
PACIFIC JOURNAL OF MATHEMATICS
Vol. 164, No. 1, 1994

LATTICES OF LIPSCHITZ FUNCTIONS

NIK WEAVER

Let M be a metric space. We observe that Lip(M) has a striking
lattice structure: its closed unit ball is lattice-complete and completely
distributive. This motivates further study into the lattice structure of
Lip (A/) and its relation to M . We find that there is a nice duality
between M and Lip(Λf) (as a lattice). We also give an abstract
classification of all normed vector lattices which are isomorphic to
Lip(M) for some M.

The set Lip(Af) of bounded real-valued Lipschitz functions on a
metric space M has been studied extensively (see [2] for some ref-
erences) as either a Banach space or a Banach algebra. However, its
natural lattice structure has been almost completely ignored, probably
because it is not a Banach lattice: the "Riesz norm" law

M < \y\ =» IMI <
which connects lattice structure with norm, is not satisfied by either of
the two norms customarily given to Lip(Af). (Here |x| = x V (—Λ:).)

Nonetheless, the lattice structure of Lip(Aί) is intimately related to
its most natural norm. Indeed, for any norm-bounded set of elements
{xa} C Lip(Λf), the join V x<* exists and satisfies

Since — \/ xa = /\{-xa) (whenever either side exists), this implies a
similar statement for meets and is equivalent to saying that the closed
unit ball of Lip(Af) is lattice-complete. What's more, the unit ball is
completely distributive, which makes it very special from the lattice-
theoretic point of view. We therefore feel that a study of Lip(Af)
which emphasizes its lattice structure is well warranted.

This paper begins such a study. Having identified the special lattice
properties of Lip(Af), we also find it interesting to examine the class
of all normed vector lattices which share these properties. We will call
these objects Lip-spaces. (Note: by "normed vector lattice" we simply
mean a vector lattice which is equipped with a vector space norm.
This is at variance with a usage of this term which requires that the
norm be a Riesz norm.)
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The outline of the paper is as follows. In the first two sections we
make several definitions and give some simple results (with proofs
mainly left to the reader) on Lip(M) and Lip-spaces. In the third
section we state our main theorem on the relation between metric
spaces and Lip-spaces, and prove the easy parts of it. The fourth
section contains two theorems on the normed vector lattice structure
of Lip(Af), and in the fifth section we prove that every Lip-space
is isomorphic to Lip(M) for some M. The hard parts of our main
theorem are proven in §§IV and V.

We assume some familiarity with vector lattices; standard facts will
be referred to [3]. Also see [1] for basic material on complete distribu-
tivity. This material is based upon work supported under a National
Science Foundation graduate fellowship.

I. Throughout the paper, 3Ba{X) will denote the closed ball of ra-
dius a about the origin in a normed vector space X.

Let M and N be metric spaces. A Lipschitz function f\ M —>
N is a map for which there exists a constant k e R+ such that
p(f(p),f(q)) < k p(p, q) for all p, q e M. We define L(f)
to equal the least such k.

Lip(Af) is defined as the set of all bounded real-valued Lipschitz
functions x: M —• R and is given the norm

Lip(M) is a Banach space under || | | , and it has a vector lattice struc-
ture with meet and join defined pointwise. Under this structure any
norm-bounded set has a join, still taken pointwise, which satisfies (*)
of the introduction. This implies that the closed unit ball £$\ (Lip(Af))
is lattice-complete, in fact a complete sublattice (i.e. a subset closed
under V a n d Λ) of the set of all functions M -• [-1, 1] c R.
As [-1,1] is completely distributive and this property is preserved
by products and complete sublattices, it follows that ^(Lip(Af)) is
completely distributive.

If M is any metric space, let M1 be the space M remetrized by

pM\p,q)=mm(2,pM(p,q)).

