivalent to a G\ -symmetric representation p of si on
J£ (π ~ p) if there is a bounded operator T from 7/ onto K which
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has a bounded inverse and such that Tπ = pT and that

[Γx, Ty]G{ = [x,y]cforal l jc, j / i n i / , i.e., T*GXT = G.

If π and p are *-representations of $f, then G = lτ/, Gi =
1# and /-equivalence becomes the usual equivalence of ^representa-
tions.

Let L be an invariant neutral subspace and let x and y in L[J~J
be representatives of classes x and y in L. Then the form

(4) [*,}>Γ = [*,)>]

on L does not depend on the choice of representatives.
It follows from Lemma 4.2 [11] that L^ can be decomposed into

three mutually orthogonal and /-orthogonal subspaces

(5) L^ = L++L + L.

where L+ = H+ Π L[i-J and L_ = //_ n £ [ J - J . Thus the quotient space
L = L^/L is isomorphic and isometric with L± = L + -f L_ . We
shall denote by β the orthogonal projection of L[J~J onto L±. By
(5), βπ(A)β = /?π(i4). Therefore

πβ(A)y = βπ(A)y, Aesf, yeL±,

is a representation of J / on L± which is /-equivalent to πL. We
shall often identify πL and πβ. The subspace L± is invariant for
the involution / and the form [ , ] does not degenerate on L± , i.e.,
[x 9 y] = 0 for all y in L± implies x = 0.

LEMMA 2.5. (i) The representation πL of si on L is J-symmetric.
If L is a maximal neutral invariant subspace, then πL has no neutral
invariant subspaces.

(ii) If 3? is an invariant subspace in L^ such that

L + & and

then the representations πL and π^ are J-equivalent (πL ~ π

Proof. Decomposing any y and z in L ί χ l according to (5):

y = y+ + y0 + y~, z = z + + z 0 + z_ ,

we see that βy = y+ + y_ , jffz = z + + z_ and that

(6) [y, z] = [^,)»z] = (y+
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It follows from (6) that, for all A in si and y9 z e L±,

[ π β ( A ) y , z] = [ β π ( A ) y , £ z ] = [π(A)y 9 z ] = \y9 π(A*)z]

Therefore Uβ is /-symmetric. Since πL ~ %β, π L is /-symmetric.
It follows from (4)-(6) that if L is maximal neutral invariant, then
πL has no neutral invariant subspaces. Part (i) is proved.

Let J& be an invariant subspace in LW and let Q be the or-
thoprojection onto S?. Set G = QJQ. By Lemma 2.2 (ii), the
representation π%> of J / on o^ is G-symmetric.

Now assume that i W = L + ̂  and that I n ^ = {0}. Let T be
the restriction of the projection β to 2*. Since L ^ = L + ̂ S^, T is
a bounded operator from & onto L± . Since L ΓiJϊ? = {0}, we have
that Ker T = {0}. Therefore Γ has a bounded inverse. For every

= πβ(A)βy = ^π

since π^(^4)y G o^7. From (6) and from Lemma 2.2 (ii) it follows
that,

for all y, z e <2f. Therefore πL ~ Uβ ~ π%>. The lemma is proved.

It follows from the construction of the representation πL that it de-
pends heavily on the choice of a neutral invariant subspace L. Even if
L and M are maximal neutral invariant subspaces in H, the repre-
sentations πL and πM are not, generally speaking, /-equivalent. In
Theorem 2.6 we shall show that if π satisfies a certain condition, then
for all maximal neutral invariant subspaces L and M, the quotient
representations πL and πM are /-equivalent.

Let M be a subspace of a Krein space /f and let H = M [ + ] M [ ± ] .
If Q is the orthoprojection on M, it follows from Theorem 2.1 (iii)
that the operator G = QJQ has a bounded inverse. By Lemma 2.2
(i), there are a scalar product ( , )i and an involution JQ on M such
that M decomposes into an orthogonal sum Λf_ © M+ of subspaces
M- and M+ with respect to ( , )i and such that JG = [^ j ] with
respect to this decomposition. Hence M becomes a Krein space with
respect to the form [x, y]g = (JQX ,y)\.

