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ONE-PARAMETER FIXED POINT INDICES

DONCO DIMOVSKI

Let F: X x I ^ X be a PL homotopy, where X is a compact
connected PL ^-dimensional manifold, in the euclidean space Rn,
n > 4, and let P: Xxl ^ X be the projection. A fixed point of F
is a point (x9t) eX xl such that F{x,t) = x. The set of all the
fixed points of F is denoted by Fix(i7). For a family V of isolated
circles of fixed points of F we define two indices: indi (F, V)—
which is an element in the first homology group H\ (E), where E is
the space of paths in X x I x X from the graph of F to the graph
of P; and ind2(F, V)—which is an element in the group Z2 with
two elements. We prove that there is a compact neighborhood N of
V and a homotopy from F to H relX x I\N such that Fix(H) =
Fix(F)\F if and only if indi(F, F) = 0 and ind2(F, F) = 0. The
indices indi(F, /) and ind2(K, F) are defined via the degrees,
te%\(g) and deg2(#), for maps g: Sι x Sm -• Sm . Moreover, we
show how to modify F to create circles of fixed points with prescribed
indices.

Introduction. In this paper we define two indices for fixed points of
homotopies between two selfmaps of a manifold, and then show that
these indices provide us with sufficient and necessary conditions for
removing some or all of the fixed point set, in a controlled manner. Let
F: X x / —• X be a PL homotopy, where X is a compact connected
PL ^-dimensional manifold, contained in the euclidean space W,
let n > 4, and let P: X x / —• X be the projection. A fixed point
of F is a point (x,t)eXxI such that F(x, t) = x. The set
of all the fixed points of F is denoted by Fix(F). In this setting,
isolated circles of fixed points are the generic form of fixed points, as
isolated individual fixed points are in the classical setting. The two
indices, indi(F, V) and Π K ^ - F , V), are defined for a family V of
finitely many isolated circles of fixed points of F. The first index,
indi {F > V), is an element in the first homology group H\ (E), where
E is the space of paths in XxIxX from the graph of F to the grapft
of P, and is a slight generalization of the first obstruction discussed
in [DG]. It is mentioned in [DG] that a solution to the one parameter
fixed point problem in the transverse case can be found in [HQ], via
an obstruction lying in the 1-dimensional framed bordism group of
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the function space E. This obstruction for a family of finitely many
isolated transverse circles of fixed points V is zero if and only if
mάx(F 9V) = 0 andind 2 (F, V) = 0. The second index, ind 2 (F, V),
is an element of the group with two elements Z 2 , and corresponds to
the second obstruction given in [DG], but the second obstruction in
[DG] can be defined only if we know that the first obstruction is zero,
while mάι(F, V) is defined independently of indi (F, V). The main
improvement of the results from [DG] is the following Theorem 4.3.

THEOREM 4.3. There is a compact neighborhood N of V and a
homotopy from F to H relXx I\N such that Fix(H) = Fix(F)\V if
and only z/ indi(F, F) = 0 and ind 2 (F, F) = 0.

Other results in this paper are: joining circles of fixed points; homo-
toping F to H, such that each fixed point class of H is a transverse
circle of fixed points; and creating circles of fixed points, with pre-
scribed indices.

The indices indi(F, F) and ind 2 (F, F) are defined via the de-
grees deg\{g) and deg2(<g

r) for maps g: Sι x Sm —• Sm .
The paper is organized as follows.
In part I the notions of degrees, deg^g) and deg2(g) for maps

g: Sι xSm xSm, are introduced, where degt (g) is an element from the
group of integers Z, and deg2(#) is an element from Z 2 . One of the
results about these degrees is the fact that two maps g, g': Sι x Sm —•
Sm are homotopic if and only if degj(^) = deg^g7) and deg2(g) =

In part II three standard models, i.e. standard regular neighborhoods
of a disk, an annulus and a disk with two holes in R m + 1 are defined,
and several facts about the extensions of maps from subsets of these
standard models into Sm to the entire model are proven.

In part III the notions of i\(F9 C) and / 2 ( ^ \ C) are introduced,
where C is an isolated circle of fixed points, as degj and deg2 of the
restriction of P-F to the boundary of the neighborhood of the circle
C, where P: X x / —• X is the projection, and P - F is considered
as a map into W1. Later, it is shown how to remove and create circles
of fixed points, using the standard models from part II.

Part IV contains the main results. First, Theorem 4.3 is proven,
and then it is shown how to homotope the map to a new map, each
fixed point class of which consists of a single circle.

We are concerned in this paper only with the fixed points of ho-
motopies between selfmaps of X, where X is an ^-manifold in W .
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The general case of coincidences between two maps F, G: M —> N,
where M is an (m + 1)-dimensional and N is an m-dimensional
manifold, using the same techniques as in this paper will be discussed
in a subsequent paper. For this we need a geometric description of
spin manifolds, which is going to appear in a joint paper with Ross
Geoghegan. The general case has also been considered in a paper by
Jerzy Jezierski [J].

At the end of this introduction, I would like to make known my
gratitude to Helga Schirmer and to thank her not only for the valu-
able discussions that we had, but also for her hospitality and financial
support during my visit to University of Carleton, where the work in
this paper began and most of it was done. Also, I would like to thank
Ross Geoghegan for the numerous helpful conversations on this sub-
ject.

I. Degrees 1 and 2. For a positive integer m we denote by x
the element (x\, x2, . . . , xm) of Rm and by |x| the length

\ + x\ + h x^ of x. If x = (xι, x2, . . . , Xm) € Rm and y =
6>i > > yn) £ Rw , then (x, y) will denote the element (x\, . . . , xm,
yi,...,yn) e Rm+n. If x = (xi,x2,... ,xm) e Rn and r e R ,
then rx = (rxΪ9 . . . , rxm). Let Dm = {x|x e R m , |x| < 1} and
Sm = {x|x G R m + 1 , |x| = 1}. We choose once and for all an orienta-
tion of R m , for all m, called the standard orientation, such that the
standard orientation on Rm+ι = Rm xR is the product of the standard
orientations on Rm and R. We assume that Dm , and / = [0, 1] are
oriented by the induced orientations from Rm and R. Let Sm have
the induced orientation from R m + 1 and let Sι x Sm and Sι x Dm

have the product orientations.

DEFINITION 1.1. Let f:SιxSm-+Sm be a given map. We define
deg!(/) = deg(p), where φ: Sm -> Sm is defined by φ(x) = f(P, x)
for a point P e Sι, and deg is the usual degree of a map from Sm to
Sm.

Fact 1.1. dcgι(f) is well defined.

Proof. Let φ{x) = f(P, x) and ^(x) = f(Q, x) for two points
P,Q e Sι. Let g: [0, 1] -• [P, Q] be a homeomorphism from
the interval / = [0,1] to one of the arcs from P to Q in Sι.
Then i/(x, t) = f(g(t), x) defines a homotopy from φ to ψ. Hence
degO) = deg(^). D
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FIGURE 1.1

For a given m, we define a map E: Dm , by:

(1.1)

where: α = 2, ε = - 1 for 0 < |x| < \ , and α = 2 . η=p , ε = 1 for

5 < |x| < 1 The map is well defined because |αx| 2 + (l -(α |x | ) 2 ) = 1.
A schematic picture of the map E is given in Figure 1.1, for m = 2.