Then Lip(Af) and Lip(Λf/) are identical (same elements, same op-
erations, same norm). Also, if M is the completion of M then
Lip(Af) and Lip(Af) are isometrically isomorphic, including lattice-
isomorphic. Therefore we restrict attention to the class Jf^ of com-
plete metric spaces with diameter < 2.
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For M, N E J?^ , we say that a map f:M

if there are positive constants k\, ki such that

ί) < p{f{p),

N is bi-Lipschitz

for all p, q e M; thus "bi-Lipschitz and onto" is equivalent to "Lip-
schitz with Lipschitz inverse."

II. Let a Lip-space be a vector lattice X equipped with a vector
space norm such that the closed unit ball 3S\ (X) is lattice-complete
and completely distributive. This generalizes the properties of
Lip(M) it should become clear in §111 that this level of abstraction is
appropriate.

In a Lip-space every norm-bounded set {xa} has a join and a meet,
both of norm < sup{||xα | |}.

PROPOSITION 1. Every Lip-space is norm-complete.

Proof. Let X be a Lip-space. First let (x;) c X be a sequence such
that Σ ||#i 11 < °° a n d each x ; > 0; we will show that Σ */ exists.
Let sn = x\ + + xn since ||sΛ | | < £ ||x/|| for each n, x = \Jf sn

exists. Because the sequence (sπ) is increasing, * = VΓ5« f° r e a c ^
fceN. Also note that the law (\J xa) - y = V ( ̂ Q: ~ y) is generally
valid in any vector lattice whenever one side is defined ([3], p. 56), so

\\Xi\\,

i=k+ln=k n>k

and as the last sum goes to zero as k —• oo, we have X ) ^ = x .
To show that the norm is complete, we must show that Σ Xι exists

for an arbitrary sequence (xz) c X such that Σ I W I - °° ^ n ^ s

case let x^ = JC, V 0 and xj~ = (-JC/) V 0 for all / then xt = c^ - jcf
([3, p. 57]). Now xf > 0 and ||xf|| < ||x/||, so by the above both
y = Σ * * and z = Σ ^ Γ exist. Setting Λ: = y - z, we then have

/=!

Έ*t y^ χτ

where both of the last two terms go to zero as k —• oo. Thus Σ χi
exists and equals x . D
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oo

l\xln
n=l

=

oo

l\x/n
n=k

Every Lip-space X is Archimedean since if x > 0 then

< \\x\\/k

for any k e N, hence ΛΓ x / n = 0
For each α e R + there is a constant

ca\J{x:\\x\\<a}

in X . We also define c0 = 0 and C-a = -ca. Then for all α G R,
ca = a Ci thus,

oo oo

Cl/n = /\(ca + Cϊ/n) = /\

n=\ n=\ n=l

= /\ Cb

b>a

We also have ||c f l | | < \a\, and if X has more than one element then
ca > 0 for any α > 0, and so (1 + e)ca £ ca for any ε > 0, hence
||(1 +e)c f l | | > α, hence ||c f l | | > a. Thus ||c f l | | = \a\ for any a unless
the Lip-space is trivial.

Note that the closed unit ball of X is contained in but generally
not equal to the interval [c_i, C\]. (E.g. consider the case X =
Lip([0, 1]), when c\ is the function which is constantly 1.) This
is related to the fact that the norm is not a Riesz norm. However,
any Lip-space can be made into a Riesz-normed vector lattice by in-
troducing the new norm

Moo = inf{α e R+ : C-a < x < ca}

= in f {αeR + : |JC| <ca}.

We have ||x||oo < | |^| | and||cα||oo = \a\ if X is nontrivial. In gen-
eral the norm || ||oo is not complete and its unit ball, which equals
[c_i, C\], is not lattice-complete. (Note: the term "constant" and the
symbol || ||oo are indeed consistent with the case X = Lip(Λf).)

