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TWO-POINT DISTORTION THEOREMS
FOR UNIVALENT FUNCTIONS

SEONG-A KIM AND DAVID MINDA

We establish a one-parameter family of symmetric, linearly in-
variant two-point distortion theorems for univalent functions defined
on the unit disk. The weakest theorem in the family is a symmet-
ric, linearly invariant form of a classical distortion theorem of Koebe,
while another special case is a distortion theorem of Blatter. All of
these distortion theorems are necessary and sufficient for univalence.
Each of these distortion theorems can be expressed as a two-point
comparison theorem between euclidean and hyperbolic geometry on a
simply connected region; however, none of these comparison theorems
characterize simply connected regions. We obtain analogous results
for convex univalent functions and convex regions, except that in this
context the two-point comparison theorems do characterize convex
regions.

1. Introduction. We begin by recalling some basic information about
the hyperbolic metric and related material. The hyperbolic metric on
the unit disk P = {z : \z\ < 1} is given by

λD(z)\dz\ = -—T-py.

It is normalized to have constant Gaussian curvature - 4 . A region
Ω in the complex plane C is called hyperbolic if C\Ω contains at
least two points. The density of the hyperbolic metric on a hyperbolic
region Ω is obtained from

λςi(f(z))\f(z)\=λUz),

where / : P —• Ω is any holomorphic universal covering projection of
P onto Ω. The density is independent of the choice of the covering
projection of P onto Ω. The hyperbolic metric on Ω induces the
hyperbolic distance function d& as follows:

dςι(a, b) = inf / λΩ(w)\dw\,
Jv

where the infimum is taken over all paths γ in Ω joining a and b.
The infimum is actually a minimum; there always exists a path δ in
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Ω connecting a and b such that

dn(a,b)= fλΩ(w)\dw\.
h

Any such path δ is called a hyperbolic geodesic joining a and b.
There may be more than one hyperbolic geodesic joining a and b
when Ω is not simply connected. Recall that

</D(α 9 b) = artanh
1 -ab

Both the hyperbolic metric and the hyperbolic distance are confor-
mally invariant.

Blatter [1] commented that a classical distortion theorem of Koebe
for normalized univalent functions g(z) = z + a^z1 + a^z3 + ,
namely,

l ί ( z ) l £(ΓΠ7F' z e D

was necessary, but not sufficient, for univalence. Recall that equality
holds at z Φ 0 if and only if g is a rotation of the Koebe function
k(z) = z/(l - z)1 [3, p. 33]. Koebe's distortion theorem is a con-
sequence of the coefficient bound \a^\ < 2 for normalized univalent
functions. Blatter inquired whether there were distortion theorems
for univalent functions that were also sufficient for univalence. He
established the following two-point distortion theorem which is both
necessary and sufficient for univalence [1], There is no normalization
on the univalent function.

BLATTER'S DISTORTION THEOREM. Suppose f is univalent in D and
a, beΌ. Then

+ [{l-\b\2)\f{b)\}2).

Equality holds for distinct points α, b e ID) if and only if f = SokoT,
where S is a conformal automorphism of C, k is the Koebe function
and T is a conformal automorphism of D, and a and b lie on the axis
of symmetry off. Conversely, if a nonconstant holomorphic function
f satisfies this inequality\ then f is univalent on D.

The square on the term sinh2(2do(α, b)) is missing in the state-
ment, but not in the proof, of this result in Blatter's paper. The proof
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of Blatter's distortion theorem is more sophisticated than the proof
of Koebe's distortion theorem; it requires three coefficient inequal-
ities for normalized univalent functions: \a2\ < 2, \a$\ < 3, and
|#3 - #2! - 1 Blatter's distortion theorem is symmetric in a and b
and linearly invariant. In this context, linear invariance means that if
/ is replaced in the inequality by f = SofoT, where S is a confor-
mal automorphism of C and T is a conformal automorphism of D,
then the new inequality has exactly the same form, except that / is re-
placed by / . This is closely related to the notion of linear invariance
introduced by Pommerenke [13]. We shall establish a one-parameter
family of symmetric, linearly invariant two-point distortion theorems
for univalent functions; each of these distortion theorems character-
izes univalence. The method of proof is an extension of Blatter's
technique. The weakest two-point distortion theorem in the family is
a symmetric, linearly invariant version of Koebe's distortion theorem.
Blatter's distortion theorem is stronger than the symmetric, linearly in-
variant version of Koebe's distortion theorem, but is not the strongest
one in the family.

