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VALUE DISTRIBUTION OF THE GAUSS MAP
AND THE TOTAL CURVATURE

OF COMPLETE MINIMAL SURFACE IN Rm

XlAOKANG M O

The aim of this paper is to prove the following

THEOREM. Let S be a complete non-degenerate minimal surface
in Rm such that its generalized Gauss map f intersects only a finite
number of times the hyperplanes A\, . . . , Aq in CPm~ι in general
position. If q > m(m + l )/2, then S must have finite total curvature.

1. Introduction. The study of the value distribution property of
Gauss map of minimal surface began with a series of papers by
Osserman [ 9 ]? [11] and the results can be summarized in the following

THEOREM (R. Osserman). Let S be a complete minimal surface in
R3. Then

S has infinite total curvature <=> the Gauss map of S takes on
all directions infinitely often with the exception of at most a set of
logarithmic capacity zero\

S has finite non-zero total curvature <& the Gauss map of S takes on
all directions a finite number of times, omitting at most three directions0,

S has zero total curvature <& S is a plane.

For a long time, the above theorem had been the best result on this
direction. But all the known examples indicated that the exceptional
set of logarithmic capacity should be a finite set. In 1981, Xavier
made a surprising breakthrough by proving the following result, using
a result of Yau about a differential equation on complete Riemannian
manifold.

THEOREM (F. Xavier [13]). Let S be a complete minimal surface in
R? . Then its Gauss map can omit at most six directions unless it is a
plane.

In 1988, Fujimoto finally found a way to arrive at the best possible
number 4.
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THEOREM (H. Fujimoto [4]). Let S be a complete minimal surface
in R?. Then its Gauss map can omit at most 4 directions unless it is
a plane.

A combination of Osserman's early study and Fujimoto's above
work gives the following

THEOREM (X. Mo andR. Osserman [8]). Let S be a complete min-
imal surface in R3 with infinite total curvature. Then its Gauss map
must take every direction infinitely often except at most 4 directions.

For a surface in Rm there is the following

THEOREM (H. Fujimoto [5]). Let S be a complete minimal surface
in Rm with nondegenerate Gauss map. Then the image of S under the
Gauss map cannot fail to intersect more than m(m + l)/2 hyperplanes
in general position in CPm~ι.

And the result of this paper mentioned at the beginning of this
section is the infinite covering property corresponding to the above
theorem.

An oriented minimal surface S in Rm may be described by a con-
formal immersion

X: M-+Rm, X = (xl9...,xm),

where M is a Riemann surface and each xk is a harmonic function
on M.

By definition, the generalized Gauss map of S is the map that as-
signs to each point of S the tangent plane of S at that point. Because
the tangent space of Rm at every point is naturally identified with Rm

itself, the range of the Gauss map is the Grassmannian manifold con-
sisting of all the oriented 2-subspaces of Rm . We can further identify
the 2-plane spanned by the orthonormal basis X, Y with the line in
Cm generated by (X - iY)/2. So the range of the Gauss map can be
thought of as Pm-ι(C).

Let z = u + iv be a holomorphic local coordinate of M. Denote

dx _ 1 (dx\ ,dxχ dXm _ .dxm

) '

by F = (/o, . . . , f n ) , where n = m - 1 / = (/0 : fx : : fn)
is the point in CPn represented by (fo, . . . , fn) in Cm . Then the
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holomorphic map / represents the Gauss map, and the metric on M
as a minimal surface is

ds2 = 2\F(z)\2\dz\2,

where | F | 2 = |/ 0 | 2 + . + |/«|2.
In this way, we turn the problem of the Gauss map partly into a

problem on holomorphic curves. The value distribution property of
the holomorphic curve may lead to corresponding results about the
Gauss map.

In §2 we will summarize some of the basic ideas and notation of
holomorphic curves. We will also introduce an important construction
of Cowen and Griffiths [2] on holomorphic curves in CPn which was
the basis of their remarkable proof of Ahlfors' defect relation. In §3
we will present the proof of Fujimoto's inequality in such a way that
will clarify the relation between Cowen and Griffiths' construction and
Fujimoto's. Fujimoto's inequality is the key to both the proof of his
theorem mentioned above and the proof of our result. In §4, we will
give the proof of our result.

