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EXTREMAL FUNCTIONS
AND THE CHANG-MARSHALL INEQUALITY

VALENTIN V. ANDREEV AND ALEC MATHESON

Answering a question of J. Moser, S.-Y. A. Chang and D. E. Mar-

6,2
shall proved the existence of a constant C such that L [*e/)I" gg

< C for all functions f analytic in the unit disk with f(0) = 0
and Dirichlet integral not exceeding one. We show that there are

extremal functions for the functionals A.(f) = 5 foz" e/ gg
when 0 < a < 1. We establish a variational condition satisfied by
extremal functions. We show that the identity function f(z) = z
is a local maximum in a certain sense for the functionals A, and
conjecture that it is a global maximum.

1. Introduction. The Dirichlet space © consists of those functions
f analytic on the unit disk A which have finite Dirichlet integral

1= [[1r P dxdy.

We will always assume that f(0) = 0. It is well-known and easy to
establish that ® is a Hilbert space under the inner product

0= [[reFEda.
and that, if f(z) =37, a,z" and g(z) =372, bn,z", then

(f,8) =) nanbn.
n=1

In particular,

[e o]

2
1A =D nlanl.

n=1

For >0 and f €9, we define

1 2n 7 " |2
Aalf) = 5= /0 eal/€F 4g.

This is known to be finite for all « > 0 and all f € D, and it can be
shown that the quantity

I = sup{ Ao (/) | I fllo < 1}
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is finite for 0 < o < 1 and infinite for @ > 1. A proof of this for
0 < a < 1 will be indicated below. For a > 1, this follows from
an estimate of A. Beurling [1]. Answering a question of J. Moser [9],
the finiteness of this quantity for the critical value o = 1 was first
established by S.-Y. A. Chang and D. E. Marshall [5]. A different
proof of this fact was subsequently given by Marshall [8], and this has
been generalized by M. Essén [7].

The proof of Chang and Marshall involves a delicate argument
based on an estimate of Beurling [1]. Since we need Beurling’s es-
timate in section 2, we describe it here. Let f € D satisfy || f|lo <1,
and for ¢ >0, let

E ={0||f(e")]>1}.
If |E;| denotes the normalized Lebesgue measure of E;, then Beur-
ling’s estimate is
|Et| < e—t2+1.

It follows immediately that

A =1+ Za/ 1’ |E,| dt
0

<1 +2ae/ te- (- gr =1 e
0 l -«
if 0 < a < 1. We note that this proves that I, is finiteif 0 <a <1,
but, in light of the result of Chang and Marshall, the bound is far from
precise.

We now show that A,(f) is finite for any f €D and any o > 0.
By scaling, it is clear that A,(f) < oo if «off]3 < 1. If
f €D and € > 0, there is a polynomial p such that ||f — p||% <
e. But |f| <2|f - p|? +2lp|* < 2If — p|? + 2l|pll%, , where [|pllo =
sup{ |p(z)| | z€A}. Then

1 2n )
2alipll, L 2" J2als-p]
Aa(f) < ePla /0 e a0,

and, by taking € small enough, it follows that A,(f) is finite. Chang
and Marshall attribute this observation to J. Garnett. We also note
that, since x"ex’ < C,,ez"2 for any positive integer and some constant
Cn, the quantity

2n . i, 2
o | pUsE et a0
0

is finite for any o > 0, any f €D, and any polynomial p.



EXTREMAL FUNCTIONS AND THE CHANG-MARSHALL INEQUALITY 235

It is natural to ask if there exist extremal functions for the func-
tionals A, in case 0 < a < 1. In the subcritical case 0 < a < 1, this
will be established by an easy continuity argument in §2. The criti-
cal case a = 1 appears to be much more difficult, and the remainder
of this paper is devoted to studying this problem. In §3 we establish
a variational criterion which must be satisfied by extremal functions
which are sufficiently smooth. It will be seen that the identity function
f(z) = z satisfies this criterion. In §4 we show that in a certain sense
the identity function is a local maximum for the functionals A,. In
§5 we discuss various other aspects of this problem.

