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PRODUCTIVE POLYNOMIALS

R I C H A R D F. A R E N S

The problem addressed is: When is a class B of polynomials in n
non-commuting indeterminates closed under substitution into a given
polynomial q ?

1. Introduction. Let F be a field and let F(JCI , . . . , xn) be the
linear algebra of polynomials in the non-commuting indeterminates
x\, . . . , xn . Let q € F(xi, . . . , xn). Let A be an associative1 algebra
over F . q defines a mapping q of A x x A = An into A whose
value q(a\, . . . , an) at (a\9 ... , an) is the result of replacing each
Xj in q by the corresponding α z, and then carrying out the algebraic
operations proper to A. A linear subspace B of the algebra A will be
called ^-closed if whenever A = (a\, . . . , an) e An then g ( a ) G 5 .
Let q((B)) be the smallest ^-closed linear subspace containing B.
We study mainly the case that A is ¥(x\, . . . , xn) itself, and B is
the linear subspace generated by x\9 ... 9xn and the unit 1. The q-
closed set generated by X\, . . . , xn and 1 will be denoted in this case
simply by ((q)).

We will usually use just P to stand for Ψ{xχ, . . . , xn). q e P will
be called productive if ((q)) = P and otherwise, non-productive.

Two questions interest us:
1.1. When is a given q e P productive,

and
1.2. If it is not, how to find elements p which are not in ((q)) ?
A clear-cut answer to 1.1 is given by 3.9. An answer to 1.2 is given in

§4, illustrated by an example 8.5. We regard q as an n-ary operation
and prepare a suitable ideal theory.

2. Theorems establishing productivity. Consider q = X\X2 . Then a
linear subspace B is ^-closed if it contains the product of any pair
of members: B is a subalgebra.2 Thus, if B is the linear subspace
generated by X\, . . . , xn and 1, then {(q)) is the algebra generated
by X\, . . . , xn and 1. This being P , X\X2 is productive.

indices.

this paper, all algebras are supposed to be associative, and so we omit the term.

x)-
2Notethat B is JCjX2-dosed if and only if it is xix)-closed, where i, j are any two distinct
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We will usually write x, y for x\, Xι. The main example of a
productive element is xy . 3 As observed, ((.xy)) is the subalgebra
generated by X\, . . . , xn and the unit 1, and this is patently P.

For finding sufficient conditions for elements to be productive, we
are aided by the following concept. Let E = (e(l), . . . , e(n)) be n
non-negative integers. Let p e P. Then p is homogeneous of type E
if it is homogeneous of degree e{i) in x\, for each /.

2.1. DEFINITION. Given q e P , its homogeneous constituent qE

shall be the sum of its monomial terms homogeneous of type E.
Obviously, q is the sum of its homogeneous constituents.

2.2. LEMMA. If the field F w infinite, then qE e ((<?)) for each
homogeneity type E.

Proof. Let λ = (λ\, . . . , λn), and define qλ as #(^i.xi, . . . , λnxn).
We have qλ = Σ 0#A = Σ Λ^βE By making enough different choices
for λ, we get a system of linear equations for the various qE. These
can then be expressed in terms of the left-hand sides. The left-hand
sides belongs to ((q)) no matter how the λ are selected. Therefore,
so do the qE.

2.3. THEOREM. Let q e P. If p e ((q)) then ((q)) is p-closed
and ((/?)) is contained in ((<?)).

This can be deduced from the following representation of q((C\))
as the union of sets Cm where C\ is a subset of P. We will define
Cm for m = 2, 3, . . . . Suppose now that Cm has been defined. Then
Cm+i shall consist of the elements of Cm, their linear combinations,
and the values of q(u) where u varies over the n-member subsets of
Cm . Let C°° be the union of the sets Cm . Using induction, we see
that each Cm lies in q((C\)), so C°° is contained in q((C\)). Since
C°° is obviously ^-closed, it must include q((C\)). Thus

(2.31) ff((C1)) = C ~ .