2. Some properties of holomorphic curves. Value distribution prop-
erties of holomorphic curves have been studied since the end of the
19th century. The central problem was to generalize the Picard the-
orem and the Nevanlinna defect relation for entire functions to the
case of holomorphic curves. This was finally achieved in 1941 by L.
Ahlfors, overcoming great technical difficulties.

In 1976, M. Cowen and P. Griffiths [2] gave a much simpler proof of
Ahlfors' result using what they called a "negatively curved collection
of metrics". Using their result, H. Fujimoto [5] was able to construct
a single metric of negative curvature under certain conditions. Then
by the Schwarz-Pick lemma, he derived an inequality which is the key
to the study of the value distribution property of the Gauss map of
minimal surface. In this section, we will give an outline of Cowen and
Griffiths' result.

Let AR = {z\\z\ < R} be a disk in the complex plane, / : AR —•
Pn(C) be a holomorphic curve derived from a holomorphic map
F: AR —• C w + 1 through homogeneous coordinates. F(z) — (fo(z),...,
fn{z)), fo, ... , fn are holomorphic functions on Δ^ . We write / =
(/o : : fn) and define \F\ = (Σ"=1 \fi\2)ι/2 for our purposes, we
assume that \F\ Φ 0.

Take the /-th derivative:
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Define Fk = F^AF^A- ΆF^: A R -> Λ*+1 Ck+ι c G(n, k), where
G(Λ , A:) is the Grassmannian manifold. By the Pliicker embedding
G(n9k) c PN(C), N = (»+|) - 1, F* induces a map /*: AR -
PN(C), called the kth derived curve of / .

We can define |F^| in a natural way. Let eo, . . . , en be the standard
basis of C" + 1 ,

and we define

- Σ Pi-i

Now the Fubini-Study metrics on Pn and P^ naturally induce met-
rics on Δ# by pulling back:

Ω o = ddc\o%\F0\
x'2 = ddclog\F\2,

Ωk = ddclog\Fk\\ fc=l,...,π,

where dc = (\f-ϊ/4π)(d - d). Because Fn is just a holomorphic
function, Ωw = 0. We also set |F_i| = 1 for convenience, so Ω_i =
0.

The metrics Ω^ will be used later to construct the negatively curved
collection of metrics.

Let a = ( α 0 , . . . , an) € C + 1 , \a\ = (ΣU \aι\2Ϋ'2 = 1 Then

+ ••• + anwn = 0

defines a hyperplane, Λ in both Cn+ι and Pn; and

F(A) = αo/o + + α«/«

measures the distance from F(z) to A in a similar way

measures how far JF̂  is from ^4. Here Fj. = sign(σ)iΓ

7o...7fc, σ is
the permutation

ϊ i ί
σ = 7o
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In fact \Fk(A)(z0)\ = 0 means F(z0), FW(z0), ... , F^k\z0) all lie
in the hyperplane

aowo + '- + anwn = 0.

The corresponding quantities for the holomorphic curve / in Pn are

\2 \Fk{A)\2

k
and if ΦJC(A)(ZQ) = 0, the curve / is said to have contact of order
k + 1 with A at z 0 .

Now if the holomorphic curve / : AR —> Pn omits a certain number
of hyperplanes A\, A2 , . . . , Aq, we want to construct a metric or a
collection of metrics that is negatively curved.

If n = 1, A\, . . . , Aq are points on P 1 , we can just pull back the
Poincare metric of Pι - {A\, . . . , Aq]. To be more explicit, let us
take a local coordinate ζ of Pι around a neighborhood of A\ (or
any other Aj, i = 1, . . . , q), with ζ = 0 at yί1. Then the Poincare
metric is asymptotically

|C|2log2(l/|C|2)

around the point A\. Cowen and Griffiths [2] found a way to general-
ize this construction to the case when n > 2. In that case, it becomes
necessary to consider not only / but all of its derived curves f^ . The
quantity \ζ\2 for A\ will be replaced by Φk(A\) as defined above.

Let ω = (\f^\/2n)h(z) dz l\d~z be a metric. Then the Ricci form
is defined by Ricω = ddc logh(z), and Ricω > ω is equivalent to
the fact that the curvature of ω is less than -1.