Let Jf(m) be the point (0, 0, . . . , 0, 1) e Sm, i.e. the "north
pole". It is easy to check that E{dDm) — yV(m) and the restriction
E\ is a homeomorphism from intD m to Sm\{Λ\m)} .

Let X be the factor space obtained from Sι x Sm U D2 by the
identification of (x, J^(m)) eSιxSm with x e Sι = dD2 . For each
t G (0, 1] we will define a map ϋ^: .S'"1^1 —> c as follows. Consider
5 W + 1 as a subset of D2 x Z)m and for (z, y) 6 S m + 1 , with z e D2

and y e Dm, we define

(1.2)
if 0 < |z| <

These maps are well defined because for t e (0, 1] and |z| = £, we

have fz = | | G 9D2 and |y| = 1 - ( | ) 2 , i.e. fz = (fz,

( Λ } y)). We denote Â i by ^ . A schematic picture for the

space X and the map K, when m = 1, is given in Figure 1.2.

DEFINITION 1.2. Let / : Sι x S_m -» 5 m be a given map. We de-
fine deg2(/) to be the element [foK] from πm+\(Sm) = Z 2 where
/ : Z —• Sm is defined by / on Sι x 5 m and by an extension on D2

of / restricted to dD2 .

1.2. For m > 3, deg2(/) is well defined.
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FIGURE 1.2

Proof. The only choice in the definition of deg2(/) is the choice of
the extension on D2 of the restriction of / to dD2 . Let f: X -* 5 m

be defined by / on 5 1 x £ w + 1 and by α* on 7) 2 , for two such
different extensions on D2

 9a\ and α 2 . The maps α^ and α 2 define
a map g: S2 —• 5 m . For m > 3, since 7t2(Sm) = 0, this map has
an extension h: D3 -+ Sm. This extension A gives a homotopy from
/i oK to fi°K. So, deg2(/) is well defined. D

PROPOSITION 1.3. Let f,g:S{xSm-^Sm be homotopic maps.

Then, for ra > 3, degj (/) = deg!(g), and deg2(/) = deg2(^).

Proof. Suppose that H: Sι x Sm x / —• Sm is the given homotopy.
Then, the restriction of H to {P} xSm xl gives a homotopy for the
restrictions of / and g to {P} x Sm, which shows that deg^/) =

Next, let ^ ( m ) , X , ^Γ, / , and ^ be as defined above. Now,
we can extend the homotopy H to a homotopy 77: X x / —• Sm , by
an extension of the restriction of H to (S1 x {Jίί(m)} x 7) u (7)2 x
{0}) U (7)2 x {1}). Such an extension exists, because (Sι x {^(m)} x
I) U (D2 x {0}) U (D2 x {1}) is in fact an S2, and we have a map
from S2 to Sm, and for m > 3, all such maps have an extension. In
this way we have obtained a homotopy Ή from / to ~g. Then the
composition 77 o (K x id): S m + 1 xI-*XxI->Sm gives a homotopy
for the compositions / o K and ~g o K. Now, since [/ o K] = 0 is
equivalent to the fact that / o K has an extension over Dm+2 which
is equivalent by the above homotopy 77 o (K x I) to the fact that
~g o K has an extension over Dm+2, which is equivalent to the fact
that [goK] = 0, we have that \JoK] = [goK] in πm+ι{Sm). Hence,
deg2(/) = deg2(^). α

REMARK 1.4. For / : Sx x Sm -> Sm and m > 3, since the re-
striction of / to S1 x {jV(m)} is homotopic to a constant map, it
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follows that / is homotopic to a map ^ : 5 ' 1 x ^ x ^ , such that
g(Sx x {/K(m)}) = Q, for some Q G Sm. Then in the definition
of deg2(g) we can choose the constant homotopy on Z>2, i.e. we
can define ~g(D2) = Q. This says that ~g o K(z,y) = Q for every
(z, y) G Sm+ι with z e ΰ 2 , y G Dm , and |z| < ^ .

Next, let / : Sι x Sm -> Sm, be such that f(Sι x {^(m)}) = Q,
for some point Q e Sm. We define a map F(f): Sm+ι -> Sm, as
follows. For (z, y) G S m + 1 with z G D2, yeDm, let:

(..3) F ω c D ί ^ Γ Ί
I β for z = 0.

This map is well defined, because / ( S 1 x { f̂ (m)}) = Q, and E{dDm)
= JV{m). The map -F(/) may be described as a union of two maps:
Fi: 5'm+1\({0} x £>m) -» 5 m and F 2 : {0} xDm ^Sm, where 5 W + 1 is
considered as a subset of D2 x D™ and 0 is in D2. The map F\ is
the composition / o ( l xE)ofι, where Λ: 5>w+1\({0}xZ>w) -ί .S
is defined by: Λ(z, y) = ( § , y), and F2({0} xDm) = Q:

PROPOSITION 1.5. Let f: Sι x Sm ^ Sm, and F(f): Sm+ί

α5 above. Then, for m > 3, deg2(/) = [F(/)] €

Proof. By the above Remark 1.4, in the definition of deg2(/) we
can choose the map / such that f(D2) = Q. It can be checked that

o7° tfKz, y) = n/)(z, y) So,

is well defined homotopy from F(f) to foK. Hence, deg 2 / =
D

Let p: Sι x Sm -+Sm be the projection, p(z, y) = y.

PROPOSITION 1.6. Let φ: Sm -> Sm be a given map, and let g: Sιx
Sm -> Sm be defined byg = φop. Then, deg2(g) = 0.

Proof. The map EF(g): Dm+2 -»• Sm defined by EF{g)(z, y) =
φ(E(y)) foτ z e D2, y e Dm is well defined and is an extension
of the map F(g), which shows that [F(g)] = 0 in π m + i (S ' m ) , i.e.

0. •

PROPOSITION 1.7. Let f: SιxSm^Sm be such that f(Sxx{yK(m)})
= Q for some Q e Sm, and let m > 3. Let g: S1 x Sm -> ^
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be the map defined by g(z, y) = f(P, y) for z e Sι, y e Sm, where
P is a point of Sι. Then, deg2(/) = 0 if and only if f is homotopic
to the map g.

Proof. Let / be homotopic to g. Then deg2(/) = deg2(g) by
Proposition 1.3, and deg2(/) = 0 by Proposition 1.6.

