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A COUNTER-EXAMPLE CONCERNING THE PRESSURE
IN THE NAVIER-STOKES EQUATIONS, AS t -> 0+

J O H N G. H E Y W O O D A N D O W E N D. W A L S H

We show the existence of solutions of the Navier-Stokes equations
for which the Dirichlet norm, ||Vu(ί)||L2/Ωv, of the velocity is contin-
uous as t = 0, while the normalized iΛnorm, l|p(0ll£2(QwΛ, of the
pressure is not. This runs counter to the naive expectation that the
relative orders of the spatial derivatives of u, p and ut should he
the same in a priori estimates for the solutions as in the equations
themselves.

1. Introduction, We consider the initial boundary value problem
for the Navier-Stokes equations in an open bounded domain Ω c Rn

(n = 2 o r 3), with <9ΩeC 2 :

(1) 11, + u Vu = Δ u - Vp, V u = 0, for* e Ω and t > 0,

For reference, let

J(Ω) = completion of D(Ω) in the L2(Ω)-norm || | | ,

/i(Ω) = completion of D(Ω) in the Dirichlet-norm ||V | | .

It is well known that if u0 e J\(Ω), then u e C([0, T) /ι(Ω)) and

(2) | |vo(ί) | | 2 +

<C| |Vu o | | 2

? 0 < / < Γ ?

where T and C can be expressed as constants depending only on
||Vuo|| and Ω (we are not concerned here with their optimal values).

It seems natural to expect that the relative orders of spatial differ-
entiation of u, p and ty should be the same in a priori estimates
for the Navier-Stokes equations as in the equations themselves. That
is, p should appear with one less spatial derivative than u, and û
with two less, as they do under the integral sign in (2) and in many
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other known a priori estimates for the Navier-Stokes equations (see
Heywood and Rannacher [3]).

In the analogue of (2) for the heat equation, the term ||Vu(ί)||2 on
the left side is accompanied by the term ||n ί(ί)||?_1, where || ||_i is
the negative Sobolev norm

Thus, with application in mind, we hoped that it might be possible
to include the terms l|p(0ll^2(Q)/Λ and IMOlHi along with ||Vu(0||2

on the left side of (2). We have found that this is not possible. The
main result of this paper is the following:

THEOREM. There exists u0 € /ι(Ω) such that the solution u, p of
(1) satisfies

(i) limsup^o \\P(t)\\L

2(Ω)/R = oo,
(ii) limsup,_+oIMOII-i = o o

Here, of course,

WP\\L2(Ω)/R = inίi\\P ~ ch2(Ω): c e R >

For convenience, we will assume throughout this paper that the pres-
sure p(t) is normalized at every value of t by the condition JΩpdx —
0. This ensures that HPCOIIL^Ω)

 =
 WP^WL2(Ω)/R ^ e ma^e this same

normalizing assumption of all pressure-like functions.
It seems worth offering a partial explanation of Theorem 1 from

the point of view of function space decompositions. It is well known
(see Solonnikov and Scadilov [7] for the second decomposition and
related results) that

L2(Ω) = J(Ω) Θ G(Ω),

where the second direct sum is relative to the Dirichlet inner product
(Vφ, Vψ), and where

R(A) Ξ { V G W*(Ω) : (Vv, Vφ) = (p, V • φ)

for some p e L2(Ω) and all φe\Vι

2(Ω)}.

Writing Ap = v when p and v are related as above defines a home-
omorphism between L2(Ω)/R and R(A), i.e., there exist constants
cx, c2, such that a\\p\\ < \\VAp\\ < c2\\p\\.
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Now, writing the Navier-Stokes equations, Δu — u Vu = U/ + V/?,
with the two terms on the right belonging to J(Ω) and G(Ω) respec-
tively, it follows from the first decomposition that

Thus the estimates for ut and p under the integral sign in (2) follow
from that for u. It is the estimate for u which is established first in
proving (2).

