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ON THE EXISTENCE OF CONVEX CLASSICAL
SOLUTIONS TO MULTILAYER FLUID PROBLEMS
IN ARBITRARY SPACE DIMENSIONS

ANDREW ACKER

We study certain multilayer free-boundary problems, in which the
layer interfaces constitute a nested family of convex closed surfaces,
each characterized by a Bernoulli joining condition between the po-
tentials in the neighboring layers. In this context, we develop convex
variational methods based on a family of convexity-preserving free-
boundary perturbation operators, and we apply these methods in the
study of the existence of convex solutions.

1. Introduction. The main purpose of this paper is to apply convex
variational techniques to study the question of the existence of convex
classical solutions to certain multiple-free-boundary problems arising
in fluid dynamics, called multilayer fluid problems.

1.1. Problem. In R™, m > 2, let an annular domain Q of the
form Q=D+\CI(D~) be given, where D* are fixed, bounded, simply-
connected, nested C!-domains. Given n € N and continuous func-
tions 4;(x): CI(D*) = R, i=1,2,..., n, we seek a nested family
of Cl-domains D;, D,, ..., D, (with boundaries I'; = dD;) such
that CI(D;) ¢ D;; for i =0, ..., n, (where we set Dy = D~ and
D, ., = D*) and such that

(1.1) IVU]> = VUi |* + 4i(x) onT;
for i=1,..., n,where U(x) solves the boundary value problem
(1.2)

AU=0 inQ\(TU---UT,), UT)=i fori=0,1,...,n+1,

and where, for each i, U; denotes the restriction of U to the closure
of the annular domain Q; := D;\Cl(D;_;) with boundary 9Q; =
Iul'i_;.

1.2. Problem. This denotes the modified version of Problem 1.1 in
which I'; becomes a free boundary characterized by the requirement
that

(1.3) VU | = ap(x) onTy.
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Here, ayg(x): CI(D*) — R is a given, continuous, weakly-positive
function.

For Problem 1.1, we will show (see Theorem 7.2) that if the given
domains D* are convex, D~ is a C2-domain, the given functions
Ai(x): CI(D*) — R are all strictly positive, and the related func-
tions b;(x) := [Ai(x)]~1/2 are all concave in D, then there exists a
classical solution D = (D, D,, ..., D,) such that the domains D;,
i=1,...,n,areall convex. We obtain essentially the same result for
Problem 1.2 (under the additional assumption that the function ay(x)
is concave in the convex set {ag(x) > 0}), except that an additional
assumption is needed to prevent degeneracy (see Theorem 6.3). It is
reasonable to assume that the functions 4;(x) are all strictly positive,
since the author has given an example of Problem 1.1 (see [10]) in
which n =1, m = 2, the given domains D* are both convex, 4;(x)
is a negative constant, and no convex solution exists. The present
convexity result generalizes a portion of the author’s work in [11],
where a similar conclusion was reached under considerably stronger
assumptions. In particular, the present convexity results hold in ar-
bitrary space dimensions, whereas the previous convexity results for
Problem 1.1 (in [11, §6]) were restricted to 2 or 3 space dimensions
(m < 3). It was previously assumed essentially that 0 € D~ and
that the functions #24;(tv) (for i=1,...,n and v € R™) were all
weakly increasing in ¢ > 0. This latter assumption guaranteed that the
solution of Problem 1.1 would be unique and continuously dependent
on the data (properties which played an important role in the proof).
In contrast to this, the present existence results hold in the absence of
any knowledge concerning uniqueness.

We also mention the work of Laurence and Stedulinsky [21], who
proved in two space dimensions that Problem 1.1 and a modified ver-
sion of Problem 1.2 both have convex solutions under convex condi-
tions, provided that the functions ap(x) and A;(x), i=1,...,n,
are all positive constants. Laurence and Stredulinsky have also shown
(this time in arbitrary dimensions; see [22]) that solutions of certain
nonlinear PDEs can be approximated by convex solutions of Problems
1.1 in the limit as n — oo, so that our convexity results for Problems
1.1 have direct consequences regarding the existence of solutions with
convex level surfaces for these nonlinear PDEs.

The author’s results on convexity, both here and in [11], are based
on a certain one-parameter family of free-boundary perturbation op-
erators T,, 0 < & < 1, which preserve the geometric convexity of the
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free-boundary surfaces under suitable conditions (see §§2.8, 2.9). In
fact our assumption that the functions ag(x) and b;(x) := [4;(x)]"'/2,
i =1,...,n, all be concave arises as a natural requirement for
the convexity-preserving property of these operators. However, our
present treatment is otherwise entirely different from [11], where the
convexity results were obtained essentially as consequences of the
maximum-norm convergence of a successive approximation scheme
based on the (convexity-preserving) operators 7, and thus required
the additional assumption stated above, which was crucial to the con-
vergence of the successive approximations.

In our present approach, which is patterned after the author’s first
papers on the existence of convex free boundaries (see [3], [S]) and
work of Caffarelli and Spruck [16, §§4,5] the “operator method” is
studied in the context of convex functional minimization (i.e. convex
variational inequalities). This approach permits us to obtain existence
results in the absence of any knowledge regarding uniqueness of so-
lutions. We will now briefly outline this method in the context of
Problem 1.2: One begins with the standard integral functional asso-
ciated with Problem 1.2 via the method of variational inequalities,
and one minimizes this functional among those functions having only
convex level surfaces. Now, it turns out that convex minimizers can
exist under quite general circumstances, including many cases where
no convex solution exists for the corresponding free boundary problem
(see [10, Remark 2]). Therefore, the crucial step in our method is the
proof, under suitable assumptions, that U will satisfy the Euler equa-
tions for the original (non-convex) variatonal problem, namely (1.1),
(1.2), and (1.3). A convex minimizer U will be harmonic except on
the free boundaries (i.e. the surfaces corresponding to integer values of
U), as follows from results in the literature on the convexity of level
surfaces of the capacity potential (see [15], [16, §2], [17], [18], [19]).
Therefore, it remains to prove the joining conditions (1.1) and (1.3).
The main tool for verifying the joining conditions is the examination
of convex variations in the free boundaries of the convex minimizer,
which cannot decrease the functional. The author’s method for this,
called the “operator method” (introduced in [3]), consists of defining
one specific global convex variation in each free boundary, chosen in
such a way that the functional will be diminished (to first order in the
variation parameter) unless the joining condition on the free bound-
ary is satisfied at least in some weak sense. We will show (in §3) that
the convex variation needed to establish the joining conditions (1.1) is
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accomplished by precisely the one-parameter operator family 7, al-
ready used in [11], while (1.3) follows by applying the operator family
defined in [3].

An alternative perspective on convex-free-boundary problems has
been studied by Laurence and Stredulinsky in the work previously
cited (see [21]). After establishing the existence of a suitable con-
vex minimizer (in arbitrary space dimensions), they study the joining
conditions (1.1) by the “method of flat places”. This method (which
had already been studied in several other contexts by the author in
[6]) is based on the observation that local convex variations establish
the joining conditions on the free boundaries of a convex minimizer,
except at the “flat places” in these surfaces, which require a separate
analysis based on maximum principles and non-local convex varia-
tions. The main drawback in this method is the fact that the verifica-
tion of the joining conditions on the flat places becomes increasingly
difficult as the number of dimensions increases. In fact the method
has never been applied in more than two space dimensions. By con-
trast, the operator method, although it was originally introduced in a
2-dimensional context, is actually insensitive to dimension in all essen-
tial aspects, perhaps because it circumvents difficult questions related
to details of surface geometry. However, the method of flat places,
when applicable, appears to lead to slightly more general assumptions
for the existence of convex solutions to Problems 1.1 and 1.2. For
example, the method of flat places would lead to the requirement that
1/ag(x) be convex in {ag(x) > 0}, which is slightly more general than
our assumption that the function ay(x) be concave (see [6]).

We remark that neither a proof nor a counterexample has been
found for the existence of convex solutions under convex conditions
for Problem 1.2 in the case where the functions ay(x) and A;(x), i =
1,..., n, are all constants, but at least one of the 4; is negative. (A
closely related problem, in which all the A; are negative, was proposed
by Laurence and Stredulinsky in [20], but not resolved.) However, we
obtain a counterexample in §7.6 applicable to the case where m = 2,
n=1, Ai(x) = —a? < 0, and ay(x) is concave in the convex set
{ap(x) > 0}. The operator method does not show that the convex
minimizer solves Problem 1.2 in this particular case because 7, does
not preserve convexity when applied to I'; :=98D; .