Finally, we make two observations concerning the nature of ex-
tremal functions. The first of these is attributed by Chang and Mar-
shall to J. Clunie.

Let f(z) = Y, anz" have finite Dirichlet integral, and let f*(z) =
S°% | |an|z". Then clearly ||f]lo = || /*|lo, while

2

1 2n 9 ) 0
n
E?z/o eI 46 Z > 4,
= ]l+...+jn=k
2
o
<> > Iaj.l---lajnl)
k=1 \Jj,++j,=k
1 2n 012
= — e'NN"deo
g MG
for n =1, 2, ... . It follows from the power series representation

£) = 520"l that A,(f) < Aa(f*). Because of this, it is
enough to consider functions with nonnegative coefficients.

The second observation uses a theorem of L. Carleson [2] to show
that extremal functions must be of a certain form. Although we do not
use this observation in the sequel, we think it is of sufficient interest
to include here. It is clear that if f is extremal for the functional A,
then || f|lo = 1. Since f belongs to the Hardy space H?, f admits
a Riesz factorization

f(z) = z"B(2)S(2)F(2),

where m is a positive integer, B(z) is a Blaschke product, S(z) is
a singular inner function, and F(z) is an outer function [6, Thm.
2.8]. Let g(z) = zF(z). Then Carleson’s theorem guarantees that
lIgllo < |Ifllo , with equality if and only if f = g. On the other hand,
|f(e®)| = |g(e'?)| almost everywhere, so A.(f) = As(g). Thus an
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extremal function must have the form zF(z), where F(z) is an outer
function.

2. Weak continuity of functionals. Let B denote the closed unit ball
of ©. Since B is weakly compact, in order to prove the existence of
an extremal function for A, , it is sufficient to show that A, is weakly
continuous on B. Since

M) =)

n=0

for each f € B. We can do this for 0 < a < 1 by showing that the L?
norms f — || f]|, are weakly continuous on B, and by establishing an
estimate ||f]|3” = O(n!) in order to get uniform convergence of the
series above. This is done with the following three lemmas. In what
follows, we use standard notation and ideas from the theory of Hardy
spaces as found, for example, in [6]. In particular, we note that the
norm of a function f(z) in the Hardy space H? coincides with the
norm of its boundary function f(e?®) in L7.

< I
n!

LEMMA 1. If f €D, then f € HP, and
p < P (2
1115 < €21 (%) 17 lo-

Proof. Let f € ® satisfy ||f]lp = 1. Let E; = {6 | |f(e"®)| > t}.
Then

o0 o0
If1E = p /0 #-\|E,|dt < ep /0 1ot 4y

ol [T utlemu gy = P (P
—e2/0 u"'e du—ezl"(z),

where we have used Beurling’s estimate |E;| < e~{+1. The lemma
follows.

LEMMA 2. If (f4)32, is a weakly null sequence in D, then || fn|2 —

0.

Proof. Since weakly null sequences are bounded, we may assume
that f, € B for each n. Writing f,(z) = Y52, @, 1 z*, we have

o0
2
1715 =D klan &l

k=1



EXTREMAL FUNCTIONS AND THE CHANG-MARSHALL INEQUALITY 237

and

o0
113 = lan. il
k=1
For any positive integer K , the Cauchy-Schwarz inequality yields

12 / o 1/2
Z an il < (Z £la, klz) (Z k|an,k|2)
N l/zsz
(Z an,klz) P

——\/—__'_
so that
o0
Z |an,k|2 <z
k=K
for n =1, 2, ... . On the other hand, because (f,);°, is weakly

null, for each fixed k, a, y — 0 as n — co. Hence, given € >0, we
can choose K so that % < 5, and then choose N so thatif n > N
and k < K, then |a, x| < 5% . Hence, if n > N, ||f|3 < € and the
lemma is proved.

LEMMA 3. For each p, 0 < p < oo, the function f — |fl, is
weakly continuous on B.