Blatter's distortion theorem can easily be formulated as a two-point
comparison theorem between euclidean and hyperbolic geometry on a
simply connected region. It relates the euclidean distance between two
points to their hyperbolic distance and the density of the hyperbolic
metric at the points. This formulation asserts that if Ω is a simply
connected hyperbolic region in C and A, B eΩ, then

_ 2 > smh2(2da(A,B)) ( 1 _1_\
1 ' ~ 8cosh(4dΩ(v4, B)) \Xk(A) Xk(B) I '

Equality holds if and only if Ω is a slit plane and A and B lie on
the extension of the slit into Ω. This two-point comparison theo-
rem can be viewed as an extension of the inequality λ& > 1/(4<5Q)

for simply connected regions [6, p. 45], where SQ(Z) is the euclidean
distance from z to <9Ω, since this inequality is a limiting case. Be-
cause Blatter's distortion theorem characterizes univalence, it is nat-
ural to inquire whether this comparison inequality characterizes sim-
ply connected regions. The answer is negative. In fact, there is a
one-parameter family of similar two-point comparison theorems and
not even the strongest comparison theorem in the family character-
izes simple connectivity. Narrow annuli also satisfy these comparison
inequalities.

Finally, we consider analogs of these results for both convex uni-
valent functions and convex regions. The case of convex univalent
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functions parallels the univalent function situation. There is a one-
parameter family of two-point distortion theorems for convex uni-
valent functions, the weakest of which is the symmetric, linearly in-
variant version of a classical distortion theorem. These distortion
theorems all characterize convex univalent functions. There is an as-
sociated one-parameter family of two-point comparison theorems for
euclidean and hyperbolic geometry on convex regions. These compar-
ison theorems characterize convex regions and are refinements of the
inequality XQ > \/{2δςι) [10] for convex regions.

We would like to thank Wancang Ma for several helpful conversa-
tions regarding univalent functions and the referee for useful com-
ments, including the idea which led to Theorem 1.

2. Preliminaries. We first recall some results from Blatter's paper
[1]. Some of these are reformulated in invariant terms here, while
others are stated in more generality. We do not prove these general-
izations if the proofs given in [1] immediately extend.

Minimum Principle. Suppose that a function u: [-L, L] —> R sat-
isfies the following two conditions:

(i) | u Ί < ί ,
(ϋ) u"<p(q2-(u')2),

where p and q are positive constants. If υ is the solution of the
inequality \y'\ < q and the differential equation y" = p(q2 - (y')2)
which satisfies the boundary conditions υ(L) = u(L) and v(-L) =
M ( - L ) , then u(s) > v(s) for all s e [-L, L]. Moreover, if strict
inequality holds in both (i) and (ii), then u(s) > v(s) for all s G
( - L , L ) .

The solution υ can be expressed in elementary form:

v(s) = - log [cosh(/?#5 ) + τ sinh(/?#.s)] + log C,
P

where the constants τ € [ -1 , 1] and C > 0 are determined by the
boundary conditions. In fact,

/exp(pu(L)) + exp(pu(-L))\ ι / p

V 2cosh(/><7L) ) '

LEMMA 1. For p > 1, q > 0 and τ e [-1, 1] let

fL

B(τ) = / (cosh(pqs) + τ sinh(p qs))ι/p ds.
J-L
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Then for τ e ( - l , 1)

B(τ) > B(±l) = - s i

Proof. Now,

ίL1 ίL

B'{τ) = - / sinh(pqs)(cosh(pqs) + τsinh(pqs)){ι-p)/p ds
P J-L

and

B"{τ) = ]—£ I sinh2(pqs) (cosh(pqs) + τsinh(pqs))(ι-2p)/p ds.
PL

 J-L

Thus, B"{τ) < 0 since p > 1, so B(τ) is strictly concave on [-1, 1].
This implies that the minimum value of B(τ) is either B(l) or
2?(—1). Because

B(-l) = -si

the proof is complete.

REMARKS, (i) When p = 1 the function B(τ) is the constant
I sinh(^L).