Conversely, let deg2(/) = 0. Then the map F(f) has an extension
E(f): Dm+2 -> Sm. We define a map g: S1 x Sm -+ Sm as fol-
lows. For (z,y) eSιxSm, we define g(z, y) = £(/)(0, ^ ( y ) ) , for
y φ jV{m) and g(z, jV{m)) = Q, where E: Dm -^ Sm is the map
defined by (1.1). This map is well defined, because E is a homeomor-
phism from intDm to 5m\{yΓ(m)}, maps dDm onto yΓ(ra), and
/(S 1 x {^(m)}) = Q. Moreover, g(z, y) = / ( P , y) for zeS1 and
y e Sm, where P is a point of 5 1 . Proposition 1.6 implies that
deg2(g) = 0.

Next, we will show that / is homotopic to g. First we define a
map G: Sι xDmxI -> Z)m + 2 as follows. For z e Sι, y G Z>m, r e /,

(1.4) G(z,y,r)

where

for r 7̂  0, and λ = 0 for r = 0. This map is well defined because the
limit of λ when r goes to 0 is 0. The map G is shown schematically
in Figure 1.3 (next page). For y e Sm~x = dDm, i.e. when |y| = 1,
we have

λ - ϊr - 0 '
and so, G(z, y, r) = (0, y) for |y| = 1.

Now we define a map H: Sι x Sm xl -^ Sm by:

(1.5) H(π, y, r) = E(f)(G{z, E~ι(y), r)).

This map is well defined, because E(f)(G(z9 u, r)) = E(f)(0, u) =
F(/)(0, u), for each u e E-χ{yy{m)), i.e. for each u e Z>w with
|u| = 1. The map H is continuous because E is homeomorphism
on intZ)m, and when y e Sm is close to jV{m) then: £ - 1 (y) is
close to dDm , i.e. |-E'~1(y)| is close to 1; λ is close to 0; \λz\ is close
to 0; G(z9E~ι(y)9r) = (λz,E-\y)) is close to dDm+2 = 5 m + 1

^(^(λz^-Hy)) is close to F{f){λz,E-\y))\znA F{f){λz,E~\y))
is close to Q.
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Next,

H(z, y, 0) = E(f)(G(z, E~ι(y), 0)) = E(f)(Q, E~\y)) = g(z, y),

and

/ί(z,y,l) = JE(/)(G(z,£-1(7),l))

Hence, / is homotopic to g. •

PROPOSITION 1.8. Let m > 3 am/, /or f , g : S { x Sm -+ Sm, let

/) = deg^g) anJ deg2(/) = deg2(^) = 0. Then f is homotopic
to g.

Proof. By Proposition 1.7, / and g are homotopic to maps /'
and g', such that /'(z ,x)=f(P,x)= f"(x), g'(z, x) = g'(/>, x) =
g"(x), de g l(/') = de g l (/) = deg(/"), and deg l(^') = de g l (s) =
deg(g") for every z e S1 and x € Sm, where / " , g": Sm -+ Sm.
Now, by Hopf s theorem, / " is homotopic to g". If H: Sm x / -»• Sm

is a homotopy between / " and g", then H': Sι x Sm x I ^ Sm

defined by # '(z, x, t) = H(x, t), for z e 5 1 , x € Sm, t G / , is a
homotopy between / ' and g7. So, / is homotopic to g. O
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For the next propositions we need the following maps. Let ψ\, φ2,
φ S1 xSm -> S1 xSm be denned as follows. For u = (x, y) e Sι,
v = ( z , r ) e 5 m , where x,y,reDι and z e Dm, we define:

(1.6) "<*•"•*> {(*(*)*) ify<0,

M - x , , J ( u , ^ ( m ) ) i f r > 0
(1.7) φ2{u,z,r) = \

{(u,E(z)) ifr<0.
Let φ = ψ\ oφ2. It is easy to check that φ — φ2oψ\, and that (p\, φ2,
and φ are homotopic to the identity map id: Sι x Sm —»• S1 x Sm .
Next, let A = φ~x {JV (\), JV (m)). Then A = B xC, where 5 =

{(*, y) e Sι\y > 0} c Sι, and C = {(z,r)e Sm\r > 0} .We see that

B is homeomorphic to Dι and C is homeomorphic to Dm. So A
is homeomorphic to Z>w+1 let θ: A —• D w + 1 be a homeomorphism.
Let />: (Dm+ι, dDm+x) -+ (Sm, JV{m)) represent a nonzero element
of π w + i (Sm). For a given / : S 1 xSm -> Sm, let Ψ(/) : Sι xSm -H 5 W

be defined by:

(1.8) ψ ω W ( / , 0 W f o r x e A .

PROPOSITION 1.9. Let φ, A, f, Ψ(/) be as above, and let m > 3.
Then, f is homotopic to foφ, deg!(/) = deg!(foφ) = degx(Ψ(/)),
and deg2(/) = deg 2(/o φ) = deg2(Ψ(/)) + 1, where the addition is in

Proof. Since φ is homotopic to the identity, and Ψ(/) coincides
with / o φ on half of Sι x Sm , it follows that: / is homotopic to
foφ they have the same deg! and deg2 and deg^/) = deg!(Ψ(/)).
Now, by Proposition 1.5, we have that deg2(/o φ) = [F(foφ)]. The
inverse image F{f o φ)~x{/If {m)) contains the set

,y,reD\ τeDm~\ y > 0 , r > 0}

and F(foφ)(dD) = F(Ψ(f))(dD) = JT{rn). The facts that: D is
homeomorphic to Dm+ι F ( / o φ){D) = jV{m)\ the restriction of
Ψ(/) on ̂ 4 gives a nontrivial element of π m + i ( 5 m ) ; and Ψ(/) is
equal t o / o ^ o n ^ x Sm\A imply that the restriction of F(Ψ(f))
to D gives a nontrivial element of πm+\(Sm), and that [F(foφ)] =
[F(Ψ(/))] + 1. Hence deg2(/) = deg2(Ψ(/)) + 1. D
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PROPOSITION 1.10. Let f, g: Sx x Sm -+ Sm be two homotopic
maps, m > 3, and Ψ(/) , Ψ(g) be defined by (1.8). Then Ψ(/) is
homotopic to

Proof. W.l.o.g. we can assume that

f{Jf{\),

Since m > 2 , by the homotopy extension theorem, we can homotope
a given homotopy from / to g to a homotopy H: Sx x Sm x I -*
Sm, rel(^f(l), ^ ( m ) ) , i.e. such that # ( ^ ( 1 ) , ^ ( m ) , ί) = yΓ(m)
for every t e I. By the definition of φ, it follows that // o ̂ ? is a
homotopy from / o ^ to g o φ τt\A, and moreover rel<9v4. Now,
H!:Sι xSmxI ^ Sm defined by: // ;(x ,t) = Hoφ(χ,t) for c e

(5 ί l x5 m \^)Uδ^; and ^ ; (JC, t) = poθ(x) for x e ^ is a homotopy
from Ψ(/) to Ψ(g). α

PROPOSITION 1.11. Let f: SιxSm -> Sm be given, and m > 3. Let
Ψ(f) andΨ(Ψ(f)) be defined by (1.8). ΓΛβ/i Ψ(Ψ(/)) is homotopic
to f.