Proof. 1t is enough to show that if f, — f weakly in B, then

I/ _f”p — 0. Let g, = %(f;l — f). Then g, € B, and (gn);l.il
is weakly null, so ||gs]l2 — O by Lemma 2. If 0 < p < 2, then
llgrllp < |lgnll> by Holder’s inequality, and the lemma is immediate.
For p > 2, we use Holder’s inequality in the form

11l < ILFI311 1155

together with Lemma 1 to complete the proof.
We have now established the following theorem

THEOREM 1. For each o, 0 < a < 1, the nonlinear functional
A= [ 7 ol gp
@ 27 0

is weakly continuous on B. Consequently A, attains its maximum
on B.

3. A variational condition. If the function f € D, |[fllo = 1, is
extremal for some A,, 0 < a <1, and if f has a certain degree of
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smoothness up to the boundary of A, then it is possible to establish a
condition satisfied by f by means of a variational argument. In order
for the integrals below to be defined we will assume that f’ belong to
the Hardy space H!. In this case f will be continuous on the closed
disk, and it will be sufficient to assume that the test functions ¢ also
have derivatives in H'.

PROPOSITION 1. Suppose that f €D, ||flo =1, f' € H!, and f
is extremal for the functional A, for some a, 0 <a < 1. Let ¢ be
a function with ¢ € H'. Then

2n 852 :
3m [ IfeDPel el 2Rg(e) do
0

2n i oy —— . . .
= 250 [ {omg(el®) /()T + 4 (e (€) | €,

where

1 2n . 10112
Sl =35 [ 17(€®) et/ dp.

Proof. Write ¢ = u+ iv, and let f; = fe’® for real . Let

_ 1 |fi(e™)*
h(t) = 27:/0 exp{ ”ﬁ"@ }dﬂ.

Then, differentiating under the integral sign, we obtain
L[ £ | @ alfi(e’)?
h(t) = — / exp dé.
=22 Jy { 1A f 3t G

Because f is extremal, A4’(0) = 0, and it will be necessary to evaluate
the integrand when ¢ = 0. Since fy = f, and ||f|lp = 1, the first
factor becomes exp{a|f(e?)|?} when ¢ = 0. Since |f;|? = |f|?e**,

we have
d |A1> _ 2ulfPe® A2
3_ 2 = 2 4 6t“ﬁ”©’
L fill% I 21l% Il f21l%

and the first term becomes 2u|f|?> when ¢ = 0. By Green’s Theorem,

1 2n ) N
10h =55 [ ) Tee do,
0

DAl = o {‘”’f, +f,6f’}e""d0.

and so
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But

fl=fe?+1¢'fe'?,
SO

L — ppre® v fe + pgier.

Hence,

af 1 _ ! /

_a_Et_ /=0 - ¢f + ¢ fa
and so

2%y, LT =eTred T
Also,
O _ pre,
so that
79— .
=0

Consequently, with z = e’? |

2n . o
sl B =g [ (677 + 00T+ 371 za0
2n _ .
- 51;/0 (27 + ¢ 17) zab.
Hence,
o t2 2 p2n — s
siin| =2 [ (e 97 a0,

239

and the condition 4’(0) = 0 becomes, on applying Fubini’s Theorem,

2n ) 2n _ _
%/0 2ulf)?e?/1 d0=§3—(7{—)/é <2uff’+¢'ff)zd0.

That completes the proof.

CoROLLARY 1. Under the same assumptions on f and ¢, we have

2n ) _
3 [ e @+ )do

2n o _ _
=3 [T {0+ 87Tz + 67 f 27T} do
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Proof. This follows on integrating
[ g0 (e e ao
by parts, noting that % f(e®) = ie’ f'(e'), and that 2 f(ei) =
—ie~10f1(¢i0)
COROLLARY 2. Under the same assumptions on [ and ¢, we have

2n i0y2 .
o [ 1) Re e gie) ao
0

2n —_— . i
= 250D [ e e (e el do.

