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Dedicated to Professor C. W. Curtis on the occasion of his 65th birthday

We give a new proof to V. B. Mehta and A. Ramanthan's theorem
that the Schubert subschemes in a flag scheme are all simultaneously
compatibly split, using the representation theory of infinitesimal al-
gebraic groups. In particular, the present proof dispenses with the
Bott-Samelson schemes.

Let K be a perfect field of positive characteristic p. If A is a
ΛΓ-algebra and r e Z, one defines a new ^-algebra A^ by the ring
homomorphism K -+ A such that ξ •-• ξp '. Given a ΛΓ-scheme X we
will denote by X^ the ΛΓ-scheme having the same underlying topo-
logical space as that of X but with the structure sheaf &χ ®κ K^~r^,
which we regard as a sheaf of AΓ-algebras by the usual multiplica-
tion of K on K(~r>> from the right. If & is an ^e-module, we set
j^W = &* ®κ J£(-Γ) it comes equipped with the structure of an 0^-
module. If r > 0, the morphism F£: X —> X^ that is the identity
on the underlying topological spaces and such that a ® ξ κ-> aP'ζ for
each α G Γ(2J, ^e) and <̂  e K^-r^ with 9J open in X is called the
rth Frobenius morphism of X.

If K is algebraically closed, Hartshorne [HASV], (IΠ.6.4) showed
that on the projective spaces over K, the direct image of any invert-
ible sheaf under the Frobenius morphism splits into a direct sum of
invertible sheaves; this was crucial for B. Haastert [Haas] to prove
the .^-affinity of the projective spaces. We will compute in §1 which
invertible sheaf enters as a direct summand.

More generally, we say after V. B. Mehta and A. Ramanathan [MR]
that X is Frobenius split iff the structural morphism F^: (9^ —•
Fχ*^x admits a left inverse, called a Frobenius splitting, so that ffj^
is a direct summand of Fχ*#χ. If σ is a Frobenius splitting of X
and if 2) is a closed subscheme of X defined by an ideal sheaf JF,
we say a splits 2) iff σ{Fχ^Jr) C J ^ 1 ) , in which case 2) will also be
Frobenius split, said to be compatibly split in X.

Mehta and Ramanathan showed that the flag schemes are Frobe-
nius split with all the Schubert subschemes compatibly split. Their
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result has various applications, e.g., to their simple proof of Kempf s
(resp. Demazure's) vanishing theorem of the higher cohomology of
dominant (resp. ample) invertible sheaves on the flag schemes (resp.
the Schubert schemes).

In §3 we will rederive a part of their theorem that the flag schemes
are Frobenius split, using the representation theory of infinitesimal
algebraic groups. Along the same line one can find a particularly nice
splitting of each flag scheme that splits all its Schubert subschemes;
that we will do in §4.

We will let KAlg (resp. Mod*) denote the category of AΓ-algebras
(resp. ^-modules). Also Sch^ (resp. Grp^) is the category of K-
schemes (resp. ΛT-group schemes). If 0 is a ΛΓ-group, (9 Mod will
denote the category of ©-modules.

The §4 is largely due to the referee, who kindly communicated a
sketch of the arguments. We have also revised the proof in (3.2) of the
surjectivity of a nonzero G>2?-homomorphism from Str ®κStr into
Zr{2(pr - \)ρ). Formerly the argument was borrowed from Jantzen's
book [J], (II. 11.13).

The author is grateful to the referee for generously sharing his/her
ideas with him. Thanks are also due to Akiyama S. for a helpful
suggestion to (1.3).

1. Projective spaces. In this section we assume K is algebraically
closed and consider the case X = PN the projective N-space over K.

(1.1) As P ^ is defined over F^, (PN)W ~ P ^ . We will denote by
F the composite of FFN with the isomorphism.

The invertible ^-modules are parametrized by Z : if ^f(l) is
Serre's twisting sheaf, we let (?(n) = @{X)®n (resp. ^ ( - n ) " 1 ) if n > 0
(resp. n < 0).