(ii) If u and v are as in the statement of the minimum principle,
then

/ exp(φ)) έfa > / cxp(υ(s)) ds = CB(τ) > C - sinh(?L),
J-L J-L %

with equality if and only if expw(5 ) = Cexp(±#s).

Next, we want to recall some differential geometric formulas re-
lating to locally schlicht holomorphic functions. Before stating these
formulas, it is convenient to introduce several invariant differential
operators which were also considered in [3] and [8]. For a holomor-
phic function / defined on D, let

D2f(z) = (1 - \z\2)2f"{z) - 22(1 - \z\2)f'(z),
D3f(z) = (1 - \z\2γf"(z) - 62(1 - \z\2)2f"{z)

+ 6z2(l-\z\2)f(z).

If T(z) = (z + a)/(l+az), then Djf(a) = (/oΓ)W(O) for j =
1 , 2 , 3 . In particular, Djf(0) is just the ordinary 7th derivative at
the origin. These differential operators are invariant in the sense that

Γ (7 = 1,2,3) ,
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where T is any conformal automorphism of B> and S is any euclidean
motion of C [8]. Observe that for a locally schlicht function /

Dxf{z) 2 \DiXz)

where

)

2_i(Dimv = ί,

denotes the Schwarzian derivative of / . For a locally schlicht holo-
morphic function / defined on the unit disk it is useful to introduce
the abbreviation

Now, we establish some notation that will be in force for the re-
mainder of the paper. Suppose / is a locally schlicht holomorphic
function defined on the unit disk B. We assume that there is a Jordan
arc γ in B with finite hyperbolic length 2L joining a and b such
that / maps γ injectively onto the euclidean segment [f(a), f{b)] =
[A, B]. Suppose the arc γ is parametrized by hyperbolic arc length,
say γ: z = z(s) ,se[-L,L\. This implies z'(s) = (1 - \z(s)\2)eiθ& ,
where θ(s) = argz '^) . The hyperbolic curvature of γ is

κh(z(s), γ) = (l- \z(s)\2)κe(z(s), γ) + Im j 2 f f i φ [ j ) |

= (1 - \z(s)\2)κe(z(s), y) + Jm{2zJs)eiθM}.

Here κe(z(s), y) is the euclidean curvature of γ at z(s) explicitly,

The formula which relates the euclidean curvature of foγ to the
hyperbolic curvature of γ is

κe(f(z(s)), / o y)\Dxf{z{s))\ = κh{z{s), y) + Im

When foγ is a euclidean line segment, this simplifies to
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The rate of change of the euclidean curvature of foγ is related to
the rate of change of the hyperbolic curvature of γ by

dκe(f(z(s)),foγ)i

ds

= d^f>^+lmί[(l-\z(s)\2)2SΛz(s))

When foγ is a euclidean line segment, this becomes

dκh{z{s), γ)
= — Im< (1 — \z(s

Set

Then

so that
|«'(5)| < \Qf(z(s))\

and

(M')2(ί) = \κt{{Qf{z{s)))2e2iθ^} + \\Qf{z{s))\2.

Also,

M"(5) = Re{(l - I z ^ ) ! 2 ) 2 ^ ^ ^ ) ) ^ ^ ) } + \\Qf{z{s))\2 - 2.

By making use of some of these formulas, we obtain the identity

u"(s)+p(u')2(s)

= Re {[(1 - \z(s)\2)2Sf(z(s)) + | (β/(^) ) ) 2 ] e2iθ^}

+ P-±±\Qf{z{s))\2-2,

and so the differential inequality

u"(s) +p(u')2(s) < |(1 - \z(s)\2)2Sf(z(s)) +1 {Qf{z{s)))2

3. Univalent functions and simply connected regions. We establish

symmetric, linearly invariant, two-point distortion theorems for uni-
valent functions and consider the associated two-point comparison
theorems between euclidean and hyperbolic geometry on simply con-
nected regions.
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INVARIANT KOEBE DISTORTION THEOREM. Suppose f is univalent
on D. Then for all a, i e D ,

Equality holds for distinct points a, b G D if and only if f = SokoT,
where S is a conformal automorphism of C, k is the Koebe function
and T is a conformal automorphism of D, and a and b lie on the axis
of symmetry of / . Conversely, if a nonconstant holomorhpic function
f satisfies this inequalityy then f is univalent on D.