On the other hand, if we write the Navier-Stokes equations in the
generalized form

o

(u, + u Vu, φ) = -(Vu, Vφ) + {p9 V p) , for all φ eWj(Ω),

it is evident that the second decomposition implies

||u, + u - VuH^! = ||Vu||2 2

Remembering that ||V^4/?|| ~ \\p\\, we effectively have ||ur||—i and \\p\\
on opposite sides of this equation. So it appears that both could be
large, even when || Vu|| is small. According to Theorem 1, that actually
happens.

The behaviour of û  and p that is demonstrated in Theorem 1 is
not due to the nonlinearity in the Navier-Stokes equations. The same
result is proved in the same way, and somewhat more simply, for the
Stokes equations.

Proposition 2 below, which is proved at the end of the paper, pro-
vides a continuous dependence theorem that may be of independent
interest.

We remark that our interest was drawn to the present problem in
trying to determine whether the singular factor Γ1/2 in the pressure
error estimate (1.3) of [3] is appropriate.

2. Preliminaries. We state here, as propositions, two results from
general theory which will be needed in proving our main theorem.
The first concerns the assumption of an initial value for the pressure,
when the initial velocity belongs to /i(Ω) Π W^(Ω). Its proof was
given in [3], and will be briefly described at the end of §4. The second
proposition ensures that the pressure depends continuously on the ini-
tial value for the velocity in J i(Ω). Its proof is given in §4. In what
follows, we make frequent use of the L2-projection
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P R O P O S I T I O N 1. // u 0 e J i ( Ω ) n W ^ ( Ω ) , t h e n t h e solution of (I)
satisfies

(i) oeCαCΓJ JiίΩJn^ίΩ)),
(ii) peC([0,T);W\(O)),

where the initial pressure po is determined by the relation V/>o =
PG(ΔUO - UQ Vuo), and the normalizing condition JΩpodx = 0.

In the following proposition, u, p and v, q are solutions of (I)
taking initial values UQ and VQ , respectively.

PROPOSITION 2. Given any uo £ Ji(Ω), there exist constants T and
B depending only on ||Vuo|| and Ω, such that for every v0 G /i(Ω)
satisfying ||V(v0 - uo)| | < 1, the difference of the ensuing solutions ,
w = v - u , r = q - p, satisfies

(3) , 1 ^ ^

^tfr^Vwoll2, forO<t<T,

where WQ = VQ - UQ .

3. Construction of a counter-example. We begin with two lemmas.
The first already shows the impossibility of including the term
||/Kί)ll?2,ow» on the left side of (2). Remember, in what follows, that
the pressure and all pressure-like functions are normalized to have
mean value zero.

LEMMA 1. Given any positive numbers ε and N, there exists UQ G

/i(Ω)n W2

2(Ω) such that ||Vuo|| < ε and \\po\\ > N, where p0 is deter-
mined by the relation Vp$ = PG(ΔUO - uo VUQ) , and the normalizing
condition.

Proof. First, choose a e Jχ(Ω) Π W?(Ω) such that PGAa ψ 0. It is
possible to do this. For instance, a can be chosen as any eigenfunction
of the stationary Stokes equations that has a non-zero corresponding
eigenpressure. In fact, it is an amusing problem to show that there
are such eigenfunctions, i.e., that not all solutions of Δa - Vq = λa,
V a = 0, a|dΩ = 0 are solutions of Δa = Λ.a, a^α = 0, or to put it
another way, that the study of the Stokes equations does not reduce
trivially to that of the vector heat equation. We have a simple proof
which is valid for a special class of domains, but will defer on this
point to the reader's own devices and to forthcoming general results
of Xie and of Grubb (private communications).
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Next, choose ui to be a multiple of a such that \\pχ\\ = 27V, where
Pi is determined by the condition Vp\ = PQ^I . This is possible
since Vq = /^Δa φ 0 implies ||<?|| φ 0.