By [HASV], (III.6.4) for any neZ there are n, e Z such that

PN-1

@{rti) in Mod*.
i=0

We will compute the nz in this section.
(1.2) If n = n! +pn" with ri e [0, p - 1] and n" e Z, then

(1) F+0{jt) c- F*(@(nf) ®^ F*0{ri')) c± F*<?(ι

by the projection formula; hence we have only to compute
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n e [0, p - 1]. Fix such n. Then (cf. [Haas], p. 400)

(2) 30; G N with ]Γ 0; = pN: F*@{ή) = U(^(-*')0 0O-

Let Sm be the mth homogeneous part of the polynomial algebra
in N + 1 indeterminates over K. Then for each j € N we have as
X-linear spaces

(3) Sn+jp ~ Γ(2, ^(n + jp)) ci Modx(^χ, ^(n + jp))

^ e , F*0(n + jp))

~ Mod* I ffx, W@{j - iγβt I by the projection formula

hence

N j-ψiy N )•

In order to compute the θj, we will agree that for each t e Z and
meN

/ \ 1 rim

(5) '
(I ifm = 0,

c = \ tit - 1) (ί - m + 1) .Γ ^ 1— ~ i i f m > l .

(1.3) LEMMA, (i) For each reN

(ii) Ifr>N+\ or n +N > (N + I - r)p, then θr = 0.

\ 0 otherwise.

Proof, (i) We will argue by induction on r. If r = 0, take 7 = 0
in (1.2) (4) to verify the assertion. If r > 1, take j = r in (1.2)(4) to
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get

(1) θr =
n + rp + N

n + rp + N
N

MASAHARU KANEDA

1 -i + N
N

_uk(N+l\fr-s-k

s=0 x ' k=0 x 7 x

by the induction hypothesis; hence one has only to show

W e [ l , r ] .

Assume first t - I < N. Then the left-hand side of (2) is

N

hence it will be enough to show

N
(4)

k=0

But the left-hand side is
N+l

= 0 V ί > l .

k{N+l\ 1 d»

k=o
k ) N\dxN

rt-k+N

x = l

dN

x=lN\dxN

using the Leibniz rule.
If t - 1 > N, then the left-hand side of (2) is

(6)

while the right-hand side of (2) is 0 as t > N + 2. Hence (i) holds.
(ii) If r > N + 1, then

,7, l-Tj-nfΐ1)^'-**11) by(i)
i = 0

N

dN

N\dxN
(χn+{r-N+\)p+N7χ _

x=\
using the Leibniz rule again. Likewise the rest.
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(1.4) We summarize the foregoing computations in

PROPOSITION. If n e [0, p - 1] and « ' e N , then

N

F*0{n + pn') ~ \\@(n' - ΐf't in Mod*

with ̂  = Σ}=o(-υ j ^; 1 )r ( / "^ + i V ) as in (1.3).

2. Preliminaries. In this section we recall some standard facts of
the Frobenius splittings and of the representation theory of algebraic
groups. We will also introduce the notations in (2.5) to be used in §3
and §4.

(2.1) Let X be a ΛΓ-scheme. If 93 is open in X, one can identify
= Γ(93, ^ ( D ) with #χ(ZJ)w. Then the structure morphism

^ #χ(ii)(yj) -> (Fχ*0χ){1O) is just the /?rth power map. Hence a
Frobenius split ^-scheme is reduced [R], Remark 1.3(i).

(2.2) LEMMA (cf. [R], Corollary 1.11 and [MR], Lemma 1). Let X
be a K-scheme Frobenius split by σ € M.oάχ{\)(Fχ*@χ, (9^).

(i) If X\ and Xi are closed subschemes of X both split by σ, then
so is Xι Π X2.

(ii) Let 2) be a closed subscheme of X split by σ. If the underlying
space 12) I of 2) is Noetherian, then each irreducible component of 2)
given the reduced closed structure is also split by σ.

Proof, (i) If <Ji is the ideal sheaf of Xt, the ideal sheaf of X{ Π X2

is J ^ + J ^ . Then

(1) σ(Fx*(J\ + Jfi) C J?χ

and hence X\ n X2 is split by σ.
(ii) If |2) | = |2)i|U U|2)r| is a decomposition into the irreducible

components of 2), each of which is given the reduced closed structure,
put 93 = |£|\(|2)2 | U U |2) r |). Then |2)i n 9J| = |2) n 9J|. As both
2)i Π 2T and 2) Π 9J are reduced, 2)i Π 9J = 2) Π 9J hence

(2) 2)! Π 93 is split by <τ|̂ u in 93.