A simple, but powerful observation in the study of the multilayer
fluid problem (and multiple free boundary problems in general) is
the following: If a nested family of free boundaries (I'y, I, ..., Ty)
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solves Problem 1.1 in the case of (n + 1) layers, then each surface
I'; is the solution of a two-layer-version of Problem 1.1 relative to
its own immediate neighbors, I';_; and I';,;. This principle allows
many questions pertaining to multilayer problems to be resolved in
the 2-layer case. It is the plan of this paper to make maximum use of
this principle by first carefully studying the convex version of Problem
1.1 in the 2-layer case (in §§2, 3, 4, 5), and then solving the convex
version of Problem 1.2 by multiple application of these results (see
§6). Finally, in §7, we will solve the convex version of Problem 1.1
essentially by regarding it as a limiting case of Problem 1.2.

2. A variational approach to the 2-layer problem in the convex case.

2.1. Problem. In R™, m > 2, let be given an annular domain
Q in the form Q = D*\CI(D~), where D* are given bounded,
convex, nested C!-domains with boundaries I'* = 9D*, and let
a(x): CI(Q) — R denote a strictly-positive, continuous function such
that the related function b(x) := (1/a(x)) is concave on . (This
means that a(x)(d%a(x)/dv?) > 2(da(x)/dv)? at any point x € Q
and in any direction v, provided that a(x) is sufficiently differen-
tiable.) We seek a convex domain D (or its boundary I' = D) such
that CI(D~) ¢ D c CI(D) c D* and such that

(2.1) VU > = |VU*|>* +a%(x) onT,

where Q* denotes the annular domain whose boundary is Q* =
I'uT*, and where the functions U*(x) solve the boundary value
problems

(22)  AU*=0 inQ*, U*(I)=0, U*I*)=1.

2.2. Problem. In the context of Problem 2.1, let X, denote the
family of all closed, convex (m — 1)-surfaces I' of the form I' =
0D, where D denotes a convex domain such that ClI(D~) ¢ D C
CI(D) ¢ D*. For any surface I' € X., we define the functions
U*(T; x): CI(Q%(I')) — R to be the solutions of the boundary value
problem (2.2), where Q* := Q*() denotes the annular domain
bounded by I'UI'™* . We seek to minimize the functional I(I'): X, — R
defined by

(2.3) ID)=KTT)+ K~ D)+ |Q- D).
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Here K*(I') denotes the capacity of Q*(I), i.e.
KE(T) = / IVU*(T; x)[2dx.
Q*(I)

Also, we define ||M|| = [,,a?(x)dx for any measurable subset M of
Cl(Q).

2.3. ReMaRks. (a) In the notation of Problem 2.2, a solution of
Problem 2.1 is a convex surface I € X, such that
VU~ (x)? = [VU*(x)]* + a*(x) onT,
where we define U*(x) := U(T; x). B
(b) Observe that the definition of a solution I'" of Problem 2.2 re-
quires that I'NnI'~ =g2.
2.4. DEFINITION. Assume I is a Cl-surface. Then the function

U%(x): Cl(Qi) — R is differentiable at a point xp € I if there exists
a value A* = A*(xp) € R such that

U*(x) = £4%v(xp) - (x — Xo) + 0(}x — Xo)

as X — Xxp in CI(Q*) where v(xg) denotes the exterior normal vector
to I" at xo € I'. In this case, we define VU*(xp) 1= £4%v(xp) .

2.5. THEOREM. (a) Assume in Problem 2.2 that m = 2, or that
m =3 and T~ is a C%-surface. Then there exists at least one solution
I eX,. (b) Assume (for arbitrary m € N) that T is a solution of
Problem 2.2. Then: (i) T isa uniformly Cl-surface, and there exist
positive constants 0 < C; < Cy such that C; < VU%| < C, near
T in Q). (ii) The derivatives VU=%(xo) both exist at each point
Xy € T, in a sense given in Definition 2.4, and they satisfy C; <
VU (x0)| < C,. (iii) We have that VU%(x) — VU%(x) as x — xo
in QN {£v(xp) - (x — xp) > a|x — xo|} for any fixed 0 < a < 1.

Proof. Concerning part (a), see [21, §1]. Part (b) was proved in [16,
§4.2.7].

2.6. THEOREM. Let T be a solution of Problem 2.2 iwhich certainly
exists if m < 3 and T~ is a C?*surface). Then T is a (convex,
classical) solution of Problem 2.1.

Proof. The proof of Theorem 2.6 is the main object of §§3, 4, 5
(and, in particular, Theorems 4.1 and 5.1). The proof will be based
on the operator method, which we first briefly outline.
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2.7. LEMMA. Let U(x): CI(Q2) — R denote the capacity potential
in a bounded annular domain Q C R™ whose boundary components
I'™ and T are convex surfaces (i.e. AU =0 in Q, UI) =0, UT™) =
1). Then: (a) all level surfaces of U are convex, (b) |VU| is weakly
increasing on curves of steepest ascent of U in the direction toward
the interior boundary component, (c) |VU| is subharmonic, and (d)
In(|VU)|) is superharmonic.

Proof sketch. Regarding the proof of (a), see [15], [16, §2], [17],
[18], and [19]. Part (b) follows immediately from Part (a). Part (c) is
obvious, and part (d) is proved in [8, §3].

2.8. Operator method. We continue in the context of Problems 2.1
and2.2. ForI'y, I, € X.,wesay I'y <I (resp. I'y < I) if Dy Cc D,
(resp. CI(D;) C D;), where Dy, D, denote the corresponding interior
complements. We define the operators ®F(IN): X, - X,, 0<e< 1,
such that

OEN) = {x e Q*(IN): UX([T; x) = ¢}.

For any ¢ > 0 and given (m — 1)-surfaces I';, I'; € X, satisfying
I'1 <T';, we define the (m — 1)-dimensional surface

¥,([1, I2) = {x € 0: (¢?/d*(x, T1))—-(e*/d*(x, T2)) = a*(x)} € Xc,

where w denotes the annular domain between I'; and I',, and where
d(x,T) = min{|x — y|: y € T'}. Finally, we define the family of
operators T,(I): X, — X,, 0 < e < 1, such that

Te() = Ye(@; (1), @7 ().

2.9. THEOREM. In the context of Problem 2.1 and 2.2, we have
OF: X, - X, for 0<e< 1. Also ¥,(T'y, ) € X, forany ¢ >0 and
surfaces T'y, ', € X, satisfying I'y <T'y. Therefore, T,: X, — X, for
any 0<e<l1.

Proof. The operators ®F preserve convexity due to Lemma 2.7(a).
Then the proof that ¥,(I';, I';) is convex whenever the surfaces I') <
I, are convex follows from maximum principles, properties of the
distance function, and the assumed concavity of the function b(x) in
Q. The details are given in [9, §4] and [11, §5].
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3. Infinitesimal convex variations induced by the operators 7.(I'):
X —Xc. _

3.1. NortAaTION. Given a solution I' of Problem 2.2, we define
the functions A4(x), B(x), a(x), B(x): T’ — R* such that A(x) =
IVI7‘| , B(x) = |Vl~/'+|, a(x) =1/A(x),and B(x)=1/B(x). Clearly,
these functions are all bounded and measurable relative to the surface-
area measure on I.

3.2. THEOREM. Let I denotea (fixed) solution of Problem 2.2. For
small ¢ > 0, define the function h,(x): T — R such that
(3.1) Xe 1= X + B (X)v(x) € Ty := T(I)

for each x €T, where v(x) is the exterior unit normal to T at X € r
and |hy(x)| is minimum subject to (3.1). Then for each x € ", we
have

(3.2) lim :(X)/€) = h(x),

8—>

where h(x) denotes the unique solution (in the interval (—a(x), B(x)))
of the equation

(3.3) (a(x) + h(x))™2 = (B(x) — h(x))™? = a*(x).

Proof. Let the continuous, strictly-positive functions AF(x): >R
be defined such that
(3.4) xE = x + hE(x)v(x) e TE := ®F(D),

where AFf(x) > 0 is minimum subject to (3.4). For fixed x € T, it
follows from Theorem 2.5(b) that

(3.5) d(xe, TE) = |xF — xe|(1+£(e)) = | £ AF (x) — he(x)|(1 + L(e))

as ¢ — 0+, where {(¢) denotes any function such that {(¢) — 0 as
¢ — 0+. Since x; € Tg(l“) (1"; , I”’ ), we conclude using (3.5)
that

(3.6)  [e/(hy (x) + he(x))P* — [/ (B (x) = he(x))F = a*(x) + {(e)
as ¢ — 0+. For fixed x € f‘, the theorem of the mean implies that
e = U*(xf) = VU*(x) - (xF — x) + o(|x — x])
= |VU*(x)|hE(x) + o(h (x))
as ¢ — 0+, from which it follows that
(3.7) hE(x) = (¢/|[VU*(x)]) + o(e)
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as ¢ — 0+ . By substituting (3.7) into (3.6), we conclude (again for
fixed x €I') that
(a(x) + (he(x)/8) + {(8)) 72 = (B(x) = (he(x)/e) + {() 72
= a(x) +{(e)
as ¢ — 0+, from which (3.3) follows in the limit.