Let A\, . . . , Aq be hyperplanes in general position in Pn and q >
n + 2. For i = 0, . . . , n - 1, following the indication of the Poincare
metric, define

ω, =

Cowen and Griffiths [2] proved the following

PROPOSITION. Given ε > 0, for a suitable choice of constants c,,
and μ, we have

n-\ n-\ /n-\ \

,- >(q-(n+ 1))ΩO + ^ ω, - ε Π Γ Ω, .
ι=0 \ί=0 /
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Aside from the term with the e, this inequality illustrates what
is meant by saying that the collection of metrics {ωz} is negatively
curved. Based on this, Fujimoto constructed a single metric with neg-
ative curvature under some additional assumptions. The next section
will give a detailed presentation of Fujimoto's construction.

3. Fujimoto's inequality. This section will be centered around cur-
vature computations. For this purpose, a few lemmas from [2] are
collected here for convenience.

We have defined Ω^ = ddc log \Fk\
2 ,

LEMMA 1.

* = ^ | Γ t - i l f f i * ' | 2 ' * Λ ' »
LEMMA 2. Define

hk =

then
Ric Ωfc = ddc log hk =

In the process of computation, we will use these two lemmas when-
ever necessary without referring to them explicitly.

To help understanding, we give here an outline of the idea of the
proof of this section. The motivation is to construct a single metric
of negative curvature out of a collection of negatively curved metrics.

Let ω, = (>/=T/2π)Ai(z) dz Ad~z, and suppose

^ ; >

Then

Σ Σ i d z Adlz,

ddc log (Jl Λ/) > Qζ h) dzAdz>n{j[ Λ, )1 7" dz A dz,

ddclog

so ω = (Y[hi)χlndz Ad~z satisfies Ricω > ω and ω is the desired
metric. In our situation, there are two other factors that complicate
the proof. One is that in the proposition of the last section, the collec-
tion of metrics is not strictly negatively curved; the term with e will
cause some complications. The other factor is that there are many
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computations and cancellations due to the special form of metrics
that we have. Let us start with the inequality

n-\ n-\ (n-\ \

Σ{n - ORicω,- >(q-(n+ 1))ΩO + £ > ; - ε Π Γ Ω φ
ι=0 ι=0 \i=0 /

where

We want to compute each term of the inequality explicitly.

Step 1.

^2(n - i)Riccθi
i=0

n-\ q

x - ϊ)dd c

n-\

φl+ι(Av)

+ ̂ (
1=0

= ddc f ί ^ 4 ^ (» + 1 )Ω0

^ΦoiA^UiWiμ/ΦiiAu))

but φo(Av) = 1, φo(Av) = IF^^p/l^l2, so

(n - i)Riccύi = ί/</clog ΓΓ

= ύ?ί/c log
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Step 2.

n-l n-\ q ( J, ( A \ \ 1{n~l)

= j 2 Ci

where Ω, = hidz l\dcz. Using the inequality

with di = n- i, Σ"=d <*i = n(n + l)/2, we have

π

Ji \\F(AV)\2Π =i

- 1

but | F 0 | = \F\, so

. > c

Step 3.

β ( £ Ω / ) =ε"γ/ddclog|Ffc|
2 = ^ l o g | ^

\/=i / «=i

{q-(n + 1))ΩQ = («-(« 2

ί c r

|2e
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Step 4. Combining the results of Steps 1, 2, 3, we have

ddc log —

>C\ ^ = = dzΛdcz.

Setting G = Π L i ( ^ ( ^ ) l 2 Ut! W{μ/Φi{Av))), we have

dzΛdcz.
G2

Step 5. Notice that F« is a holomorphic function, so ddclog\F\ =
0; also log|.F|2 is subharmonic, so c/c/c log I/7!2, the — 4ε in the ex-
ponent is necessary and we will see the reason in the arguments later.
With η = (\F\2^-("+^\Fn\

2)/G2 , we have

eddc \og | F 0 | 2 \Fn.x | 2 + ddc\o% —^- > Cη2^n+ι^ dz Λ dcz.

Step 6. Let Pn = n(n + l)/2, Qn = J%=i pk • Then

Pnddc\og\FQ\2---\Fn^\2

SO

1^01 "+
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Step 7. Add up the results of Steps 5 and 6, replace the ε (which is
arbitrary) with e/2 and notice that ddclog\Fn\

2 = 0, we have

εddc log |F 0 | 2 \Fn\
2 + ddc log j ^ -

2 Pn

using aιxι+a2x2 > {ai+aj^x^xl2)11^^ with aχ=Pn, α2 = εQn ,
we have

\Fn\2 2 ε / I F λ l 2 ε \FJ2ε

\FJ2εn\

Set

h_{\Fof*...\Fnf*η

then

_(\
- \

ddch>C2hdzΛdcz,

so Λrfz Λ dc < is the desired metric.