Proof. First, note that Koebe's classical distortion theorem can be
written in the form

Here g is a normalized univalent function.
Now, assume / is univalent (not necessarily normalized) in D and

a, b eB. Set T(z) = (z + a)/(l + az) T is a conformal automor-
phism of D which sends 0 to a. Then

g(z) = [fo Γ(z) - / o Γ(0)]/(/o Γ)'(O)

is a normalized univalent function. If we apply the classical Koebe
distortion theorem to g and use the fact that hyperbolic distance is
conformally invariant, then we obtain

We obtain a similar inequality when we interchange the roles of a
and b. The final formula is obtained by taking the maximum value of
these two lower bounds on \f(a) - f(b)\. The necessary and sufficient
conditions for equality follow from the conditions for equality in the
classical Koebe distortion theorem.

The fact that the condition is sufficient for univalence is elementary,
but we give the details here and then omit them in subsequent related
theorems. Suppose / is a nonconstant holomorphic function defined
on D which satisfies the inequality. Assume f(a) = f(b) for distinct
points a,beΌ. The inequality implies that f(a) = f{b) = 0. Then
/ is not univalent in any neighborhood of a (or b), so there exist two
sequences {an} and {bn} of distinct points such that an —• α, bn —• a
and f(an) = f(bn) for all n. This gives f'{an) = 0 for all n which
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contradicts the fact that / is nonconstant since this implies / ' must
have an isolated zero at a. Hence, / is univalent on D.

Thus, the invariant form of Koebe's distortion theorem is sufficient
for univalence, so it provides an elementary answer to the question
raised by Blatter. Theorem 2 will provide a connection between the
invariant form of Koebe's distortion theorem and Blatter's distortion
theorem. But first we need to establish a result for normalized univa-
lent functions.

THEOREM 1. If g(z) = z+a2Z2+a3z
3-\— is a normalized univalent

function on Ό, then

This inequality is sharp for all p > 0. For p > 3/2, equality holds if
and only if g is a rotation of the Koebe function.

Proof. It suffices to obtain the sharp upper bound on the functional

= Re{α3} - ( ^ X ^ ) ( R ^ 2 ) 2 + (Imα 2 ) 2

over the family of normalized univalent functions. Because replacing
g(z) by -g(-z) does not change the value of Lp(g), we may assume
that Re{#2} ^ 0 without loss of generality. Since 0 < Re{α2} < 2,
there is a unique λ € [0, 2] with Re{<Z2} = λ(l + log j).

Jenkins [5] obtained the sharp relationship between the second and
third coefficients of a normalized univalent function. We shall use the
version of this result from [14, p. 120]; specifically, we need inequality
(12) of this reference which states

Re{a3} < (Reα 2) 2 - (Imα 2 ) 2 - 2λRea2 + A2logy + \λ2 + 1.
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From this inequality we obtain

Lp(g) < -^(Reα2)2 - 2λ(Rea2)+λ2log1 + -/
3 A JL

Note that H(0) = 1, H(2) = (Sp - 3)/3 and

For p > 3/2, H'(λ) has no roots in (0, 2), so H(λ) is strictly increas-
ing in this case with maximum value (8/7 — 3)/3 attained uniquely
at λ = 2. This produces the sharp upper bound on Lp(g) when
p > 3/2, and implies that equality holds only if g is a rotation
of the Koebe function. It is trivial that equality holds for a rota-
tion of the Koebe function. When 0 < p < 3/2, H'(λ) has a root
at λ0 = 2exp((2/?-3)/(2/?)) e (0,2) and H{λ) is increasing on
(0, λo) and decreasing on (ΛQ, 1). Thus, 77(Λ) has maximum value
i/(λ0) = 1 + 2exp((2/7 - 3)//?) when 0 < p < 3/2. The sharpness of
the inequality in this case follows from the work of Jenkins; note that
the Koebe function is not extremal.

+ a^z3 -\ is a normalized uni-COROLLARY. If g(z) = z +

valent function on D, then

1
α 3 - τί

mϊ/z equality if and only if f is a rotation of the Koebe function.

