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FLAT CONNECTIONS, GEOMETRIC INVARIANTS
AND THE SYMPLECTIC NATURE

OF THE FUNDAMENTAL GROUP OF SURFACES

K. GURUPRASAD

In this paper we associate a new geometric invariant to the space
of flat connections on a G (= SU(2))-bundle on a compact Riemann
surface M and relate it to the symplectic structure on the space
Hom(πi(Λ/), G)/G consisting of representations of the fundamental
group πx(M) of M into G modulo the conjugate action of G on
representations.

Introduction. Our setup is as follows. Let G = SU(2) and M be a
compact Riemann surface and E -> M be the trivial G-bundle. (Any
SU(2)-bundle over M is topologically trivial.) Let g7 (resp. ff*) be
the space of all (resp. irreducible) connections and & (resp. ^*) the
subspace of all (resp. irreducible) flat connections on this G-bundle.
We put the Frechet topology on ^ and the subspace topology on &.

Given a loop σ: Sι —> ̂ , we can extend σ to the closed unit
disc σ: D2 —• Ή, since ^ is contractible. On the trivial G-bundle
E x D2 —> M x D 2 we define a "tautological" connection form dσ as
follows.

Clearly restriction of dσ to the bundle £ x {t} —> Λf x {t} is σ(ί)
V t eD2. Let £(00-) be the curvature form of ϋσ. Evaluation of the
second Chern polynomial on this curvature form K(ϋσ) gives a closed
4-form on M xD2, which when integrated along D2 yields a 2-form
on M. This 2-form is closed since dimM = 2 and thus defines an
element in H2(M, R) « R. It is seen that this class is independent of
the extension of σ. We thus have a map

where Ω ( ^ ) is the loop space of
It is seen that χ induces a map

χ: &(&*/&) -+ R/Z

where ^ = Map(M, G) is the gauge group of the G-bundle E —• M.
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46 K. GURUPRASAD

It is well known that &Ί& « Hom(πi(Λf), G)/G and the space
Hom(πi(Λf), G)/G carries a symplectic structure. Under this identi-
fication ^ 7 ^ gets identified with the space Homirr(7Γi(Λf), G)/G of
conjugacy classes of irreducible representations of 7t\(M). Moreover
when genus of M > 3, Hom1ΓΓ(πi(Λf), G)/G is simply connected.
Let ω be the symplectic form on SF/& = Hom(πi(Af), G)/G. For
σ e &(&*/&) choose a surface S in ^ * / ^ such that dS = σ.
Since ^ * / ^ is simply connected when genus of Λf > 3 and ω has
integral periods, Jsω e E/Z is independent of S. The main result
of this paper (after suitable normalisation) is

THEOREM. ~χ(σ) = Jsω.
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1. Construction of the basic map. In this paper we suppose M is a
compact Riemann surface of genus g, G = SU(2) with Lie algebra
0 = su(2) and E —• M is the trivial G-bundle on M. ^ is the
space of all connections and & the subspace of flat connections on
E —• M. We sometimes replace ^ (resp. &) by ^ * (resp. ^ * ) ,
the space of all (resp. flat) irreducible connections on E —> M. The
space Map(Λf, G) of all maps from M to G is the gauge group and
will be denoted by &. D2 is the closed unit disc in R2 and dD2 = Sι

is the unit circle. Ω ( ^ ) = Map(*S1, &) is the loop space of &.
Given a loop σ: Sι —• & we extend a to σ: D2 —> ^ ( ^ is

contractible). On the trivial G-bundle E x D2 -+ M x D2 define the
connection form ϋσ as

i.e., restriction of ϋσ on the subbundle E x {t} -+ M x {t} is the
connection form σ(t) V t e D2. Let J£(#σ) be the curvature 2-fόϊτn
of ϋσ and C^ be the second-Chern polynomial on (S = su(2). The
specific formula for Cι shows that

C2(A) = - i r t raced 2 ) for ^ e BU(2).
O7ΓZ
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Evaluation of C2 on K(ϋσ) gives the closed 4-form C2(K(ϋσ)) on
E x D2 which projects to the closed 4-form C2(K(ϋσ)) on M x D2.