We shall now consider a special class of /-symmetric representa-
tions, which will play an important role in this paper.
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DEFINITION. Let π be a /-symmetric representation of a *-algebra
on a Krein space H. We say that π is Π--decomposable if H =
#[+]J£[J-l where K is a uniformly negative invariant subspace and
where K^ is a Π^-space, k = k- (one of the summands can be
zero). We say that π is finitely ^--decomposable if, in addition, the
*-representation %κ on K decomposes in a finite orthogonal sum of
irreducible representations. Similarly we can define Π+-decomposable
and finitely Π+-decomposable representations.

Let L be a neutral invariant subspace and let Z be an invariant
subspace of L. Then

Z d C IW C Z ' 1 '

and the quotient space L\ = L/Z is contained in Z = Z^/Z. It

follows from (4) that L[±] = L^/Z, where L[±] is the /-orthogonal

complement of L\ inZ. Therefore the subspaces Lψ^/L\ and

are isomorphic and isometric and

(7) πL~(π

We shall now prove the main theorem of this section.

THEOREM 2.6. Let π be a finitely Π-decomposable J-symmetric
representation of a ""-algebra sf on a Krein space H. If L is a
maximal neutral invariant subspace in H, then the representation πL

is finitely Π-decomposable. If K is another maximal neutral invari-
ant subspace in H, then the quotient representations nL and nκ on

and on K^/K respectively are J-equivalent

Proof, Set Z = L n K. The quotient spaces L\ = L/Z and
Kι = K/Z are contained in the quotient space Z = Z^/Z, they
are maximal neutral invariant subspaces for the representation nz

and L\ n K\ = {0}. It follows from (7) that if we prove that the
representations (π z ) L i and (πz)κι are /-equivalent, we shall also
obtain that the representations πL and πκ are /-equivalent. Thus
without loss of generality we may assume that Z = LnK = {0}.

We shall consider 3 cases.
Case 1. Assume that H is a Πk-space.
Then L is a Tίn -space, n < k, so that πL is finitely Π-decompos-

able. By Lemma 2.4 and by Law of inertia, dim L = dimK <k. Set
N = L + K. Then N is invariant for π and dim N < 2k. Since
L Π K = {0}, it follows from Lemma 2.4 that N Π L[J-] = L. Since
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N[±] = L[±] n κι±) 9 b y Lemma 2.4,

TV n N[±] = Nn (L[JL] n κ[±]) = Ln κ[±] = Lnκ

Hence, by (2), N = N- + N+, where JV_ and N+ are respectively
negative and positive finite-dimensional subspaces. Since every defi-
nite finite-dimensional subspace is also uniformly definite, it follows
from Theorem 2.1 (ii), that H = N[+]N^ . Since K n L [ ± ] = {0},
we have that L^ = L[+]Nl±]. By Lemma 2.5 (ii), πL ~ nNi±}.
Similarly, πκ ~ πNι±], so that πL ~ πκ .

Case 2. Let H be finitely Π_-decomρosableandlet H=
where M is an infinite dimensional uniformly negative invariant sub-
space such that M^ is a Π^-space, k = k-, and such that %M
decomposes in a finite orthogonal sum of irreducible representations.
Assume that M^ has no neutral invariant subspaces.

In Lemma 3.2 [8] it is proved that in this case there exist a uni-
formly definite invariant subspace L+ in M ^ , a uniformly negative
invariant subspace L- in M and an isometry T from L+ onto L_
(||Γx||L_ = ||x||L +) such that

πT\L+ = Tπ\L+ and L = {Tx + x : x e L+}.

By Theorem 3.5 [8], AfW = J"[+M+]P where ^ and P are
maximal negative and maximal positive invariant subspaces in M [ ±l
and where S) is an invariant Πm-space, m < k, which has neither
neutral nor definite invariant subspaces. It is also proved there that
every positive invariant subspace of M[±ί is contained in P. Hence
L+CP.

The subspace N = M[+]Jr is uniformly negative, invariant and

H = N[+]S)[+]P.