3.3. LEMMA. Given a (fixed) solution T of Problem 2.2, let the
Junction h(x): T — R be defined as in Theorem 3.2. Then there exists
a positive function r(x): T’ — R such that

0 < r(x) < 4-max{43(x), (a*(x) + B*(x))*?},
h(x) = (4%(x) — BX(x) — @*(x))/r(x),

both for all x €T.

Proof. Fix x €T and let
g)=(a+t)2—(B-1)72 for —a<t<p,
with a = a(x) and B = B(x). Then g(0) = 42— B?, and g(h) = a?,
with 4 = A(x), B = B(x), a=a(x), h =h(x),and r = r(x). By
the theorem of the mean, we have
A2 - B~ a2 = g(0) - g(h) = p(s)h = rh,
where s lies between 0 and /, and where

¢(1) = W) =2((B-1) +(a+0)7?).
It remains to determine an upper bound for ¢(s). Clearly the function
o(t): (—a, f) — R takes its global minimum at its center point ¢y =
(f—a)/2, and is decreasing (increasing) to the left (right) of the center
point. Therefore, if 0 <ty <s < h < f, then
¢(s) < p(h) =2([(a+h) 2 —a PP+ (a+h)7?) <44,
where we used the fact that g(4) = a®. On the other hand, if 0 < s <
fo, then ¢(s) < ¢p(0) =2(4A3+B3) <443. If —~a<h <5<t <0,
then
¢(s) < p(h) = 2((B — k) +[a* + (B — h)7*P/?) < 4(a® + BY)/2.
Finally, if 75 < s <0, then ¢(s) < ¢(0) = 2(43 + B3) < 4B3.

3.4. LEMMA. Let T € X, denote a uniformly Cl-surface, and let
I, 0 <& < g, denote a family of (convex) surfaces in X, such that
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I, C Np(T) (= the (Ae)-neighborhood of T) for each ¢, where A is
some positive constant. For each x €I’ and 0 < ¢ < ¢y, let v(x) =
the exterior unit normal vector to T at x € T, let y(x, €) be the point
closest to x in TyNL(x) (here L(x) = {x + av(x): a € R}), and let
v(x, €) denote a unit vector such that v(x, ¢)-(z —y(x,€)) <0 for
all ze€T,. Then ¢(¢) :=sup{|lv(x, e)—v(x)|: x€l'} -0 as e = 0.

Proof. Choose a point x* € D(f), and define I = r.[ := {x* +
Fe(x —x*):x € f} where the value r, > 0 is maximum subject to
the requirement that I, < T,. Clearly r, = 1 + O(e), and v(x,¢) -
(z—-y(x,¢€)) <0 forall xel,0<e < gy, and z €T, . Assume the
assertion of the lemma is not true. Then there exist a value pg > 0,
a positive null-sequence (g,), a vector sequence (x,) C 1~" and a
sequence of unit vectors (#,) such that |0, —v,| > pp and 7, (z —
¥n) <0 forall » and forall z € l"n = I‘8 , where y, = y(x,, &,) and
Vn = V(X,) . In fact we can assume that 0, maximizes |V —v,| subject
to the requirement that |v| =1 and v-(z—y,) <0 forall zeT,. It
follows that ©,-(z,—y,) = 0, for some point z, € I',,, where 7, is the
exterior normal to the surface f“n at z,. By passing to a subsequence
if necessary, we can assume that x,,y, - x €', v, - v(x), z, —
zeT, and v, —v(z), all as n — oo, where |v(z) —v(x)| > pp and
v(z)-(z—x) = 0. However, the second property (that v(z)-(z—x) = 0)
implies that v(x) = v(z), contradicting the first property.

4. Variational formulas.
4.1. THEOREM. Let T € X. be a solution of Problem 2.2 (with

m > 2). Then:
(a) We have

@1) KT, -R* < :i:a/~|V(7i|2h(x)ds +el(e),
@2) 9 (GOl - 127 =¢ [a(0ntx) ds+eC(e)
for &€ — 0+, where U*(x) = UX(T; x), etc., and the function h(x):
I' = R was defined in Theorem 3.2.
(b) We have

(4.3) (T,(D) < IT)-e /FaAZ(x)—B2(x>—az(x>12/r<x)>ds+ec<s>
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as ¢ — 0+, where A(x) = |V(7‘|, B(x) = IV(7+|, and the functional
I(T): X, — R was defined by (2.3).

(c) T solves Problem 2.1 in the weak sense that A%(x) = B*(x) +
a(x) almost everywhere on T relative to (m — 1)-dimensional Eu-
clidean area.

4.2. Proof of parts (b) and (c). By adding the three estimates given
in (4.1) and (4.2), one obtains the inequality

(4.4) (T,O)<ID) -¢ J[E(Bz(x) + a%(x) — A%(x))h(x)ds + el (e).

Then the estimate (4.3) follows from (4.4) by applying Lemma 3.3.
Since I minimizes the functional I (I): X, — R, and since T;: X; —
X, , we conclude that I(T,(I)) > I(I). It then follows from (4.3) that
A%(x) = B%(x) + a%(x) almost everywhere on T.

4.3. Heuristic argument for Theorem 4.1, parts (b) and (c). In the
case of sufficient regularity of r , the variation 7 in the functional
I(I") caused by application of the operator 7, to I' is given approxi-
mately (i.e. to first order) by

ST Jé[Bz(x) +a2(x) — A2(x)10v(x) ds

(by the Poincaré variational formula for capacity), where dv(x) de-
notes the exterior normal variation in I' at x which is induced by
T. . However, Theorem 3.2 and Lemma 3.3 imply that

v(x) = hy(x) ~ h(x) - & = ([4%(x) — B*(x) — a*(x)]/r(x)) -,

so that the assertion follows by substitution. Then 4%(x) = B*(x) +
a?(x) on I' by the proof of Theorem 4.2 given above (see [9, §5] and
[11, Remark 5.6]).

4.4. LEMMA. Let T solve Problem 2.2. Then: (a) Each point xy €
T is the endpoint of at least one maximal curve of steepest ascent y*
of the function U* (here 3+ C CI(Q%)). (b) We have that VU*(x) —
VU%(xg) and (|VU*(x)|-|VU*(x0)|) 1 0 as x — xo monotonically
on =, where VU=(x,) is defined in Definition 2.4. (c) For each
xo €T, the curve * of steepest ascent is uniquely determined. (d) T he
curve of steepest ascent depends continuously on the endpoint xy € T".
(e) Let U denote one of the functions U=(x): Cl(Q%) — R, let T,
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denote the level surface of U at altitude 0 < & < 1, and let ds denote
Euclidean differential surface area on " or T'y. Consider the function
Y =7me(x): Ty = I such that x lies on the curve of steepest ascent of
U beginning at y. Then y = n.(x) is continuous on I'y, and we have

[ @)V U ds = /~¢<x>|vv<x>|ds
T, T

for any function ¢ which is in Ll(f‘, R) relative to the surface area.
Proof. See the appendix.