Integrating C2(K(θσ)) along D2 yields a closed 2-form on M
(dimM = 2) and thus defines a cohomology class in H2(M, R), i.e.

6 H2(M, R) » R.

LEMMA 1.1. {/^ C2(ΛΓ(#σ))} w independent of the extension of
σ:Sι -+& to σiD2-*^.

Proof. Let σ, σ' be two extensions of σ with corresponding con-
nection forms ϋσ, ϊ% and curvature forms K(ϋσ), -K'(^) on the
bundle £ x f l 2 - > ¥ x i ) 2 .

We claim JDi C2(K(ϋσ)) - JD2 C2(K{%)) is an exact form on M.
On E x D2 we have

dTC2(ϋσ) =

where TC2{ϋσ), TC2{%) are the Chern-Simons secondary forms
with respect to ϋσ , % respectively (cf. [CS, §3]).

Therefore

C2(K(ϋσ)) - C2(K{%)) = / d(TC2(ϋσ) - TC2{ϋ'σ)).
D2 JD2

By the Stokes theorem for integration along fibers (cf. [GS, Lemma
2.3]) we have (d denotes ext. differentiation in E x D2 and dβ in
E)

ί d(TC2(ϋσ)-TC2(ϋ'σ))
JD2

dE f (TC2(ϋσ) - TC2(ϋ'σ)).
JD2

But ϋσ = % on E x S1.
Therefore TC2(ϋσ) = TC2(ϋ'σ) on E x S"1 and the first integral

vanishes. Therefore

/ (C2(K(ϋσ)) - C2(K(ϋ'σ))) = dE I (TC2(ϋσ) - TC2(ϋ'σ))
D2 JD2

is exact as a form on E.
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)\ = | j ίC2(K(ϋσ))\ = | j ί C2(K(ϋ'σ))\

since π*: H2(M, R) -+ H2(E, R) is an isomorphism

and this proves the lemma.
We thus have a map

(1.2) Ω(^) Λ //2(M, R) « R,

where Ω(^) is the loop space of &. It is easy to check that
χ(σ o σf) = χ(σ) + χ(σ') where σ oσ1 is the composite of two loops
in &.

2. The symplectic structure on SFf& « Hom(πi(Af), G)/G. The
quotient ZF j&, i.e., the space of G-equivalence class of flat connec-
tions on E —• M can be identified with Hom(πi(Af), G)/G. We
describe the symplectic structure on ^ / ^ following the approach
by Atiyah and Bott ([AB, [W]). ^ is an affine space with the space
Aι(M, su(2)) of su(2)-valued 1-forms on M as its group of trans-
lations. In particular each tangent space TA(W) is identified with

Let B: su(2) x su(2) -> R, (X, Y) H-> trace(X7) be the Killing
form on su(2). Then the pairing

B*(ηΛμ)=

(η, μ e Λ1(M,su(2)) « 7^(C)) defines an exterior 2-form ω on
the infinite dimensional affine space ^ . Since its definition does not
involve A explicitly, it is invariant under the translations of ^ and
is thus closed.

If CIA is the covariant differential corresponding to A then i G ^ "
iff d,A o dA = 0. Differentiating this equation with respect to a tangent
vector η e Λ !(M, su(2)) one finds that the tangent vectors in *4F
are precisely those η e Aι(M, su(2)) with dAη = 0, i.e. TA(^) =
Zι(M9su{2)).

The exterior 2-form w o n ? restricts to a closed 2-form on &.
However on S? this is degenerate. In fact the subspace of
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which annihilates ω is precisely Bι(M9su{2)) c Zι(M,su(2)).
Bι(M, 5u(2)) is the image of A°(M, su(2)) = Map(M, su(2)) un-
der dA(2). Λ°(M, su(2)) is the Lie algebra of the gauge group 9 =
Map(Λf, SU(2)). ω restricts to a closed non-degenerate exterior 2-
form on &~/S? thus giving a symplectic structure on &Ί&, which is
identified with

Hom(πi(Af), SU(2))/SU(2).