By Law of inertia, dimyf < k. Since ΈM decomposes in a finite
orthogonal sum of irreducible representations, π^ also decomposes
in a finite orthogonal sum of irreducible representations. Set

and P L = P

Since N and P are uniformly definite subspaces, it follows that

N = NL[+]L-, P = PL[+]L+ and L^ = NL[+]L[+]PL[+]f>.

The subspaces NL and PL are invariant for π . Set

(8) & = NL[+]PL[+]Ϊ> , so that
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The subspace S? is invariant for π . Therefore, by Lemma 2.5 (ii),
πL ~ π%>. Since NL C N, π# decomposes in a finite orthogonal
sum of irreducible representations. Since PL[+]Ϊ) is a Πm-sρace,
(and hence πL) is a finitely Π_-decomposable representation.

Similarly,

and

where Nκ = Nn # [ ± ] and Pκ = Pn K^, and πκ

In Theorem 2.6 [7] it is proved that in this case the "-representations
πjvL and π^κ are equivalent and that the "-representations %PL and
π ^ are equivalent. Therefore there exist an isometry U from NL
onto NK (in || |U) and an isometry V from PL onto /># (in || ||/>)
such that

J7π|ivL = πU\N]L and Fπ| P | . = π F | p £ .

Set S = C/[+]F[+]l^. Then S is a bounded operator from £? onto
3? which has a bounded inverse.

Given x and y in Jϊf and decomposing them according to (8)

we obtain that

[Sx, Sy] =

= [UxN,

= [^iv, VN] + [xp, yp]

We also have that

Therefore the representations π ^ and π^ are /-equivalent, so that
the representations πL and πκ are /-equivalent.

Cα5e 3 (general case). Let H = M[+]M^, as in Case 2. Assume
that M^ has neutral invariant subspaces.

By the assumption of the theorem, the representation % decom-
poses in a finite orthogonal sum of irreducible representations. If all
of them are finite-dimensional, then H is a Π^-space and this was
considered in Case 1. Let Mf be the subspace in M which con-
tains all finite-dimensional irreducible subrepresentations. Then Mf
is finite-dimensional and (M[-]Mf)^ = Mf[+]M^ is a Πw-space,
k- <n- . Considering M[-]Mf instead of M, we may assume with-
out loss of generality that %M is a finite sum of infinite dimensional
irreducible representations.
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By Lemma 2.3, LM = I Π M^ is a maximal neutral invariant
subspace in MW. Let L^ J be the /-orthogonal complement of
LM in H and let £ = L^ 1 Π Af W . Then £ is the /-orthogonal
complement of LM in

L M c £ and £ jjJ

We also have that L^/LM is isomorphic and isometric to

M[+](£/LM) and that £ / £ M is a Π^-space, n < k, which contains

no neutral invariant subspaces. Therefore the representation ULM on

U^jLM is finitely Π_-decomposable. The subspace L = L/LM is a

maximal neutral invariant subspace in L^/LM and L n (£/LM) =

{0} . It follows from Case 2 that the representation (ULM)L is finitely

Π_-decomposable. Since, by (7), πL ~ (ULM)L , π L is also finitely

Π_-decomposable. This concludes the proof that in all cases πL is

finitely Π_ -decomposable.
Now let K be another maximal neutral invariant subspace in H

such that L n K = {0}. Then Λ0ι/ = AT n Λf[±1 is a maximal neutral
invariant subspace in Mt±] and L ^ n ΛΓ^ = {0}. Set

N = LM + KM

and let N^ be the /-orthogonal complement of N in Λf W . Since
Λ/[J-1 is a Πfc-space, we obtain, as in Case 1, that iV[±1 is a Πrt-space
n < k, that it is invariant for π and that

and £ =

Set Hi = M[+]7V[-L]. Then /fi is an invariant Π_-decomposable
subspace of H and

(9) ZW = M[+]£ = M[+]LM[+]N^ = LM[+\H\

Therefore it follows from Lemma 2.5 (ii) that the quotient represen-
tation πLM is /-equivalent to the representation π ^ . The subspace

L = L/LM is a maximal neutral invariant subspace for the represen-
tation πLM. Since πLM ~ π^ , there is a maximal neutral invariant

subspace Lx in H\ such that {%LM)L - (πHχ)
Lι. Therefore, by (7),

Similarly, there is a maximal neutral invariant subspace K\ in H\
such that π ^ ~ (KHX)

KI
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Since N^ is /-orthogonal to LM and since LM is a maximal
neutral invariant subspace in M[J-1, N^ has no neutral invariant
subspaces. Hence the subspace H\ and the representation πH{ satisfy
Case 2. Thus (KHX)

LI ~ (KHX)
KI > so that the representations πL and

πκ are /-equivalent which concludes the proof of the theorem.