Such a sequence of sets {Cm} may be called a q-system. There is
a ^-system (? with C\ = B, the span of 1 and X\,..., xn. Now
suppose p lies in the set Cm and let r\, . . . , rn lie in Q . We want
to show that p(r\, . . . , rn) lies in ((q)).

In the system Q replace each X; by r;, giving Q. This is a
^-system {C^} and it has p(rx, . . . , rn) in the mth set. C[ is

3See also 2.4.
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contained in Q . Consequently Cm is contained in Ck+m_x, so
p(r\, . . . , rn) lies in ((q)). This shows that ((<?)) is /?-closed, whence
the p-closure of B, namely ((/?)) is contained in ((q)).

Thus 2.3 is proved. We mention an immediate generalization.

COROLLARY. Let q G P. L ^ C be a subset of P.
Then p({C)) is contained in q{{C)).

2.4. COROLLARY. L^ί q e P. Then P = ((q)) if and only ifxy e

((«))•

This follows from 2.3 with p — xy.

2.5. COROLLARY. L ^ q e P. If any qβ is productive* then q is
productive.

Proof, ((qε)) is contained in ((#)), so if the former contains xy,
so does the latter.

The next proposition can be as easily proved as was 2.4.

2.6. PROPOSITION. Let q e P. Select an index i. Define
qi{x\, . . . , xn) cis the coefficient of t in q{x\, . . . , Xι + t\, . . . , xn)
where t ranges over F and 1 is the unit of F(x\, ... , xn). Then qt

belongs to ((q)).

This can be used to show that q = x2y + xyx + xy2 is productive.
First we get x2y + xyx e ((<?)) by 2.2. Then 2.6 tells us that 2xy +
yx + xy G ((#)), whence 3xy + yx G ((#)), and by substitution of x
for y and y for x , 3yx + xy G (((?)). Linear combination gives us

COROLLARY. If f and g have positive degree, then f(x)g(y) is
productive.

Proof. By differentiating an appropriate number5 of times and ap-
plying 2.6, we can obtain xy e ((f(x)g(y))). By 2.3, ((f(x)g(y)))
includes ((xy)), = ¥(x{ , . . . , * „ ) .

The connection with Jordan algebras may be noted. (See [BK].)

However, if all the qE are non-productive, the sum k may still be productive. See 4.5.
5Using 2.3 after each differentiation.
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REMARK. If q is a polynomial in one variable and has degree at
least 2, then ((#)) = ((x 2)), i.e., it is the special Jordan algebra

V(xι,...,xn)+.

Proof. Let q be a polynomial in x. Replace x by 1 + x and
expand. One sees from 2.2 that x2 e ((#)). On the other hand,
replace Λ: by x2 and see that x 4 , xs

 5 x
1 6 , e ((x2)). Keep this up

until the exponent exceeds the degree of q. Replacing x by 1 +x and
using 2.2, one sees that all the powers in q are in ((x 2)). Forming
linear combinations, one obtains q e ((x2)). Thus, by 2.3 applied
twice,

3. Characterizing productivity. For A: = 1, 2, . . . let i \ stand for
the set of homogeneous polynomials of degree k. For p eP let p ^
be the PQ H h i \ component of /?. We will use Quad(/?) to denote
the P2 component of p.

We are going to be dealing with «-tuples (p\, . . . , pn) of elements
of P. We will abbreviate such an n-tuple by p . We will write p ^

ft>r (P\9k> ••• > Aι,*)
We will also make use of the linear automorphism p -+ p* of P

defined inductively by 1* = 1, {pXiY = XiP*. An element u for
which w* = u will be called symmetric, and one for which u* = -u,
skew.

We will let S + denote the linear subspace of P of those elements
p for which Quad(/?) is symmetric, and *S_ for those for which it is
skew. In fact p is in S+ or S- if and only ii p,ι is symmetric or
skew, respectively.