LEMMA2.1. When genus of M > 3, Hom"(πi(Λ/), SU(2))/SU(2)
simply connected.

Proof, &*l& « Hom^πi ίAf) , SU(2))/SU(2) can be identified
with the moduli space ^ s t of stable vector bundles of rank 2 and
trivial determinant on ¥ by a theorem of Narasimhan and Seshadri
[NS]. In fact by a theorem of Seshadri [S], &~ j& is a complete com-
plex algebraic variety—the moduli s p a c e d of (^-equivalence classes
of) semistable vector bundles—in which ^ s t sits as the smooth part.
The singular part ^ — ̂ s t = K is a Kummer variety of complex
dimension g (=genus of M).

It is known [AB] that the moduli space Jf\ of stable vector bundles
of rank 2 and degree 1 with fixed determinant is simply connected and
has complex dimension 3 g - 3 . Let P be the projective Poincare bun-
dle over 4 x {x} for a fixed point x in Jί\. Since P -» ^#i x {x}
is a nice fibration [NRa] with standard fibre as the projective space
P 1 , it follows by looking at the homotopy exact sequence that P is
simply connected and has complex dimension 3g -2. There is also
a global map / : P —> ̂  x {*o} (̂ o € «^o) which is not a nice fibra-
tion. However, the restriction / : P - f~ι(K) —• «^st x {XQ} is a nice
fibration. We claim P - f~ι(K) is simply connected when g > 3.
Assuming the claim, it follows again by looking at the homotopy ex-
act sequence that ^ o

s t « ^ * / ^ £ H o m ^ π ^ M ) , SU(2))/SU(2) is
simply connected.

K is the Kummer variety of complex dimension g. If x is a
smooth point of K, / - 1 ( J C ) looks like two copies of the projective
space P^" 1 intersecting at a point. If x is a singular point of K then
f~ι(x) looks like a nonreduced P ^ " 1 . Therefore complex dimension
of f~ι(K) = # + £ - 1 = 2 # - l . Since complex dimension of
P = 3g - 2, and P is smooth, complex codimension of f~ι(K) =
( 3 g - 2 ) - ( 2 g - 1 ) = £ - 1 . Clearly real codimension of f~ι(K) > 3 if
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g > 3 and therefore P - f~ι(K) is simply connected and the lemma
follows. D

It is also known that ω has integral periods. Given a loop σ: Sι —>
SF*/!^ we assign ω(σ) e Sι as follows. Since ^r*/^> is simply con-
nected we can choose a surface S in y * / ^ which bounds the loop
σ. Integrating ω on S gives a real number. Choosing another sur-
face S in <9r*/& which bounds the loop σ and integrating on S
give a real number which differs from Js ω by an integer since ω has
integral periods, i.e.

/.-a-) modZ.

Thus

(2.2) ω: Ω(&*/&) -> Sι = R/Z...

ω(σ) = [ —-σ H+ ω(σ) = [ —-, ω) modZ
\4π2J )

ω)
Js )

is well defined.

3. The Coulomb connection on ^ * -+ g7*/^7. ^ * is the space of
irreducible connections on the trivial SU(2)-bundle £ —• M. It is
well known that

: A°(M, su(2)) -> Λ 1 ^ , su(2)) is injective}.

The Poincare metric on M and the metric given by the Killing form
on su(2) induces inner products on A°(Af, su(2)) and Λ^Λf, su(2)).

Let </*: A!(Af, su(2)) -> Λ°(M? su(2)) be the adjoint of ^ .
We now define a connection on ^ * : We take the horizontal space

at Ae&* to be the space

HA = Kerrf* ={Be&,d^B = 0}.

Clearly Kerrf* « Λ 1 ^ , su(2))/(dA(A°(M, «u(2)))) =
where [̂ 4] E ^ * / ^ is the equivalence class of 4̂ under gauge group
action.

Let AA = rf* o dA: Λ°(M, βu(2)) -^ Λ°(M, BU(2)) be the covariant
Laplacian.