Proof. From Corollary 1, we have

2n 2 _
3 [ Pel @+ Pao

2n
Replacing ¢ by i¢ and then dividing by i gives

2n 2 _
3 [ Pel6-Pao

2n o - —
=3 [ (6= 91Tz + 6T~ 2T} db.

Adding these two equations completes the proof.

= 5D [+ 95Tz + 9T - 257} do.

In the next corollary /Z denotes the set of boundary functions
f(e'%) of functions f € H}, where HY denotes the set of functions
in H? which vanish at the origin [cf. 6, §3.2].

CoROLLARY 3. If f is as above, then
Pt — Su( N fZ] € 7.

It is easy to see that the identity function f(z) = z satisfies the
condition of Corollary 3. However, the argument above is not deli-
cate enough to yield a uniqueness result. Indeed, if we consider the

functionals -
1 .
() =55 | 1 Pnde,
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for n =1, 2, ..., then essentially the same argument shows that an
extremal function f with f’ € H' must satisfy

If1P" = TN €7

and again this condition is fulfilled by the identity function. Let

pn = sup{ Jo(f) | | fllo £ 1}.

Because the J, are weakly continuous on the unit ball B of ©, ex-
tremal functions exist for each n. For n =1 and f(z) =Y ,2,a.z",
we have

oo (e @]
= Z |an|* < Z nlay|? = ”f”% >
n=1 n=1

with equality if and only if f(z) = a;z. Hence u; = 1 and the iden-
tity function is extremal. For n» = 2 a more delicate argument again
shows that u, = 1 and the identity function is extremal. However,
since there are unbounded functions in ©, u, — oco as n — oco. But
Jo(f) =1 for f(z) = z, so the identity function cannot be extremal
for large n.

4. A local maximum. In this section we show that, in a certain sense,
the identity function is a local maximum for each of the functionals
As, 0 < a < 1. For simplicity of exposition we restrict ourselves
to functions with nonnegative coefficients. The idea is to analyze A,
along curves

fi(z) = zcost + h(z)sint, 0<t<

B

where h € D, |hllp = 1, and h(z) = 3,2, b,z" has nonnegative
coefficients. Since z is orthogonal to %(z), || fi|]lo =1, and it is clear
that any function in © with norm one and nonnegative coefficients
has such a representation.

For reasons which will become clear shortly, it will be convenient
to treat the function A(z) = %zz as a special case. In this case we

have

1 .
fi(z) = zcost + —=z%sint, 0<t<

V2

TR

We let ¢,(1) = e *Aq(f) .
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PROPOSITION 2. The function ¢,(t) is strictly decreasing for 0 <t <
Z2,0<a<l.

Proof. Clearly,

sin® ¢

e =1-3

+v/2sintcostcos .

Hence

da(t) =€ as‘"z’ 1 / gV2asintcostcos6 Jg

But, for n=0,1,2, ...,

1 2n
—/ cos?"t19do =0,
0

2r
and
1 2 2n 0do = (2”[)'
o J, = 22n(p)2
Hence
_1_ g e\/fasintcostcosﬁ do
2n 0
— a" n 1 n n
=Z— (V2sintcost)” — cos” 0d6
ot n 7I 0
> a2n n (211)‘
_;;;)(2")'2 (sin® ¢ cos? ¢)" 21 (n1)?
_i a?n (sinztcoszt)n
- 12
—~ (n!) 2
Thus,

w2 X a2t (sin?rcos?t)
— poitt
Pall) =7 g(nw( 2

Differentiating ¢,(¢) with respect to ¢ gives
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i 2n (sin®tcos?t
¢L(t) = —asintcoste™ ( )

2n 2
sm sin® ¢ cos? ¢ .
= E . (I ( ) sin ¢ cos #(cos? ¢ — sin’ 7)

. X 2n+l 2
. sin ¢ (87 SlIl tcos
_ —odt [

=sinfcoste”* z E COE (

-1
+(cos? t — sin t)zna (Sln tcos?t )

— sinzcos te~ "% g~ ((sin tc052
- — (n!)?