Let ^ be the ideal sheaf of 2)i in 3t. To see that σ(Fx^) c ^ ί 1 ) ,
the problem being local we may assume X = &pκA for some K-
algebra A. Then & = p and σ(Fχ^) = J for some ideals p and
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3 of A with p e l As 2)i is reduced and irreducible, p is prime.
By (2) there is / £ A\p such that py = 3f in Af hence 3 = p, as
desired.

(2.3) Let 0 be an affine algebraic K-group scheme, ft a subgroup
scheme of 0 , and π: 0 —> 0/# the quotient morphism. 0/# is
a ϋΓ-scheme (cf. [J], (I.5.6)(8)), and π is open and affine (cf. [J],
(I.5.7)(3), (1)).

If M is an ^-module and if 9J is open in 0/5}, we set

(1)

f{A){xh) = h~ιf{A){x) Vx G (π

hefi(A), AeKAlg}.

One defines an ^5/3-module «5^^(M) by

(2) W^Schκ(π-ι*ΰ,M)*.

The correspondence M ι-> ̂ / ^ ( M ) defines an exact functor from
ft Mod into the category of quasicoherent ff^^-modules. -2^^(Af)
carries also a structure of 0-linearization.

If we let # operate on the coordinate algebra K[(δ] of 0 (resp.
M) by the right regular action (resp. as given), and take the infixed
point set of M ®κ K[<ΰ], we get a left exact functor

(3) indf: i3Mod->0Mod via M H ( M % ί [ 0 ] f ,

where the 0-module structure on (M ®κ jfiΓ[0])̂  is given by the left
regular action on K[<δ]. Then

(4) indf (M) ~ Γ(β/«, ^e/^M)) in 0 Mod.

The functor ind^ is right adjoint to the forgetful functor 0 Mod
ft Mod: If V is a 0-module, one has a ΛMinear isomorphism

(5) £
with an inverse given by g »-• g such that

(6) g{v){A){x) = {g®κA)(χ-\v <g> 1)),

veV, xeβ(A), AeKAlg,

where eM = M®κ ε 0 e ft Mod(ind|(M), M) such that X) raz ® αz H^
X)ε0(α/)m/ with ε® the counit of the Hopf algebra K[&], or ^ ^ is
the evaluation at the neutral element of &(K) under the identification



FROBENIUS MORPHISM OF FLAG SCHEMES 321

(4). The isomorphism (5) is called a Frobenius reciprocity. One has
also the tensor identity (cf. [J], (1.3.6)) in 0 Mod:

(7) V ®κ mά%{M)^mά%(V ®κ M)

such that the image of v®f sends x e &(A) into (x~ι(v®l))®Af(x),
AeKAlg.

(2.4) Let & be a subgroup of S) and q: &/Λ -> 0/ϋ) the natural
morphism. One has (cf. [J], (I.5.19)(5))

(1) SS*ι% o ind| ~ q^β/si on £ Mod

such that if 9J is an affine open of 0/S) and M e R Mod, the fol-
lowing commutative diagram results:

ι M

j J
where π is the quotient morphism & —• 0/β and the top horizontal
map is given by a® f \-+ a® βM(f)

Taking the global sections of (1) yields the transitivity of inductions:

(3) i n d j o i n d ^ i n d f .

If L G Λ Mod, the transitivity of inductions makes the following
diagram commute:

(4) e ' <

• L.

(2.5) We now fix the notations to be used throughout the rest of the
paper. G will denote a semisimple simply connected j&Γ-group with
a maximal torus T, both split over Z, and R the root system of G
relative to T with a positive system i?+ . We choose a Borel subgroup
B of G containing T such that the roots of the unipotent radical U
of B are - i? + , and set X = G/B.

Let W = NQ(T)/T be the Weyl group of G. If a is a simple root,
let sa be the reflexion in W associated to a, and let /: W —• N be
the length function on W with respect to {sa \ oc simple}. If w0 e
W with woi?