4.5. Notation for the Proof of Theorem 4.1(a). We will devote the
remainder of this section to the proof of Theorem 4.1(a). Actually,
we will prove the estimate (4.1) only in the “ + ” case, since the proof
in the “ —” case is nearly identical. The much more elementary proof
of (4.2) will be omitted. Throughout the remainder of this section, I"
denotes a specific convex minimizer of the functional I(I'): X, — R.
For small 0 < ¢ < 1, we define I, = T,(I"), T, = {U+(T; x) = &2},
and I'; = <I)j{8(f“) = {U*(T; x) = Ae}, where the constant A > 0 is
chosen such that {U+(I"; x) = Ae/2} > T for all sufficiently small
e > 0. Since we plan to explicitly prove (4.1) only in the “+ ” case,
we simplify the notation by omitting the superscript “+ ”. Thus, I'*
becomes I'*, and we use Qs, Ue, Ke, Q., U, K., Qs, U, K¢,
to denote the annular domains Q*(I,), Q+(T,), Q*(I), their re-
spective capacity potentials, and their respective capacities. For small
¢ > 0, and for each x € I', x; denotes the point in I'; which is
joined to x by a curve of steepest ascent of U, and X, denotes
the point in T'; which is joined to x; by a curve of steepest ascent
of U,. The three variables x, x,, X, are related to each other
in a bijective, continuous way (see Lemma 4.4). C,(x) denotes the
curve of steepest ascent of U joining x to x,, and Ce(x) denotes
the curve of steepest ascent of U, Jommg X: to x;. On r , We
let f(x) = g(x) = VU], fi(x) = VU, &(x) = [VU,(xs)],
0:(x) = ((VUX)/IVU(x))) = f(x)/fe(x), he(x) = (|Ce(x)|/e), and
h(x) = (A/]VU(x)l)— (x), where |C.(x)| refers to the arc-length of
C.(x), and where h(x) is defined in Theorem 3.2. Observe that the
functions f, g, h, %, Q:: T — R are bounded and measurable (in
terms of the (m — 1)-dimensional area measure on F) whereas the
functions f;, g;, he [ — R are continuous.
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4.6. LEMMA. Let T solve Problem 2.2. Then
(4.5) (K - K;)/e > /F F(x)gs(x)hs(x)ds — AK — L (¢)
as ¢ — 0+.

Proof. We have
K-K,=(K-K)+ (K, —K;)+ (K, - Kp).

Now (1 —Ae)U, = U — Ae in Q,, from which it follows that (1 —
18)|VU,| = |VU| and (1—4¢)K, = K . Therefore K,—K = AKe+0(e?)
as ¢ — O+. A similar argument shows that K, — K, = O(¢2) as
¢ — 0+. By applying Green’s second identity to the functions U,
and (U; — U,) in the domain €., one easily sees that

(4.6)

- 0 + = 0
Kg_Kg =/r* 6_1/-(U8- Ug)‘ins‘:\/ll‘9 Ug‘a_VUgds
1

= m/r IfoIUs(x)a’sz/r |VU|U.(x)ds — el (e).

& €

But for x, € I'; (corresponding to x € I~‘) , we have
Tuw) = [ VD0l 2 9T [Cot)
X

due to the monotonicity of [VU,| on the curve Ce(x) (see Lemma
2.7(b)). Also, the differential areas on the surfaces I'; and I' are re-
lated by ds, = Q.(x)ds (see Lemma 4.4(e)). Therefore, (4.6) implies
that

K,-K,> jé]Vﬁ(x)||VU8(x£)||€e(x)| ds — &(e)
as ¢ — 0+, from which (4.5) follows.

4.7. LEMMA. Given ¢y > 0, let Y.(&yg) denote the set of all convex
C*-surfaces T and that N, (D(T')) C D* := int(I"*) and B (xo) C
D(T') for some xq € D*. Then the integral [.|VU(x)|*ds is uniformly
bounded over all T € Y (&) .

Proof. Given a surface I' € Y.(¢y) (and a corresponding point
Xo with B (xo) C D(I'), let T's = {x € QI): d(x,T) = 6} for
sufficiently small 4 > 0. Also let the value r(6) > 1 be mini-
mum subject to the requirement that r(6)[" > I's, where we define
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al’ = {xp + a(x — xp): x € I'}. By the Poincaré variational formula
for capacity, we have [.|VU(x)|?>ds = limits_o.[(Ks — K)/d]. Also

Ks:=K(s, I'") < K(r(6)T', T¥)
= (r(8))> ™K (T, (1/r(9)I*) = KT, T*) + 0(9),

where (for this proof only) the notation K(y, y*) denotes the capacity
of an annular domain with boundary components y and y*. The fact
that K(I", (1/r(8))I™*) = K(I", I'*) + O(J) follows from the Lipschitz
continuity of U near I'*, which is uniform relative to variations in
I'e Y.(g9) . (See [2, §7] for an analogous argument.)

4.8. LEMMA. The integral [=g}(x)ds = [z|VU.(x)|*ds is uni-
formly bounded as ¢ — 0+.

Proof. . For small ¢ > 0, the differential surface areas of the surfaces
I and I'; are related by the equation

VT, (%) dss = (e, x.)|VU(X5)| s ,

where a(e, x;) = [1/cos(0(¢, x;))] and O(e, x,) denotes the angle
between the vectors VU,(x;) and VU(xs). Since I;,T; — I as
¢ — 0+ (in the polar coordinate maximum norm relative to a point
in the interior complement of f‘) , we conclude from Lemma 3.4 that
0(e, x) — 0 and a(e, x;) — 1, both uniformly over x € f‘, as
¢ — 0+ . Therefore,

(4.7) /r VT () ds, = /f VT () IVT e (%) la(e » Xo) d5,

< /_ VT, (%) 2ale, ;) d5, < M, /_ VT, (%12 ds. ,
T y

&

where M; = sup{a(e, y): y €T:}. Both M, and the integral
/_ VT, (x)? d5,
rl

are bounded as ¢ — 0+, as follows from Lemmas 3.4 and 4.7. There-
fore, the first integral in (4.7) is uniformly bounded as ¢ — 0+, and
the assertion follows from the fact that the differential areas on the
surfaces I'; and T" are related by ds, = Q:(x) ds (see Lemma 4.4(¢)),
where (1/Q:(x)) is uniformly bounded from above as ¢ — 0+ and
x varies in I.
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4.9. LEMMA. Let f € L*(I',R*), and let E denote a family of
positive L?-functions ¢(x): I — R* such that Ilf — ol is arbitrarily
small for a suitable choice of ¢ € E (where || - | denotes the L*-
norm on I~“). Let g.(x), 0 < ¢ < &y, denote a family of functions
in LT, R) such that ||g| is uniformly bounded as ¢ — 0+ and
liminf,_,q, fF ¢g:.ds >0 for each ¢ € E. Then liminf,_,, fffgg ds
>0.

Proof. [=fgds = f[zdgds+ [(f — ¢)gds > [:dgds -
ILf — ol gl -

4.10. LeEMMA. For ¢ — 0+, we have
(4.8) frﬂxﬁ(x)[g(x) g (0))ds < L(e).

Proof. Let S denote a simply connected (m — 1)-dimensional sub-
surface of I whose boundary relative to T is a smooth, closed curve.
Given small ¢ > 0, let S; denote the (m — 1)-dimensional surface of
points x € Q such that U (x) = A¢ and such that x 1is joined to S
by a curve of steepest ascent of U. For small & > ¢, let w;,5 de-
note the set of all points x € Q such that ie < U (x) < A0 and such
that x is joined to S; by a curve of steepest ascent of U,. Also let
Ss.e = (8ws ;)NTs and g5 , = (Bws ) N {Ae < U < 10}. We have
Ug(x) < L(d(x,Te)) in Q, uniformly for small & > 0, as follows
from a domain comparison argument using the convexity of T;. Thus
[U,-U|<¢ (¢) on 8(QNQ,), and it follows by the maximum princi-
ple that [U; — U| < {(&) uniformly in QNQ, as & — 0+. Therefore,
the standard estimate for derivatives of harmonic functions shows that
[V(U, - U)| < &y(e)/d on S5.¢ > uniformly over small ¢, J > 0 with
0 > 2¢. Here, {p(¢) denotes a specific function such that {y(¢) — 0
as ¢ — 0+ (we assume w.l.o.g. that ({p(e)/e) — o0 as ¢ — 0+). We
choose & = [{o(¢)]'/? > ¢, so that fsa 2 IV(U. - U)|ds < [{o(e)]'/? as

¢ — 0+. Since VU is bounded and the vector VU, is always tangent
to the surface o; ., it follows by applying the divergence theorem to

V(U - U) in ws , that
(4.9) / (IVT,| - VT ds > / 0@, - 0)ds > L)
Se Sz 81/

as ¢ — 0+. Since the differential surface areas on the surfaces I’
and I' are related by ds, = Q.(x)ds (see Lemma 4.4(¢)), it follows
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from (4.9) that fo(g — g:Q:) ds < {(¢) as ¢ — 0+. Therefore

/S(g—gs)ds=[ggg<Qs—1)ds+fs<g—gaQe>ds

< ( / gs(x)ars)”2 ( @~y ds>1/2 () = L),

where we have used the Schwartz inequality, Lemma 4.8, and the fact
that the functions Q.(x): I' — R are uniformly bounded independent
of small ¢ > 0 and converge pointwise to unity as ¢ — 0+ (due to
Theorem 2.5(b)). The assertion now follows by applying Lemma 4.9,
since f(x)h(x): I’ — R* is a bounded, measurable function which
can be approximated in the L?-norm by piecewise constant functions
¢(x): I’ — R+, chosen such that each domain of constant ¢ is a
subsurface S with the properties assumed above.