We tentatively choose UQ = ui - φ , where φ eD(Ω) approximates
ui sufficiently well that ||Vuo|| < ε/3. Since φ G D(Ω) implies that
Aφ G D(Ω), and hence that P^Ap = 0, we have PGΔUO

 =
 ΛJΔUI .

Thus, the relation Vpo = A?(Δuo -UQ VUQ) implies that /?o = P\ +P2,
where Vpi = PG^I and V^2 = PG{^O ' Vu0). Now, | |po | | > | H^H -
HP2III If this quantity exceeds N, we are done. If not, the nonlinear
contribution satisfies HP2II > N, in which case we obtain ||po|| > N
by simply tripling our original choice of uo.

LEMMA 2. Given any positive numbers ε and N, and any ai e
Jι(Ω.)nW2(Ω), there exists a2 e Jι(Ω)nW?(Ω) satisfying ||Va2|| < ε,
such that the pressure associated with the function UQ = ai + a2 by the
relation Vp$ = PG(AUO - uo Vuo) satisfies \\po\\ > N.

Proof. For any a i , a2 G J\ (Ω)Π W^{Ω), and UQ , Po related to them
as above, we have

a2) - (ai 4- a2) V(ai + a2)] = Vpx + Vp2 + Vr,

where

Vp2 = PG(Δa2 - a2 Va2),

Vr = PG(*ι - Va2 + a2

Using a Poincare inequality for functions with mean value zero,
Holder's inequality, and several Sobolev inequalities which are valid
in both two and three dimensions, we have

IMI < d||Vr|| = c^Pafa Va2 + a2 VaO|| < c2 | |a i | |^21|Va2 | |.

Now, given a i , we can use Lemma 1 to choose a2 such that ||Va2|| <
ε, and \\p2\\ > ||/?i|| + βc2 | |ai||^2 + ΛT. Then, clearly, \\po\\ > \\p2\\ -

Proof of Theorem. Let uΛ(f), pn(t) be the solution of the initial
value problem (1) corresponding to the initial data uπ(0) = Σl=χ *k >
where the a^ are chosen as follows.

First, use Lemma 1 to choose ai G J\ Π W% such that ||Vai|| < 1/2
and HPIII > 2, where Vp\ = PG(Δ&\ - *i Vai) BY Proposition 1,

> 2 on some interval [0, t\].
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Then, recursively, choose ak e /i(Ω) Π Wf(Ω) with
{l/2)k

y/tk_ι/B, such that \\Pk(t)\\ > k + 1 on an interval [0, tk].
The constant B here is from Proposition 2; for later convenience we
assume that B > 1. We can also assume that the numbers t^ are
chosen such that ίfc+i < ί& < 1, and such that t^ —• 0 as k —• OD .

Finally, let u(ί), /?(*) be the solution of the initial value problem
(1) corresponding to u0 = Y%Li *k Since u 0 , uΛ(0) e /ι(Ω), and
||V(u0 - uΛ(0))|| < 1, Proposition 2 implies that

OO II OO

V Σ " * N Σ (1/2)* <1\\p(tn)-Pn(t«)\\<VB/tn
— - ~ ii

k=n+\

H e n c e , \\p{tn)\\ > \\Pn{tn)\\ - \\p{tn) -Pn{tn)\\ > (/ι + 1) - 1 = /ι .

4. Proofs of the preliminary propositions. The proof of Proposi-
tion 1 will be briefly described at the end of this section. First, we
give the proof of Proposition 2, beginning with two lemmas. Below,
we frequently use inequalities of Sobolev's type without mention, in
particular the inequalities ||u||L6 < c||Vu||, ||u||L3 < cHuH^HVuH1/2,
||Vu||L3 < cUVull1/2!^!!1^, sup|u| < cllVull1/2!^!!1^ See [1] for the
last of these. They are all dimensionally sharp in three-dimensions,
but also valid in bounded two-dimensional domains. Everywhere, we
use c as a generic constant that depends only on Ω.

