COMMUTANTS OF TOEPLITZ OPERATORS ON THE BERGMAN SPACE

Željóo Čučković

Abstract

This paper describes the commutants of certain analytic Toeplitz operators. To underline the difference between the Bergman and Hardy spaces, we first prove that on the Bergman space L_{a}^{2} the only isometric Toeplitz operators with harmonic symbols are scalar multiples of the identity. If T denotes the norm closed subalgebra of $L\left(L_{a}^{2}\right)$ generated by Toeplitz operators, we show that for each positive integer $n,\left\{T_{z^{n}}\right\}^{\prime} \cap \mathbf{T}$ is the set of all analytic Toeplitz operators. This result is also valid for the Hardy space. Here $\left\{T_{z^{n}}\right\}^{\prime}$ denotes the commutant of $T_{z^{n}}$. Finally we prove the analogous result for $T_{u^{n}}$, where u is an analytic, one-to-one map of the unit disk onto itself.

Introduction. Let D denote the open unit disk in the complex plane and let $d A$ denote the usual Lebesgue area measure on D. The complex space $L^{2}(D, d A)$ is a Hilbert space with the inner product

$$
\langle f, g\rangle=\int_{D} f \bar{g} d A
$$

The Bergman space L_{a}^{2} is the set of those functions in $L^{2}(D, d A)$ that are analytic on D. The Bergman space is a closed subspace of $L^{2}(D, d A)$, and so there is an orthogonal projection P from $L^{2}(D, d A)$ onto L_{a}^{2}. For $\varphi \in L^{\infty}(D, d A)$, the Toeplitz operator with symbol φ, denoted T_{φ}, is the operator from L_{a}^{2} to L_{a}^{2} defined by $T_{\varphi} f=P(\varphi f)$. For more information about the Bergman space and its operators see [4].

The algebra of bounded analytic functions on D will be denoted by H^{∞}. If $\varphi \in H^{\infty}$, then T_{φ} is called an analytic Toeplitz operator.

For a Hilbert space $H, \mathbf{L}(H)$ denotes the algebra of all bounded linear operators on H. If $S \subset \mathbf{L}(H)$, then $S^{\prime}=\{B \in \mathbf{L}(H): A B=$ $B A$ for all $A \in S\}$ is the commutant of S. In this paper we are interested in finding commutants of certain analytic Toeplitz operators acting on the Bergman space.

Much work has been done in studying commutants of analytic Toeplitz operators on the Hardy space. Some of those results can be extended to the Bergman space case. The complex space $L^{2}(\partial D)$
is a Hilbert space with the inner product

$$
\langle f, g\rangle=\int_{\partial D} f \bar{g} \frac{d t}{2 \pi} .
$$

For each integer n, let e_{n} denote the function $e_{n}(z)=z^{n}$ for $|z|=$ 1. Then $\left\{e_{n}\right\}$ is an orthonormal basis for $L^{2}(\partial D)$ and the Hardy space $H^{2}(\partial D)$ is, by definition, the subspace $\operatorname{span}\left\{e_{n}: n \geq 0\right\}^{-}$. For $\varphi \in L^{\infty}(\partial D)$, the Toeplitz operator with symbol φ, denoted again by T_{φ}, on $H^{2}(\partial D)$ is defined in the analogous way. For the basic properties of the Hardy space Toeplitz operators see Douglas [9]. Shields and Wallen [15] studied commutants of certain multiplication operators in a Hilbert space of analytic functions and introduced interesting function theoretic methods. Deddens and Wong [8] studied the problem using operator theory and raised six questions. Abrahamse [1] answered some of Deddens-Wong questions negatively. Baker, Deddens and Ullman [6] found $\left\{T_{f}\right\}^{\prime}$ if f is an entire function. In a series of papers [16]-[19], Thomson used function theoretic methods to find commutants or intersection of commutants of certain analytic Toeplitz operators. Finally, C. Cowen continued their work in [7] and found the commutant of Toeplitz operators whose symbol is a finite Blaschke product or a covering map.

It is well known that the Hardy space Toeplitz operator T_{φ} is an isometry if and only if φ is inner. If φ is a nonconstant inner function, then T_{φ} is a pure isometry and is unitarily equivalent to a unilateral shift, whose commutant can be characterized matricially. On the Bergman space, a Toeplitz operator whose symbol is a nonconstant inner function is not an isometry. We will prove even more (Theorem 1.1): The only Toeplitz operator with harmonic symbol that is an isometry is a scalar multiple of the identity.