The following example shows that if π is not finitely Π-decompos-
able, then Theorem 2.6 does not necessarily hold.

EXAMPLE 1. Let p be a *-representation of a *-algebra sf on a
Hubert space ft, let

oo

#_ = #+ = £ 0 5 5 / , all 15/= 55.
ι = l

Set /f = //_ θ H+. If JC = x_ + x+ and >> = y_ + y+, where
X-, y_ € //_ and x+., x+ e H+, set

Then /ί becomes a Krein space and the representation

on Γ̂ is /-symmetric. Let x_ = (JCI , . . . , xι>, . . . ) e H- , Xi e fit,
and let Tn , « = 0, 1, . . . , be isometries from //_ into H+ such that

Tnx- = (yΪ9...9yi9...)eH+9 yx = = yπ = 0 and y π + / = x, .

The subspaces Ln = {x_ + Γwx_ : x_ G //_} are maximal, neutral
invariant subspaces and

LL±] = Ln[+\&n where ^ = ^ 0 ^ c flV.
i = l

By Lemma 2.5 (ii), πLn — π%>. Since all the representations π%> are
different, we obtain that the quotient representations πL depend on
the choice of the maximal neutral invariant subspaces L.

3. Representational indices of derivations of C*-algebras. In this
section we apply the results of §2 to the investigation of derivations
of C*-algebras.

Let p be a "-representation of a C*-algebra si on a Hubert space
H. A derivation δ of A into B(H) relative to p is a linear mapping
from a dense *-subalgebra D{δ) of sf into B(H) such that

( i ) δ ( A B ) = δ(A)p(B) + p ( A ) δ ( B ) 9A,Be D ( δ )
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(ii) δ(A*) = δ(A)*, AeD(δ);
(iii) KerpCD(δ).

The derivation is closed if An G D(δ), An —• ̂ 4 and
implies 4̂ G Z>(<J) and <?(4) = B. If J is closed, then D(δ) is a
*-normed algebra with respect to the norm

A symmetric operator S on H implements δ if its domain D(S)
is dense in H and if for all AeD(δ)

p(A)D(S)CD(S) and δ(A)\D{S) = i(Sp(A) - p(A)S)\D(S).

If T is a symmetric extension of S and if it also implements δ, we
say that T is a symmetric δ-extension of S. If S has no symmetric
^-extensions, it is called a maximal symmetric implementation of δ.

We shall now consider briefly the link between derivations imple-
mented by symmetric operators and /-symmetric representations on
Krein spaces.

Let S be a symmetric operator and let *S*be its adjoint. Then
Nd(S) = {x G D(S*): S*x = idx), d = ± , are the deficiency spaces
of 5 and /^(S) = dimΛ^S) are the deficiency indices of S. The
scalar product

(x, y) s = (x, Jθ + (S*x, S*y), x, y

converts £>(£*) into a Hubert space and

is the orthogonal sum of the subspaces D(S), N-(S) and N+(S). Set

Let Q and (2+ be the projections onto N(S) and onto N+(S) in
*). Then / = 2Q+ - β is an involution on N(S). The space

becomes a Krein space with respect to the indefinite form

y)s, χ,yeN(S),

and it decomposes into a simultaneously /-orthogonal and orthogonal
sum N(S) = N-(S) + N+(S). We have that, for x φ 0,

[x, x]s = 2(x, x) > 0, x G iV+ (5), and

[x, xf = -2(x, x) < 0, x G N-(S)9

so that N+(S) and N-(S) are respectively uniformly positive and
uniformly negative subspaces.
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Now let S implement a derivation δ relative to p. Then it is easy
to show that, for every A in D(δ)9

p(A)D(S*)CD(S*) and δ(A)\D{SΊ = i(S*p(A) - p(A)S*)\D{SΊ .