Proof. By making use of the theorem with p = 3/2 and \aι\ < 2,
we get

1
α 3 ~ 2l

1
2'

THEOREM 2. Suppose f is univalent in D. There is a constant
P G ( 1 , 3/2] swcΛ that for any p>P and all a, beΌ,
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Equality holds for distinct points a, b e B if and only if / = SokoT,
where S is a conformal automorphism of C, k is the Koebe function
and T is a conformal automorphism of D, and a and b lie on the axis
of symmetry off. Conversely, if a nonconstant holomorphic function
f satisfies this inequality, then f is univalent on D.

Proof. The sufficiency for univalence follows exactly as in the proof
of the invariant form of the Koebe distortion theorem.

For the necessity, we make use of the notation established in §2.
Because / is univalent, we know that \u'(s)\ < 4 this is the invariant
version of the sharp classical coefficient bound fa] < 2 for normalized
univalent functions [2, p. 32]. We will make use of some of the results
from §2 with q — 4. Suppose p > 1 is any number such that

(1) (1 - \z\2)2Sf(z) + t (Qf(z))2 + i+λ\Q^z)\2 _ 2 < 16/7
2 2

for every univalent function / defined on D) and all z ε i . Then
the results of §2 with q = 4 give

u"(s)+p(u')2(s)< \6p.

Therefore, we get

\f(a)-f(b)\ = [L \f'(z(s))\\dz(s)\
J-L

fL fL

= / expu(s)ds > / expυ(s)ds >
J-L J-L

Csinh(4L)

2

with equality if and only if exp u(s) = C exp(±4.s), where

(\Dίf(a)\p + \Dif(b)\p\ι/p

V 2cosh(4/>L)

Thus,

Since the function h(t) = sinh(ί)/[2cosh(^ί)]1/p is increasing and
2d®(a, b) < AL, we obtain
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This establishes the lower bound when [f(a), f(b)] is contained in
/(D). If equality holds, then d&(a, b) = 2L and so γ must be a
hyperbolic geodesic.

We require a limiting form of this inequality. Set Ω = /(D).
Suppose a e dΩ and [f(a), a) c Ω. Then for any b e B with
f(b) E [f{a), a), the preceding inequality gives

I f(n\ f(h\\ -> sinh(2έ/D(a, b)) f

When f(b) -+ dΩ along the segment [f(a), α ) , then b -^ dΌ and
so dj)(a9 b) —• oc. Since λ(oo) = 1/2, we get

| / ( α ) α | > |

This is just an invariant form of the Koebe 1/4-theorem.
Now, suppose [f(a), f{b)] does not lie in Ω. Then there ex-

ist points α, β G dΩ such that the half-open intervals [/(α), a)
and (/?, /(6)] are disjoint, lie in Ω and their union is contained
in [f(a), f{b)]. The preceding inequality implies that

|/(*)-α|>±|A/(a)l and \f{b)-β\>\\Dxfφ)\.

Hence,

|/(fl) - f(b)\ > \f(a) - α| + |/(6) - 0| > i <|Z>i/(fl)| + \Dxf(b)\)

Since h{oo) = 1/2 and Λ is strictly increasing, we obtain

2[2
This establishes the lower bound in all cases.

Next, we determine necessary and sufficient conditions for equality.
If equality holds, then γ must be a hyperbolic geodesic in D. By
performing a conformal automorphism of D if necessary, we may
assume that γ c (-1, 1) and is symmetric about the origin. There
is no harm in assuming [f{a), f{b)] c R and is symmetric about
the origin with f{a) < 0 and f(b) = -f{a) if this were not true
just compose / with a conformal automorphism of C. Then the
hyperbolic arc length parametrization of γ is z(s) = tanh(s) and
f(z(s)) > 0 for s e [-L, L]. Symmetry implies /(0) = 0. Equality



TWO-POINT DISTORTION THEOREMS 149

forces exp(w) = Cexp(±4s). We consider the plus sign; the case of
the minus sign is similar. We have

Since

s = artanh z = - loglog

holds on γ, we obtain

or
f(z) = C 1 + Z.

(l-zf
for z on γ. The identity theorem implies that this holds for all z
in B. Since /(0) = 0, we get f(z) = Ck(z). This demonstrates
that if equality holds then / = S o k o T, where S is a conformal
automorphism of C, k is the Koebe function and T is a conformal
automorphism of D, and a and Z? lie on the axis of symmetry of
/ . Conversely, if / has this form, then it is straightforward to show
that equality holds for all points on the axis of symmetry of / , or
equivalently, equality holds for all pairs of points on ( - 1 , 1) for the
Koebe function itself.