4.11. LEMMA. We have that f=(h; — h)?ds — 0 as ¢ — O+, in
fact hy(x) — h(x) pointwise on I as ¢ — 0+.

Proof. The functions 4(x), he(x): I' - R are measurable and uni-
formly bounded independent of small ¢ > 0. Therfore, it suffices
to prove the pointwise convergence. For fixed x € I', it is easily
seen using Lemma 3.4 that |v(y) — v(x)| < {(¢) uniformly over all
y € Ce(x) and [7g(y) —v(x)| < {(¢) uniformly over all y € Cg(x)
where v(y) = VU(y)/|VU(y | and Ze(y) = VU:»)/|VU:(»)|.
follows that (x; — x) - v(x) = [(A/|VU(x)]) + {(e)]e (using Theorem
2.5(b)), (Xe—x)-v(x) = (h(x) + {(¢))e (using Theorem 3.2), and
(Xe = Xe) - v(x) = |Ce(x)|(1 + £(e)) = (he(x) + {(e))e, all as & — 0+.
The assertion follows from the definition: A(x) = (1/|VU(x)|) — h(x)
by comparing these equations.

4.12. Proof of (4.1) in the “ +” case. By Lemma 4.6, we have
(K -R)/e> /f F(x)ge(0)Fe(x) ds — AR — ¢(e)
as ¢ — 0+. Also, we have

ﬁf(geﬁe - g_ﬁ)ds = ﬁfh_(ge —g)ds +/~fgs(ﬁe _E) ds
r r r

> [ e~ pyds - ([ ds) " ([ ~Tyzas) 1/2
>

—C(S) ’
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where we have used Lemmas 4.8, 4.10, and 4.11. Therefore,
(R-R,)/e> ﬁf g()h(x) ds — AR — L&)
= [INO)PR - G/ ds = L(e)
- LIV PhG) ds - CGo),
r
completing the proof of (4.1).

4.13. REMARK. The estimate (4.3) does not apply only to mini-
mizers. It applies to any surface I' € X, having the properties as-
serted in Theorem 2.5(b). It is hoped that it could be extended in
a meaningfull way to all I € X, (see [3, Theorem 3]). This could
provide the basis for a successive approximation scheme for solutions
of Problem 2.1 (as well as the generalizations in §§6, 7) which is valid
in the absence of uniqueness (see [3, §5]).

5. Regularity of the free boundary.

5.1. THEOREM. Let I € X, be a solution of Problem 2.2 such that
A%(x) = B?(x) + a?(x) almost everywhere on T (in terms of (m —
1)-dimensional surface measure), where A(x) = |VU~| and B(x) =
|VU*|. Then in fact we have A*(x) = B*(x) + a*(x) at every point
x € T'. Moreover, the functions A(x), B(x): I’ = R* are continuous.

5.2. LEMMA. Let I solve Problem 2.2. Then the Sfunction
A(x): T — Rt is upper semicontinuous (A(xy) > lim SUpy_.x, A(x))
and the function B(x): I — R* is lower semicontinuous (B(xg) <
liminfy_,x B(x)).

Proof. We prove the second assertion. Let y denote the unique
curve of steepest ascent of the function U+ beginning at the pomt
xo € I'. Then v U *| is continuous and decreasing with increasing U+
on y,and |VU*(x)| — B(xo) as x — xo in y. Given & > 0, choose
Xe € 7 such that [VU*(x;)| > B(xy) — (¢/2). Then choose § > 0
such that [VU*| > B(xp) — ¢ in the ball Bs(x;). Let S denote the
set of all points in " which are joined to B;(x,) by curves of steepest
ascent of U*. Then B(x) > B(xy) — ¢ for all x € S. Moreover, S
contains a neighborhood of x; relative to T, as follows from Lemma
4.4(d). A similar argument applies to the first assertion. We remark
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that the preceding argument has been previously used in [4, §5, part
2], [8, §5.7], and [21, Proposition 2.3].

5.3. DerINITION. Given a solution T of Problem 2.2 and a point
xo € I', we define the blow-up functions

Uf(x):=2"U*(xp+ 2 "(x — xy)), neN,

in the blow-up domains ﬁi = {x0 +2"(x —x0): x € Qi} with
common boundary I, := {Xg+2"(x — xp): x € F} (see [16, §4]).
Observe that the differentiability of the functions U%(x) at the point
Xo € r (see Definition 2.4) is equivalent to the property that

(5.1) U (x) = £A%v(x0) - (x — X0) + 2"0(27"|x — Xo))

relative to the set ClI(QF).

5.4. LEMMA. Assume at a point xo € 1 that |VU%| = A% for
values 2* > 0. Then for any given value n > 0, we have

(5.2) j:z"/ (VTP = (3%)2) ds = + /(|w7,$|2—(,1i)2)ds<n
7

for all suﬁiczently large n € N, where 9, :={x € I: |x — xo| < 27"},
Cp={x €Ty, |x—xo| < 1}, and where U% and T, were defined in
§5.3.

Proof. We will prove the assertion in the “+ > case in detail and
then remark briefly on the proof of the “—" case. The proof is ex-
pressed in the blow-up notation of Definition 5.3. Since the entire
proof concerns a fixed solution surface I" of Problem 2.2, and is re-
stricted to “ + ” case, we 51mp11fy the notation by deleting the tilde and
the plus sign, so that U, (x), Fn ,and At become U,(x), Q,,
I',, and A. We also choose Cartesian coordinates such that x5 =0,
v(0) = (0,...,0,1), and x = (¥,2) = V15.--»Vm-1,2). Let
Q(y) denote a convex, radially symmetric, C?-function of y such
that Q(0) = -24, V,0(0) = 0, and Q(y) = 0 for |y| = 1. Our
proof is based on Green’s second identity, in the form

(5.3) / (Wnlbn — buAysn) dx

5,e,n

0 0
= [, (mgytn=tngyun) ds.
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where we define ¢, := |VU,|?> — A2, wy, := (U, + Q), and
Qs :ni={xeQ,:U,>6, z<e, U +Q <0}

for all small 6 > 0, ¢ > 0, and large n € N. For (d/¢) suffi-
ciently small, a partition of d€;s . , into disjoint surfaces is given by
895,8,,, = I“,;,,,ULe,nUZ,;,s,,, , where 1“5,,1 ={U,=9, U,+Q <0},
Len={z=¢, Uy+0<0},and %5 , , ={U, >0, z<e, Uy+0 =
0}. Now A¢, >0 and y, <0 in Q; . ,, whence y,A¢, < 0 in
Qj5.¢.n- Also, sup{|¢,(x)Ayy|: x € Qs ¢, »} < M, uniformly for all
small 6, ¢ > 0 and large n € N, because Ay, = AQ and because
&n = (|VU,|? — A?) is uniformly bounded by Theorem 2.5(b) and the
identity: VU,(x) = VU(xg+2""(x —Xg)) (where U = U+). Finally,
we have |Qs ;. ,| < O(e) + {(27") (independent of J > 0) because

' is a uniformly C!-surface, where |-| denotes Euclidean volume.
Thus
54 [ (vada— gty dx < 0e) + 1277

d,e,n

as 0,¢&— 0+ and n — oco. Also we have
0 0 _
(5.5) /L,, ,, (Wna_y¢n - (bngl;‘//n) ds ={(27"),

where for each ¢ > 0, {,(¢) denotes a function such that {,(¢) — 0
as t — 0+. This is because max{|yy|, |[Vwn|: x € L, ,} is uniformly
bounded for fixed ¢ > 0 as n — oo, while max{|¢,(x)|, |0dn(x)/0V|:
x€L;g n}— 0 as n— oo for fixed ¢ > 0, as is easily deduced from
(5.1) and maximum principles and a standard derivative estimate. We
also have

0 0 0
56 [ (vngyon—tugpwn) ds== [ dngumds =0

as d, ¢ — 0+, independent of » € N, because v, =0 on Z;5 , ,,and
because both ¢, and Vi, remain uniformly bounded in a uniform
neighborhood of I', as n — oo, while the surface area of Z; , ,
i1s bounded by O(e) (independent of § > O and large n € N) as
¢ — 04 . By substituting (5.4), (5.5), and (5.6) into (5.3), one obtains

[F (Gn V¥ — UnVebn) - v ds < O(e) + L(27),
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(with v, = VU,/|VUy,| on T ,). This is equivalent (using the defi-
nitions of ¢, and y,) to
(5.7

(VU = 22)(IVUn| + (8Q(y)/Ovn)) ds

é,n

<2 fr 16 + QIIVUn[|(8IV Unl/0vm)| ds + O(e) + L(277).