Proof. In the definition of Ψ(/) we have used

Let A' be any subset of A with a homeomorphism θr: A -> i ) m + 1

such that y4\int^' is homeomorphic to Sm x I. Then it is easy to
check that the map Ψ'(/) defined by (1.8) using A! instead of A, is
homotopic to Ψ(/) relS 1 xSm\intA. Now, let A\ be such a subset of
A with a homeomorphism #i: A\ —• Z ) m + 1 , and let ^2 be a subset of
^-1(>4) with a homeomorphism Θ2: A2 -> Z>m + 1, such that A2Γ)A =
0. For such ^2 > the restriction of 9? to A2 is a homeomorphism
from A2 to φ(A2)9 and moreover, ^ 2 ° P " 1 ' ̂ (^2) "^ Dm+ι is a
homeomorphism. We defineΨ(Ψ(/)) using A\ and θ\, and define
Ψ(/) using ^(^2) and θιoφ~x. Then, it can be checked that:

(a) Ψ(Ψ(/))(x) =foφoφ(χ) for x e (SιxSm\Aι\A2)UdAιUdA2;
(b) Ψ(Ψ(/))(x) = p o ^ ( x ) , for x G A{, and
(c) Ψ(Ψ(/))(x) = p o Θ2(x) for x e A2.

S i n c e A{UA2C φ~ι(A) = φ~x(φ~x{Jf ( \ ) , JlΠjri))), i t fol lows t h a t
ί ? " 1 ^ ) is homeomorphic to an (m+ l)-ball, and p o θ\ and p o θ2

represent nontrivial elements of 7Γm+i(5m) = Z 2 , it follows that the
restriction of Ψ(Ψ(/)) to φ~ι(A) represents the trivial element of
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). Hence, the restriction of Ψ(Ψ(/)) to φ~ι(A) is homo-
topic to the constant map rel dφ~ι (A), which implies that Ψ(Ψ(/)) is
homotopicto foφoφ τelSιxSm\intφ"ι(A). Since foφoφ(φ-ι(A)) =
foφ(A) = / ( ^ ( l ) , ^ ( m ) ) , it follows that Ψ(Ψ(/)) is homotopic to
the map foφoφ. On the other hand, foφoφ is homotopic to foφ
and foφ is homotopic to / , i.e. Ψ(Ψ(/)) is homotopic to / . D

THEOREM 1.12. Let f,g:SιxSm-+Sm be given maps, and m >
3. The map f is homotopic to the map g, if and only if άtgx(f) =

and deg2(/) = deg2(g).

Proof. If / and g are homotopic, then the conclusion follows from
Proposition 1.3.

Conversely, let deg^/) = degx(g) anddeg2(/) = deg2(g). If
deg2(/) = 0, then the conclusion follows from Proposition 1.8. If
de g 2 (/) φ 0, then de g l (Ψ(/)) = de g l (Ψ(*)) and deg2(Ψ(/)) =
deg2(Ψ(g)) = 0, by Proposition 1.9. Now, Proposition 1.8 implies
that Ψ(/) is homotopic to Ψ(g), Proposition 1.10 implies that
Ψ(Ψ(/)) is homotopic to Ψ(Ψ(g)), and Proposition 1.11 implies that
/ is homotopic to g. D

COROLLARY 1.13. There is a bijection from the set of homotopy
classes of maps from Sι x Sm to Sm, to the set Z x Z 2 . In other
words, there is a bijection from the cohomotopy group πm(Sι x Sm) to
Z x Z 2 . D

Corollary 1.13 can be proved by homotopy theory methods. Ross
Geoghegan has provided a proof of this corollary, in the spirit of a
paper by V. L. Hansen [Ha], using Whitehead products, and Peter
Hilton has made the remark that degrees 1 and 2 are closely related
to the Hopf construction. These homotopy theory methods were not
sufficient for the ideas developed in the later parts of this paper, so I
have proved all of the properties of degrees 1 and 2 which were needed
later.

_ PROPOSITION 1.14. A map f:SιxSm->Sm has an extension

f: Sι x Dm+ι -> Sm, if and only if άegλ (/) = 0 = deg 2 (/) .

Proof. If / has an extension / , then the restriction of / to JV (1) x
Sm , has an extension on J/'(l)xDm+ι, which implies that degχ(f) =
0. W.l.o.g. we may assume that f(Sι x {^{m)}) = jV{m), and then
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deg2(/) is equal to [F(f)]. Now, the extension / gives an extension
of the map 7: 5 m + 1 u (0, 0) x Dm -* Sm defined by F{f) on Sm+X ,
and by F((0, 0) x Dm) = Jf{m), where S^+ι u (0, 0) x Z)m c Z ) m + 2 ,
which shows that F(/) has an extension T(f): Dm+2 -» S m . Hence
[ W ) ] = 0,i.e. deg2(/) = 0.

Conversely, let deg^/) = 0 = deg 2(/). Then, by Proposition 1.7,
/ is homotopic to a map g, such that #(z, x) = Λ(x) for every
z G S 1 , X G ^ 5 where h\ Sm -> Sm ,_has degree 0, i.e. deg(Λ) = 0.
This implies that h has an extension h: Dm+X —• S m , and so g has
an extension g defined by g(z, y) = A(y), for every Z G S 1 and
y G Z ) m + ι . Now, the homotopy from f to g and the extension ~g of
^ give the required extension of / . D

At the end of this part we will describe specific maps h(m): Sι x
Sm —• Sm, m > 3, with deg2(A(m)) ^ 0, obtained by suspensions,
via the Hopf map from *S3 to S2.

If X is a space the suspension ΣX of X is the factor space X x
Dι/a, where α is the equivalence whose classes are:

(x t)" =

For a given / : SιxSm-+ Sm we define a map S(f): 5 ι x S m + 1 ~>
^w+i î y SUSpension of / on the second factor, where ΣSm is iden-
tified with S m + 1 as a subset of Dm+ι x Z)1, i.e.

THEOREM 1.15. Ler / : S 1 x ,SW -• ^ m be α given map, m > 3.
ΓΛen /or ^ ( / ) : Sι x 5 m + 1 -> 5 m + 1 defined as above, deg^/) =
deg!(5(/)) in Z, α/irf deg2(/) = deg2(5(/)) in Z 2.

. (a) For a point Q G ^S1, if Λ is the restriction of / to {Q} x
Sm , then the restriction H of S(f) to {Q} x Σ 5 m = {Q} x 5 W + 1 is
the suspension of h, i.e. H = Σh. Since Σ: 7/m(5<m) -> 7/m + i(5m + 1)
is an isomorphism (see [W]), it follows that deg(Λ) = deg(ΣΛ). Hence
deg1(/) = deg1(S(/)).