S 2n+2 2
sin® ¢ cos? ¢
+(cos? ¢ —sin? ) E n'2(n+1)< > ) }

n=0
But cos? ¢ — sin? ¢ = cos 2, so

il t acos2t) o2+ [sin?tcost)”
/ : -
t) = —sintcoste 1-—
Palt) i Z( n+1 )(n!)2 2

n=0

But 1 — ",‘;"J’flz’ >0 unless n =0, a=1, and ¢ = 0. That completes

the proof.

Now if h(z) =372, b,z", we have

> 1 S 1
2_5: 2 § : 2 _
”h”2 - bn < E nbn = i’

n=2 n=2

1

with equality if and only if A(z) = 22 Having disposed of this

case in Proposition 2, we may assume that All3 < 4. Once again we

let ¢o(1) = e *Au(f) -

PROPOSITION 3. For each h thereisa T such that ¢,(t) is decreas-
ingfor 0<t<T.
Proof. If we write k(z) = zh(Z) + Zh(z), we obtain

sin 2¢

@) =1+ (Ih(2)2 = 1) sin £ + k()=
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On the other hand, applying Taylor’s Theorem to the function

qa(t) = ea [(}'—1) Sin2 t+ﬂsin_221]

gives

2
do(t) =1+ aut +a (%‘— +4- 1) 2+ ga(A, 1, T)4a(7)2?,
where g,(4, u, t) is a polynomial in a, 4, and u, with coefficients
depending only on sin2¢ and cos2¢, and 7 is a number between 0

and ¢. Applying this to e®i" gives

2 2
(AN = ga (1 + ak(2)t+ a (k éz) + |h(2)> - 1) t?

+ ga(|h(2)1, k(2), r)e"'f"”'zp) '

Since |k(z)| < 2|A(z)|, and |f;]> < 1 + |h|?, the coefficient of #3
is dominated by p(|h|2)e®’, where p is some polynomial. As re-
marked in the introduction, there is a constant Cj such that

1 27 . i 2
o= [ PP dg

< .
2n 0 —Ch

Next, for z = % | it is easy to see that

k(z)= 22 b, 1cosnf,
n=1
so that
1 2n 0
— l —_—
37 Jo k(e'?)do =0,
and

1 2n . o0
= /0 k(i) do =2 b2 = 2|lh|2
n=2

Thus, integrating e®/(€“)’ gives

-

ba(t) = 1+ a{|Il(a+1) = 1} 2+ c(t)??
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where |c(f)] < Cp,. Since ||A||3 < 4 by assumption, it follows that
@.(t) is decreasing for ¢ close to O.

5. Concluding remarks. Beurling [1] proved that his estimate is
sharp in the sense that for the functions

B,(z) = log1 /\/ O<axl,

there is a constant ¢ independent of a such that

2 1
E|>ce"  ift=4/log—7,
|E/| > ce if ¢ 8T

and Chang and Marshall [5] proceed by comparing f € D, ||fl|lo =1,
with an appropriate B,. We note that

o0

B a"z"
zZ)= )
(=3
where
1
Na=loe 17—

Since, as a — 0, 1\/N, — 1, it follows that B,(z) — z weakly as
a — 0. On the other hand, it can be shown that B,(z) — 0 weakly
as a — 1. It is of interest to investigate the behavior of A;(B,).
Numerical experiments suggest that A;(B,) is decreasing and concave
for 0 < a < 1, and that lim,_, A (B,;) = e and that lim,_,; A{(B,) =
0. It is also possible to prove that J;(B,) is decreasing and concave
for 0 < a < 1. However, numerical experiments suggest that this is
not the case for J,(B,) for larger n, and recently the second author
has succeeded in proving that limsup,_,; A;(B;) > 1.
Finally, let

" ok,
Snal) =Y )
k=0
denote the partial sums in the series expansion of A,(f). We remark
that, for fixed «, if the identity function f(z) = z is extremal for
Sn,o for large n, then it would also be extremal for A,. Similarly,
if f(z) = z is extremal for A, for a close to 1, it would also be
extremal for A;. We conjecture that the identity function is extremal
in all of these cases.
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