PROPOSITION. Let q e P. Then one of the three sentences 3.1, 3.2,
or 3.3 must be true.

3.1. If fx, ... , fn belong to Po + P\, then Quad#(f) is symmetric.
3.2. // /1 , . . . , / „ fo/ong to P0 + P1, then Quad#(f) w skew.
3.3. 2?6tf/j of the following hold:
3.31. ΓAere are f\9 ... , fn in PQ + P\, and Quad#(f) is not sym-

metric.
3.32. There are f\, ... , fn in PQ + P\, and Quad#(f) is not skew.

We pass on to consider the consequences of each of these sentences
or conditions.

LEMMA. Condition 3.1 holds <*
3.4. Q\x2id(q(λ + x)) is symmetric for all λ = (λ\, ... , λn).
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Proof. =>: Choose f = λj + X;. By 3.1, Quad(#(Λ, + x)) is sym-
metric. <=: Suppose Quad(g(Λ, + x)) = ^αyjc/JC/. This forces αy to
be symmetric as a matrix, which makes X) otijXiXj symmetric when
the Xi are any linear forms. So Quad(#(Λ, + x)) = ΣaijXiXj is
symmetric as 3.1 requires.

In the same way one can show

LEMMA. Condition 3.2 holds &
3.5. Quad(#(λ + x)) is skew for all λ = (λΪ9 . . . , λ Λ ).

3.6. LEMMA. If 3.1 Ao/ds, ίλen Pi,...9pn e 5+ implies that

Proof Quad^(p) is identical to Quad(^(p,2)) Now Quad(#(p j 2))
= Quad(ήr(pi)) plus a linear combination of terms /?/2 Because
Pi 5 ,/>« €S+, these extra terms are symmetric. By 3.1, Quad(#(p 9 \))
is symmetric, whence Quad(ήr(p)) is symmetric, and q{pχ, . . . , pn) £

3.7. LEMMA, i/ 3.2 Ao/ώ, ίAen P\, ... ,pn € S_ implies that
PI, ••• , Λ t )€SL.

A proof may be obtained by replacing "symmetric" by "skew".

3.71. LEMMA. J/3.31 Λ̂ /ώs , then X\X2-xiX\ belongs to

Proof From 2.2, we see that Quad(#(f)) belongs to ((#)). Thus
there is an element p = Σauχiχj i n ((#)) s u c h t h a t P ~ P* ¥" ®
This leads to an element Σαι/C*i */ " χjχi) ^n ((ί)X a n ^ n o t 0 β y
2.2 again, some JC/JC/ - XyJC/ is in ((#)). Permuting the x^ gives us
3.71.

3.72. LEMMA. If 3.32 holds, then X\X2 + X2X\ belongs to

A proof can be assembled from the preceding, except that we might
arrive at the element X\X\ + X\X\. From here it is easy to get to

+ X2χ\ by polarization. We note an obvious consequence.

3.8. LEMMA. If 3.31 and 3.32 both hold then XχX2 belongs to

((*))•
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3.9. THEOREM. Let q e P. If3A holds then ((#)) is included in
S+ and q is nonproductive. 1/3.5 holds then ((q)) is included in S-
and q is non-productive. If neither of these hold, then q is productive.

Proof. Suppose 3.4 holds. Therefore, 3.1 holds, so by 3.6, £+ is
invariant under q. Now 1, X\, . . . , xn are symmetric and thus in
S+. Therefore, ((#)) is included in S+. Obviously S+ is not all of
P.

Supposing 3.5 holds, we proceed in an analogous fashion, and con-
clude that q is non-productive.

If neither 3.4 nor 3.5 holds then we obtain 3.31 and 3.32. We appeal
to 3.9 and to 2.4, and conclude that q is productive.

4. Examples.

4.1. THEOREM. Suppose either aij = aμ for all /, j or a^ = -aμ
for all i, j . Then, Σ α//*/*/ is non-productive, and conversely.