Step 8. By the Schwarz-Pick lemma, we have a constant C3 such
that

where ^ 2dzAdcz is the Poincare metric of the disk {z| |z | < i?}

Writing out everything explicitly, we have

ΠLi Π7-1

Step 9. We would like to get rid of the log terms. Knowing that

K = sup x ε / 2 ^log^ < +00 for μ > 1,

we have

\og{μlφk{Av))-K™^v> K \Fk\Φ '

substituting this into the result of Step 8, we have

PROPOSITION {Fujimoto's inequality [5]). Let ΔR = {z\ \z\ < R} be
a disk in the complex plane, f:AR-+ CPn be a holomorphic curve
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derived from a holomorphic map F: AR -> Cn+λ, using the notations
introduced in the previous section, we have the following statement For
any ε > 0, there is a C > 0, such that

^ 2R P ^

4. Minimal surfaces in Rm. We assume that all surfaces are ori-
entable, since analogous theorems for non-orientable surfaces are eas-
ily formulated by taking the two sheeted orientable covering surface
and applying the theorem to it. Following the notation of the previous
section, we will prove the following

THEOREM. Let S be a complete non-degenerate minimal surface
in Rm such that the Gauss map f = (fo: : fn) {here n = m = 1)
intersects only a finite number of times the hyperplanes A\, . . . , Aq (in
CPn) in general position. If q> m(m + l)/2 = (n + 1) + n(n + l)/2,
then S must have finite total curvature.

REMARK. If S is a generalized minimal surface with a finite num-
ber of branch points, all the arguments of our proof will not be af-
fected. So the theorem is also true for the somewhat more general
class of surfaces. This also applies to the similar theorem for surfaces
in i?3 by Mo and Osserman [8].

It was already observed by Osserman (see R. Osserman, A survey of
minimal surfaces, second edition, 1986, p. 73) that his classic results
on the value distribution of Gauss map is true for simply connected
surfaces with a finite number of branch points. An observation of
Ahlfors implies that they are still true if a certain condition on the
distribution of the branching points is satisfied. But there exist com-
plete generalized minimal surfaces in i? 3 , not lying in a plane, whose
Gauss map lies in an arbitrarily small neighborhood on the sphere.
So the results are not true for arbitrary generalized minimal surfaces.
The method of our proof is similar to the method of [8].

Proof Step 1. Since / is non-degenerate, none of the Fk(Av) van-
ishes identically, where i/ = l,...9q9k = 09...,n. Let A be given
by the equations

a^zo + -' + a^Zn = 0,

Fjc= y ^ Fi ...| β\ Λ Λ £| ,
κ ' <* l0 lk Ό lk '
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^...Λ = sign(;° MF io..,t,
0 k \Jθ'"JkJ ° k

then for each pair {y, k), there is i\, . . . , i^ such that

Ψvk = Σ ZvlFl

does not vanish identically. Apparently ψV(j = ^(A/), ẑ/« = Fn.
Every ^ is holomorphic, so they have only isolated zeros.

Step 2. The hypothesis of the theorem implies that outside of a
compact set D in S, f does not intersect any of the A\, . . . , Aq

therefore i 7 ^ ) Φ 0. Let

5' = {p € SVD: y ^ ^ 0 for any (y, k)}.

On S' we define a new metric

where

the last inequality is equivalent to sp*/q > 1.
Here the definition of ds2 would be valid if 5" has a global coor-

dinate z. Take a hyperplane A (out of A\, . . . , Aq). Then on 5",
/ does not intersect A, namely

this means that if ξ = aoX\(z) H h amxm(z) is a global coordinate
on S', call it z, then ds 2 is well defined.