(b) If deg2(/) = 0, then Proposition 1.7 implies that / is ho-
motopic to g: Sι x Sm -+ Sm where g(z, x) = g(Q, x) for a point
QeS1. Then from the definition of S(g) it follows that S(g)(z9 y) =
S(f)(Q, y) The homotopy from f to g can be extended to a ho-
motopy from 5(/) to S(g). Since deg2(S'(gp)) = 0, it follows that
deg2(5(/)) = 0. Hence, deg2(/) = 0 implies deg2{S(f)) = 0.
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(c) From the definition of S(f) it follows that 5(Ψ(/)) =
where Ψ(/) is defined by (1.8). If deg2(/) = 1 in Z 2 , then by
Proposition 1.9, deg2(Ψ(/)) = 0, which implies that deg2(5(Ψ(/))) =
deg2(Ψ(S(/))) = 0. Then, again by Proposition 1.9, it follows that
deg2(S(/)) = 1 in Z2 . Hence, deg2(/) = 1 in Z 2 , implies deg2(£(/))
= 1 in Z 2 .

At the end, the conclusions of (b) and (c) imply that deg2(/) =
deg2(5(/)). D

Next, for m > 2, let h(m): Sι x Sm -> Sm be defined by:

(1.9) A(m)(z,w,x) = (zw,x)

where z e ^ c c , (w, x) e Sm c D2 x Z)"2"1 ,w G f l 2 c C , X G
ZP 2" 1, C is the set of complex numbers, and zw is the product of
z and w as complex numbers. If we consider Sm as a subset of
D2 x Dm~ι, and if we identify ΣSm with S m + 1 as a subset of Z>2 x

Dm-\ χ £)i ? from the definitions of A(ra) and S(f), it follows that

THEOREM 1.16. For m > 3, deg^/^m)) = 1 m Z, α«ί/ deg2(A(m))
= 1 in Z 2 .

Proof. From the definition of A(3), it follows that the restriction
of A(3) to {z} x S3 for a point z e Sι is a rotation on the first
two coordinates of S 3 , with the angle of rotation obtained from z.
Hence, the degree of the restriction of A (3) to {z} x S3 is 1. Then,
by induction, Theorem 1.15, implies that άz%x(h{m)) = 1 for m > 3.

The map A(2) has the property that A(2)(z, JV{2)) = Jf(2) for
each zeS1. We define A(2): X -• S2 by: A|2) restricted to Sι x 5 2

is A(2), and h(2)(D2) = JT{2), where I = 5 1 x 5 2 U D 2 with the
identification of S1 x {^(2)} with dD2. Then, it can be checked
that Έ(2)oK: S3 -> 5 2 is the Hopfjnap, and that Ίϊ(3)oK: S4 -> 5 3

is homotopic to the suspension Σ(A(2) o AT). Since [A(2) o ̂ ] is a
generator of π^(S2) and the suspension Σ: π^(S2) —• π4(*S3) is an
epimorphism (see [W]), it follows that deg2(A(3)) = 1 in Z 2 . Then,
by induction, Theorem 1.15, implies that deg2(A(m)) = 1 for m >
3. D

II. Standard models. In this section we will define several standard
models and prove several facts about extensions of maps.

Let SE: Sι x Dm -> Rm + 1 be the embedding defined by:

(2.1) S£(z,r,y) = ((2-r)z,y), f o r z e S 1 , (r,y)eDm, reD1.
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FIGURE 2.1

We say that SE is the standard embedding. It follows from the defi-
nition of SE that SE is orientation preserving, where Sι x Dm has
the product orientation of the standard orientations, and the restric-
tion of SE from ./f (1) x Dm to {0} x Rm is orientation reversing.
We will use the same notation SE for the image of the map SE. In
other words,
(2.2)
SE = {(z,x)\zeR2, X G Γ " 1 , 1 < | Z | < 3 , |X|2 < 1 - (|z| - 2)2}.

Let SD be the subset of R m + 1 defined by:

(2.3) SD = SEU{(z,x)\zeR2, x e Γ ' 1 , |z| < 2}.

Let SH = c\(SD\SE). Then SD = SE U SH. We say that SZ)
is the standard model for D2 in R m + 1 , because SD is a 1-regular
neighborhood of the disk {(z, 0) e R w + 1 | z E R 2, |z| < 2} in R m + 1 .
The standard model SD is homeomorphic to Z ) m + 1 . A schematic
picture for SD, SH and Sis in the case m = 2, is shown in Figure
2.1. We use the notation dSD for the homeomorphism dSD: Sm ->
dSD defined as follows. For (z, x) e Sm , z e Z>2, x e Z)m~1 :
(2.4)

+ l ) . ^ , V / l - ( 2 | z | - l ) 2 . | f ) ? i < | z | .

The set SH is also homeomorphic to Dm+ι, and we denote by
dSH the homeomorphism 55//: Sm -+ 55"^ defined as follows.
For (z, x) G 5"" , z G D2, x e D m - 1 :
(2.5)

_ J ( 4 Z > R ) > N < 1

Let φ: SHUdSE -».S7""1 be a given map. Let ψ = φ\dSD and
/ = φ\dSE be the restrictions of #> to dSD and 9SΈ. Let dSE
be the restriction of the map SE to 5 ( 5 ' x Dm) = Sι x Sm'1, i.e.
dSE S1 xSm~ι -
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PROPOSITION 2.1. Let φ, / , ψ be as above. Then, for m > 4, ψ
has an extension ξ: SD-> Sm~ι if and only if deg2(/ o dSE) = 0.

Proof. Because πι(Sm~ι) = 0 = π2(Sm'1), for m > 4, using the
homotopy extension theorem (HET), the map φ is homotopic to a
map φ: dSE USH -> Sm~ι, such that φ'(τ9 0, 1) =J/'(m- 1), for
every z e l 2 with |z| < 2. Let / ' be the restriction of φ' to dSis,
and ψ' be the restriction of φ' to 95*2). Then fodSE is homotopic
to / ' o dSE, and ψ is homotopic to ψ'. The set, Y = 9 5 ^ U
{(z, 0, 1) € R2 x Rm~2 x R| |z| < 2} is homeomorphic to the factor
space X obtained from Sι x Sm~ι U D2, and one homeomorphism
a: X -> Γ is defined by: α(z) = (2z, 0, 1) for z e D 2 , and α ^ 1 x
Sm~ι = dSE. Figure 2.2, illustrates the spaces X and Y and the
homeomorphism a. Next, α(Z) is a deformation retract of #Si? U
SH, with a homotopy G: (dSEuSH)xI -+ dSEuSH, such that the
end of the homotpoy G\ satisfies: G\ o dSD = aoK, where AT = K\
is defined by (1.2). Now let φ" = φ* oG\, let f" be the restriction of
φ" to dSΈ' and let ψ" be the restriction of φ" to 552). With the
above notation and homotopies, we have that: ψ has an extension
on SD iff ψ" has an extension iff ψ" odSD has an extension iff the
element [ψ'ΌdSD] = 0 in πm{Sm-χ) iff [φ'ΌdSD] = 0 in π ^ ^ " 1 )
iff [ ( p Ό G i o d S D ^ O in π m ( 5 m " 1 ) iff [φ'oaoK] = 0 in π m ( 5 m " 1 )
iff deg 2 (^ o dSE) = 0 iff deg2(#> o dSE) = 0 iff deg2(/ o 55^)
= 0. D

Let AN be the annulus in R2 C R m + 1 defined by

(2.6) v47V={(z,O)ERm + 1 |ze , 2 < | z | <
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Let Dλ = {(z, 0) G R m + 1 | z G R 2, |z| < 5}, D2 = {(z, 0) G R m + 1 | z G
R 2 , |z| < 2}, and C, = aZ>y, be the boundary circles of AN. Let
SAN be the 1-regular neighborhood of AN in R m + 1 , and let SCj
be the 1-regular neighborhood of C, in R m + 1 , for j = 1, 2. Note
that SC 2 = 5 Έ , and
(2.7)
S Q = { ( Z , X ) | Z G R 2 , X G R " 2 " 1 , 4 < | Z | < 6 , |X|2 < 1 - (|z| - 5)2}.