Now [0+ Q| <M and C, <|VUy| < C; on I'5 ,, both uniformly as
n—oo and J, ¢ — 0+. Also, it follows from Lemma 3.4 that

(5.8) max{|v,(x) —v(0)]: x €5 ,} < {(27") +{(9)

as n — oo and d — 0+ . Therefore max{|VQ(y)-va(x)|: x €5 »} <
{(27™)+{(J) as n — oo and & — 0+, since VQ(y) has no component
in the v(0) direction. Therefore, (5.7) implies

/ ([VU,|*> =A%) ds < C/ (182U, /0v2|/|VUy|) ds
r&,n Fﬁ,n

+(9) + O(e) + L(277).

For sufficiently large n € N and sufficiently small 6 > 0, I'5 , is the
graph of a smooth function z =I5 ,(y): G5, » — R. In terms of this
representation, we have

(5.10)  (8Un(x)/8v3)/IV Un(x)|

= Vy - (V5,2 )/[1 + V05, (0P,
where both sides represent (m — 1) times the mean curvature of
the surface I'; , at x = (¥, z) = (v, I5,,(»)) € Ts,,. By substi-
tuting (5.10) into the second integral of (5.9), estimating ds/dy =

(1+|VTs ,(»)|?)!/? by a constant, and applying the divergence theo-
rem, one obtains

1) [ (VUP-Ryds<C [ VEsa0)lds
r&,n 3Gdn

+L(0)+0(e) + L2,

where the integrand of the second integral is uniformly bounded by
£(27") + (), due to (5.8), and where ds in the second integral
refers to (m — 2)-dimensional surface area. In the limit as § — 0+,
we obtain

(5.9)

[ (v -2)ds < o) + G2,
Cll
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where C, =T, Nn{x = (y, z): |y| < 1}. This implies the assertion in
the “ + ™ case (despite the slightly different definition of C,).

Finally, for the corresponding proof in the “—” case, one again
simplifies the notation so that (7,; (x), Q,, I'y, and A~ become
Uy(x), Q,, I'y, and A. The proof again starts with Green’s second
identity (5.3), where this time ¢, = In(|VU,|/A) (notice that A¢, <0
by Lemma 2.7(d)), v, = U, + Q (here Q = Q(y) has the same
properties as before) and Q; ., , = {x € Q,: Up(x) > d, z > —¢,
U,(x)+ Q(y) > 0} . Continuing as in the “ + ” case, one can show (in
the “ —” case) that

[ wGvunds 2 —M [ (0°Ua/0031/ 19U ds
d,n r&,n

—{(8) — O(e) = Le(277),

where I's , = {x € Q,: Uy(x) =6, Un(x)+ Q(y) > 0}. Then the
assertion follows by the steps given above.

5.5. Proofof Theorem 5.1. Let T solve Problem 2.2. Then A2(x) =
B?(x)+a?*(x) almost everywhere on T, by Theorem 4.1(c). Since the
function A(x): I —» R* is upper semicontinuous and the function
B(x): [ — R* is lower semicontinuous (Lemma 5.2), it immediately
follows that A2(x) > B2(x) +a?(x) at every point x € I . Moreover,
for each point xg € I and n > 0, it follows from Theorem 4.1(c),
Lemma 5.4, and the continuity of the function a(x) that

2"(A%(x0) — B*(x0))|7n| < 2"/ (4*(x) = BX(x))ds + 21
7,

= 2"/ a?(x)ds + 2n < 2"a*(xo)| 7| + 31
¥

n

for all sufficiently large » € N, where 7, := {x € I: |x — xo| < 27"}
and || refers to Euclidean (m — 1)-area of 7,. Thus A42%(xg) —
B?(xq) < a*(xo) , and we conclude that A4*(x) = B?(x)+a?*(x) atevery

point x € I'. At this point, Lemma 5.2 implies that the functions
A(x), B(x): T — R* are both continuous.

6. A modified multi-layer problem in the convex case.

6.1. Problem. In R™, m > 2, let be given a bounded, convex,
C'-domain D* and a convex domain P C D*. For a fixed integer
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n>0,let a;(x): Ci(D*) - R, i=0,1,2,..., n,denote n+1 func-
tions with the following properties: The function ay(x) is Lipschitz-
continuous in Cl(D*), vanishes in D*\P, and is strictly positive and
concave in P (thus, the set {(x, z) € P x R: 0 < z < ap(x)} is con-
vex in R™*!). The remaining functions a;(x), i = 1,..., n, are
strictly-positive and continuous in Cl(D*), and are such that the re-
lated functions b;(x) := (1/ai(x)), i =1, ..., n, are all concave in
D* (thus, the sets {(x,z) e D*xR:0<z < bi(x)}, i=1,...,n,
are convex in R”*1), We seek a nested family of convex C!-domains
Dy, Dy, ..., D, (with boundaries I'; = 9D;) such that Cl(Dy) C P
and CI(D;) c D;j;y for i =0, ..., n (where we set D,,; = D*), and
also such that

(6.1) [VU| = ap(x) onTy,

(6.2) VU =|VUiy | +a*(x) onT;, i=1,...,n,

where U(x) solves the boundary value problem

(6.3)

AU =0 inD*\Tou---uly), UT;)=ifori=0,1,...,n+1,
and where, foreach i =1,2,...,n+ 1, U; denotes the restriction

of U to the closure of the annular domain Q; := D;\Cl(D;_;) with
boundary 0Q; =T,UTl;_;.

6.2. Problem. In the context of Problem 6.1, we seek to minimize
the functional I(v): X, — R defined by

n

(6.4) I(v) ==/ (IVo? +ad(x)H(v(x)) + Y af (x)H(i —v(x))) dx,

D i=1
where H(t) denotes the Heaviside function (H(¢) = 0 for ¢t < 0,
H(t) =1 for t > 0) and X, denotes the set of all functions v €
L!(CI(D*)) such that Vv € L*(D*), v =n+ 1 on 8D*, and, up to
a set of Lebesgue measure 0, the set {v(x) < t} is convex for each
teR.

6.3. THEOREM. Assume in Problem 6.2 that there exists a value
g > 0 and a function vy € X, such that |{vo(x) < 0}| > &y (where
| - | denotes Euclidean volume) and such that 1(v) > I(vy) for any
v € X, such that |[{v(x) < 0}| < &y. Then: (a) Problem 6.2 has at
least one continuous solution U € X, such that |{U(x) < 0}| > &.
(b) Given a continuous solution U € X. of Problem 6.2 such that
{U(x) < 0}| > &, let Dy = interior{U < 0} and D; = {U(x) < i}
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for i=1,...,n+1. Then ® := (Dy, Dy, ..., Dy) is a classical
solution of Problem 6.1.

Proof. We remark that a proof of part (a) has been given by Lau-
rence and Stredulinsky [21] (for the case where the functions a;(x)
are all constant). Turning to the proof of part (b), we let U be a
continuous solution of Problem 6.2 such that |{U(x) < 0}| > 0, and
let ® = (Dgy, Dy, ..., Dy) be defined as in Theorem 6.3. Then the
surface I’y := 0Dy C D; is a minimizer of the functional J(I') :=
K(T') + ||Q)|lo in the family of all convex, closed (m — 1)-surfaces
I' ¢ Dy, where D, is fixed and convex, where K(I') denotes the ca-
pacity of the annular domain Q(I') bounded by I'UTI';, and where
|Mllo = [),a3(x)dx for any measureable set M C CI(D*). There-
fore I'y ¢ P C D*, since otherwise it is easily seen that J(I'y 5) <
J(I'p) for sufficiently small 6 > 0, where we define Dy ; = {x €
PN Dy: dist(x,0P) > 6} and I'y s = 0Dy 5. It now follows from
the results in [3], [16, §5], or [8, §§4, 5] that the condition (6.1) is
satisfied classically on I'y. For i =1, 2, ..., n, the surface I'; is a
solution of Problem 2.2 in the case where I'" =1";,_;, I'* =T,, and
a(x) = a;(x). Since I';NT~ = @, we conclude from Theorem 2.6 (see
also Theorems 4.1 and 5.1) that I'; is a classical solution of Problem
2.1 in the new notation. Therefore I'; satisfies the joining condition
(6.2) in the classical sense for each i = 1,..., n, completing the
proof of Theorem 6.3(b).