Our first result about commutants concerns Toeplitz operator with symbol z^{n}. Let \mathbf{T} be the norm closed subalgebra of $\mathbf{L}\left(L_{a}^{2}\right)$ generated by all Toeplitz operators. We show (Theorem 1.4) that for each positive integer $n,\left\{T_{z^{n}}\right\}^{\prime} \cap \mathbf{T}$ is the set of all analytic Toeplitz operators. This result is also valid for the Hardy space. Then, we prove the analogous result for $T_{u^{n}}$, where u is an analytic, one-to-one map of D onto itself.

Acknowledgment. This paper represents part of the author's doctoral dissertation written at the Michigan State University under the direction of Professor Sheldon Axler. I am grateful to Professor Sheldon Axler for his guidance and encouragement.

1. Commutants. At first we will underline the difference between the Bergman and Hardy space Toeplitz operators. We will prove that on the Bergman space there are no nontrivial isometries with harmonic symbols. We need some facts about the maximal ideal space of H^{∞}. Good references are Hoffman [12] and Garnett [10].

The set of all multiplicative linear functionals on H^{∞} is called the maximal ideal space of H^{∞} and we denote it by M. The Gelfand transform $\sim H^{\infty} \rightarrow C(M)$ is defined by $\hat{f}(\varphi)=\varphi(f)$, for $\varphi \in M$. The Gelfand transform is an isometry from $H^{\infty} \rightarrow C(M)$, so that we can identify H^{∞} with the uniformly closed subalgebra of $C(M)$. Hoffman ([13, Lemma 4.4]) has proved that $C(M)$ is identical to the sup norm closure of the algebra generated by the bounded harmonic functions. If m_{1} and m_{2} are in M, the pseudohyperbolic distance between m_{1} and m_{2} is defined as

$$
\rho\left(m_{1}, m_{2}\right)=\sup \left\{\left|\hat{f}\left(m_{2}\right)\right|: f \in H^{\infty},\|f\| \leq 1, \hat{f}\left(m_{1}\right)=0\right\}
$$

The relation $m_{1} \sim m_{2}$ if and only if $\rho\left(m_{1}, m_{2}\right)<1$ is an equivalence relation on M. The corresponding equivalence classes are called the Gleason parts of M. The set of one-point parts in M will be denoted by M_{1}. Let

$$
J=\left\{\varphi \in C(M): \varphi=0 \text { on } M_{1}\right\}
$$

Let $\mathbf{T}(C(M))$ be the closed subalgebra of $\mathbf{L}\left(L_{a}^{2}\right)$ generated by $\left\{T_{\varphi}\right.$: $\varphi \in C(M)\}$ and let \mathbf{C} be the commutator ideal of $\mathbf{T}(C(M))$. McDonald and Sundberg [14] proved that the sequence

$$
0 \rightarrow J \rightarrow C(M) \rightarrow \mathbf{T}(C(M)) / \mathbf{C} \rightarrow 0
$$

is exact. This implies that $C(M) / J$ is isomorphic to $\mathbf{T}(C(M)) / \mathbf{C}$ with isomorphism

$$
\Psi(\varphi+J)=T_{\varphi}+\mathbf{C}
$$

for $\varphi \in C(M)$.
Another Banach algebra we need is $L^{\infty}(\partial D)$. The maximal ideal space of $L^{\infty}(\partial D)$, denoted by $M\left(L^{\infty}\right)$, plays an important role here. Since we may regard H^{∞} as a closed subalgebra of $L^{\infty}(\partial D)$, we may think of $M\left(L^{\infty}\right)$ as a subset of M. It turns out that $M\left(L^{\infty}\right)$ is a subset of M_{1}.

Now, we can prove our theorem.

Theorem 1.1. Suppose that $h \in L^{\infty}(D, d A)$ is harmonic and that T_{h} is an isometry. Then h is a constant function of modulus 1.