Let Δ = P/Δ, where Pj is the ZΛprojection Pj\ L2(Ω) -+ /(Ω).
We will also frequently use without mention the well-known Cattabriga
[2]/Solonnikov [6], [7] estimate ||u||^2 < c||Δu||, valid for solutions
and generalized solutions u e J\ (Ω) of the Stokes equations Δu -

= f, V u = 0, U|^Ω = 0, with f square-summable.

LEMMA 3. Given any u0 e /ι(Ω), there exist constants C and T
depending only on ||Vuo|| and Ω such that

(4) | |Vu(0||2 + t\\Mt{t)\\2 < C||Vuo | |2, for 0 < t < T.

Proof. The estimate (4) for ||Vu(ί)|| is contained in (2), and is well
known. To prove the estimate for ί||uf(ί)||2, differentiate (1) with
respect to t, multiply by u^, integrate over Ω and then by parts, and
use the inequalities of Holder, Sobolev and Young to get

^ I K I I 2 + ||Vu,||2 = (u, Vu,, u) < c||Vu|

<c| |Vu| | 4 | |u ? | |
2
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Multiplying by t, we get

(5) ^ [ φ , | | 2 ] < | | u , | | 2 + c | |Vu | | 4 [φ, | | 2 ] .

The boundedness of the integral in (2) implies that liminf^o ί||u/(£)||2

= 0. Hence, applying GronwalΓs inequality to (5), using (2), we
obtain the desired estimate (4). This completes the proof.

In what follows, let u, p and v, q be solutions of (1) taking initial
values u0 and v0, respectively, and let w = v - u , r = q -p, and
w0 = vo - u0 . Then

(6) wr - Δw + w Vw + u Vw + w Vu = -Vr.

Multiplying by -Δw, integrating over Ω, and proceeding as in Lemma
2 of [4], we obtain the following continuous dependence theorem:

LEMMA 4. Corresponding to any UQ £ J\ (Ω), there exist constants
C and T, depending only on ||Vuo|| and Ω, such that

(7) ||Vw(0||2+ A||Δw||2 + ||w,||2)^<C||Vw0||
2

? for 0 < t < T,
Jo

provided v0 G /ι(Ω), and ||Vwo|| < 1.

We proceed now with the proof of Proposition 2. Differentiating
(6) with respect to t, multiplying by w*, integrating over Ω and then
by parts, and applying Holder's and Sobolev's inequalities, we obtain

, u) + (w

Φt\\ IIVwi

Using Young's inequality yields

^ K | | 2 < c||Vw||4||w,||2 + φ, | | 2 | |Vw| | ||Δw|| + c\\Vu||4||w,||2.

Multiplying by / and using Young's inequality again, we get

^ 2 2 2 4 | V w | | 2 + | |ΔW | | 2
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Let μ(t) = C/Q[||VW||4 + | | V u | | 4 ] ^ . Together, Lemmas 3 and 4 pro-
vide an interval [0, T] on which μ(t) remains bounded, with T de-
pending only on ||Vuo|| and Ω. This choice of T is fixed in what
follows. Since (7) implies that liminf^o*llwr(OII2 = 0, we can apply
GronwalΓs inequality, using (4) and (7), to obtain

(8) ί||w,||2 < e^ ( e-^s\\\γίt\\2 + ^2 | |u,| |4 | |Vw||2 + ||Δw||2]ds
Jo

<C| |Vw o | | 2 ,

on [0, T], proving part of (3). Multiplying (6) by -Δw, we get

||Δw||2 = (w,, Δw) + (w Vw, Δw) + (u Vw, Δw) + (w Vu, Δw)

< c\\yvt\\2 + c||Vw||6 + c||Vu||4||Vw||2

Thus

(9) ||Δw||2 < c||w,||2 + c[\\Vw||4 + ||Vu||4]||Vw||2.