Step 3. Since F(AV), -Frt and ^ ^ are all holomorphic, the metric
ds2 is flat, and it can be smoothly extended over D. We thus obtain
a metric, still call it ds2 , on

S" = S'UD

that is flat outside the compact set D. The key to our proof is showing
that S" is complete in that metric.
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Step 4. We proceed by contradiction. If S" is not complete, then
there is a divergent curve γ(t) on S" with finite length. By removing
an initial segment, if necessary, we may assume that there is a posi-
tive distance d between the curve γ and the compact set D. Thus
γ: [0, 1) —• S", and since γ is divergent on S", with finite length, it
follows that from the point of view of S, either γ(t) tends to a point
z 0 where

or else γ(t) tends to the boundary of S as t —• 1. But the former
case cannot occur, because if

v,k

then by the fact that εp*/q > 1 (here q is the number of hyperplanes)
we have

\ds\ ~ -jr-dz
\z-zQ\δo

around ZQ where c > 0, ^o > 1 Thus

ds = oo,

contradicting the finite length of γ.

Step 5. We conclude that γ(t) must tend to the boundary of S when
t -» 1. Choose fo such that

that is, the length of γ([to, 1)) is less than d/3. Consider a small disk
Δ with center y(ίo). Since ofs2 is flat, Δ is isometric to an ordinary
disk in the plane. Let G be an isometry of \w\ < η onto Δ with
G(0) = γ(to). Extend G, as a local isometry into S', to the largest
disk possible, say \w\ < R. (Note that G may be viewed simply as
the exponential map to S" at y(ίo).) I*1 v * e w °f // ^ < f ? and the
fact that γ is a divergent curve on S, we have R < d/3. Hence the
image under G must be bounded away from D by a distance of at
least 2d/3. Thus, the reason that the map G cannot be extended to a
larger disk must be that the image goes to the boundary of S". Since
the zeros of |.F«|1+ε Πi/,jfc \Ψvk\ε^q have been shown to be infinitely
far away in the metric, the image must actually go to the boundary
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of S. More specifically, there must be a point WQ with \wo\ = r,
such that the image under G of the line segment from 0 to w0 is a
divergent curve Γ o n S . Our goal is to show that Γ has finite length
in the original metric ds2 on S, contradicting the completeness of
the original surface.

Step 6. We know that

\dw\ = \ds\ = \dz\

Instead of z, we change to the coordinate w for the right-hand side
of the above expression. Precisely speaking, we let

~F(w) = (fQ(w)9 ... , f n ( w ) ) = (fo(z(w))9 ... , f n ( z ( w ) ) ) = F(z(w))9

and let ψ^iw) be defined from 7{z) in the same way the
defined from F(z). Then a little computation shows that

dw
~dϊ

was

d w i+*V.+«β.)

by

we have

dw
~dz~

Step 7. We now denote by C the line segment from 0 to WQ , and
by Γ, the image of C on 5 . Then for the length L of Γ, we have

= 2 f \F(z(w))\\dz(w)\
Jc

= 2 / |F(tι;)|
Jc

dz_
dw

\dw\

ΠLi
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By the definition of ψuk , {ψ^l < \Fk{Av)\, and using the proposition
of the previous section, the Fujimoto inequality, we have

Because 0 < (Pn + QnZ)l{q - {n + 1) - Qn+\&) < 1, L is finite.

Step 8. To sum up, we have shown that if the surface S" were
not complete, then we could find a divergent curve on S with finite
length in the original metric, so that S would not be complete. We
therefore conclude that S" is complete. Since the metric on S" is
flat outside of a compact set, we are in a familiar situation (see [11] p.
3564, or Osserman, A survey... , p. 81). By a theorem of Huber [7],
the fact that S" has finite total curvature implies that S" is finitely
connected. We conclude first that \Fn\

λJrε]\v k\ψvk\εlq can have only
a finite number of zeros, and second, that the original surface S is
finitely connected. Further, by [10, Theorem 2.1] (or the argument
in [11, pp. 354]) each annular end of S" 9 hence of S, is confor-
mally equivalent to a punctured disk. Thus, the Riemann surface M
on which S is based must be conformally equivalent to a compact
Riemann surface M with a finite number of points removed. In a
neighborhood of each of those points the Gauss map / does not in-
tersect q > n(n - l)/2 + I > n + 2 hyperplanes. By a generalized
Picard theorem (see [2, p. 136]), the Gauss map / can be extended to
a holomorphic map from M to Pn(C). If the homology class repre-
sented by the image of / : M —> Pn(C) is m times the fundamental
homology class of Pn(C), then we have

KdA = -2πm

as the total curvature of S. This proves the theorem.
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