+ = - i? + , set C/+ = tϋoE/Tί̂ "1. Then {wU+B}weW

provides an open covering of G.
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As B = T K U, Grpκ(B, GLγ) ~ Grpκ(T, GLX), which we will
denote by X. X has the structure of an abelian group, called the
weight lattice, such that (A + μ){t) = λ(t)μ(t), t e T, λ, μ e X.
Define a partial order on X such that λ < μ iff μ — λ e Σα€.κ+ Nα.
Let X+ be the set of dominant weights, and put p = \ ΣaeR+ a e X+

If M is a Γ-module, one can write M — ]\λeXMχ with Mλ =
{m € M I t(m <8) 1) = m ® A(ί) Vί G T(A), A e KAlg}. We say λ is
a weight of ¥ iff MA ψ 0.

By abuse of notation we let λ € X also denote the 1-dimensional
^-module defined by λ. One has (cf. [J], (II.2.6))

(1) indg(Λ)^0 iff λeX+,

in which case (cf. [J], (Π.2.2))

(2) ind^A) has the highest weight λ with dimindf(A)^ = 1.

If Gr = ker Fr

G, F£: X —»• 3ε(r) factors through the natural morphism
q: X -» G/G>£ to induce an isomorphism F : G/(r r5 -^ X ^ in
(cf. [J], (1.9.5)) so that the diagram

(3) 4

commutes. If Br = ker i^ and C/r

+ = keτF^+, the multiplication in-
duces an isomorphism of ^Γ-schemes £/r

+ xBr -^ Gr (cf. [J], (Π.3.2)).
For simplicity we set

(4) Zr = i n d £ B : B Mod -• GrB Mod.

As Gr.S/.β ~ U+ is aίfine,

(5) Z r is exact (cf. [J], (1.5.13)).

If λ e X, then (cf. [J], (Π.9.2))

(6) Zr(λ) has highest weight λ with dim Zr{X)λ = 1

and

(7) Zr(λ)*~Zr(-λ + 2(pr-l)p) in GrB Mod.

Also (cf. [J], (Π.9.5))

(8) SOCQ B Zr(λ) is simple of highest weight λ.
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In particular (cf. [J], (Π.3.18)),

(9) Zr((pr - l)/>) is simple and admits a structure

of G-module,

called the rth Steinberg module and denoted Str.
One has by (2.4)(1)

(10) q*5?G/B(M) c~£?G/GrB(Zr(M)) V ¥ G £ Mod.

As B is defined over Fp, B^ ~ B in Grp^ (cf. [J], (1.9.5)); hence
one can make M into a G>2?-module, denoted ΛfM, through the
quotient morphism GrB —• GrB/Gr composed with the isomorphism
GrB/Gr^B^ induced by F^. One has

(11) F ^ W ( M M ) ~ -2fc/*(Λf)(r) inModχω.

That is given in each (wlI+B/B)^, w e W 9 by the following com-
mutative diagram:

(12) Sch*(wC/+, Λ/[rl)^+ Schjf (u;t/+, M)

^ + ®A: Λf[rl < M ®κ (K[w U+] ®κ K{~r))

with the bottom horizontal map given by m ® a ® ̂  H» α^'ί ® m.
(2.6) We examine next the inverse image q*<S?GiGrB(V)> V ^

GrB Mod. As the quotient morphism G -> G/GrB is not locally
trivial, the argument of [J], (I.5.17)(l) does not apply as it is. One
could consult [CPS], (3.1.2) and (2.7), but we prefer to write down an
explicit proof of the following fact:

PROPOSITION. Let s e N, Γ G Z + , and let qs: G/GSB -> G/Gr+SB
be the natural morphism. If V is a Gr+sB-module, the imbedding

induces an isomorphism
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that makes, in each wU+xs = wU+B/GsB, w e W, the following
diagram commutative:

+

s,q*s5?GIG B(V)) ^ - + *

I I
/ ^ j (iqwC/+] ^ F) > K[wU+] ®κ V

where the bottom horizontal map is given by b®c®v \^bc®v .

Proof. By taking the direct limit we may assume dim V < oo. Let
πs: G —• G/GSB and π£: G —• G/Gr+SB be the quotient morphisms
so that ft o π5 = π^. Define ^ : qt&GiG^BiV) -> ^G/G^V) to be
the adjoint of the imbedding ^GIG^B^V) -* QS^G/GSB{V) .

