
PACIFIC JOURNAL OF MATHEMATICS
Vol. 162, No. 2, 1994

EXTREMAL FUNCTIONS
AND THE CHANG-MARSHALL INEQUALITY

VALENTIN V. ANDREEV AND ALEC MATHESON

Answering a question of J. Moser, S.-Y. A. Chang and D. E. Mar-

shall proved the existence of a constant C such that ^ / 0

2 π ^ l / ( e ) ! dθ

< C for all functions / analytic in the unit disk with /(0) = 0

and Dirichlet integral not exceeding one. We show that there are

extremal functions for the functionals Λα(/) = ^ /0

2π 6>α|/(<?ί<?)|2 <̂ 0

when 0 < a < 1. We establish a variational condition satisfied by

extremal functions. We show that the identity function f(z) = z

is a local maximum in a certain sense for the functionals Λα and

conjecture that it is a global maximum.

1. Introduction. The Dirichlet space 2) consists of those functions
/ analytic on the unit disk Δ which have finite Dirichlet integral

We will always assume that /(0) = 0. It is well-known and easy to
establish that Σ) is a Hubert space under the inner product

and that, if f(z) = Σ~=i anz
n and g(z) = ΣZi ^zn, then

n=\

In particular,

Λ = l

For a > 0 and / e 2), we define

Λa(/) = 4- f
This is known to be finite for all a > 0 and all / G Ί), and it can be
shown that the quantity

/α = sup{A α (/) | | | /b<l}

233



234 VALENTIN V. ANDREEV AND ALEC MATHESON

is finite for 0 < a < 1 and infinite for α > 1. A proof of this for
0 < a < 1 will be indicated below. For a > 1, this follows from
an estimate of A. Beurling [1]. Answering a question of J. Moser [9],
the finiteness of this quantity for the critical value a = 1 was first
established by S.-Y. A. Chang and D. E. Marshall [5]. A different
proof of this fact was subsequently given by Marshall [8], and this has
been generalized by M. Essen [7].

The proof of Chang and Marshall involves a delicate argument
based on an estimate of Beurling [1]. Since we need Beurling's es-
timate in section 2, we describe it here. Let / e 2) satisfy \\f\\^ < 1,
and for ί > 0 , l e t

^ = {0||/(e")|>ί}.
If \Et\ denotes the normalized Lebesgue measure of Et, then Beur-
ling's estimate is

\Et\<e-t2+ι.

It follows immediately that

Γte^\Et\dtΓ
h

/

h
if 0 < a < 1. We note that this proves that Ia is finite if 0 < a < 1,
but, in light of the result of Chang and Marshall, the bound is far from
precise.

We now show that Λα(/) is finite for any / G Σ) and any a > 0.
By scaling, it is clear that Λα(/) < oo if α | | / | | | < 1. If
/ € 2) and e > 0, there is a polynomial p such that | | / —p|||) <
β. But I/I2 < 2 |/ -p\2 + 2\p\2< 2 |/ - p\2 + 2\\p\\l, where \\p\\n =
sup{|/?(z)| I Z G Δ } . Then

2π Jo

d θ ,

and, by taking e small enough, it follows that Λα(/) is finite. Chang
and Marshall attribute this observation to J. Garnett. We also note
that, since xnex < Cne

2x for any positive integer and some constant
Cn, the quantity

-ί2

2πJ0is finite for any a > 0, any / e 2), and any polynomial p.
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It is natural to ask if there exist extremal functions for the func-
tionals Aa in case 0 < a < 1. In the subcritical case 0 < a < 1, this
will be established by an easy continuity argument in §2. The criti-
cal case a = 1 appears to be much more difficult, and the remainder
of this paper is devoted to studying this problem. In §3 we establish
a variational criterion which must be satisfied by extremal functions
which are sufficiently smooth. It will be seen that the identity function
f(z) = z satisfies this criterion. In §4 we show that in a certain sense
the identity function is a local maximum for the functionals Λ α . In
§5 we discuss various other aspects of this problem.

Finally, we make two observations concerning the nature of ex-
tremal functions. The first of these is attributed by Chang and Mar-
shall to J. Clunie.