Proof. Suppose αz y = aμ for all /, j . In q = Σ auχiχj replace
Xi by λi + Xi where λ\ is a scalar. Obviously Quad(Λ, + x) is q itself,
which is surely symmetric when a^ = α,/. The case α ί y = —α7 , is
treated in a like manner. By 3.9, q is nonproductive.

If neither α,7 = α/, for all /, j or α/7 = - α y / for all /, j then
neither 3.4 nor 3.5 holds. This completes the proof of 4.1

4.2. THEOREM. Let q = xiyJxk, where the exponents are all pos-
itive. Here x is x\ and y is Xι. Then q is non-productive precisely
when i = k.

Proof. Suppose 3.4 is true. Let the λι• = 1. It is verifiable that

where V means i(i - l)/2, etc. So j = k, and conversely, if j = k
then Quad(#(λ + x)) is symmetric. But we have not yet shown that
j = k implies Q\xad(q(λ + x)) is symmetric even when some λf is 0.
In this case we have to examine Q u a d ^ ^ μ + y)Jxk) which is either
μjχι+k o r Q5 in any case, symmetric.

This theorem implies that xfyjxl is non-productive. Observe that
xlyjxl is symmetric. We indicate another way to see this.

4.3. THEOREM. If q is symmetric, then every element of ((q)) is
symmetric and thus q is non-productive.
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Proof. If fι, ... , fn are symmetric and q is symmetric, then
Q(f\ > ••• > fn) is symmetric. Now 1, and the X/ are symmetric, so
every element of ((#)) is symmetric.

The converse is not true. Examples abound, by virtue of the next
theorem.

4.4. THEOREM. Let q = xhyixjyk. Then q is non-productive pre-
cisely when

(4.41) hk + hi + ji = ij.

Proof. This condition is necessary for 3.4 and 3.5, as can be seen
by putting λ — (1, . . . , 1). Then it can be shown sufficient for 3.4, in
case λ = (λ\, . . . , λn) when no λt is 0, and finally when some are 0.

4.5. EXAMPLE (see 2.5). One can have q productive but every qE

non-productive.
Let q\ = xyx. This is non-productive by 4.2. In the proof we

showed that it generates xy + yx. Let #2 = xy — yx. This is non-
productive by 4.1. Let q be their sum. From q we can get q\ and
#2 back, by 2.2. Hence we can get xy + yx and xy - yx, whence by
2.4, q is productive.

5. Remarks about the rest of this paper. We want to present some
ideas which will enable us to assert, for example, that xyx does not
belong to ((xy2)). See 8.5 below. To establish such propositions
we apparently have to bring up the concept of seminorms, which is
familiar, and that of ideals, which may not be familiar in this context.

6. Seminorms. From now on, F will be either the real field R or
the complex field C.

DEFINITION. Suppose A is a linear algebra over F. Suppose that
a real-valued function S defined on A is a seminorm with respect to
the linear space structure of A. A seminorm defines a topology in A,
and thus also in Ax xA. It makes sense to ask whether this makes
q continuous at any selected point of A x x A. If so, we will say
that q is continuous in the topologies defined by S, or that S renders
q continuous6 at that point.

We will abbreviate this to " q is continuous in the topology denned by S ". If no particular
point is mentioned, continuity at all points is implied.
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6.1. LEMMA. Suppose q e Έ{x\, . . . , xn) - Let A be an algebra
over F. Let S be a seminorm on A. Suppose q is continuous
in the topology defined by S. If p e ((#)), the q-closed subset of
¥{xι, . . . , xn) generated by {1, X\, . . . , xn} then p is continuous in
the topology defined by S.

Proof. Construct the ^-system {Q} as in 2.3, with C\ being the
set {1, X\, . . . , xn}. The union of the Q is ((#)). Every element
of C\ is certainly continuous in the topology defined by S. Assume
it is true for every element of Cm. Each element of Cm+\ is either
a linear combination of these, or the value of q on n of them, and
thus surely also continuous.