Set \\x\\l = (x, x)s for x e D{S*). In [3] and [5] it was shown that

\\p(A)x\\2 < (\\p(A)\\2 + \\δ(A)\\2)\\x\\2

s < \\A\\2\\x\\2.

Therefore p(D(δ)) acts as an algebra of bounded operators on D(S*).
Since D(S) is invariant for p(D(δ)), we define a representation π |
of D(δ) on N(S) by the formula:

(10) πδ(A) = Qp(A)Q, AeD(δ), i.e.,

πs

s(A)x = Qp(A)x, x e N(S).

THEOREM 3.1 [4]. (i) (cf. [3]). The representation π | of the algebra

D(δ) on N(S) is J-symmetric and bounded with respect to the norm

II II*.
(ii) There is a one-to-one correspondence between closed symmetric

δ-extensions T of S and neutral subspaces L in N(S) invariant for
πδ

s:T = S*\D{T), where D(T) = D(S){+)L.
(iii) There is a maximal symmetric implementation T of δ which

extends S. The representation πδ

τ has no neutral invariant subspaces.

If T is a symmetric extension of S and if L{T) is the neutral
subspace in N{S) which corresponds to it, then, using Lemma 13 [2],
we obtain that

(11) D(T*)=D(S)(+)L(T)W and T*=S*\D{r),

where L(T)^ is the /-orthogonal complement of L(T) in N(S).
Let S be a maximal symmetric implementation of a derivation δ.

By Theorem 3.1 (iii), the representation π | of D(δ) on N(S) has
no neutral invariant subspaces. We shall call the class of all repre-
sentations of D(δ) /-equivalent to π | a representational index of δ
relative to S and denote it by iδ

s.

3.2. Uniqueness of representational indices. By Theorem 3.1, every
derivation δ implemented by a symmetric operator has a maximal
symmetric implementation S. In fact, δ always has an infinite set
J?S"(δ) of maximal symmetric implementations, since, for example,
for every selfadjoint operator B in the commutant p(A)', the opera-
tor S + B is also a maximal symmetric implementation of δ. In this
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context the following question arises: under what conditions on δ are
all the representations π | , S e J?S?{δ), /-equivalent, so that δ has
only one representational index?

Let S and T be maximal symmetric implementations of δ. For
the case when T = S + B, ί e /K^)', it was shown in [7] that the
representations πδ

τ and πδ

s are /-equivalent, so that iδ

s = iδ

τ. It
was also proved there that if S and T are isomorphic, i.e., there is
a unitary operator V such that VS = TV, and if V e p(sf)', then
ι<J - iδιs - ιτ.

We shall now prove the main theorem of this section.

THEOREM 3.2. Let S be a symmetric implementation of a derivation
δ and let the representation nδ

s be finitely Π_- or Tl+-decomposable.
Then for all maximal symmetric δ-extensions T and T\ of S, the
representations πί and πί are J-equivalent, so that it = iδ

τ .

Proof. Let T be a maximal symmetric ^-extension of S. By The-
orem 3.1, there is a maximal neutral subspace L(T) in N(S) in-
variant for πδ

s such that D(T) = D(S){+)L{T). By (11), D(T*) =
D(S){+)L(T)^ where L(T)ι±] is the /-orthogonal complement of
L{T) in N(S). Since Γ* = S*\D{Γ), we have that (x, y ) Γ = (x, y ) 5 ,
JC, y G D(Γ*). Therefore L(T) and 7V(Γ) are /-orthogonal and or-
thogonal with respect to ( , ) s . Since Z)(Γ*) = D(T)(+)N(T),

Let Qs and β^ be the orthoprojections onto N(S) and iV(Γ) in
D(S*) respectively. Then Qτ c Qs and, by (10),

δ = Qsp(A)Qs and

= QτP(A)Qτ = Qτπ
δ

s(A)Qτ, ^ e D(δ).