We orient the circles Cj by the induced orientation from the disks Dj
where Dj are oriented by the induced orientation from R 2 . In the
same way as the definition of the standard embedding SE, i.e. SC2,
we can define a standard embedding SCX: SιxDm -> R m + 1 , such that
it is isotopic to the standard embedding SE, it is orientation preserv-
ing, preserves the orientations from ^ x j O } to C\ and the restriction
of SCi from JV{\) X Dm to {0} x Rm is orientation reversing. Let
SC = SCi U SC2, and let SAH = c\{SAN\SC). Then SAN =
SCuSAH. The model SAN is homeomorphic to Sι xDm . We use
the notation SAN for the homeomorphism SAN: Sι x Dm -
defined as follows. For (z, r, x) e Sι x Dm, z G Sι, (r, x) e Z>
Γ G / ) 1 , xGZ)m" 1 :

r ((4-2r) z , ^ . χ ) , - 1 < Γ < - 1 ,

(2.8) SAN(z,r,x)=< {({ - 3r) z, 5 x), - ^ < r < i ,

1 ( ( 3 - 2 r ) . z , C x), ^ < r < 19

where: 4̂ = 0 for r = - l , C = 0 for r = 1, and

, ^ v / l - ( 2 r - l ) 2

and C = — v '

We denote the restriction of SCj and SAN to the boundaries by
dSCj and dSΛiV, i.e. dSCj . S1 x 5 m - ! -^ dSCj and 95^iV: 5 1 x
Sm~ι ^dSAN.

T h e set S Λ i / is a l so h o m e o m o r p h i c t o S ι x Dm.

PROPOSITION 2.2. Let φ: SAH u 9SC -»• S"7""1 be given and let
fj = φ\dSCj, j = 1,2, and ψ = φ\dSAN be the restriction of φ to
dSCj and dSAN, respectively. Then

degi(ψ o dSAN) = deg,-(/i o dSQ) + de g / (/ 2 o ΘSC2), fori=l, 2.

Proof. Because π i ^ - 1 ) = 0 = π2{Sm-χ) and SAH is homeo-
morphic to Sι x Dm, the HET implies that φ is homotopic to a
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FIGURE 2.3

map φ', such that φ'(SAH) = yK{m - 1). Let ψ' = φ'\dSAN and
fj = φ'\dSCj.

Step 1. Let A be the arc {((0, r), 0)|3 < r < 4} in the annulus AN,
and let P}ι, j = 1, 2, be its end points, i.e. Λ = {(0, 3, 0)} and P2 =
{(0,4 , 0)}. Let Bj = dSCjΠ{0}xRm , and let (N(A) N(Pi), N(P2))
be a regular neighborhood triple of {A; P\, P2) in (SAH Π {0} x
R w Bx, 5 2 ) , schematically shown in Figure 2.3. Then (N(A); N(Pι),
N(P2)) is triplewise homeomorphic to ( ΰ m - 1 x / ; £ ) m - 1 x { 0 } , Z ) m - 1 x
{1», and N{Pj) is an (m - l)-ball in Bj, j=\, 2.

We fix a product structure N(A) = B\ x / on N(A) via the home-
omorphism SAN. We orient iV(.4) by the induced orientation from
{0} x R m , and N(Pj) by the induced orientation from dN(A), and
define a map g: dSCx Π {0} xRm ^ Sm~l, such that glB^N^) =

NiPi), and deg(#) = 0. Such g exists because f'(N{Pι)) =
- 1). Using the product structure of N(A), we extend the map

g\N(Pi) to a map ξ: N(A) -> 5 / n ~ 1 , by £(x, ί) = g(x). Let 5 be
the subset of SAH defined by B = SAN(Sι x SAN-ι(N(A))). Us-
ing the product structure S1 x N(,4) of B via the homeomorphism
SAN, we can extend the map ξ to a map ξ': B -• 5 I W " 1 by ξ'(z, x) =
ξ(x). Now, we define a map φ": dSC U SAH -• .S'""1 by

U ^ i / ) \ . B = / | ( 5 5 C U 5 ^ / / ) ^ and 9>"|5 = ξ'. Let
, = g y, and φ"\dSAN = ψ". Then ψ" = ψ', and with

the above conventions about the orientations we have that
deg,(g! o dSCi) = 0, and degj(g2 <> ^^C 2 ) = degjί/i o dSQ) +
deg!(^2 °dSC2). Moreover, since in the definition of φ" we
have used the product structure on B, Proposition 1.7 implies that
άsg2(gj o dSCj) = d e g 2 ( / 7 o dSCj) , 7 = 1 , 2 .

Step 2. Let (K(A) K{Pχ), K{P2)) be a regular neighborhood triple
of (A;Pι,P2) in (SAH; ΘSCU dSC2). Then A"(P, ) is an m-ball
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in dSCj , and (K(A) K(P\), K(P2)) is triplewise homeomorphic to
(Dm x / ; Dm x {0}, Dm x {1}). We fix a product structure K(A) =
K(P\) x / on N(A) via the homeomorphism SAN. We define a
map A: d S Q -> S" 2" 1, such that A|a5Ci\^(Λ) = S i l d S C i V φ ^ ) ,
and A restricted to K(P\) gives the element deg2(/i o dSC\) in
πm(Sm~ι). Using the product structure of K{A), we extend the map
h\K(Pχ) to a map μ: ^(Λ) -> Sm~ι, by / φ t , ί) = A(JΓ). Next,
let p '" : dSC U £.4// -> 5 m " 1 be defined by: φ'"\K{A) = μ
and ^ / ; / | (95C U ^ ^ / / ) \ ^ μ ) = φ"\{dSC V SAH)\K{A). Let
p"'|<9SC7 = g'j , and ^ w | a5^iV = ^ " ' . Then ^ w = ψ" = ψf, and with
the above notation, we have that deg^gj o dSCj) — deg^gy o dSCj),
deg2(^ί o 0SCi) = 0, and deg2(g^ o ΘSC2) = deg 2 (^ o diSCi) +
deg2(g2odSC2).