We will actually need a slight but immediate corollary of this.

6.2. COROLLARY. Suppose q e ¥(x\, . . . , xn). Let A be an alge-
bra over F. Let S be a seminorm on A. Suppose q has 0 constant
term and is continuous at (0, . . . , 0) in the topology defined by S.
Suppose p e ((q)), and suppose that p has constant term 0. Then p
is continuous at (0, . . . , 0) in the topology defined by S.

This result will enable us to exhibit some polynomials p and q
where p £ ((<?)). We just have to find a seminorm such that p is not
continuous. To do that we develop an appropriate ideal theory.

7. g-ideals.

DEFINITION. Let q e ¥(xχ, . . . , xn). Let A be an algebra. Then
a linear subspace J of A will be called a #-ideal if whenever a =
(έii,. . . , an)eAn and j e / * , then #(a + j) - £ ( a ) e J.

One example is q = X\Xι. Here a #-ideal is just an ordinary two-
sided ideal of the algebra A. Another example is q = (x\)2. In this
case a #-ideal is an ideal of the Jordan algebra A+ (see [BK]).

LEMMA. Let q e F(JCI , . . . , xn). Let A be an algebra. Let J and
K be q-ideals. Then JπK and J + K are q-ideals.

Proof. The assertion about / Π / is elementary. As to the other,
q(a + j + k) - q(a) = [q{μ + j + k) - q(a + j)] + [<?(a + j) - $(a)]. The
first bracket belongs to K and the second to / . Thus the lemma is
proved.

7.1. DEFINITION. The smallest #-ideal containing a given subset
B of A is the #-ideal generated by B and will be denoted by Iq(B).
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The next lemma is helpful in discovering what elements belong to
Iq{B) in specific cases.

DEFINITION. Let q be an element of W(x\, . . . , xn). Let / be a
linear subspace of a linear algebra A. Let (a\, . . . , an) e -4Λ and let
C/Ί > - - , in) € / Λ . For each /, 7 < 1 < n, let

(7.2) ft (fl!, . . . ,an,ju . . . , j Λ )

= ^ ? ( α i , . . . , cii + tji, . . . , αΛ)|/=o

LEMMA. 4̂ /meαr subspace J is a q-ideal if and only if

(7.3) ^ ( f l ! , ...9qn,Jι, ,Jn)eJ

whenever a\,..., aneA and j \ , . . . , jne J.

Proof. It seems adequate to us to give a proof only for a special
example, say # = xyx. Here we write x for xi and y for *2 and
n = 2. Also let #i = α, aι = 6, 7Ί = 7, and J2 = k. In this case of
q = xyx ? conditions 7.3 say

(7.4) j&α + abj and α/cα € / whenever j , k e J and a, b eA.

We have to show that (α + j)(b + k)(a + j) - aba e / whenever
j , k e J and a, b € ^4, if and only if 7.4 holds.

If {a + sj)(b + tk){a + sj) - aba lies in / for all s and t, we can
deduce, by algebraic procedures, that the derivatives in 7.4, that is the
derivatives 7.3, lie in / .

Conversely, does (a + j)(b + k)(a + j) - aba lie in J if 7.4 holds?
Actually, we undertake to prove that {a + sj)(b + tk)(a + sj) - aba
lies in / for all real s and t, if 7.4 holds. Let

f(s) = (a + sj)(b + tk){a + sj) - aba.

Then f(s) = ]Γ chs
h, a sum of three terms. Conditions 7.4 imply

that all derivatives of f(s) are in / . Therefore, all the c^ are in
/ for h > 0. The constant of integration Co is also in / because
/(0) = atka G / . Hence f(s) e / , as we promised to show.