Finally, we show that inequality (1) holds for all p > P, where P is
some constant in (1, 3/2]. It is elementary to verify that if inequal-
ity (1) holds for one value of p > 1, then it also holds for all larger
values of p. Let P be the minimum of all p > 1 such that inequal-
ity (1) holds for all univalent functions / defined on D. Since the
class of univalent functions is linearly invariant, it suffices to establish
inequality (1) for z = 0 and normalized univalent functions. Thus,
we want to find the smallest value of p such that

3 3

The corollary to Theorem 1 shows that this inequality is valid for
p = 3/2. It might seem plausible that P = 1 this is equivalent to the
coefficient inequality

2 2

for a normalized univalent function. However, Ruscheweyh [15], with
the use of a computer, has shown that this inequality is false for the
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full class S of normalized univalent functions and that the best result
for the class S is about

2
,„,, .3.0031896592.

Thus, P > 1.

REMARKS, (i) What is the best value of P in Theorem 2?
(ii) The right-hand side of the inequality in Theorem 2 is a decreas-

ing function of p for p > 1. Consequently, the weakest necessary
condition for univalence that Theorem 2 yields is the case p = oc,
or more precisely, p —> oo. This is the invariant version of Koebe's
distortion theorem. The case p = 2 is Blatter's distortion theorem,
but it is not the strongest two-point distortion theorem contained in
Theorem 2.

COROLLARY. Let Ω be a simply connected hyperbolic region in C.
Then for any p>P and all A,B eΩ,

\A-B\>

Equality holds if and only if Ω is a slit plane A and B lie on the
extension of the slit into Ω.

Proof. Apply the theorem to a conformal map / of D onto Ω and
make use of the facts that / is an isometry from the hyperbolic metric
on D to the hyperbolic metric on Ω and \D\f{z)\ =

REMARK. Suppose Ω is any region which satisfies the inequality
in the corollary for some p > P. Fix A e Ω. Select a G <9Ω so
that \A - a\ = SQ(A) . Let B e Ω tend to a along the half-open
segment [A, a). Then d&{A, B) —• oc since the hyperbolic distance
is complete and AQ(JB) —> oo [12] so the inequality in the corollary
yields λςi > 1/(4<JQ). For simply connected regions this inequality
is equivalent to the Koebe 1/4-theorem for univalent functions [6, p.
45].

EXAMPLE. Let Ω = Ω(δ) = {z: exρ{-πδ/2) < \z\ < exp(π<5/2)}
for δ > 0. We shall show that if δ > 0 is sufficiently small, then for
A,BeΩ
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This inequality corresponds to the case p = 1 it is the strongest
possible lower bound in the corollary and shows that no comparison
theorem in the corollary can characterize simply connected regions.

A holomorphic universal covering projection of D onto Ω is f(z)
= [(1 + z)/(l - z)]iδ . Then [13, p. 128]

sup{|β/(z)| : zeΌ} = 2\/\+δ2

and [11]
sup{(l - |z|2)2 |Sy(z)|: z e D} - 2(1 + δ2).

We shall show that
\u'(s)\ < 4

and
u"(s) + (u')2(s) < 16

for δ sufficiently small. This is the case p = 1 and q = 4 in §2. Note
that

\u'{s)\<\Qf{z{s))\<2y/\+δ2,

so the desired bound on \u'(s)\ will hold when δ < y/3. The other
differential inequality will hold if

(l-\z\
2)2Sf(z) + ±

which is weaker than

The preceding bounds show that this inequality will hold if 8(1 +δ2) <
18, that is, provided δ < >/5/2. Thus, both needed inequalities hold
when δ < >/5/2.

The proof of Theorem 2 shows that if [f{ά), f(b)] c Ω, then

\f{a) - f{b)\ > \ (tanh(4L)) {\Dj{a)\ + \DJ{b)\).