Multiplying (6) by Vr yields

||Vr||2 = (Δw, Vr) - (w Vw, Vr) - (u Vw, Vr) - (w Vu, Vr)

< ||Δw||2 + c||Vw||3||Δw|| + c||Vu||2||Vw|| ||Δw|| + i | |Vr| | 2,

which combined with (9) gives

(10) ||Vr||2 < c||Δw||2 + c[\\Vw||4 + ||Vu||4]||Vw||2

2 | |4 + ||Vu||4]||Vw||2.

Finally, combining (8), (9), and (10), and assuming that ||Vwo|| < 1,
we get

ί||Δw||2 + ί||Vr||2 < rt||w,||2 + ^[||Vw||4 + ||Vu||4]||Vw||2 < C\\Vwo||
2

on the interval [0, T] chosen above. This completes the proof of
Proposition 2.

In outlining the proof of Proposition 1 (from Theorem 2.3 and Pro-
position 2.1 of [3]) we take it as well known that u e C([0 ,T);J{ (Ω))
if uo G /i(Ω), and that ||Δu(0|| is bounded on [0, T) if u0 e /i(Ω)Π
W2

2(Ω) To show, further, that the initial velocity is assumed strongly
in W2

2(Ω), it suffices to show that l imsup^ 0 l|Δu(0H < ||Δuo | |. The
following is a formal argument which can be carried out rigorously in
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the construction of the solution by Galerkin approximation. Multi-
plying (1) by Δty, one obtains

(11)

= -j-(u Vu, Δu) - (u/ Vu + u Viif, Δu).

Since |(uΓVu+u Vu,, Δu)| < c||Vu,|| HVull̂ HΔuH3/2 < c||Vu|| ||Δu||3 +
||Vu ll2, and since ||Vu(ί)|| and ||Δu(ί)|| are bounded on [ 0 , Γ ) , w e
can integrate (11) to get

| |Δu(0||2 < ||Δuo||2 + 2(u(ί) Vo(ί), Δu(ί)) - 2(u0 Vu0, Δu0) + Ct.

This implies the desired result, i.e., that Δu -* ΔUQ strongly in L 2(Ω),
since Δu —• Δuo weakly in L 2(Ω), and u Vu —• UQ VUQ strongly in
L 2 (Ω). Finally, from this, it follows that

V/? - Vpo = Λ?[(Δu - u Vu) - (Δu0 - u0 Vu0)] -> 0, as t -> 0.

REFERENCES

[1] R. A. Adams and J. J. Fournier, Cone condition and properties ofSobolev spaces,
J. Math. Anal. Appl, 61 (1977), 713-734.

[2] L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di
Stokes, Rend. Sem. Mat. Univ. Padova, 31 (1961), 308-340.

[3] J. G. Heywood and R. Rannacher, Finite element approximation of the nonsta-
tionary Navier-Stokes problem, Part I: Regularity of solutions and second order
error estimates for spatial discretization, SIAM J. Numer. Anal., 19 (1982),
275-311.

[4] , An analysis of stability concepts for the NavierStokes equations, J. Reine
Angew. Math., 372 (1986), 1-33.

[5] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow,
Second edition, Gordon and Breach, New York, 1969.

[6] V. A. Solonnikov, On differential properties of the solutions of the first boundary
value problem for nonstationary systems of Navier-Stokes equations, Trudy Mat.
Inst. Steklov., 73 (1964), 221-291.

[7] V. A. Solonnikov and V. E. Scadilov, On a boundary value problem for a station-
ary system of Navier-Stokes equations, Trudy Mat. Inst. Steklov., 125 (1973),
186-199.

Received November 5, 1991.

UNIVERSITY OF BRITISH COLUMBIA

VANCOUVER, B. C, CANADA