Proof. Suppose that T_{h} is an isometry, i.e., $T_{h}^{*} T_{h}=I$. Since h is harmonic, Hoffman's result shows that h and $\bar{h} \in C(M)$. Applying the isomorphism Ψ^{-1}, we obtain $(\bar{h}+J) \cdot(h+J)=1+J$, and by the definition of J we have

$$
\begin{equation*}
|\varphi(h)|=1 \tag{1.1}
\end{equation*}
$$

for every $\varphi \in M\left(L^{\infty}\right)$. It is well known that the Gelfand transform of $L^{\infty}(\partial D)$ maps $L^{\infty}(\partial D)$ isometrically and isomorphically onto $C\left(M\left(L^{\infty}\right)\right)$ (see Hoffman, [12, p. 170]), so that we have

$$
\begin{aligned}
\sup \{|h(z)|: z \in D\} & =\|h\|_{L^{\infty}(\partial D)}=\|\hat{h}\|_{C\left(M\left(L^{\infty}\right)\right)} \\
& =\sup \left\{|\varphi(h)|: \varphi \in M\left(L^{\infty}\right)\right\}
\end{aligned}
$$

Hence (1.1) implies $\sup \{|h(z)|: z \in D\}=1$. If $|h(z)|=1$ for some $z \in D$, then h is constant by the Maximum Principle. If $|h(z)|<1$ for all $z \in D$, then

$$
\pi=\|1\|^{2}=\left\|T_{h} 1\right\|^{2}=\|P h\|^{2} \leq\|h\|^{2}=\int_{D}|h(z)|^{2} d A<\int_{D} d A=\pi,
$$

a contradiction. Here $\|\cdot\|$ denotes the $L^{2}(D, d A)$-norm. Therefore h is a constant function, and since T_{h} is an isometry, $|h|=1$.

We can slightly generalize this result and get the following:
Corollary 1.2. Suppose that T_{h} is an isometry, where $h=f \cdot g^{n}$, where f is inner, $g \in L^{\infty}(D, d A)$ is harmonic, and $n \in \mathbf{N}$. Then h is a constant function of modulus 1 .
J. Thukral asked for which harmonic h is T_{h} a partial isometry. If T_{h} is a partial isometry, then by Halmos [11, Problem 98], $T_{h}=$ $T_{h} T_{h}^{*} T_{h}$. Similarly as before, this means

$$
\varphi(h)\left[1-|\varphi(h)|^{2}\right]=0
$$

for every $\varphi \in M\left(L^{\infty}\right)$. If $\varphi(h)=0$ for every $\varphi \in M\left(L^{\infty}\right)$, then $h=0$. If $\varphi(h) \neq 0$ for some $\varphi \in M\left(L^{\infty}\right)$, then $\sup \{|h(z)|: z \in$ $D\}=1$ and h must be a constant function. Thus we have proved the following theorem:

Theorem 1.3. Suppose that $h \in L^{\infty}(D, d A)$ is harmonic and that T_{h} is a partial isometry. Then h is either a constant function of modulus 1 or h is identically 0 .

In [5] S. Axler and the author characterized commuting Toeplitz operators with harmonic symbols. Now, we are going to consider the
related problem-the commutants of some analytic Toeplitz operators. At first we will be interested in finding the commutant of $T_{z^{n}}$, for arbitrary positive integer n. Before we state and prove our result, recall the following definitions.

For $\varphi \in L^{\infty}(D, d A)$, the Hankel operator with symbol φ, denoted H_{φ}, is the operator from L_{a}^{2} to $\left(L_{a}^{2}\right)^{\perp}$ defined by $H_{\varphi} f=(I-P)(\varphi f)$.

For an analytic function f on D we set

$$
\|f\|_{B}=\sup \left\{\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|: z \in D\right\}
$$

The Bloch space B is the set of all analytic functions f on D for which $\|f\|_{B}<\infty$. The quantity $|f(0)|+\|f\|_{B}$ defines a norm on B, and B equipped with this norm is a Banach space. Contained in the Bloch space is the little Bloch space B_{0}, which is by definition the set of all analytic functions f on D for which

$$
\left(1-|z|^{2}\right) f^{\prime}(z) \rightarrow 0 \quad \text { as }|z| \rightarrow 1
$$

For the basic properties of the Bloch space see [2].
Let $n \in \mathbf{N}$ be fixed.
Theorem 1.4. Let $S \in \mathbf{T}$ commute with $T_{z^{n}}$. Then $S=T_{\psi}$ for some $\psi \in H^{\infty}$.