The usual vector lattice notions of normal homomorphism and band
have to be modified here because of the existence of a norm and the
special role of norm-bounded joins and meets. Thus, we let a seminor-
mal homomorphism of Lip-spaces be a bounded linear map φ: X —> Y
which preserves constants and norm-bounded joins. An isomorphism
of Lip-spaces is a seminormal homomorphism which is a (not nec-
essarily isometric or onto) Banach space isomorphism. By the open
mapping theorem, it is enough for φ to be a 1-1 seminormal homo-
morphism with norm-closed range. A semiband of a Lip-space X is
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a linear subspace Y which is closed under norm-bounded joins and
such that

(y eY and \x\ < \y\) imply x e Y.

By essentially a standard argument ([3, pp. 101-103]), every semiband
is the kernel of a seminormal homomorphism, and conversely. (The
only nonstandard aspect of this argument appears in the forward di-
rection when we must endow X/ Y with a norm. Here it is enough to
verify that Y is norm-closed; but Y is naturally a Lip-space, so this
result follows from Proposition 1.)

In the above definitions, the clauses concerning norm-bounded joins
imply similar conditions on norm-bounded meets by the law -\J χa =

M-Xa)
We also define a sub-Lip-space of a Lip-space X to be a linear

subspace Y which contains the constants and is equipped with a norm
such that £&\(Y) is a complete sublattice of 3§\{X) which contains C\
(the greatest element of &\ (X)). It is clear that Y is itself a Lip-space
whose constants are the same as those of X. However, the norm on
Y need not be the restriction to Y of the norm on X.

III. We already have a way of going from a metric space M to a
Lip-space Liρ(Af). Conversely, if X is a Lip-space let its dual metric
space be the set X" of all seminormal homomorphisms X —• R,
with metric inherited from the Banach space dual X*. Since every
seminormal homomorphism X —• R sends 3&\{X) C [c_i, C\\ into
[-1, 1], they all belong to 3B\{X*) and hence the distance between
any two is < 2. Also, X" is complete: any Cauchy sequence (pn) in
X~ has a limit p in X* which evidently preserves constants; and if
{xa} c 3§a{X) and \p -pn\ < ε, then

a) - \Jp(Xa)\ < \p (\JXa) " Pn

Pn Pn(Xa) - \JP(x<x)

hence p preserves norm-bounded joins, s o p e Γ . So we have

If M , JV G Λ ^ 2 ) and f:M-+Nis Lipschitz then we have a natu-
ral map f*\ Lip(iV) -* Lip(Λf) given by f*{x) = x°f, and if X and
Y are Lip-spaces and 0: X —> y is a seminormal homomorphism,
then we have a natural map 0*: 7 " -» X " given by φ*(p) = P ° φ.
We can now state our main results.
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MAIN THEOREM. Let M, N e ^ ^ and let X and Y be Lip-

spaces.

(a) M is naturally isometric to (Lip(Af))~ .
(b) X is naturally isomorphic to Lip(X~) and the natural map

τ:X^ Lip(X~) satisfies max(||*||oo, ||*||/3) < | |τ(*) | | < \\x\\ for all
xeX.

(c) Let f:M^N be Lipschitz. Then

(i) /* is a seminormal homomorphism and \\f*\\ =

max(l,L(/))
(ii) if f(M) is dense in N then f* is 1-1, and

(iii) // / is bi-Lipschitz then f* is onto.

(d) Let φ: X —• Y be a seminormal homomorphism. Then
(i) φ* is Lipschitz and max(l, L{φ*)) < \\φ\\,

(ii) if φ is onto then φ* is bi-Lipschitz, and
(iii) if φ is 1-1 then φ*(Y~) is dense in X~.

In parts (c)(i) and (d)(i), the norm of a seminormal homomorphism
is just taken to be its usual norm as a map between Banach spaces.