It follows from the discussion before Lemma 2.5 that the represen-
tation πδ

τ is /-equivalent to the quotient representation {τtδ

s)
L^ of

D(δ) on L(T)^/L(T). Since πf is finitely Π-decomposable, it fol-
lows from Theorem 2.6 that all quotient representations {nδ

s)
L of

D(δ) on Ll^/L, where L are maximal neutral subspaces in N(S)
invariant for π | , are /-equivalent. Therefore all the representa-
tions πδ

τ, where T are maximal symmetric 5-extensions of S, are
/-equivalent. The theorem is proved.

REMARK. The condition that the representation πδ

s is finitely

Π-decomposable is a strong one. If, however, π | is not Π-decompos-
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able, there is hardly anything we can say about /-equivalence of the
representations πδ

τ, S Q T and T e ^S^{δ). Even if πδ

s is
Π-decomposable, but not finitely Π-decomposable, S may have an in-
finite number of maximal J-extensions T such that the corresponding
representations πδ

τ are all not /-equivalent, so that δ has an infinite
number of different representational indices iδ

τ, S Q T (see Example
4). On the other hand, in many interesting cases this condition is ful-
filled. If, for example, k = min(n+(S), n-(S)) < oo, then N(S) is a
Π^-space and πδ

s is Π-decomposable. In the case, studied by Powers
[12] and Arveson [1] (see Example 2), when δ is the generator of a
semigroup of endomorphisms of B(H) which has a semigroup of in-
tertwining isometries, k = 0 and N{S) = N+{S) is a Hubert space, so
that πδ

s is Π-decomposable. Below we consider derivations δ$ from
C*-subalgebras sf$ of B(H) into B(H) generated by symmetric oper-
ators S on H. We also consider the restrictions δ of this derivation
to some C*-subalgebras of s/$ If min(n+(S), ri-(S)) < oo, then
the representations πδ

s are finitely Π-decomposable and Theorem 3.2
holds.

Let T and T\ be maximal symmetric implementations of δ. If
there exists a symmetric implementation S of δ such that S C T
and S CT\ then Theorem 3.2 gives sufficient conditions for the rep-
resentations πj and πδ

τ to be /-equivalent. If, however, such an
implementation S does not exist, it becomes extremely difficult to
establish whether πί and πί are /-equivalent. Therefore in order

1 Λ 1

to be able to decide whether δ has a unique representational index or
not, we have to impose another condition on δ which will allow us
to "compare" different maximal symmetric implementations of δ.

DEFINITION. Let δ be a derivation of s/ relative to a representa-
tion p. We say that a symmetric implementation S of δ is minimal
if, for every symmetric implementation T of δ, there is a self adjoint
operator B in the commutant p(sf)' such that S C T + B.

THEOREM 3.3. Let S be a minimal symmetric implementation of
a derivation δ of a C*-algebra stf relative to a representation p. If
the representation πδ

s is finitely Π~decomposable, then, for all maxi-
mal symmetric implementations T of δ, the representations πδ

τ are
J-equivalent, so that δ has a unique representational index.

Proof. Let R and T be maximal symmetric implementations of
δ. Then there are B,C e ρ{stf)f such that S C R + B and S C
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T + C. The operators R + B and T + C are also maximal symmetric
implementations of δ. By Theorem 3.2, πδ

R+B is /-symmetric to
πδ

Tή_c. By Theorem 3.6 [7], πδ

R and πδ

R+B are /-equivalent and πδ

τ

and π ^ + c are /-equivalent. Hence πδ

R and π^ are /-equivalent.

REMARK. The existence of a minimal symmetric implementation
is another strong condition imposed on δ. However, without this as-
sumption it is difficult to test the representations π | , S £ J£S?{δ),
on /-equivalence. In Example 2 below a minimal symmetric imple-
mentation does not exist and, therefore, it is not clear whether the
representations π | and π | , S, Si e JίS^{δ), which correspond to
different intertwining semigroups of isometries, are /-equivalent [13].
In many cases the derivations do have minimal symmetric implemen-
tations. In [6], for example, it was shown that if p{stf) contains the
ideal C(H) of all compact operators on H, then δ has a minimal
symmetric implementation. Example 4 considers a derivation δ from
sf into B(H) such that $f does not contain C(H) and that δ has
a minimal symmetric implementation.