7. The multi-layer problem in the convex case.

7.1. Problem. In R™, m > 2, let an annular domain Q of the
form Q = D*\CI(D~) be given, where D* are fixed, bounded, con-
vex, nested domains. We assume that 9D~ is a C? surface and 8D*
is a C! surface. Let be given n € N and the strictly positive, con-

tinuous functions a;(x): CI(D*) - R, i = 1,2,...,n, such that
the related functions b;(x) := (1/a;(x)) are all concave in Dt. We
seek a nested family of convex Cl!-domains D, D,, ..., D, (with
boundaries I'; = dD;) such that CI(D;) C D;y; for i =1,...,n,
(where we set Dy = D~ and D,,; = D*) and such that

(7.1) IVUi|> = [VUj|* + af(x) onT;

for i=1,...,n,where U(x) solves the boundary value problem
(7.2)

AU=0 inQ\(TyuU---UT,), UT)=i fori=0,1,...,n+1,
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and where, for each i, U; denotes the restriction of U to the closure
of the annular domain Q; := D;\Cl(D;_;) with boundary 9Q; =
Iulh_;.

7.2. THEOREM. Problem 7.1 has at least one solution D = (D,
D2 9 sy Dn) .

7.3. LEMMA. Given xg € R™ and a = (ag, @1, ..., Qn, Qpyy)
with 0 < ag < a; < -+ < ap < apyy, let U(xg, a; X) denote the
solution of the boundary value problem (7.2) in the case where D; =
{lx=x| <a;j} for i=0,1,...,n,n+1. If m=2 and a; =
Cexp(i®) for i = 0,...,n+ 1, where C > 0, then U(xg, a; X)
satisfies the joining conditions (7.1) in the case where the functions
a}(x) are replaced by the constants A? := 8i/C*(4i* — 1)exp(2i?),
i=1, ..., n. Alternately, assume that m > 3 and

a}™™ = Clexp(n +2) —exp(i)] fori=0,...,n+1,
where C > 0. Then U(xy, a; x) satisfies (7.1) in the case where the
functions a}(x), i =1, ..., n, are replaced by the constants (where
e =exp(l)):
A7 = (m = 2)*[(e + 1)/ (e — 1)]exp(—2i)C*/("=2)
. [exp(n + 2) — exp(i)]@m-2/(m=2)

Proof sketch. For m = 2, we have
Ui(x) = (i = 1) + [In(r/a;—1)/In(e;/ 0tj—1)]
in Q;, where r =|x — xp|. For m > 3,
Ui(x) = (i = 1) +[(r*™™ = al2") (aF ™ — a2 {)]

in Q;. Using these formulas, the constants 1,2 can be calculated
explicitly.

7.4. LEMMA. (a) In the context of Problem 7.1, there exist con-
stants &, ¢ > 0 with the following property: Let Dy denote any convex
domain in R™ such that Dy c Ns(D~) and D~ C Ns(Dy), and let
D= (131 , Dy, ..., 13,,) denote any classical solution of Problem 7.1 in
the case where Dy is replaced by Dy. Then Dy > N,(Dy).

(b) For any classical solution D = (Dy, D,, ..., D,) of Problem
7.1, we have 0 < ) < 6, < -+ < Oyy1, where 6; = dist(I';_1, I'y).

Proof (part (a)). We apply Lemma 7.3 to construct barriers for so-
lutions of Problem 7.1. By assumption, if p > 0 is sufficiently small
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(i.e. 0 < p < po), then each point x € I'~ is on the boundary of a ball
B,(x,), with center x, and radius p, such that B,(x,) C D~. For
fixed m > 2 and for fixed, sufficiently small # > 0, one can choose the
constant C = C(p) in Lemma 7.3 such that 0 < ag = ap(p) < (1-7)p
and o; = a;(p) > (1+7)p. One can then choose p > 0 so small that
an1(p) < dist(T—, IT'*) and A? = 22(p) > a?(x) throughout Cl(D*)
foreach i = 1,...,n. Now, let § = ¢ = pn/2 in the assertion.
Then for each x € I'", it follows from [11, §2], that the function
U(x,, a(p); x) is an upper barrier for the solution U(x) of (7.2)
corresponding to D= (131 , Dy, ..., ﬁ,,), so that B(j,),(xp) C D,.
The assertion follows from this.

Proof (Part (b)). Choose i € {1, ..., n} and collinear points x €
Iy, y €eIi, z € T4 such that |y — z| = J;;;. One easily
shows using the maximum principle, the convexity of the domains
D;_y, D;, D;,,, and the joining condition (7.1) that

Oiy1 2 (1/|VUi 1)) 2 (1/IVU D)) 2 |x = y| 2 9.

7.5. Proof of Theorem 17.2. For each k € N, let the function
ap k(x): R™ — R be defined by

(7.3) ag, x(x) = max{0, k — k% . dist(x, D7)}.

Observe that for each k € N, the function agj x(x) is concave inside
the (1/k)-neighborhood of D~ (designated by P;) and vanishes in
R™\ P, . For each sufficiently large k € N, let U,(x): CI(D*) - R
and Dy := (Dg k, Dy k, ..., Dy i) denote corresponding solutions
of Problems 6.2 and 6.1, respectively, in the case where D* = D%,
P = P, and the function ay(x): CI(D*) — R is replaced by ag (x).
These solutions exist for all sufficiently large k € N (i.e. for k > kg)
by Theorem 6.3. Moreover, I;(U;) > k?|D~\Dy ;| for each k > kg,
where |-| denotes Euclidean volume and the functional I;: X, — R
is defined by (6.4) (with ag(x) replaced by ag x(x)). Now there
is a function ¢ € X, (in Problem 6.2) such that I;(¢) is uniformly
bounded as k£ — oo. Thus I;(U,) remains bounded as kK — oo (since
Ii(Uy) < Ix(¢)), implying that |[D~\Dy x| — 0 as k — oo. One eas-
ily concludes (using the convexity of Dy ; and the smoothness of
I'") that for any ¢ > 0, Dy , contains the é-interior of D~ for all
sufficiently large k € N. We also have Dy ; C P, for k > ky by
Theorem 6.3 (and the definition of a solution of Problem 6.1). There-
fore I'y » =T~ as k — oo (in the polar coordinate maximum norm
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relative to a point xg € D™), where I'y y = 0Dy ;. By Lemma 7.4,
there exists a constant dp > 0 so small that dist(I'; x, I'ii; &) = do,
uniformly for i =0, 1, ..., n and for all sufficiently large k (where
I'yi1, x =T"). Moreover, the convexity of the surfaces I'; ; (for i =
1,...,nand k > ky) implies the equicontinuity of their polar coordi-
nate representations relative to a point xo € D~ (see [3, §2] for a sim-
ilar argument). By applying the theorem of Ascoli-Arzela, and passing
to a subsequence (still indexed by k) if necessary, we conclude that
there exists a nested family of convex domains D;, D,, ..., D, (with
boundaries I'; = dD;) such that CI(D;) ¢ D;;; for i=0,1,...,n,
(where we set Dy = D~ and D,,; = D) and such that I'; , — T
as k — oo (in the maximum norm in polar coordinates) for each
i=0,...,n. Nowforeach i=1,...,n,andfor k> ky, I'; x isa
solution of Problem 2.2 in the case where I'™ =T7;_; 4, I'" =T, &,
and a(x) = a;(x). However, it is well known that the capacity of
an annular domain between nested convex surfaces depends continu-
ously on these surfaces as they undergo convex perturbations (while
remaining uniformly separated). By using this, and the convergence
of the surfaces I'; , to I'; as k — oo, one easily concludes that for
each i=1,...,n, I'; is a solution of Problem 2.2 in the case where
I'r=TI,_,, " =T}, and a(x) = a;(x). Therefore, I'; solves Prob-
lem 2.1 in the same case, due to Theorem 2.6 (see also Theorems 4.1
and 5.1). Therefore, D := (D, D,, ..., Dy) is a solution of Problem
7.1.