We make some observations on this theorem. First, it yields a com-
plete classification of Lip-spaces up to isomorphism. By (b) every
Lip-space is isomorphic to Lip(M) for some M e J?^ , and by (c)
and (d) Lip(Af) is isomorphic to Lip(iV) iff there is a bi-Lipschitz
map from M onto N, for bi-Lipschitz plus dense range clearly im-
plies onto. We also see that the Lip-spaces are precisely those normed
vector lattices which are isomorphic to Lip(Af) for some M.

In part (b) τ is generally not an isometry. Indeed, it is easy to con-
struct a two-dimensional Lip-space X which provides a counterexam-
ple. The existence of such an X also implies that the inequality in
part (d)(i) need not be an equality: for in this case φ = τ~ι is not an
isometry, hence ||τ" x || > 1, while (τ" 1 )* = (τ*)" 1 is an isometry by
part (a), hence L((τ~1)*) = 1.

However, if X = Lip(Af) for some M e ^ ^ , then X is indeed
isometrically isomorphic to Lip(X~) since X~ is isometric to M by
part (a). It follows that, in part (d)(i), if also Y = Lip(JV) for some
NeJfM, then max(l, L(φ*)) = \\φ»\\ = \\φ\\ by part (c)(i) and the
fact that X is isometric to Lip(X~) and Y is isometric to Lip(7~).

Several parts of this theorem can be proven immediately:
(c)(i). The only nontrivial part is determining \\ft\\ of course, this

calculation implies that f* is bounded. Assume / is nonconstant;
the constant case is trivial.



LATTICES OF LIPSCHITZ FUNCTIONS 185

For any x e Lip(iV), ||/*(x)||oo = \\x ° / | U < ||x|U and

L { U x ) ) = s u p

p,qeM
pφq

Pq P{f(p),f(q)) '
f(p)Φf{q)

<L{x).L{f).

Hence

||Λ(x)|| < max(||x||oo, L(x) L{f)) < \\x\\ • max(l, L(f)),

so | |Λ| |<max(l, £ ( / ) ) .
Conversely, for any ε > 0 there exist po, q$ € M, pQ φ q§, such

that p(f(p0), f(q0)) > W)-ε)p(p0, q0). Defining x e Lip(N) by
x(p) = 1 - p{p, f(q0)), we have ||x|| = 1 and

_ P(f(Po), /(go)) ^ Γ^/ Λ c

So 11/j.ll > L(/) also Λ(^i) = Q implies ||/ic|| > 1, and we are done.
(c)(ii). Suppose x, y e Lip(JV) and x φ y\ then x and y are

continuous functions on N so {p e N : x(p) Φ y(p)} is a (nonempty)
open subset of N. So if /(Af) is dense in N there exists p$ e M
such that x(f(Po)) Φ y(f(Po)), i.e. /*(x)(Po) ^ Λ(y)(Po)> and thus

(c)(iii). To prove this part we need to invoke the well-known fact
([5, p. 244]) that if N is a metric space and N' c N, then every Lip-
schitz function x: N' —> R extends to a Lipschitz function x: N —* R
with Pll = ||x||.

Now if / : M -> ΛΓ is bi-Lipschitz then any x G Lip(Af) lifts
to a Lipschitz function on f(M), which can then be extended to a
function >> e Lip(JV) by the result just quoted. Then f*(y) = x and
we conclude that f* is onto.

(d)(i). \\φ\\ > 1 since φ(c\) = Ci. Now let p, q e Y~ and sup-
pose ρ(φ*{p), φ*{q)) > k. Then there exists x e &\{X) such that
\Φ*(p)(x) - Φ*(q)(x)\ > k, hence there exists y = φ(x) e &\\φ\\(Y)
such that \p(y) - ^(y)| > fc. Γf follows that ||^|| - p(p, q) > k. We
conclude that p(φ*(ρ), ^*(9)) < |Ϊ0|| />(/?, tf), so 0* is Lipschitz and
L(Φ*) < WΦW
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(d)(ii). We just showed that φ* is Lipschitz for any φ. Now sup-
pose φ: X —• Y is onto. By the open mapping theorem there exists
a G R + w i t h 3SaϋJ\ c φ { β χ { X ) ) . I f p , ? G Γ a n d p ( p , q ) > k ,
then there must exist y G £B\{Y) with |p(y) — #001 > &; then
φ(x) = αy for some x^3S\ (X), so we have