EXAMPLE 2. Powers [12] and Arveson [1] studied a special case
when δ is the generator of a semigroup at of endomorphisms of
B(H) and when there exists a semigroup U = {C/(ί): t > 0} of isome-
tries which intertwine α*: C/(ί)̂ 4 = at{A)U{t), ^ e B(H). Then <J is
a *-derivation from a C*-subalgebra sfa of all 4̂ e B(H) such that

| |α f(i4)-i4||^0 as t «• 0+

into 5 ( / ί ) . If a? is the generator of U 9 then the operator S = W
implements δ, it is symmetric, iV_(S) = {0} and iV(S) = N+(S) is
a Hubert space. Therefore S is a maximal symmetric implementa-
tion of δ and the *-representation πδ

s is Π_-decomposable. Powers
and Price [13] showed that if {V(ή: t > 0} is another semigroup
of isometries which intertwine at and if d\ is its generator, then
D(d) ΠD(d\) = {0}. In this case, obviously, δ has no minimal sym-
metric implementations and, therefore, there is no reason to think
that the representational indices / | and / | , where Si = id\, are
equal. From the above remark it also follows that $fa does not con-
tain C{H).

We shall now consider derivations δ which have minimal symmet-
ric implementations S such that the representations π | are finitely
Π-decomposable, so that Theorem 3.3 holds.
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Let S be a densely defined symmetric operator on a Hubert space
H. Set

= {A e B{H): AD(S) c D(S),
and (SA - AS)\^s) extends to a bounded operator}.

Then 38$ is a *-algebra. For every x, y e H, we denote by x <8>y
the rank-1 operator z —• (z, x)y. Then (x ® y)* = j / 0 x and if
x j G ΰ ( 5 ) , then x ® y G ̂ 5 . By J ^ we denote the norm closure
of 38$. Then sf$ is a C*-algebra and it contains C(/f). The operator
S defines a closed "-derivation from $f$ i n t 0 B{H)

δs(A)\D{S) = i(SA-AS)\D{S)

and 2)(is) = 38$. Since C(/f) c sf$, 5^ has a minimal implementa-
tion. In fact, S is a minimal implementation of δ$. In order to prove
this we assume that T also implements δ$. Then for all x, j ; G D(5),

so that Dί^) C D ( Γ ) . We also have that for all z G

{S - T){x Θ y)z = (x Θ y)(ιS - Γ)z.

Therefore T\D^ = (S + λI)\D($), λ G C, so that S is a minimal
implementation of δ$.

Let J / be a unital C*-subalgebra of J ^ which contains C(H) and
such that 38$ n «i/ is dense in J / . Then δ$ generates a derivation
δ = δ$\j/ on j / and D(δ) = ^ 5 Π J / . Since all rank-1 operators
•̂ ® y 9 x9y €D(S), belong to D(δ), the operator S is still a minimal
implementation of δ.

If «_(£) = 0 or n+(S) = 0, then .S has no symmetric extensions
at all and, therefore, S is a maximal symmetric implementation of
δ$ and of any derivation δ generated by δ$ considered above. An-
other example of a symmetric operator S, which is also a maximal
symmetric implementation of δ$, was given in [7]:

S = ij- on L 2(0, α), α < 00, and π-(ιS) = fl+(S) = 1.

In general, however, we do not know whether S is a maximal im-
plementation of δ$ or not. Even if *S is a maximal symmetric imple-
mentation of δ$, it is not necessarily a maximal symmetric implemen-
tation of a derivation δ = δ$\& generated by δ$ on a C*-subalgebrai
j / of A/$ considered above. If min(n+(5 f), it-(S)) < 00, then N(S)
is a Π^-space, so that the representation πδ

s of D(δ) is finitely Π-
decomposable. Therefore from Theorem 3.3 we obtain the following
theorem.
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THEOREM 3.4. Let min(n+(S), ri-(S)) < oo. Let si be a unίtal
C*-subalgebra of stfs such that C(H) c si and £%S^

A is dense in
sf. Let δ = δsU and D(δ) = 4 Π J / . Then for all maximal
symmetric implementations T of δ, the representations πδ

τ of D(δ)
are J-equivalent, so that there exists a unique representational index
ofδ.