Let f(z) = Σ™=ι anz
n have finite Dirichlet integral, and let f*(z) =

ΣZi \"n\zn Then clearly \\fy = \\f*y , while

i r2π °o

± \f(eiθ)\2»dθ = Σ
k=l

Σ di

<Σ Σ Ki-K.

for n = 1, 2, . . . . It follows from the power series representation

Λα(/) = Σ ^ L o ^ ^ P that Aa(f) < ΛαCΛ). Because of this, it is
enough to consider functions with nonnegative coefficients.

The second observation uses a theorem of L. Carleson [2] to show
that extremal functions must be of a certain form. Although we do not
use this observation in the sequel, we think it is of sufficient interest
to include here. It is clear that if / is extremal for the functional Aa,
then 11/| 12) = 1. Since / belongs to the Hardy space H2, / admits
a Riesz factorization

f{z) = zmB{z)S(z)F(z),

where m is a positive integer, B(z) is a Blaschke product, S(z) is
a singular inner function, and F(z) is an outer function [6, Thm.
2.8]. Let g(z) = zF(z). Then Carleson's theorem guarantees that
\\g\\® < 11 /112) 9 with equality if and only if / = g. On the other hand,
\f(eιθ)\ = \g(eιθ)\ almost everywhere, so Λα(/) = Aa(g). Thus an
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extremal function must have the form zF(z), where F(z) is an outer
function.

2. Weak continuity of functionals. Let B denote the closed unit ball
of 3). Since B is weakly compact, in order to prove the existence of
an extremal function for Λα, it is sufficient to show that Λα is weakly
continuous on B. Since

11=0

for each / eB. We can do this for 0 < a < 1 by showing that the LP
norms / —• | | / | | p are weakly continuous on B, and by establishing an
estimate H/lβJI = O(n\) in order to get uniform convergence of the
series above. This is done with the following three lemmas. In what
follows, we use standard notation and ideas from the theory of Hardy
spaces as found, for example, in [6]. In particular, we note that the
norm of a function f(z) in the Hardy space Hp coincides with the
norm of its boundary function f(eiθ) in LP .

LEMMA 1. If f G Σ ) , then f eHp, and

\\fwp

P < 4 r ( f
Proof. Let / e 2) satisfy | | / | b = 1. Let Et = {θ \ \f(eiθ)\ > t}.

Then

\\f\\$=p t"-ι\Et\dί<ep t^e-' dt
JO JO

where we have used Beurling's estimate \Et\ < e~ι + 1 . The lemma
follows.

LEMMA 2. If {fn)^L\ is a weakly null sequence in 2), then \\fn\\i -•
0.

Proof. Since weakly null sequences are bounded, we may assume
that fn e B for each n. Writing fn(z) = ΣίbU an,kzk > we have

k=\
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and

k=\

For any positive integer K, the Cauchy-Schwarz inequality yields

so that

for n = 1, 2, . . . . On the other hand, because {fn)%L\ is weakly
null, for each fixed k9 #«,&—>0 as n -+ oo. Hence, given e > 0, we
can choose K so that ^ < §, and then choose JV so that if n > N
and fe < K, then |α π > ^ | < ^ . Hence, if n> N, | |/| |^ < 6 and the
lemma is proved.

LEMMA 3. For each p, 0 < p < oo, the function f —• | |/ | | p w
weakly continuous on B.

Proof. It is enough to show that if /„ —• / weakly in J5, then
IIΛ - / U P - 0. Let ^ = i (Λ - / ) • Then ft6ί, and ( ^ ) - = 1

is weakly null, so ||#«||2 —• 0 by Lemma 2. If 0 < p < 2, then
II^ΛIIP < ll̂ /ilb by Holder's inequality, and the lemma is immediate.
For p > 2, we use Holder's inequality in the form

II/HP < 11/115 l t

together with Lemma 1 to complete the proof.

We have now established the following theorem

THEOREM 1. For each a, 0 < a < 1, the nonlinear functional

is weakly continuous on B. Consequently Aa attains its maximum
on B.

3. A variational condition. If the function / e 2), | | / | |^ = 1, is
extremal for some Aa, 0 < a < 1, and if / has a certain degree of
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smoothness up to the boundary of Δ, then it is possible to establish a
condition satisfied by / by means of a variational argument. In order
for the integrals below to be defined we will assume that f belong to
the Hardy space Hι. In this case / will be continuous on the closed
disk, and it will be sufficient to assume that the test functions φ also
have derivatives in Hι.