\Φ*(p)(x) - </>*(tf)M| = \p(ay) - q(ay)\ >a k,

and we conclude that p{φ*(p)9 Φ*{q)) > a p(p, q). So 0* is bi-
Lipschitz. D

It remains to prove (a), (b), and (d)(iii). Part (a) will be proven in
the next section, and the other two parts will be the content of the last
section.

IV. THEOREM 1. Let ¥ E / ( 2 ) and let Y be a semiband in Lip(Af).
Then there is a closed subspace M' c M such that Y consists of
precisely those elements of Lip(Af) which are zero on M' that is,
Y = ker u, where i: M' —• M is the inclusion map.

Proof. Let x be the largest element of Y of norm < 1 then x > \x\
so x is positive, i.e. x{p) > 0 for all p e M. Define M1 = x~ι(0).
If y e Y then \y\/\\ \y\ \\ < JC, hence y{M!) = 0. To prove the
converse, we will show that x is the largest element of Lip(Af) of
norm < 1 which is zero on M' then y e Lip(Λf) and y{M') = 0
will imply |j>|/|| |y| || < x, hence y € Y. Thus, we must show that
x[p) = p(p 9 M') Λ 1 for all p e M. (In case M1 = 0 , we naturally
set />(/?, M') = 2 for all p.)

Certainly x{p) < p(p, Mf) Λ 1 for all p G M. Now pick PQ G M
and λ < 1 and suppose x(po) < 1. For countable ordinals a, we use
transfinite induction to construct elements paeM such that

(**) β < a => x(pβ) - χ(pa) > λ p(pβ ,Pa)>0.

The construction goes as follows. Given pa such that x(pa) > 0, to
construct pa+χ first define the function y(p) = (x(pa) - λ ρ{p ,pa))
V0. If y < x then y G Y, hence y/||)>|| < x . However, since | |j; | | < 1
and y(pa) = x(Pa) this is a contradiction.

Therefore y ^ x and so there must exist a point /?α+i G Λf such
that x(pα+i) < x{Pa)-λ-p(pa+\, /Jα). Assuming condition (**) holds
for all β<a,we have

X(Pβ) - X(pa) > λ . p(pβ , pa) ,
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and

X(Pa) ~ X{Pa+\) > λ p(Pa , Pa+l) ,

hence

x(pβ) - x(pa+ϊ) > λ. p(pβ, p α + 1 ) .

Also, for /? < α, p{Pβ,pa+\) > 0 since p^ = pa+\ would imply
x(pβ) = x(pa+ι). So (**) is still satisfied after pa+γ has been con-
structed.

For limit ordinals a, the net {x(Pβ))β<a is decreasing and bounded
below, hence is Cauchy; therefore by (**) the net (Pβ)β<a is also
Cauchy and we may define pa to be its limit. In this case, for any β <
a the first part of (**) is satisfied by continuity and the satisfaction
of the second part is clear.

Since the numbers x(pa) are strictly decreasing, the construction
must stop eventually, but the only way this can happen is if x(pa0) = 0
for some αo I n summary, under the assumption that x(po) < 1 we
have proven that

x(Po) = x(Po) - *(Pa0) > λ p(p0, Pa0) > λ />(#), M').

Since this is so for any λ < 1 we conclude that x(po) > p(po, M1).
Thus for any poeM, x(p0) > p(p0, M') Λ 1, as desired. D

By Theorem 1, it is clear that the maximal semibands of Lip(M) are
precisely the kernels of seminormal homomorphisms Lip(M) —• R.
Thus the following corollary implies that every M e Jf^ is in a
natural bijection with the set of maximal semibands of Lip(Λf).