Proof. The equation $S T_{z^{n}}=T_{z^{n}} S$ gives us the following:
Let $g_{i}=S z^{i}$, for $i=0,1, \ldots, n-1$. Then for any such i

$$
\begin{aligned}
& S z^{n+i}=S T_{z^{n}} z^{i}=T_{z^{n}} S z^{i}=z^{n} g_{i} \\
& \ldots \\
& S z^{k n+i}=z^{k n} g_{i}, \quad \text { for } k=0,1,2 \ldots
\end{aligned}
$$

Let

$$
\begin{aligned}
& X_{0}=\operatorname{span}\left\{e_{k n}: k=0,1,2, \ldots\right\}^{-} \\
& X_{1}=\operatorname{span}\left\{e_{k n+1}: k=0,1,2, \ldots\right\}^{-} \\
& \ldots \\
& X_{n-1}=\operatorname{span}\left\{e_{k n+(n-1)}: k=0,1,2, \ldots\right\}^{-}
\end{aligned}
$$

Then $L_{a}^{2}=X_{0} \oplus X_{1} \oplus \cdots \oplus X_{n-1}$, i.e., each $f \in L_{a}^{2}$ can be written as

$$
f=f_{0}+f_{1}+\cdots+f_{n-1}
$$

$f_{i} \in X_{i}, i=0,1,2, \ldots, n-1$. Each $f_{0} \in X_{0}$ has its Fourier series expansion

$$
f_{0}=\sum_{k=0}^{\infty}\left(f_{0}, e_{k n}\right) e_{k n}
$$

i.e., $f_{0}=\lim s_{m}$, where $s_{m}=\sum_{k=0}^{m}\left(f_{0}, e_{k n}\right) e_{k n}$. Since the point evaluations are bounded on L_{a}^{2}, we have $f_{0}(z)=\lim s_{m}(z)$, for each $z \in D$, so that

$$
\begin{equation*}
\left(f_{0} \cdot g_{0}\right)(z)=\lim \left(s_{m} \cdot g_{0}\right)(z) \tag{1.2}
\end{equation*}
$$

for each $z \in D$. Since $S z^{k n}=z^{k n} g_{0}, k=0,1,2, \ldots$, it follows that $S s_{m}=s_{m} \cdot g_{0}$, for every $m \in \mathbf{N}$. By continuity of S, we have

$$
\left(S f_{0}\right)=\lim S s_{m}=\lim s_{m} \cdot g_{0},
$$

so that

$$
\begin{equation*}
\left(S f_{0}\right)(z)=\lim \left(s_{m} \cdot g_{0}\right)(z) \tag{1.3}
\end{equation*}
$$

for each $z \in D$. Comparing (1.2) and (1.3) we conclude that

$$
S f_{0}=g_{0} \cdot f_{0}
$$

for each $f_{0} \in X_{0}$. Repeating the above reasoning, we get that $S f_{1}=$ $g_{1} f_{1} / z$, for $f_{1} \in X_{1}$ and so on. Thus the operator S can be described as

$$
\begin{equation*}
S f=g_{0} f_{0}+\frac{g_{1}}{z} f_{1}+\frac{g_{2}}{z^{2}} f_{2}+\cdots+\frac{g_{n-1}}{z^{n-1}} f_{n-1} . \tag{1.4}
\end{equation*}
$$

Let's observe another property of S, being an element of \mathbf{T}.
Claim. $S T_{z}-T_{z} S \in \mathbf{K}$, where \mathbf{K} denotes the ideal of all compact operators.
At first, assume $S=T_{\varphi}, \varphi \in L^{\infty}(D, d A)$. Then

$$
T_{\varphi} T_{z}-T_{z} T_{\varphi}=T_{z \varphi}-T_{z} T_{\varphi}=H_{z}^{*} H_{\varphi} .
$$

Because $z \in B_{0}$, the operator H_{z}^{*} is compact (see [3]), so that $T_{\varphi} T_{z}-$ $T_{z} T_{\varphi}$ is compact. If $\Pi: \mathbf{L}\left(L_{a}^{2}\right) \rightarrow \mathbf{L}\left(L_{a}^{2}\right) / \mathbf{K}$ denotes the natural projection, then

$$
\begin{equation*}
\Pi\left(T_{\varphi}\right) \Pi\left(T_{z}\right)=\Pi\left(T_{z}\right) \Pi\left(T_{\varphi}\right) \tag{1.5}
\end{equation*}
$$

for every $\varphi \in L^{\infty}(D, d A)$. If $S=T_{\varphi_{1}} \cdots T_{\varphi_{1}}$ then, because of (1.5), $\Pi\left(S T_{z}-T_{z} S\right)=0$ so that $S T_{z}-T_{z} S \in \mathbf{K}$. An arbitrary operator S in \mathbf{T} is the limit of sums of operators of the form $T_{\varphi_{1}} \cdots T_{\varphi_{l}}$. In that case $S=\lim S_{l}$, each S_{l} is of the form $\sum T_{\varphi_{1}} \cdots T_{\varphi_{l}}$, and so $S T_{z}-T_{z} S=\lim \left(S_{l} T_{z}-T_{z} S_{l}\right) \in \mathbf{K}$. Hence the claim is proved.