Since tanh(ί) is an increasing function and dςι(f{a), f(b)) < 2L,
this gives

\f{a) - fφ)\ > \ (tanh(2rfΩ(/(α), fφ)))) {\DJ{a)\ + \DJ{b)\) ,

or equivalently,

If (a) - fφ)\ > ί
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This is the desired result when [A, B] = [f(a), f(b)] c Ω. Then, just
as in the proof of Theorem 2, this inequality holds even if [f(a), f(b)]
does not lie entirely in Ω. In fact, strict inequality holds in this case.

REMARK. If g(z) = z + aiz2 + a$z3 -\ is a normalized close-to-
convex function on D, then Wancang Ma [7] has shown

2 *2 < 3 - ^

with equality if and only if / is a rotation of the Koebe function.
Thus, if / is a close-to-convex univalent function, then the inequality
in Theorem 2 holds for all p > 1. Does the inequality in Theorem 2
for p = 1 characterize close-to-convex univalent functions? Similarly,
the inequality in the corollary to Theorem 2 holds for p > 1 if the
region Ω is close-to-convex.

4. Convex univalent functions and convex regions. We now turn our
attention to convex hyperbolic regions and convex univalent functions.

THEOREM 3. Suppose Ω is a convex hyperbolic region. Then for any
p> 1 and all A,B eΩ,

ύήh{dΩ(A9B))
1 ' -

Equality holds if and only if Ω is a half plane and A and B lie on
a line perpendicular to the edge of the half plane. Conversely\ if Ω is
a hyperbolic region in C and the preceding inequality holds for some
p > 1 and all A, B eΩ, then Ω is convex.

Proof. We first show that a hyperbolic region which satisfies the
inequality must be convex. Fix A £ Ω. As in the remark after the
corollary to Theorem 2, select a e dΩ so that \A - a\ = δΩ(A).
Let B e Ω tend to a along the half-open segment [A, a). Then
dςι(A, B) -» oo and λςι(B) —• oo, so the inequality in the theorem
yields AQ > \/(2SQ). This inequality characterizes convex regions
([4], [9]).

Now, we turn to the proof of the inequality when Ω is convex.
The proof is very similar to that of Theorem 2. If / is a conformal
mapping of D onto Ω, then \u'(s)\ < 2 is the invariant form of the
coefficient bound fal < 1 for a normalized convex univalent function
[2, p. 45]. Therefore, we want to use the results from §2 with q = 2,
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so we wish to determine all p > 1 such that

- \z\2)2Sf(z) + I (Qf(z))2\ + £ ± I \Qf{z)\2 -2<4p

for any convex univalent function / defined on D and all z e D.
It is easy to verify that if this inequality holds for some value of p,
then it also holds for all larger values of p . We shall establish it when

(2) (1 - \z\2)2Sf{z) + l- (Qf(z))2 + \Qf{z)\2 < 6.

Trimble [16] established the following inequality for convex functions
when z = 0 this was rediscovered and established in invariant form
by Harmelin [3]:

( l - | z | 2 ) 2 \Sf(z)\ +l-\Qf{z)\2< 2.

It is now clear that (2) holds.
Then from §2 with q = 2, we have

u"(s)+p{u')2{s)<4p.

Given A, B e Ω, select a, b e ID with f{d) = A and f(b) = B.
Since Ω is convex, the straight line segment [f(a), f(b)] always lies
in Ω. Then we get

\f{ά) - f(b)\ = / expu(s) ds > expv(s) ds > Csinh(2L),
J-L J-L

where

'\DJ{a)\p + \DJψ)\p\XIP(\

V 2cosh(2/?L)
Thus,

ι / ( a ) -
or

sinh(2L)
1 ' "

Recall that 2L denotes the hyperbolic length (relative to Ω) of the
segment [A,B]. Since the function h{t) = sinh(ί)/[2cosh(pί)]1/p is
increasing and da{A, B) < 2L, we obtain

sinh(</Ω(Λi?)) / 1 1 \l/P

1 ' "

This establishes the lower bound.
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Finally, we determine when equality holds. First, suppose p > 1.
If equality holds, then [A, B] must be a hyperbolic geodesic. There
is no harm in assuming [A, B]cR and is symmetric about the origin
with A < 0 and B = -A if this were not true, apply a conformal
automorphism of C to Ω. Now, γ is a hyperbolic geodesic in D
by performing a conformal automorphism of D if necessary, we may
assume that γ c ( - 1 , 1) and is symmetric about the origin. The
hyperbolic arclength parametrization of the path γ is z(s) = tanh(s)
and f(z(s)) > 0 for s e [-L, L]. Symmetry implies /(0) = 0.
Equality forces exp(w) = Cexp(±2s). We consider the plus sign; the
case of the minus sign is similar. As in the proof of Theorem 2, we
obtain