COROLLARY. For any Me^^2\ the natural map σ: M-+(IAp(M))~
is an isometry of M onto (Lip(Af))~. (Main Theorem part (a)).

Proof. The map σ takes p G M to the function x \-+ x(p). To
show it is an isometry, choose po, q^eM. For any x e ^ ( L i p ( M ) )
we have

\σ(po)(x) - σ(qo)(x)\ = \x(p0) - x(qo)\ < p(Po, Go),

hence p(σ(po), σ(qo)) < p(po, ^o) Conversely, consider the function
x E «^i(Lip(Af)) defined by x(p) = 1 - p(p, qo). We have

\σ(Po)(x) ~ σ(4o)(x)\ = \x(Po) - X(QΌ)\ = P(Po, Qo),

and hence p(σ(Po), σ (ίo)) > P(Po> Qo). So σ is an isometry.
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Now we show σ is onto. Let φ: Lip(Af) —• R be a seminor-
mal homomorphism. By Theorem 1, there exists M' c M such
that ker0 = ken*, where i: Mf —> M is the inclusion map. Since
Lip(Af') = Lip(Af)/ker0 = R, Lip(Af') is one-dimensional, and M'
must consist of a single point po: if M1 had more than one point then
for any q e M1 the function f(p) = p(p, q) in Lip(Af') would be
nonconstant so Liρ(M') could not be one-dimensional. Identifying
Lip(Af') with R, the map u is then of the form u{x) = x(po), i.e.
U = <τ(A>); and k e r * * = ker^ and u{c\) = φ(c\) = 1 imply u = Φ
So φ = σ(po) and we are done. D

The following theorem, which we need for §V, is reminiscent of the
Stone-Weierstrass theorem. Note, however, that if the hypothesis that
Y contains the constants is removed, then Y may be nowhere near all
of Lip(Af). For example, Y c Liρ([0, 1]) could be the set of func-
tions of the form x ι-» ax ( α e R ) ; this is a one-dimensional subspace
which separates points in the manner required by the theorem.

THEOREM 2. Let M e ^ ^ and let Y beasub-Lip-spaceofLip(M)
which has the property that for any p, q e M and any ε > 0 there
is an element y e £§\+ε(Y) which satisfies \y(p) - y(q)\ = ρ(p, q).
Then Y = Lip(M) as sets and ^ ( L i p ( M ) ) c

Proof. Let X E J Ί (Lip(Af)) and ε > 0; we will show x e &3+2ε(Y)
We begin by showing that for any p, q e M there exists y e ^3+2ε(^)
such that x(p) = y(p) and x(q) = y(q). Since \x(p) - x(q)\ <
p(p > Q) 9 by hypothesis there exists yo G £B\+e{Y) such that \yo(p) -
yo(ί)l ^ kί/7) — X(Q)\ \ multiplying ^o by a suitable scalar of norm
< 1, we get an element y\ e £&\+B{Y) such that \y\(p) - y\(q)\ =
|JC(/7) -x(q)\, and the sign of the scalar may be chosen so that y\ (p) -
y\{Q) = x\p)-x{q). Now \x(p)-yι(p)\ < Woo + Halloo < 2 + ε,
so j ; = yi + cx{p)_yι(p) is in ^ 3 + 2 ε ( ^ ) and it satisfies x{p) = y{p),

x(q)=y(Q)
Now for each p £ M define

yP = \/{y e ^+2ε{Y): y(p) = χ(p)}

we have yp e &i+2ε(Y), yp{θ) > x{q) ΐov all q e M by the result
of the last paragraph, and yp(p) = x(p). Thus /\{yp : p e M} is in
&$+2e(Y) and equals x . As this holds for any ε > 0, we conclude
that x e &3{Y). So ^(Lip(Af)) c ^(Y) 9 and this implies that
every element of Lip(Af) is in Y. D
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V. The final theorem is the most sophisticated in the paper. Its
proof relies on the fact [4] that any completely distributive complete
lattice L has the following property:

for all y ^ z e L there exist yf jf y and z' ^ z

"' such that L = [0L, z'] U [/, lL].