Assume first $ = 0. As {w{7+Xo}wew ^s a n ° P e n covering of X,
to see that ^ is invertible, we have only to check it in each wU+xo,
w eW, then only in U+XQ by the JF-equivariance; hence it is enough
to show that the map

(1) Γ(ί/+x 0, *k ^

is invertible. But the left-hand side is isomorphic to

(2) K[U+] ®K[ir/u;] Schκ(U+, V)u:

- K[U+] ®K[Uψ (V

while the right-hand side is isomorphic to V ®κ K[U+]. Hence we
are reduced to showing that the map

(3) K[U+] ®K[U+f) (V ®κ K[U+]) -+V®K K[U+]

via a®m®bt-*m®ab

induces an isomorphism upon restriction to

K[U+]®K[U+f)(V®KK[U+]fr.

We will argue by induction on dim V. Note that

(4) Vur φQ iϊVφQ

as C/+ is unipotent. In particular, if dim V — 1, V = Vu* hence

(5) (V ®κ K[U+])ur ^V®κ (K[U+fr) c±

and the assertion follows.
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Assume next d i m F > 1. As U+/U+ ^ J7(r) is affine, ind^I is

exact. Also K[U+] is free of rank pr\R+\ over K[U+]&. Hence we
get a commutative diagram of column exact sequences

0 0

1
K[U+]

1
(6) K[U+] Θjrrrrwo i n d £ ( F ) > V ®κ K[U+]

1

1
0 0.

By the induction hypothesis, the top and the bottom horizontal maps
are isomorphic; therefore so is the middle, as claimed.

If s > 0, we have by the above a commutative diagram

_ # Λ * ζ~V? (T/Λ s Ψ __* ζ~S? ί J/\
πsQs-ZG/Gr+sB{V) > ^s ^G/GsB(V)

(7) II ϊ}

Hence at each x e X we have an isomorphism

(8) (π;Ψ)x = ^

But <fχiX is free of rank ps\R+\ over <fχ{S) χ hence &χyX is faithfully

flat over &G/GsB,πs(x) > so Ψπs(X) is already isomorphic, from which we

conclude that ψ: qs^G/G B{V) —> *%G/GB(V) is an isomorphism.

(2.7) One can likewise show



326 MASAHARU KANEDA

PROPOSITION. Let ( 0 , 3 ) = (G, B) or (G, GrB). Let M, M' e

(i) The natural morphism

is invertible.
(ii) //" A/ is finite dimensional, ^ / Λ ( A f ) is locally free of rank

dim Af, am/ ί/*e natural morphism «5β/β(Af*) ->•^/^(Λf)v is inverί-

(2.8) LEMMA. Lei ((5, ft) = (G, B) or (G, GrB). If L,M, and

N are S)-modules with L and M finite dimensional, put

Mλ =

M2 =

one has a commutative diagram of K-linear spaces

M{ <8>A: M2 • 3/3

'T
indj (L* 0A; Λf) )

c w //ze composition, the vertical isomorphisms are the natural
ones, and μe<8 Mod, such that the diagram

indj (L* <g>* M) ®A: indJ (M* ®^ TV) — ί U i n d^ (L* ^ iV)

U L * ®KM®KeM* ®KN \eL* ®KN

L* ®κ M ®κ M* ®κ N > L* ®κ N
L*®κv®κN

commutes if v is the natural map.

Proof. Let ψx e indJ(L* ®κ M), ψ2 e indj (M* ®κ N), ψ3 =
Mψi ®K ΨI) , and ψ\ e M\, ψ2 e M2, ^ G M 3 corresponding to
ί̂ i ? ̂ 2 9 Ψ3> respectively. We must show

(1) ψ2°ψ\ = Ψl.

One has

(2) ψ3 = (L* ®κ v®κN)o (ψx ®κ ψ2) in Sch*:(<5, V ®κ N).
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I f 93 is a n affine o p e n o f X, o n e c a n w r i t e

t ® fi ® m , i n ^ [ π " 1 ^ ] L*M

and

res®_laj(^2) = X] bj ® gj ® «,• in AΓIπ"1^] ®jr M* (S)̂  N.
j

Then by (2)

(3) res®_l

I f v = Σfc ck ® /A G ( ^ [ π " 1 ^ ] ®Λ: £)« ^ Γ(fD, -2^(L)), then

(4) ψi{V)[υ) = Σ aibick ® gj(mt)Mlk)nj by (3)

while

(5)

hence ψioψι = ψτ, in 9J, as desired.