The facts that deg/(^{) = 0, i = 1, 2, and Proposition 1.14 imply
that g[ has an extension g j : SC\ —>• iS''""1, which gives an extension
of ψm to a ^ i : SAH u 5 Q U a 5 C 2 -• 5 r m ~ 1 . This extension gives a
homotopy between ^ w o dSAN and ^ 2 o dSC2, which shows that

^ ; / o dSN) = degf ( ^ o

= deg /(/i o aSCi) + de g / (/ 2 o dSC2). Ώ

The following corollary follows directly from Propositions 2.2 and
1.14.

COROLLARY 2.3. Let φ, fj9 ψ be as in Proposition 2.2 and let
m > 4. ΓAe/2, ^ has an extension ξ: SAN —• 5>m~1 if and only if
deg, (/i o β5Ci) + de g / (/ 2 o 95C 2) = 0, / = 1, 2. D

Let 4 = (0, 4) G R 2 , and let KG CM2 c E w + 1 be the disk with
two holes defined by:

(2.9) KG = {(z,0)eRm+l\zeR2, | z | < 9 , | z - 4 | > 2 , |z+4| > 2}.

Let A = { ( z 5 0 ) | | z | < 9 } ? D2 = {(z, 0)| |z - 4| < 2} 5 D 3 = {(z, 0)|
|z + 4| < 2} and let Kx = dDγ, ϋ:2 = a D 2 , K3 = az>3 be the
boundary circles of KG. Let SKG be the 1-regular neighborhood
of KG in R m + 1 , and let SKj be the 1-regular neighborhood of Kj
in R m + 1 , for 7 = 1, 2, 3. We orient the circles Kj by the induced
orientation from the standard disks Dj they bound, where Dj are
oriented by the induced orientation from R2 . In the same way as the
definition of the standard embedding SE, for each 1 < j < 3 we
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SKH

FIGURE 2.4

can define a standard embedding SKj : S1 x Dm -+ R m + 1 , such that
they are isotopic to the standard embedding SE, they are orientation
preserving, and preserve the orientation from Sι x {0} to Kj. Let
SK = SK{ U SK2 U SK3, and let SKH = cl(SKG\SK).

We denote the restriction of SK, to the boundaries by dSKj , i.e.

xS m-\

PROPOSITION 2.4. Let φ: dSK u SX/f -> 5'
m ~ 1 gzv^n, and let

ψ = φ\dSKG and fj = φ\dSKj be its restrictions to dSKG and
dSKj, and let m > 4. Then, ψ has an extension ζ: SKG -
and only if

(1) degι(fιodSKι) = -dεgι(fjθdSKj) for j = 2,3; and
(2) deg2(/i o dSKi) + deg2(/2 o dSK2) + deg2(/3 o dSK3) = 0.

m-\ if

Proof. (A) Because π i ^ " 1 ) = 0 = n2(Sm~l), for m > 4, and
SKH is homeomorphic to KG x ΰ ' ^ " 1 , by the HET, the map 9? is
homotopic to a map p 7 : dSKuSKH -> 5 m ~ 1 , such that φ'(SKH) =
jV{m — 1). Let ^ ' be the restriction of #>' on dSKG, and let /J
be the restrictions of φ' on dSKj . Then /) o dSKj is homotopic to

for each 7 = 1 , 2 , 3 , and ψ is homotopic to ψ'.
(B) If + deg!(/7 o = 0 for j = 2, 3, then

by applying a variation of the method in Step 1 from the proof of
Proposition 2.3 we can accomplish the following: degj (fjodSKj) = 0
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FIGURE 2.5

and deg2(/J o 0SΆ» = deg2(/7 o 0SX,) for 7 = 1, 2, 3. We cannot
apply the method of Step 2 of that proof directly because there are
three boundary circles instead of two and the circles are not concentric.
But we can apply the method in Step 2 as above, separately in the
following two parts of SKH :

SKHX ={(r,s,x)eSKH\-9<r<9, 0<s<9} and

SKH2 = {(r, s, x) e SKH\ - 9 < r < 9, -9<s<0},

choosing the same subset of the intersection SKH\ n SKH2 in the
definition of the extension using the product structure. See Figure
2.5. Both of the SKHi are homeomorphic to SAH.

(C)Let B3 = {{0,r,x)eSKG\-\0<r<-5}, Bx = { ( 0 , r , x ) e
SKG\ - 3 < r < 3} and B2 = {(0, r, x) e SKG\5 < r < 10}. Then
each Bj is homeomorphic to Dm, and from the above conventions
about the orientations, the restriction of ψ' to dBj has an extension
on £;,for 7 = 2, 3,ifandonlyif άegι{f\odSKι) + άe%λ(fjoSKj) =
0. See Figure 2.5.

(D) By applying twice the method in Step 2 from the proof of
Proposition 2.2, once for K\, K2, and the second time for K\, K3
we can accomplish the following: deg2(/J o dSKj) = 0 for j = 2, 3.

C / J ) d ( / ) d ( / ) ( / )
and deg! (fj o dSKj) = deg! (fj o θ5Ά» for 7 = 1, 2, 3.

(E) Let ^ have an extension. This implies that ψ' has an ex-
tension. Then, (C) implies that deg^/i o dSK\) + degj(fj o SKj)
= 0, for j = 2 , 3 , i.e. (1) is satisfied. Moreover, (B) implies
that degiC/J o a S i ^ ) = 0 for j = 1, 2, 3, and (D) implies that
deg2(/J o 0SΆ)) = 0 for j = 2, 3. This, together with Proposi-
tion 1.14, implies that the restrictions of φf to dSKj, j = 2, 3,
have extensions. By HET, these extensions can be chosen to map
dSKj, j = 2, 3, to yK(m - 1). So, we can replace SKG by SD (see
(2.3)), i.e. we can extend the map φ1 on the 1-regular neighborhoods
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of £>2 and Z>3, by mapping them to JV{m - 1). Then Proposition
2.1 implies that deg2(f{ o dSK{) = 0. Hence, deg2(/j[ o dSK{) =
deg2(/j o dSKi) + deg2(/2 o dSK2) + deg2(/3 o dSK3) = 0, i.e. the
condition (2) is satisfied.

(F) Conversely, let the conditions (1) and (2) be satisfied. Then,
by (A), (B) and (D), we have deg,(/J o dSKj) = 0 for the map φ',
i = 1, 2, 7 = 1 , 2 , 3 . So, Proposition 1.14 implies that each of
the maps fj has an extension fji SKj —• Sm~ι, which together with
the restriction of φ' to SKH give an extension ξ': SKG -> Sm~ι

for ψ'. Since ^ and ψ1 are homotopic, it follows that ψ has an
extension ξ: S^G -^ 5 m " 1 . D

III. Indices 1 and 2. Let F: X x I -> X be given, where X c
E m is an m-dimensional, compact, connected PL oriented manifold,
such that XxlCRmxR = Rm+ι, and let m > 4. We assume
that X is oriented by the induced orientation from Rm , and X x I
has the product orientation. Let SE: Sι x Dm -> R x Rm, be the
standard embedding defined by (2.1). For each embedded oriented
circle C c i x / and a regular neighborhood W of C in X x / we
choose the isotopy class {#>} of orientation preserving embeddings of
pairs, φ: (Sι x Dm, Sι x {0}) -> (W, C), by isotoping the standard
embedding SE. Such a choice exists, because every two oriented
embedded circles in R m + 1 are isotopic, for m > 3.