PROPOSITION. Consider the element q = xyx of ¥{x, y). Let
Iχyx(x) be the q-ideal generated by the single element x of ¥(x, y).
Then a basis for the elements of this ideal of degree not greater than 3
is

(7.5) {x, x 2, xy + yx, x3, x2y, xyx, yx2>xy2 + y2x}.
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Proof. By repeated use of 4.52 one can show that any xyx-ideal
which contains x, must contain x2 and xy+yx. Also one can show
that an ideal which contains these must contain the entire list 7.5.
The list is clearly linearly independent. Then, one can show that on
the other hand, that the span of 7.5 together with all polynomials of
degree at least four, is an xyx-ideal. This sketch should suffice for a
proof.

PROPOSITION. Let q e ¥(x\, . . . , xn) . Let A = F(* i , . . . , xm).

Let k be a positive integer. Let Xk be the set of polynomials whose
constituent homogeneous summands are all of degree k or more. Then
Xk is a q-ideal.

Proof. Let a\, . . . , am be members of A and let j \ , . . . , j m be
members of Xk . The expression q{... , α +y';, . . . )-<?(... , a\, . . . ) is
a sum of monomials in the a\ and j). After the obvious cancellation,
every term must have at least one factor j \ in it, and so the sum must
belong to Xk.

7.6. LEMMA. Let q e P = ¥(x\, . . . , xn) Let m be an integer
not necessarily related to n. Let A = F(xχ, . . . , xm). Let J be a
q-ideal in A and let p be an element of A which does not lie in J.
Then there is a q-ideal K to which p does not belong, which has finite
codimension in A, and contains J.

Proof. Let k be greater than the degree of p. Let K = J + Xk.
This is a #-ideal, and it has finite codimension, because Xk does. If
the element p were to be in K, say p = j + z, then the homogeneous
constituents of z could not appear in p because the degree of p is
too small. Thus they would find and cancel their negatives in j , and
p would lie in / .

8. Establishing non-producivity. For convenience, we introduce an-
other term.

DEFINITION. Suppose A is a linear algebra over F . Suppose that S
is a seminorm on A, and μ is a real number satisfying S(q(a\9..., an))
< μ whenever S(at) < 1 for all /. Then μ is a q-factor for 5 , and
S will be said to have a ^-factor.

8.1. LEMMA. Let q e P = ¥(x\, . . . , xn). Let A be an algebra
and let J be a q-ideal such that A/J is finite dimensional. Then there
is a seminorm S on A that has a q-factor and has kernel J.
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In the following proof, we always intend summation over repeated
indices. Also, any lower case j stands for a member of / .

Let A/J have dimension m. Let β\, . . . , em be a basis for A/J.
Now q(Σa\heh> ••• 9 Σanheh) is well defined because / is a gr-ideal,
which implies that evaluating q is well defined modulo / . Since q
is a polynomial, q(Σ,aiheh> ••• > Σanheh) — Piei> where the Pi are
polynomials in the aih .

Choose a norm || || for A/J. Define the seminorm S on A by

S(a) = \\a + J\\. T h e n S(q(Σ*ιheh, ••• , Σ«nheh)) = P t e | | .
The condition ||tf + / | | < 1 defines a closed bounded set B in ^4//.

For a\, . . . , an to have S(α/) < 1 is the same as having the a\ + /
lie in B. This in turn, makes ||P/^/|| < μ for some real μ. We have
shown that S(di) < 1 for / = 1, . . . , n implies S(q(a\, . . . , an)) <
μ. Thus the seminorm has a ^-factor.

The kernel of S is obviously / . This proves 8.1.

8.2. LEMMA. Let q e F(xi, . . . , xn). Let p be an element of
A = ¥(xχ, . . . , xm) vanishing at (0, . . . , 0) of A x x A = Am .
Suppose that p does not lie in the q-ideal lq[x\, . . . , xm) generated
by x i , . . . , xm in A. Then there exists a seminorm S on A that has
q-factors, but does not render p continuous at (0, . . . , 0).