It is easily seen that the connection form of this connection at
A e &* is given by Δ^1 od*. (For more details refer to [NR].) We call
this connection form as the Coulomb connection. Clearly ^r*/^? is
contained in ff*/2?. Pulling back the Coulomb connection to &



FLAT CONNECTIONS AND GEOMETRIC INVARIANTS 51

gives a connection on &* —• 5F* j&. This restricted connection is
also called the Coulomb connection.

4. Construction of the map / : Ω ( ^ * / ^ ) ~+ ^ / z I n §1> w e c a n

replace & by 5^*, the space of all irreducible flat connections and
construct the map χ: Ω(^*) -+ R.

Given a loop σ: [0, 1] -> ^ " * / ^ with σ(0) = σ(l) we can lift it
horizontally to a path σ: [0, 1] —> ̂ * using the Coulomb connec-
tion on ^* —> ς ^

r */^ Clearly σ(0) and σ(l) are gauge-equivalent
connections, i.e, they lie in the same fibre over σ(0). Since 2? =
Map(Λf, SU(2)) is connected, σ(l) can be joined to σ(0) by a path
φ. The path σ from σ(0) to σ(l) followed by the path φ from σ(l)
to σ(0) defines a loop σφ based at cr(O) in ^ * and / ( ^ ) G R. If
φ1 is another path joining σ(l) and σ(0) then χ(σφ>) need not be
equal to χ(σφ). However we claim χ{σφ) = χ(σ^)modZ. We then
set χ(σ) = χ(σφ), where χ{σφ) is the image of χ{σφ) in R/Z. To
prove the claim we need the following lemma.

LEMMA 4.1. Let η e SF be a fixed flat connection and ψ: Sι —>
& = Map(M, SU(2)j (also thought of as a map ψ:SιxM^ SU(2))
be a loop in the gauge group. The action of' & on ^ defines a loop
ψη based at η in &. Then χ(ψη) = degree of ψ.

REMARK 4.2. Thus two homotopically equivalent loops in the same
fibre (gauge orbit) of SF —• SF j& map under χ to the same integer.

Assuming the lemma we prove the claim

χ(σφ)=χ(σφ>) modZ.

φ~ιφ' defines a loop ψ&^ based at σ(0) for appropriate ψ: Sf -+&.

From the definition of χ, it follows that

Therefore

X{°φ') = XiPφ) + X(Ψσ(0)) = x(δφ) + degree ψ

=> X{σφ') = χ{σφ) modZ.

Proof of Lemma 4.1. Let

\μi + iμi -iμ\

be the Maurer-Cartan form on SU(2).
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{ dμι = -2μ2 Λ μ 3 ,

dμ2 = -2μ 3 Λμi,

One knows that
1

4π2

Hence

μι Λ μ2 Λ μι is the volume form on SU(2).

(4.3) —-~ I ψ*μ\ Λ ψ*μ2 Λ ^*/*3 = degree of ψ —
4π z JsιxM

We first explicitly compute χ{σ) for any loop σ: Sι -+ SF.
For / € Sι, let

i α(ί) β(t) + iγ(t)\

where α(ί), jS(ί), γ(t) are real valued 1-forms on M for each ί € Sι.

σ(t) e y =• rfσ(ί) = i[σ(ί), σ(ή] = -σ(ί) Λ σ(t)

= -2β(t)Aγ(t),

= -2γ(t)Λa(t),

= -2a(t)Aβ(t).

We extend σ to σ: D 2 —»• ^ in the obvious way.
Let (s, t) be the polar coordinates on D2 = {(s, t), 0 < s < 1, 0 <

t<2π},

The curvature K(ϋσ) of the connection form ϋσ on the bundle
E x D2 —* M x D2 is given by

K(ϋσ) = dϋσ + \[ϋσ, ϋσ]

= dϋσ + ϋσ Λ ϋσ

+ dD2ϋσ + ϋσ Λ ϋσ

where K(σ(s, t)) is the curvature of σ(s, t).