PROPOSITION 1. Suppose that f e Ί), \\f\\® = 1, f e Hι, and f
is extremal for the functional Λα, for some α, 0 < a < 1. Let φ be
a function with φ1 eHι. Then

2π Jo

where

Proof. Write φ = u + iυ , and let ft = fetφ for real t. Let

i
Then, differentiating under the integral sign, we obtain

Because / is extremal, A'(0) = 0, and it will be necessary to evaluate
the integrand when t = 0. Since fo = / , and ||/| |^ = 1, the first
factor becomes exp{α|/(^) | 2 } when t = 0. Since \ft\

2 = \f\2e2tu,
we have

d \ft\2 2^ £
=

dt\\Ml WMI
and the first term becomes 2u\f\2 when t = 0. By Green's Theorem,

Wft III = ̂  £ ft{eiB)lW)eiθ dθ,

and so



EXTREMAL FUNCTIONS AND THE CHANG-MARSHALL INEQUALITY 239

But

so

Hence,

and so

Also,

so that

dfl
dt

dJij
dtJt

= Φf' + Φ'f,
ί=0

= Φff + Φ'ff.
(=0

dft
dt

h dt
<=0

Consequently, with z = eιθ ,

ί=o 2π JQ
z d θ

Hence,

d\fl = 2u\f\2 -^jj (2uff + φ'ff) z dθ,

and the condition h'(0) = 0 becomes, on applying Fubini's Theorem,

Γ(2ujf' + φ'ff)zdθ.

That completes the proof.

± J2* 2u\f\2e«\f\2 dθ = ^

COROLLARY 1. Under the same assumptions on f and φ, we have

Sa(f) {(Φ + Φ)ffz + ΦW'f ~ zfl)} dθ.
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Proof. This follows on integrating

f π φ\eiθ)f{eiθ)f{eiθ)eiθ dθ
Jo

by parts, noting that -§$f{eiθ) = ieiθf'{eiθ), and that ^f(eiθ) =

-ie-iθf'{eiθ).

COROLLARY 2. Under the same assumptions on f and φ, we have

i tin m 2

— / \f{eiθ)\2ea\f{e ) ! φ{eiθ)
2π JQ

Sa(f)
2π

Proof. From Corollary 1, we have

Saif) ** {(Φ + Φ)f'fz + Φ(ϊff - zfϊ)} dθ.
2π

Replacing φ by iφ and then dividing by / gives

Saif) {(Φ ~ Φ)ffz + Φiϊff - zff)} dθ.

Adding these two equations completes the proof.

In the next corollary %^ denotes the set of boundary functions
f(eιθ) of functions / e Hξ , where Hξ denotes the set of functions
in Hp which vanish at the origin [cf. 6, §3.2].

COROLLARY 3. Iff is as above, then

It is easy to see that the identity function f(z) = z satisfies the
condition of Corollary 3. However, the argument above is not deli-
cate enough to yield a uniqueness result. Indeed, if we consider the
functionals

Uf) = ±: Γ \f(eiθ)\2n dθ,
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for n = 1, 2, . . . , then essentially the same argument shows that an
extremal function / with / ' E i/ 1 must satisfy

and again this condition is fulfilled by the identity function. Let

Because the Jn are weakly continuous on the unit ball B of 2), ex-
tremal functions exist for each n . For n = 1 and f(z) = Σ ^ l i anz

n ,
we have

n=\ /ι=l

with equality if and only if /(z) = a\z. Hence μ\ = 1 and the iden-
tity function is extremal. For n = 2 a more delicate argument again
shows that μ2 = 1 and the identity function is extremal. However,
since there are unbounded functions in 2), μn —• oo as n —> oo. But
/„(/) = 1 for f(z) = z, so the identity function cannot be extremal
for large n.

4. A local maximum. In this section we show that, in a certain sense,
the identity function is a local maximum for each of the functionals
Aa, 0 < a < 1. For simplicity of exposition we restrict ourselves
to functions with nonnegative coefficients. The idea is to analyze ΛQ

along curves

ft{z) = z cos t + h(z) sin t, 0 < ί < ^ ,

where h e 2), ||λ||s) = 1, and Λ(z) = Σ ^ ^ 2 " ^ a s ^onnegative
coefficients. Since z is orthogonal to /z(z), \\ft\\® = 1, and it is clear
that any function in 3) with norm one and nonnegative coefficients
has such a representation.