(2.9) Let MGB Mod, and denote the isomorphism

- q^?G,B(M) (resp. ^ ^ ^ ^ ( Z ^ M ) ) - , ^ / Λ ( Z Γ ( M ) ) ) of (2.4)

(resp. (2.6)) by θ\ (resp. Θ2) One readily verifies

LEMMA. If a: q*q^G/B{M) -+J2G/B{M) is the adjunction, then

aoq*θχ =

(2.10) Let M' be another 5-module. If d imM < oo, one gets
from (2.9) a commutative diagram of Λ"-linear spaces
(1)

^k(M')) —^^ Modx(q*2>G/GrB(Zr(M)), JZχ(M'))

mdβ

B(M*®κM')
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where the top (resp. middle) horizontal map is Modχ(q*θ\,

(resp. Maάχ(&x(eM)y-2χ(M'))) and e^ e B Mod(M*, Zr(M)*) is
the dual of βM -

On the other hand, let L e GrB Mod with dimL < oo, τi e
GrB Mod(L* ®κ Zr{Mι), Z r(L* ®κ M')) the tensor identity (2.3)(7),
and τ2 e G Mod(ind | 5 (Z r (L* Θ* Z r (M ; ))), indg(L* ®^ AT')) the
transitivity of inductions (2.4)(3). If 0J (resp. 0f) is θx (resp. 02)
with M (resp. Zr{M)) replaced by M' (resp. L), one has a commu-
tative diagram of ^-linear spaces

MoάGIGrB{SfGIGfB{L), ^

(2)

r — ^ - * indg(L* ®κ M'),

where the top (resp. bottom) isomorphism is an adjunction (resp.

indg^ίτO).
Then putting together (1) and (2) yields

(2.11) LEMMA. If M, M' G B Mod with dimΛf < oo, one has a
commutative diagram of K-linear spaces

^— ind$(M*®κM')

(Zr(M)* ®κ M')

| Zr{M')),

where the left vertical map is given by f^q^f,

τx e GrB Mod(Zr(M)* ®κ Zr(M'), Zr(Zr(M)* ®κ M1))

is the tensor identity, and

τ2eG Mod(indg r5(Z r(Z r(ΛO* <g>* M')), inάG

B{Zr{M)* ®κ M'))

is the transitivity of inductions.
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3. Flag schemes.
(3.1) As F: G/GrB -+ X^ is invertible, to see that X = G/B is

Frobenius split, one has only to show that

) € ModG/GrB(

admits a left inverse.
One has soc^ # Zr{K) = K by (2.5)(8); hence one has the inclusion

i e GrB Moά(K, Zr(K)). As JZG/GFB
 i s exact, *S?G/GrB(i) induces

monic <?G/G B -* Q*&x On the other hand,

(1) MoάG/GB(^G/GB, qjfx) ~ Γ(3E, *x) c K.

Hence we may assume

(2) F Z ι ϊ

(3.2) THEOREM. The imbedding S*GJGB{Ϊ) splits to yield

GfB Θ J5?G/GB(Zr(K)/K) inModG/GB.

Proof. Put ι v = MnάG/Gjί&G/Gjίi), &GIGTB)
 O u r objective is to

show that i v is surjective. If /* G G>£ Mod(Zr(A:)*, J5Γ) is the dual
of /, one has a commutative diagram of ^-linear spaces

MoάG/GrB(5?G/GrB(Zr(K)),(?G/GrB) ?

(1)

Zr(ΛΓ) — ^ K,

where the middle horizontal map is ind^ 5 (/*) .
As eg is invertible and as /* is surjective, one has only to show

(2) ez(κy i s s u r J e c t i v e

Recall the tensor identity (2.3)(7)

(3) Str ®κ Str CΪ Zr((pr -l)p®κ Str) in GrB Mod.

As Zr is exact, a surjective

(4) (pr - \)p ®κ e{pr_x)p e B Moά((pr - \)p ®κ Str, 2(pr - \)p)
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induces a surjective

(5) Zr((pr-l)p®κe{pr_ι)p)

G GrB MoA{Str ®κ Sir, Zr(2(pr - 1)/?)).

But Zr(2(pr - \)p) ~ Zr{Kγ by (2.5)(7); hence one gets a surjective

(6) φ G GrB Mod(Str ®κ Str, Zr(K)*).