It can be checked that C2(K(ϋσ)) is cohomologous to the form

(4.4) χ(σ) = —^ I (ά(ί) Λ α(ί) + β(t) Λ j8(ί) + γ(t) Λ y(ί)) rfί...
4πz y^i

where ά(ί) = ^α(ί ) .
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Thus

= { 4Ϊ? fsι
(ά(ί) Λ a{

Let
ί iη\ Άi + i*l3 \
\-η2 + iηi -1/1 )

be an arbitrary but fixed flat connection.
Clearly ψη(t) = ψ{t) η = ψ{t)-ιη y(ί) + ^(/)*μ V ί e 5 1 .

5 1 4̂ ̂ ( ί H-> ̂ ( ί) . A/) defines a loop in y .
After writing down the formula (4.4) for χ(ψη) it can be checked

that

X(ψη) = 2^2 J2 Ψ*^ Λ Ψ*t*2 Λ ̂ > 3 + exact

=> X(ψη) = degree of ψ. This proves Lemma 4.1.
Thus χ: Ω(ST*) ~> R induces

(4.5) 3f: Ω(^*/^) ~> R/Z = Sι...

5. Relation between the map ~χ: ̂ *' j& —> R/Z and the symplectic
structure on &&

THEOREM 5.1. Let E -± M be the trivial SU(2) bundle over a
compact Riemann surface M of genus > 3, SF (resp. &*) be the
space of all {irreducible) flat connections and *§* be the gauge group.
Let χ: Ω(&~*/&) -> Sι and ω: Ω(&'*/&) -+ Sι be as defined in
(4.5) and (2.2) respectively. Then

Proof. Lift σ to a loop σ in ^ * as in §4; i.e. first lift σ to a path
in ^ * and join the end-points using a path in §. As in §2, let ω be
the exterior 2-form on the infinite dimensional affine space ^ . Since
^ is contractible and ω is closed we can write ω = dv for some
1-form on Ψ and $s

ω=: h v ^ o r a n ^ surface ^ which bounds σ in

Define v as follows:
For 77 G £?, z/̂ : Λ1 (M, su(2)) -> R is given by

!/„(/£) = - / tτ(ηAμ) for μeAι(M, su(2)).
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We claim

(5.2) du = ω....

We check dv = ω at η G W.
For μ{, μ 2 , G 7^(£f) = Λ^Af, su(2)) (extend μ i , μ2 to vector

fields in the obvious way).

since %? is affine, we can assume [μ\, μj\ = 0 at //

μιv(μ2)=dv(μ2)(μι)

where */(μ2) is treated as a function

v(μ2)(<P)= I tr(μ2Λφ).
JM

Since i/(μ2) is a linear function dv{μ2) = v(μ\) so that μ\v(μ2) =
- / M t r (μ 2 Λ //i). Similarly ^2i/(/ii) = - $M\r{μ\ Λ μ 2 ) .

Therefore

τ{μ\v{μ2) ~ μ2v(μ\)} = - ^ / {tr(/ι2 Λ ̂ ) - tr(μi Λ

= - tv(μ2 Λ μi) since tr(μ2 Λ μO = - tx(μχ Λ

= + / tτ{μιΛμ2).
JM

Therefore dv(μx, μ2) = JMtr(μι A μ2) = ω(μχ, μ2) and this proves
(5.2).

Clearly

["= ί v<j{t)Φ{t))dt = - ί tr(σ(ί)Λσ(ί))έ/ί

= I tv(d(t)Aσ{t))dt
Jsι

= ί (ά(ί) Λ α(ί) + jft(f) Λ jff(ί) + y(0 Λ 7(0 dt)
Jsι

where
_ / ια(ί)

Hence /- v = 4π2/(σ) =• χ(σ) = ^ /d 1/ = ^ / 5 ω =» χ{σ) = ω{σ)
and this proves the theorem.
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REMARK 5.3. In [RSW], the authors prove the existence of a natural
hermitian line bundle on &Ί&. Restricted to 9F* l&, this line bundle
carries a natural connection whose curvature is (up to a factor of ΐ) the
standard symplectic form. It is easy to check that ω: Ω(<^*/&) —> S1

is then (up to a constant) the holonomy of this connection.
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