The following example illustrates Theorems 3.3 and 3.4.

EXAMPLE 3. Let min(n+(Sr), n-(S)) < oo, let sf = C(H) + CIH

and let δ = δsU
 τ h e n D(δ) = 3SS Π C(H) + CIH. Assume that

n-{S) < n+(S) and let T be a maximal symmetric implementation
of δ. For the case when n+(S) < oo, it was proved in [4], and, for
the case when n+(S) = oo, it was proved in [10] that

n-(Γ) = 0, n+(Γ) = n+(5)-«_(5) and Kerπf = &s n C(/ί).

From this it follows immediately that all representations πδ

τ, T e.
Jf&iδ), of Z)(ί) are "-equivalent (since all the deficiency spaces
N(T) = N+(T) are Hubert spaces, /-equivalence coincides with
"-equivalence). Thus δ has a unique representational index which
fits well with Theorems 3.3 and 3.4.

The following example shows that if the representation πδ

s (S is
a minimal symmetric implementation of δ) is Π-decomposable but
not finitely Π-decomposable, then δ may have an infinite number of
distinct representational indices.

EXAMPLE 4. Let S\ and S2 be symmetric operators on H\ and Hi
respectively. Set H = Hι®H2 and S = Si ®S2. Then S* = S

D(S) = D(Si) ® D(S2) and D(S*) = D(S%)

For * = xι + x2 and y = y\+y2, x, , y, G Z)(5'*), / = 1, 2, let

(x, y>5 = (x, y) + (5*x, S*y) = (xx, yι)
sι + (x2, y 2)^ .

Therefore

and iV±(5) = N±(Sι)(+)N±(S2).

Let //, / = 1, 2, be the involutions on N(Si), as in §3.1, and let
/ = J\ Θ J2. Then / is an involution on N(S) and N(S\) and
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N(S2) are /-orthogonal with respect to the form

[x,y]s = (Jx,y)s.

Let sf = (C(Hι)®C(H2)) + CIH. The operator S defines a deriva-
tion δ = δs\j/ on j / where

D(δ) = as n sf = [ ( ^ n cίiro) e (<% n

and

δ{A)\D{s) = i(SA - AS)\D{S),

Since all operators (.Xi ® yi) Θ (X2 ® ̂ 2) > ̂ /» ̂ / £ £>(£/) ? belong to
D(δ), the operator S is a minimal symmetric implementation of δ.
Assume now that

n+(S\) = n_(S2) = 00 and /i-(SΊ) = n+(S2) = 0 5

so that

N+(S) = N+(Sχ) = N(Sχ) and N-(S) = N-(S2) = N(S2).

Let .4; e ̂  n C(ffi). Then

πδ

s(Aι®A2) = πδ

s(Aι)(+)πδ

s(A2).

Therefore π | | ^ nC(H) a r e *-representations of ̂ gnC(Hi) on Hubert

spaces N(Si) respectively. Hence they extend to *-representations πz

of C{Hi) on N{Si). Let xt, y/ G Z)(^ ) . For every z, G D(S*)

nδ

s{{xx ®yO ® (x2 ®^2)) = 0.
Therefore

nδ

s{

Hence π / ^ : ® yί) = 0, for all x z, y; G Z)^-), and, therefore, πz = 0.
Thus

π|((iί 1 θ A2) + tIH) = ί / ^ ) , t G C,

for all -41 G ̂  Π C{H{). We shall now proceed as in Example 1. Let
iei}%\ be a basis in N+(S) and let {fj}f=ι be a basis in N-(S). For
0 < n < 00, set

Ln = {et + fi+n : 1 < ί < 00}.

Then Ln are maximal neutral subspaces invariant for π | and

By Theorem 3.1, for every Ln , there is a maximal symmetric imple-
mentation Tn of δ. It follows from the discussion in Theorem 3.2
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that the representations πδ

τ are /-equivalent to the quotient represen-

tations (πδ

s)
Ln of D(δ) on Lι^]/Ln . Since dim(Lι^]/Ln) = d i m ^ =

«, all Uj are not /-equivalent. Therefore δ has an infinite number

of distinct representational indices.
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