Then φ induces φ G G Mod(Str ®κ StΓ9 mά%B{Zr{KY)) by the
Frobenius reciprocity such that

(7) *zf(ir) ° ^ = ^

hence e$(Έr.. must be surjective, as desired.

(3.3) REMARKS, (i) Unlike the case of the projective spaces,
q*&G/B does not in general split into a direct sum of invertible sheaves
[Haas], (4.5.5).

(ii) If s G N, one can make as in (2.5)(11) a G>2?-module M into
a G>+52?-module, denoted also by M^ . Then in Gr+SB Mod

(1)

If qs: G/GSB —• G/Gr+SB is the natural morphism, one has commu-
tative diagram in

G/B ^ ^ (G/B)W ^— G/GSB

(2) 4 [f>

G/GrB ——> (G/GrB)& +—- G/Gr+SB;

hence the natural morphism <^G/Gr+SB -> QS*^G/GSB splits to yield

(3) <h*

in ModG/Gr+sB.

(iii) The cup product Str ®κ Str -+ indβ(2(pr - \)p) in G Mod,
induced by the multiplication (pr - \)p ®κ (pr - \)ρ —• 2(pr - 1)/?,
turns out to be surjective (cf. [J], (11.14.20)). On the other hand, one



FROBENIUS MORPHISM OF FLAG SCHEMES 331

has ^-linear isomorphisms

G Moά{Str ®κ Sir, indg fj(Zr(tf)*))

~ G Mod(Str ®κ Sir, indg*(Z r(2(// - 1)/?)))

~ G Mod(Sίr Θ* Sί r , indg(2(pr - 1)/?))

by the transitivity of inductions

~ B Mod(Str ®κ Sir, 2(/?r - 1)/?)

by the Frobenius reciprocity

It follows that φ is surjective, hence every morphism q*&χ —• r

and, a fortiori, every Frobenius splitting of (7/5, is provided by
Str ®κ Str.

4. Schubert schemes.
(4.1) Let φ be the ΛMinear map

Str ®κ Str -

induced by φ of (3.2). One has ΛMinear isomorphisms

(1) GrBM<Λ(Str®κStr9K)

c- G r ^ Mod(5i r, Str) as ^ ί r is self-dual

~ 5 Mod(Sί r, (/7
r - \)p) by the Frobenius reciprocity

~ K as (// - 1) is the highest weight of *Sϊr

r;, ΛΓ) = KΊτ,

where Tr is the trace map of the it-linear endomorphisms of Str.
Hence we may assume in (3.2)

(2) i*oφ = Tτ.

In particular, if v_ e Str_(j?r_l>}p\0 and v+ e Str^pr_l)p\0, then

(3)

as one can regard v+ as the dual of V-. Hence one can take the

splitting of ^SQ/GBU)
 t 0 ^ e

(4) σ =

We will show
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(4.2) THEOREM. Let w e W. If <fw is the ideal sheaf of the
Schubert scheme X(w) = U+wB/B in X, then

Hence F*σ splits all the Schubert subschemes of X.

(4.3) Let 2) be a closed subscheme of X with the underlying topo-
logical space \X\\\U+B/B\. If a is a simple root, the Schubert scheme
X(sa) is an irreducible component of 2). In w G W with l(w)>2,
there are simple roots a\ and OLΪ such that l{sawsa^) = l(w) - 2.
Then

(1) saιw Φ wsa2 with l(saιw) = l(wsa2) = l(w) - 1.

It follows that

(2) X(w) is an irreducible component of X(saιw) n X(wsa2).

Hence in order to get (4.2), it will suffice by (2.2) to show that

(3) F*σ splits 2).

(4.4) Let j G indβ(p)p be such that 7 = 1 in £/+ regarded as an
element of Schκ(G, p)B

p [J], (II.2.6), and let

] e

corresponding to j . If w G PΓ, one has a commutative diagram

Γ(wU+B/B,3k(-p)) ]{wU+B/B\ Γ(wU+B/B,t?x)

(1)

If 7*1̂ +̂ = 0, then j would vanish in wU+B that is open in G,
hence in the whole of G, contradicting the choice of j . It follows
that

(2) j is monic.
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(4.5) LEMMA. Supp(coker]) = \X\\\U+B/B\.

Proof. As j is invertible in U+B/B,

(1) Suvp(cokeτ])C\X\\\U+B/B\.