7.6. REMARK. Some of the ideas in the preceding proof suffice to
extend the author’s counterexample in [10] to Problem 1.2. Assume
for m=2, n=1, A(x) = —a? < 0, and for a particular choice of
convex nested domains D , that Problem 1.1 does not have a convex
classical solution D; (we know this situation occurs due to [10]). For
large k € N, the functional I;(#): X, — R has a convex minimizer
U, € X, where

@)= [ V6P +a3 ((0)H(@)+a?H (6 - D] dx,

the function ap ,(x) is defined by (7.3), and X, is as defined in
Problem 6.2, with n = 1 and D* = D*. We assume that D, =
(D 0> Dk 1) solves Problem 1.2 with m = 2, n = 1, ap(x) =
ap k(x), Ai(x) = —a?, and the same domain D* = D*. (Here
Dy o = int{Uy < 0} and Dy ; = {Uy < 1}.) After passing to a
sub-sequence (still indexed by k), one concludes by arguments given
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in §7.5 that Dy | — D; as kK — oo (in the sense that 9Dy | — D,
in a suitable polar coordinate maximum norm), where D; is a convex
solution of Problem 1.1 in the case described above. This contradic-
tion shows that even under convex conditions, the minimizer of the
functional I(¢): X, — R is not always a (convex) classical solution
of the corresponding formulation of Problem 1.2.

7.7. REMARKS. (a) Hopefully, Theorems 6.3 and 7.2 will general-
ize to cases where the Laplacian is replaced by more general elliptic op-
erators in divergence form (such as the p-Laplacian) for which results
analogous to Lemma 2.7(a) are true. (b) If, in Problem 7.1, the regions

D* and the functions a;(x), i=1, 2, ..., n, are all symmetric rela-
tive to each member of a given family of (m — 1)-dimensional planes,
then there exists a solution D = (Dy, D,, ..., D,) such that all the

(convex) domains D; have the same symmetry properties. (Observe
that the operators 7, preserve these symmetries.)

7.8. REMARKS. (a) Consider the modified version of Problem 2.1
in which a(x) = a (a constant), and the given domains D* are no
longer convex, but are assumed to be directionally convex relative
to a given direction v . It is natural to conjecture that there exists a
solution D of (2.1) such that D is also directionally convex relative to
vp . In fact this conjecture is false, as can be seen by slightly modifying
the author’s counterexample given in [7, Example 2 and Figure 2]. (b)
Consider the Bernoulli free-boundary problem, which is Problem 2.1
in the limiting case where Dt =R”™ and U* =0 (we set D* =D,
Q=Q7, U=U", K=K7). Assume that a(x) =1 and that D" is
directionally convex relative to vy. Let I' denote a minimizer of the
functional I(I') = K(I') + ||Q(T")|| subject to the requirement that the
interior complement of I' be directionally convex relative to vy. We
conjecture that [VU| =1 on I'. Observe that the operator method
(which was applied to the convex Bernoulli free-boundary problem in
[3], [4], [8]) is not helpful in this problem because the operators do
not preserve direction convexity (due to [7, Example 2]). In [6], the
author used the method of flat places to prove our conjecture in the
case where m = 2 and the minimizer is sufficiently regular (in [6,
Figure 2], the regions labeled Q, and Q' should be interchanged).
We hope this proof will generalize to arbitrary space dimensions.

Appendix: The Proof of Lemma 4.4. We restrlct _the proof of the
“+~” case and use U, Q and T to denote U+, QF and I'. Part
(b) follows easily from Theorem 2.5(b), Lemma 2.7(b) and Lemma
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3.4. Concerning Part (a), let (x,) denote a sequence of points in
Q such that x, — xo € I' as n — oo. For each n, let y, denote
the maximal arc of steepest ascent of U through Xx,, parametrized
by a function p,(¢): [0, 1] — R™ such that U(p,(¢t)) = ¢t. Then
Dn(tn) = x, and p,(¢) = V(pa(t)) for 0 <t < 1, where t, = U(xy)
and V(x) = VU(x)/|VU(x)|?. Since |p,(¢)| < (1/Cy) for 0 <t < 1
(by Theorem 2.5(b)), we conclude by passing to a subsequence, again
indexed by n € N, (and using the Theorem of Ascoli-Arzela) that
Dpn(t) — p(t) uniformly in [0, 1], where the function p(¢): [0, 1] —
R™ is Lipschitz-continuous. Clearly U(p(?)) = lim,_o U(pn(?)) = ¢
for 0 <t < 1. It follows from pu(f) — pa(s) = [] V(pn(t))d7 that
p(t)-p(s) = [/ V(p(x))dr forall 0< s, t < 1,sothat p'(¢) = V(p(¢))
for 0 <t < 1. Also |p(0) — xo| < |P(0) — p(tn)| + |P(th) — x0| — O
as n — oo. Therefore, p(¢): [0, 1] — R™ parametrizes a curve y of
steepest ascent of U beginning at xy. Turning the proof of Part (c),
let g(¢): [0, 1] — R™ denote the parametrization of a second curve of
steepest ascent of U beginning at x, (we assume that U(q(?)) =1¢).
Observe that V(p(z)) — V(x) as t — 0+, due to Part (b). It follows
that p'(t) = V(xp) + {(¢) and p(¢) = xo + V(xo)t + t{(¢), both as
t — 0+. Since q(t) = xo + V(xp)t + t{(¢) as t — 0+ by the same
argument, we conclude that d(¢) := |p(¢) — q(¢)| = t{(¢t) as t — 0+.
For 0 <t < 1, we let y, denote the shortest curve in {U(x) = ¢}
joining p(¢) to q(t), observing that |y;| < d(¢)(1 + {(¢)) as t — O+,
where |y;| refers to arc length. For any point x € y; and unit vector
7 1 VU(x), we have dV(x)/0t = (V —208/0v)(0U(x)/d1), where
v =VU(x)/|IVU(x)|. Since A(dU/87) =0 in Q (for fixed 7) and
|0U/07| < {(t) in the ball By, (x) (for suitable 0 < u < 1) by Lemma
3.4, we conclude that |0V (x)/d7| < {(t)/t for any x € y,. Therefore,
') <IP'@O)—4' (O =1V @®)-V(g@) < (£(2)/1)o(z) for 0< <1,
which integrates to give In(d(¢)/d(a)) < {(H)In(t/a) for O < a <t <
1. By combining results, we conclude that

8(t) < (t/a)*D6(a) < (t/a) PDal(a)

for 0 < a<t< 1. Choose ty > 0 sufficiently small, so that {(¢) <1
for 0 < t < ty in the above inequality. By letting a — 0+ for
each fixed 0 < ¢ < ¢¢, we conclude that 6(¢) = 0 for 0 <t < ¢ty
(thus d(¢) =0 for 0 <t <1, since p(¢) and g(¢) satisfy the same
ordinary differential equation: p’(¢) = V(p(¢)) for 0 <t < 1). Con-
cerning Part (d), if the assertion is false, then there exists a value
& > 0 and a sequence of points (x,) in I" such that x, — xo as
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n — oo, but |p,(t,) — p(ty)| > & for all n € N, where 0 < ¢, < 1
and where p,(#): [0, 1] — R™ is the parametrization of the curve of
steepest ascent of U beginning at x, (such that U(p,(¢)) = ¢). By
passing to a subsequence (again indexed by n) and repeating the pro-
cedure in the proof of Part (a), one easily concludes that p,(¢) — q(¢)
uniformly in [0, 1], where the function ¢(¢): [0, 1] — R™ (satisfy-
ing U(q(¢)) = t) parametrizes an arc of steepest ascent of U be-
ginning at xy which is distinct from y := {p(¢): 0 < ¢ < 1}. Con-
cerning Part (e), the function y = m.(x) is the inverse of a one-
to-one, continuous function (by Parts (c) and (d)), and is therefore
continuous. To prove the integral identity, it suffices to show that
J(g) := fSa VU (x)|dse = J := [(|VU(x)|ds for 0 < & < 1, where
S c T is the graph of a smooth mapping z = I'(y) of a closed C!-
domain F c R™"! into R, and where S; C I'; is chosen such that
n:(Se) = S. An application of the divergence theorem shows that J(¢)
is a constant for 0 < ¢ < 1. Let f(e) = fg [VU(x)|ds for sufficiently

small ¢ > 0. Here, §8 is the graph of the function z =T1,(y): F = R,
which is a smooth local representation of I'; in the previously used
coordinates. Then J(g) = J(¢) + {(¢) as & — 0+, as follows from
Lemma 3.4 and the boundedness of |VU|. However, the Lebesgue

dominated convergence theorem implies that
T = [(1+1%T0)D) VUG, To)dy 1

- /F (1+ |V, L)) VU, TO))|dy,

because the integrands are uniformly bounded (independent of small
¢ > 0) and because the left integrand converges pointwise to the right
integrand as ¢ — 0+, by Theorem 2.5(b). It follows that J(¢) = J for
all 0 <& < 1. At this point, the integral identity in Part (e) follows
by approximating the function ¢(x): I’ — R by suitable piecewise
constant functions.
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