Here 0χ, and lχ, are the least and greatest elements of L, respectively.

LEMMA. Let u<v be elements of a vector lattice, with u $£ 0. Then

(a) uAav^O for any 0 < a < 1 and
(b) ii + t; £ 0 .

Aw/, (a) If u A aυ < 0 for some 0 < a < 1 then

au" < w+ Λ av + = (M Λ aυ) V 0 = 0,

hence u < 0, contradiction. (Recall w+ = u V 0.)

(b) u + v > 2u, but 2u £ 0. D

THEOREM 3. If X is any Lip-space, then the natural map τ: X —•
Lip(X~) w α« isomorphism of X onto Lip(X~), and it satisfies
maxfllxlloo, | |JC| |/3) < ||τ(jc)|| < ||x|| for all x e X. (Main Theorem
part (b).)

Proof. The proof proceeds in four steps. In steps 1-3 we fix an
element w ^ 0 in 3&\{X).

Step 1. There exist elements yn, zn (n e N) in 3S\{X) such that
yx = w and z\ = c\ and with the properties

(a) &\{X) c [c-i, zn] u [yn, cx] for all n
(b) if m < n then ym jf zΛ α̂λzrf therefore ym >yn)\
(c) y« ^ 0 fαwrf therefore zn > 0) ybr α// π and
(d) z n ^ c i / n ^α«rf therefore y n < ci/n) for all n > \ .

We construct yn and zw by induction. First let y\ =w and z\ =
Ci. Having constructed yt and z/ for 1 < / < n-\ satisfying (a)-(d),
let y = 0 and z = yrt_i Λ Cι/n . Then y ^ z by part (a) of the lemma
with u = yn-\, v — Ci/(Λ«i), and α = 1 - 1/n . So find y', z' e 3§\{X)
satisfying (f) for L = 3S\(X) and set yn = yf, zn = z ' . It is clear
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that yn and zn satisfy (a), (c), and (d). We also have zn ^ yn_x, and
then zn £ ym for any m < n - 1 since ym > yn-\ by the inductive
assumption. So (b) holds too.

Step 2. There exists an element w1 e &\(X), wf > 0, with the

properties

(a) ^ι(X)c[-cuw
/]U[-wf,cι]f

(b) ca ^ w' yor any a > 0, aftflί
(c) w j£w'.

Define w' = ΛΓ z " Clearly w' > 0.
First we prove (a). For any x e &\{X), if x < zn for all n then

x < tί;7. Otherwise x £ zn for some n, hence x > yn so we must
show yw > -w'. For any m e N , j / m + y n ^ O by part (b) of the
lemma, so

o t ym + yn => -yn t ym => -yΛ < ^ .

Hence -y n < w1, hence yΛ > —w' as desired. This proves part (a).
For part (b), recall that c\/n ̂  zn hence c\/n £ w1 for any n > 1.

For any α > 0 we can find n > 1 such that l/n<a, hence ci/π < c α ,
hence ca ^wf.

Part (c) is obvious: w = y\ ^ z 2 , so w £w'.

3. ΓAere w α semίnormal homomorphism p: X -• R swc/*
p(tϋ) > 0.

Define /? by

p(jc) = sup{α eR:x>ca+ λwf for some AeR}

= inf{α G R : x < ca + λw1 for some A G R } .

We first show that this definition is consistent and that p(x) is
finite for all x. Fix x e X. For any a e R let λ = \a\ + ||JC|| then
(x-ca)/λe&ι(X)9 hence

(JC - cfl)/A > -tί;7 or (x - ca)/λ < wf,

i.e.