Since /(0) = 0, f(z) = CK{z), where K(z) = z/(l - z) . In this
situation Ω = /(D) is a half-plane and the segment [A, B] is orthog-
onal to the edge of the half-plane. Conversely, if Ω is a half-plane,
it is straightforward to show that equality holds whenever [A, B] is
orthogonal to the edge of the half-plane. It is sufficient to verify this
for the special case of the upper half-plane H = {z: Imz > 0}. In
this case,

B) = artanh
A-B

A-B
and λn(z) =

1

2Im(z)'

We omit the details.
It remains to consider the case of equality when p = 1. In this

situation Lemma 1 does not apply, so we use a different method. If
Ω is not a half-plane, then \u'(s)\ < 2 and u"{s) + (u'f (s) < 4.
These strict inequalities imply that equality cannot hold in this case.
Thus, we need only determine necessary and sufficient conditions for
equality when Ω is a half-plane. Because of the invariance of the
inequality under conformal automorphisms of C, we may assume Ω
is the upper half-plane H = {z: Imz > 0}. We need to determine
when equality holds in

(3) M - J , | >

Inequality (3) is equivalent to

\A-B\
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But trivially

\A-B\> lm{A -B) = Im{A) + lm(B)

with equality if and only if Re(A - Tί) = 0, that is, Re A = Reϊ? =
Re B. In geometric terms this necessary and sufficient condition for
equality is that [A, B] be orthogonal to the real axis, the edge of H.

COROLLARY. Suppose f is univalent in B and /(D) is a convex
region. Then for p>\ and all a, b e ID,

(4)

ιf{a)_fm > s i; h (t! a^L/p (iA/wr+1A/wnι/p•
[ 2 h ( d ( 6))] 1 / / 7

Equality holds for distinct a9b G B> if and only iff = SoKoT,
where S is a conformal automorphism of C, Jf(z) = z/(l - z) <zm/
Γ w a conformal automorphism of D, α«ί/ α α«t/ 6 lie on any axis
of symmetry of f. Conversely, if a nonconstant holomorphic function
f defined on D satisfies this inequality for some p > 1, then f is
univalent on Ώ and /(ID) is a convex region.

Proof. Suppose / is convex univalent in D. Set Ω = /(D). Then
the inequality and the necessary and sufficient conditions for equality
follow from applying Theorem 3 to Ω and the points A = f(a) and
B = fφ).

Conversely, suppose / is a nonconstant holomorphie function de-
fined on D which satisfies the inequality. As in the proof of the
invariant form of the Koebe distortion theorem, we conclude that /
is univalent on D. Set Ω = /(D). Since / is a conformal map of D
onto Ω and hyperbolic distance is preserved, inequality (4) implies
that the inequality in the theorem holds. Hence, Ω is convex, so /
is convex univalent.

REMARK. The right-hand side of the inequality in the corollary is
a decreasing function of p for p > 1. Therefore, the strongest nec-
essary condition for a convex univalent function that the corollary
produces is the case p = 1:

\f{a)-f{b)\ > Atanh(</D(α, b)) {\Dxf{a) |+ | Dxf(b)\).

The weakest sufficient condition for convex univalence that the corol-
lary yields is p = oo (or more precisely, the limit as p —• oo):

exp
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This is the symmetric, linearly invariant form of the classical distor-
tion theorem

ls{z)l-TT\7\> Z G D '

for a normalized convex univalent function g [2, p. 70].

5. Comments. The method of Blatter that we have employed in
this paper uses certain differential geometric ideas in conjunction with
coefficient bounds for univalent functions to produce symmetric, lin-
early invariant two-point distortion theorems for (convex) univalent
functions which characterize (convex) univalence. Can these results
be established in a purely differential geometric fashion without us-
ing coefficient bounds? In the convex case our results characterize
convex regions so it is plausible that, at least in this setting, a purely
differential geometric proof might be available.
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