Proof. By 7.6, there is a <y-ideal K to which p does not belong,
and such that A/K has finite dimension. By 8.1 there is a seminorm
S having ^-factors, and having K for its null space. So S{p) >
0 because p is not in K. However, S(XJ) = 0. Now suppose
p were continuous at (0, . . . , 0). Its value there is of course the
zero element of A. Hence for every e > 0 there is a δ > 0 such
that for those a\, . . . , am, with S(cii) < δ for all /, one will have
S(p(a\, . . . , am)) < β. Take ε = S(p) which is positive. Consider
letting aι have the value JC, . With that Λ, , we surely have S(ai) < δ
for all /. So S(p(a{, . . . , am)) < e. But now S(p(ax, . . . , am)) =
S{p{x\, . . . , Xm)), and a little reflection on the definition of the func-
tion p shows that p(xχ, . . . , xm) is indeed p. So S(p) < S{p), is
obviously a contradiction. This completes our proof of 8.2.

8.3. THEOREM. Let q e F(JCI , ... , xn). Let p be an element
of A — ¥(x\, . . . , xm, z\, . . . , zr) that is homogeneous in each of
z\, . . . , zr and homogeneous of positive degree in X\. Suppose p
does not belong to the q-ideal generated by z\9 . . . , zr. Then there is
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a seminorm S on A which has q-factors but renders p discontinuous
at ( 0 , . . . , 0 ) .

Proof. As above, there is a g-ideal K including z\, . . . , z r , but
not p, and such that 4̂/ϋΓ is finite dimensional. Consequently there
is a seminorm S such that S(zf) = 0, but S(p) > 0. Say S(p) = ε.
Suppose p were continuous at (0, . . . , 0). Then there is a δ > 0
such that if S(μi) < δ for all / and S(bj) < δ for all j then
S(β(aι ,...,am,bι,..., br)) < ε. Let α,- = α, */ and 6, = βjzj.
If the α, are sufficiently small, then 5(α, ) < (5 for all / and S(bj) <
δ for all j , whereupon *S(p(αi, ... , am, b\, ... , br)) < ε. Now
S(β(a\, ... 9am,b\9 ... , br)) is a product of α's and β's times
S(p(xi, . . . , xm, z\, . . . , zr)). After the α's have been chosen small
enough, and βι, . . . , βn have been set equal to 1, the product of
α's and β\ can be made arbitrarily large by varying β\. Thus
S(p(xχ, . . . , xm, z\, . . . , zr)) is actually 0. But as mentioned at the
end of the proof of 8.2, S{β(x\, ... , xm, z\, ... , zr)) is S(p). This
contradiction proves 8.3.

8.4. THEOREM. Let q e ¥{x\, ... , xn) Let p be an element of
¥{x\, . . . , xm, z\, . . . , zr) that is homogeneous in each of' z\, . . . , zr

and homogeneous of positive degree in X\. Suppose p does not belong
to the q-ideal generated by z\, . . . , zr. Then p does not belong to

Proof. If p e ((q)) then p is continuous by 6.1. But this is contra-
dicted by 8.3.

In order to apply this more smoothly to a situation met earlier, we
make a mere alphabetic variation:

8.4'. THEOREM. Let q e ¥{x\, . . . , xn) - Let p be an element of
^CFI > > ym 9 X\, > Xr) that is homogeneous in each ofx\,...,xr

and homogeneous of positive degree in y\. Suppose p does not belong
to the q-ideal generated by x\, ... , xr. Then p does not belong to

8.5. THEOREM. Consider the element q = xyx of F(x, y). Let
p be an element of ¥(x, y) that is homogeneous of positive degree in
y, homogeneous in x, and homogeneous of the third degree in x, y.
Suppose p is not a linear combination of the elements of the list 7.5.
Then p φ ((xyx)).
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Proof. By hypothesis, p does not belong to the ideal Ixyx(x). We
can appeal to 8.4' and conclude that p φ {(xyx)).
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