For reasons which will become clear shortly, it will be convenient
to treat the function h(z) = A=z2 as a special case. In this case we
have

ft(z) = zcost+ — z 2 s π W , 0 < t < ^ .

We let φa{t) = e-aA
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PROPOSITION 2. The function φa(t) is strictly decreasing for 0 < t <
f, 0 < α < 1.

Proof. Clearly,

\ft(eiθ)\2 = 1 - ^ - ^ + Vϊsintcostcosθ.

Hence

φ(ή = e'^ — f π

2π Jo

But, for n = 0, 1, 2, . . . ,

In

and

2 π

Hence

r2π
Via sin t cos t cos θ ^Q

Γπcosnθdθ
1 /"Z

" ^ - /

2πJQ

- a2n ίsin2tcos2tY

Thus,

2n /sin2 ίcos2 Λ "

n=0

Differentiating φa(t) with respect to t gives
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^ a2n /sin2 ίcos2 Λ "
I )

sin2 ί cos2 Λ *
I—y-y

s m ' c o s ^

sin2 ί cos2 tY

2
~ s m

n=0

sin2/cos2 n-\

= sin/coste
(n!)2

L n=0

+(cos21 - sin21)

But cos21 - sin21 = cos It, so

φ'lt) = -sinίcoste~~α51ί2

α

2

2/z+2

αcos2Λ α 2 w + 1 /sin2 ί cos2 Λ "

But 1 - gL^γί > 0 unless Λ = 0, a = 1, and ί = 0. That completes
the proof.

Now if h(z) = ΣZ2 bnzn , we have

00 .. 0
^

Λ=2 Λ=2

with equality if and only if h(z) = 4=z 2 . Having disposed of this

case in Proposition 2, we may assume that ||Λ||2 < \ - Once again we

let φa(t) = e-°Aa(ft).

PROPOSITIONS. For each h there is a T such that φa(ή is decreas-
ing for 0<t<T.

Proof. If we write k(z) = zh(z) + ~zh(z), we obtain

2 "
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On the other hand, applying Taylor's Theorem to the function

gives

qa{t) = λ - l) t2 + ga(λ, μ, τ)qQ(τ)t3

where ga(λ, μ, t) is a polynomial in α, λ, and μ, with coefficients
depending only on sinlt and cos2ί, and τ is a number between 0
and t. Applying this to eaW gives

ak(z)t + a \h(z)\ - Λ

Since |A:(z)| < 2|Λ(z)|, and |/ τ |
2 < 1 + |A|2, the coefficient of /3

is dominated by p(\h\2)ea^ , where p is some polynomial. As re-
marked in the introduction, there is a constant Q such that

i - Γp{\h{eiθ)\2)ea^e^ dθ
2π JQ

<Ch.

Next, for z = e/<9, it is easy to see that

k(z) = 2 cos «^,
n=\

so that

and

2π

Thus, integrating gives
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where \c(t)\ < Q . Since \\h\\2 < \ by assumption, it follows that
φa(t) is decreasing for t close to 0.

5. Concluding remarks. Beurling [1] proved that his estimate is
sharp in the sense that for the functions

0<a< 1,

there is a constant c independent of a such that

\Et\ > ce~ι if t -

and Chang and Marshall [5] proceed by comparing / e S ) , | | / | | ί o
with an appropriate Ba . We note that

ιn zn

where

Na = log
l-a2'

Since, as a —• 0, ^y/N^ -> 1, it follows that Ba(z) —• z weakly as
a —• 0. On the other hand, it can be shown that Ba(z) -> 0 weakly
as a -> 1. It is of interest to investigate the behavior of A\(Ba).
Numerical experiments suggest that Λi (Ba) is decreasing and concave
for 0 < a < 1, and that limα_^oΛi(2?α) = e and that l i m ^ ! Aχ(Ba) =
0. It is also possible to prove that J\(Ba) is decreasing and concave
for 0 < a < 1. However, numerical experiments suggest that this is
not the case for Jn{Ba) for larger n , and recently the second author
has succeeded in proving that l i m s u p ^ ! A\{Ba) > 1.

Finally, let

denote the partial sums in the series expansion of Λ α (/) . We remark
that, for fixed a, if the identity function f(z) = z is extremal for
Sn,a for large n, then it would also be extremal for Aa. Similarly,
if /(z) = z is extremal for Aa for a close to 1, it would also be
extremal for Λi. We conjecture that the identity function is extremal
in all of these cases.
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