On the other hand, if a is a simple root, one finds j = 0 in U+saB
(cf. [J], (Π.2.6)); hence

(2) Supp(cokery) D \U+saB/B\.

But Supp(coker j) is closed in X as 2χ{—p) is quasicoherent. Hence

(3) Supp(cokerJ) D (J \X(sa)\
a simple

= U \U+wB/B\ = \X\\\U+B/B\,
wew\\

and the assertion follows.

(4.6) We take 2) to be the closed subscheme of X defined by the
ideal sheaf i m j . One has a commutative diagram of short exact
sequences

(') 1

where the left vertical morphism is given by / i-> fpjp' ! . If j r =
F~ι()W), hitting F~ι on (1) yields by (2.5)(11) a commutative dia-
gram of short exact sequences

(2)

0 • ̂ G/Grβ(-PrP) — ^ &G/GB > cokerj r »• 0

1 I' I
0 > q*3χ(-p) •• q*&x •• 4*(cokerj) ^ 0,

with j r = ]r(G/GrB) e md$£(prp)prp\0.
Our objective is to show
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(4.7) PROPOSITION. σ(im(q*])) C imjV

Proof. Put

(1) Mx= MoάG/GB(q*(?x,

M2 =

M3 =

M4 = ModG/GB{3G/GB(-prp),

h = mdξB(Zr(K) ®κ Zr(-p)*).

One has in G Mod

(2) inaG

1

rB{Zr{-p)*)~ma%rB{Zr{{2pr-\)p)) by (2.5)(7)

~ mά(

B{{2pr - \)p) by the transitivity of inductions

and

(3) inά%B{Zr{-p)* ®κ -prp)

a mάG

GB{Zr{{2p' - \)p) ®κ -prp)

^ indgB(Z r((p r — l)p)) by the tensor identity

c± Sίr by the tensor identity again.

Hence one gets by (2.8) and (2.11) a commutative diagram of ΛMinear
spaces
(4)

Str ®κ Sir ®κ Modx(£χ(-p), @x) ^— Str ®κ Str ®κ i ^

®κ M2 < I\ ®κ h

M3®KM4 ^— S

where c\ and C2 are compositions, and v\, V2, ^3 are some nonzero
G-homomorphisms.
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If ϋ- G Λ/3 is V- under the isomorphism (3), then (4.7) will follow
from

(5) a o (φ ®κ q*)(υ- ®κ v+ ®κ ]) = c2(ϋ- ®κ Jr),

which translates through (4) into

(6) ί/2 o (φ ®K Vχ)(V- ®K V+ ®K j) = MV- ®K jr)-

We actually need (6) to hold only up to Kx .

Consider an imbedding eprp e G Mod(ind^ β(PrP) > ^^βiPrP))
put fr = eprp(jr). One has ^-linear isomorphisms

(7) G Mod(5ίr ®κ Str ®κ in4(p), indg((2pΓ - l)/>))

- 5 Mod(5i r ®κ Str ®κ indg(p), (2pr - 1)/?)

by the Frobenius reciprocity

^K by(2.5)(2)

ĉ  G Moά{Str ®κ mά%B{prp), indg((2pr - 1)/?))

^ G M*ά{Str ®κ inάG

B{prp), indg((2/?r -

Hence if μx e G Moά(Str ®κ Str <8>κ indβiP) > ind^((2p r - !)/>)) and
^ G G Mod^^Θ^indf (prp), indf ((2pr- l)p)) are the cup products,
we are reduced to showing

(8) μi(t;- ®* v+ ΘJS: 7) = /ι2(v- ®^ 7̂ ) up to Kx.

But we have another cup product

μ3 e G Mod(Str g g

such that

(9) μ\=μi° (Str ®κ

By the weight consideration we must have

(10) μ*{v+®j)=jr upto i^ ;

hence (8) follows, as desired.

(4.8) Finally, if P is a parabolic subgroup of G containing B, let
π: (7/5 -> G/P be the natural morphism. As G/B and G/P are
both projective over K, π is projective. Also π*<fGiB = ̂ b/p ? a s ^
is locally trivial with ^FjB(PjB) = AT. Hence one gets from [MR],
Proposition 4,
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COROLLARY. π*(F*σ) splits all the Schubert subshcemes of G/P.
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