(t) x > ca - (\a\ + \\x\\)w' or x < ca + (\a\ + \\x\\)w'.

This holds for any a, so sup > inf. Conversely, if b < a and ca +
λwf < x < cb + μw' for some λ, μ then for k = max(|>l|, \μ\) we
have
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ca - kw1 <cb + kw1 => ca_b < 2kwf =» C(a

a contradiction. This implies that sup < inf, and so the definition of
p(x) is consistent. Also, c^x\\ < x < C\\x\\ implies p(x) is finite.

Now we show p is linear. For any a > 0,

x >cb + λw1 <=> ax > cab + aλw'

hence p(ax) = ap(x) and

x>cb + λw1 o -x < c_b - λwf

hence p{-x) = —p{x). Also, for any JCI , Xι G X

(xι <ca+ λw' and x2 < cb + μwf) =^ xx + x2 < ca+b + (λ + μ)i(/,

hence p(^i + x2) < p(x\) + p{xi), and p(x{ + x2) > p{xx) + p(x2)
similarly.

It is clear that p preserves constants. Since p clearly also preserves
order, it follows that p takes £$\{X) c [c_i, C\] into [-1, 1], hence
p is bounded. Now we show p preserves norm-bounded joins. Let
{xa} C X be a norm-bounded set. Since p preserves order, V p(xa) <
p(V Xa) Conversely, using (f) we have

V' p(Xa) < a^ p(xa) < a for all a

=>XatCa~ (M + ||*α||)w ; fθΓ all a

=> Xa<ca + {\a\ + H^αll)^' for all a

=> V 'xa<Ca + (\a\

Thus \lp{xa) = p{\l Xa) and p is a seminormal homomoφhism.
Finally we show /?(u>) > 0. Suppose to the contrary that p(w) <

l/n for all neN. Then by (t),

w < c\jn + (l/n + \\w\\)w' for all n,

hence

a contradiction.

Step 4. Proof of Theorem. Let x e X and suppose a > 0 is such
that x ^ cα . Let w = (x—cα)/||x—cΛ|| then we can find a seminormal
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homomorphism p: X —• R such that p(w) > 0 by steps 1-3. Then

| | τ ( * ) | | > H τ W l l o o > \τ(x)(p)\ = \p(x)\ = | | x - ca\\p{w) + a>a.

Since any a < HxH^ satisfies x £ ca or -x <£ ca, this shows | |T(X)| |

Halloo.
Also,

||τ(x)||oo = sup \τ(x)(p)\ = sup \p(x)\ < \\x\\
pex~ ~

and

L { τ { x ) ) = S U p |τ

so
We have seen that τ is 1-1, so define a norm ||| ||| on τ{X) by

HI τ (χ) | | |= ||,χ||. With this norm τ(X) is a sub-Lip-space of Lip(X~)
which satisfies the condition of Theorem 2. We conclude that τ is
onto and ||x|| =| | | τ{x) \\\< 3||τ(x)|| for any x e X. As τ is clearly a
seminormal homomorphism, the proof is complete. D

COROLLARY. Let X and Y be Lip-spaces and let φ: X —• Y be a
seminormal homomorphism. If φ is 1-1 then φ*(Y~) is dense in X".
(Main Theorem part (d)(iii).)

Proof. Suppose φ*(Y~) is not dense in X~ and let p0 e X~ be
such that r = p(p0, φ*(Y~)) > 0. Define y e Liρ(X~) by y{q) =
(r - p{po, β)) V 0 so y(^(y~)) = 0. Then since τx: X -• Lip(X^)
is onto, there exists x e X with τ^-(x) = y. For any p G Γ " we then
have

hence φ(x) = 0 since τγ: Y ^ Lip(Γ^) is 1-1. But x Φ 0, so </>
must not be 1-1. D
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