Now, let's express $S T_{z}-T_{z} S$ in terms of (1.4). It is easy to see that

$$
S T_{z} f=g_{1} f_{0}+\frac{g_{2}}{z} f_{1}+\frac{g_{3}}{z^{2}} f_{2}+\cdots+z g_{0} f_{n-1}
$$

From this and (1.4) we obtain

$$
\begin{aligned}
\left(S T_{z}-T_{z} S\right) f= & f_{0}\left(g_{1}-z g_{0}\right)+f_{1}\left(\frac{g_{2}}{z}-g_{1}\right) \\
& +f_{2}\left(\frac{g_{3}}{z^{2}}-\frac{g_{2}}{z}\right)+\cdots+f_{n-1}\left(z g_{0}-\frac{g_{n-1}}{z^{n-2}}\right)
\end{aligned}
$$

By the claim, $\left.\left(S T_{z}-T_{z} S\right)\right|_{X_{0}}=M_{g_{1}-z g_{0}}: X_{0} \rightarrow L_{a}^{2}$ is compact ($M g_{g_{1}-z g_{0}}$ is a multiplication operator). Let $\varphi=g_{1}-z g_{0}$. Now, it immediately follows that $\left.M_{\varphi}\right|_{X_{J}}$ is compact, for all $j=1, \ldots, n-1$, since $\left.M_{\varphi}\right|_{X_{J}}=M_{z^{\prime}}\left(\left.M_{\varphi}\right|_{X_{0}}\right)\left(\left.M_{z^{-\jmath}}\right|_{X_{j}}\right)$. Hence M_{φ} is compact on $X_{0} \oplus X_{1} \oplus \cdots \oplus X_{n-1}=L_{a}^{2}$. Thus $\varphi=0$ and therefore $g_{0}=g_{1} / z$.

Similarly, $\left.\left(S T_{z}-T_{z} S\right)\right|_{X_{1}}=M_{g_{2} / z-g_{1}}: X_{1} \rightarrow L_{a}^{2}$ is a compact operator. Thus $\left.M_{g_{2} / z-g_{1}} M_{z}\right|_{X_{0}}=M_{g_{2}-z g_{1}}: X_{0} \rightarrow L_{a}^{2}$ is compact. As before, this means that $g_{2}-z g_{1}=0$ so that $g_{1}=g_{2} / z$ and therefore $g_{0}=g_{2} / z^{2}$. If we continue this way, (1.4) shows that

$$
S f=g_{0} \cdot f=T_{g_{0}} f
$$

for every $f \in L_{a}^{2}$. The function g_{0} must be an H^{∞} function as a multiplier of L_{a}^{2} (see [15]). If we let $\psi=g_{0}$, the theorem is proved.

Remark. From the proof of the theorem it is clear that we can replace the assumption $S \in \mathbf{T}$ by the weaker assumption $S T_{z}-T_{z} S \in$ K. Also, slightly modified arguments give a proof for the Hardy space case.

We can extend this result. Let $\operatorname{Aut}(D)$ denote the set of analytic, one-to-one maps of D onto D. Let $u \in \operatorname{Aut}(D)$ and define an operator $V: L_{a}^{2} \rightarrow L_{a}^{2}$ by $V f=f \circ u^{-1}$. Clearly, V is a bounded linear operator, with the inverse operator $V^{-1} f=f \circ u$. Observe that

$$
T_{z} V=V T_{u}
$$

and therefore

$$
\begin{equation*}
T_{z^{n}} V=V T_{u^{n}} \tag{1.6}
\end{equation*}
$$

for every $n \in \mathbf{N}$.
Suppose now that $S \in \mathbf{T}$ and $S T_{u^{n}}=T_{u^{n}} S$ for some n. Formula (1.6) implies

$$
S V^{-1} T_{z^{n}} V=V^{-1} T_{z^{n}} V S
$$

and we conclude that

$$
V S V^{-1} \in\left\{T_{z^{n}}\right\}^{\prime} .
$$

The operator $B=V S V^{-1}$ has the property that $B T_{z}-T_{z} B$ is in \mathbf{K} (because $u \in B_{0}$), so by the remark following Theorem 1.4, it follows that $B=T_{\varphi}$, for some $\varphi \in H^{\infty}$. Thus $S=V^{-1} T_{\varphi} V$. If we let $\psi=\varphi \circ u$, we have proved the following corollary:

Corollary 1.5. Let $u \in \operatorname{Aut}(D)$ and let $S \in \mathbf{T}$ commute with $T_{u^{n}}$, for some $n \in \mathbf{N}$. Then $S=T_{\psi}$ for some $\psi \in H^{\infty}$.

The results in this paper raise the following questions.
The McDonald-Sundberg functional calculus is the crucial tool in proving Theorem 1.1. Is this theorem true without the assumption on the symbol to be harmonic? If h is in $C(M)$, then the McDonaldSundberg calculus is still valid, but it is not true in general that $\sup \{|h(z)|: z \in D\}=\sup \left\{|\varphi(h)|: \varphi \in M\left(L^{\infty}\right)\right\}$. However, we guess that there are no nontrivial isometries among Toeplitz operators on the Bergman space.

Suppose $S \in \mathbf{L}\left(L_{a}^{2}\right)$ is such that $S T_{z}-T_{z} S \in \mathbf{K}$. If $S T_{z^{n}}-T_{z^{n}} S=0$ for some n, then Theorem 1.4 shows that S must be an analytic Toeplitz operator. What is the set of all functions f such that $S T_{f}-$ $T_{f} S=0$ implies that S is an analytic Toeplitz operator?

References

[1] M. B. Abrahamse, Analytic Toeplitz operators with automorphic symbol, Proc. Amer. Math. Soc., 52 (1975), 297-302.
[2] J. M. Anderson, Bloch functions: The Basic theory, Operators and Function Theory, Reidel Publishing Company, Dordrecht, 1985, pp. 1-17.
[3] S. Axler, The Bergman space, the Bloch space, and commutators of multiplication operators, Duke Math. J., 53 (1986), 315-332.
[4] _ Bergman spaces and their operators, Surveys of Some Recent Results in Operator Theory, Vol. 1, Longman, 1988, pp. 1-50.
[5] S. Axler and Ž. Čučković, Commuting Toeplitz operators with harmonic symbols, Integral Equations Operator Theory, 14 (1991), 1-12.
[6] I. N. Baker, J. A. Deddens and J. L. Ullman, A theorem on entire functions with applications to Toeplitz operators, Duke Math. J., 41 (1974), 739-745.
[7] C. C. Cowen, The commutant of an analytic Toeplitz operator, Trans. Amer. Math. Soc., 239 (1978), 1-31.
[8] J. A. Deddens and T. K. Wong, The commutant of analytic Toeplitz operators, Trans. Amer. Math. Soc., 184 (1973), 261-273.
[9] R. G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972.
[10] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
[11] P. R. Halmos, Hilbert Space Problem Book, Springer-Verlag, New York, 1974.
[12] K. Hoffman, Banach Spaces of Analytic Functions, Dover, New York, 1962.
[13] , Bounded analytic functions and Gleason parts, Ann. of Math., 86 (1967), 74-111.
[14] G. McDonald and C. Sundberg, Toeplitz operators on the disc, Indiana Univ. Math. J., 28 (1979), 595-611.
[15] A. L. Shields and L. J. Wallen, The commutants of certain Hilbert space operators, Indiana Univ. Math. J., 20 (1970/71), 777-788.
[16] J. E. Thomson, Intersections of commutants of analytic Toeplitz operators, Proc. Amer. Math. Soc., 52 (1975), 305-310.
[17] __, The commutants of certain analytic Toeplitz operators, Proc. Amer. Math. Soc., 54 (1976), 165-169.
[18] _, The commutant of a class of analytic Toeplitz operators, Amer. J. Math., 99 (1977), 522-529.
[19] _, The commutant of a class of analytic Toeplitz operators II, Indiana Univ. Math. J., 25 (1976), 793-800.

Received April 17, 1992 and in revised form October 23, 1992.
University of Wisconsin Centers
Waukesha, WI 53188