Let P: X x I —• X be the projection, defined by P(x, t) = x , for
every x e X and t e / . A fixed point of the map i 7 is a point (x, ί) G
X x I, such that F ( x , /) = Λ: = P(x, t). The set of fixed points of
F is denoted by Fix(F), i.e. Fix(F) = {{x, t) e X x I\F(x, t) = JC} .
Let C C X x / be an isolated circle of fixed points, i.e. a circle of
fixed points, which has a small enough neighborhood W, such that
the only fixed points of F in W are the points of C. Since I C E " 1 ,
the map P - F: (W, C) -> (2)f, 0) is defined, and we denote it by
p(F), where ΰ f = {x G Rm\ |x| < ε} . Since C is an isolated circle
of fixed points, we have p(F)~l(0) = C. There are two orientations
on C we denote them by O\ and O 2 . Let φ be an embedding
from the chosen isotopy class for such an oriented circle C and its
neighborhood W. So we have a map ζ o ρ(F) o φ: Sι x Dm —> Z>m ,
where ζ: Z)£" —• Dm is the homeomorphism defined by multiplication
by 1/β. Let μ(jF): 5 1 x Sm~ι ^ Sm~l be the map μ(F) = ξ o C o

^' where £: Dm\{0} -> 5 m " J is defined by ξ(x) = ^ x, and
is the restriction of φ to Sι x Sm~ι.
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PROPOSITION 3.1. Let μ(F) and μ'{F) be defined as above, for
the two orientations on C. Then, dcgι(μ(F)) = -άt%x{μ!(F)), and

Proof. Let ψ\ and ψ2 be two embeddings from the chosen isotopy
classes for the oriented circles (C, O\) and (C, O2).

Let γ: Sι —• S 1 and (5: Z>m —• Z>m be orientation reversing homeo-
morphisms, and let ψ = (y, 5). Then $?2 and ^1 o ̂  are in the same
isotopy class, and moreover they are homotopic.

In the definition of άt%x we need only the orientation of Sm~ι,
not of Sι. So, since μ(F) and μ'{F) differ only in 9?! and #>2,
we need only to examine the restrictions a\ of ψ\ and α 2 of Ψi
to c^(l) x Z) m . Because ψι and ψ\°ψ are isotopic, it follows that
degι(μ(F)) = deg(α2) = deg(α! o δ) = deg(αi) deg(<5) = deg(αi)

Since μ(F) and μr{F) differ only in φ\ and ί?2, and the dif-
ference is a homeomorphism of Sι x Sm~ι which is a product of
two homeomorphisms, it follows that deg2(//(i7)) = 0 if and only if
deg2(//W) = 0. Hence, deg2(μ(F)) = dεg2(μ'(F)). D

DEFINITION 3.1. For a chosen orientation O on C, deg{(μ(F))
will be denoted by i\(F, C, O). We say that an orientation on C
is the natural orientation on C, if deg1(//(iΓ)) > 0, and we say that
degx(μ(F)) for this orientation is index 1 of F at C, denoted by
h(F,C).

REMARK 3.2. By the definition, iγ (F, C) > 0. In the case
dQgι(μ(F)) = 0, both of the two orientations on C are natural, or
using different words, C does not have a natural orientation.

The following notion is well defined by Proposition 3.1.

DEFINITION 3.2. We define index 2 of F at C, denoted by / 2 (JF, C),
to be deg2(μ(F)).

PROPOSITION 3.3. L ^ X,F,C and W be as above. Then, i\(F,C)
= 0 = / 2 ( F , C), if and only if F is homotopic to a map G: X x / —•
X relX x I\W, with G(x, ί) ̂  * /or eαc/z (JC, t) e W.

Proof. Let ix(F, C) = 0 = / 2 ( F , C) . Then deg^μCF)) = 0 =
deg2(//(F)), and so μ(F) is homotopic to a map K: Sι x iS''""1 —•
5 m " 1 , defined by ?c(z, x) = /(x), where / : Sm~ι ->Jm~ι is a map
of degree 0. The map / has an extension to a map / : Dm —• S™"1,
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which gives an extension of K to a map κ\ Sι x Dm —• Sm~ι. This
gives a homotopy H: W x / —• D™ reldW, from /?(.F) to a map
^ : W -> Z>f \{0} . So, for G = P-~p, we have that i 7 is homotopic to
G relX x I\W, with G(JC, ί) ̂  JC for each (x,t)eW. Conversely,
let F be homotopic to a map G relX x I\W, such that G(x ,t)φx
for each (JC, t) e W. Let /?((?) = P-G, and let μ(G) =ξoζop(G)oφ.
Then μ(F) = μ((7), and since />((?) has an extension from W
to Z>f, it follows that μ(F): Sι x Sm-χ -• Sm~ι has an extension
from Sι x Z)m to Sm~ι. This implies that dtgx(μ(F)) = 0 =
deg2(/ι(F)). D

DEFINITION 3.3. Let A be an isolated fixed point of F: X x / —•
X. Let F be a small (m + l)-ball neighborhood of A in X x / ,
such that F(JC) 7̂  P(x) for every x e V\{A}. Let p : Z>m+1 -•
F be a homeomorphism, and let μ(F): Sm -» .S^" 1 be the map
ξoζo(P-f)oφf, where p ; is the restriction of φ to Sm = dDm+ι.
Define index 2 of i 7 at A, denoted by Ϊ2(F, A) to be the element
[μ(F)]eπm(Sm-1).

Let C be an isolated circle of fixed points of F: X x I -+ X, B
be an embedded disk in int(X x / ) , with dB = C, and H: (X x I x
{0}) U (B x I) -> X be a partial homotopy such that 7/(x, 0) = F(x),
for all x e X x / , i ί ( x , 1) = JC for all JC e B, and /f(x, ί) = x for
all JC G C and all t e I.

PROPOSITION 3.4. Lei F , C, B and H be as above. Then there is
a neighborhood N of B, and a map G' I x / ^ I , homotopic to
F τtlXxI\N, such that Fix(G') = (Fix(F)\C)U{A}, and i2(F, C) =
i2{Gr ,A), where A is an isolated fixed point of G'. Moreover, if
iι(F, C) = 0, there is a neighborhood N of B, andamap G: Xxl —>
X, homotopic to F relX x /\JV, swcΛ ί/zαί Fix(G) = Fix(F)\C.

Proof. Let Λ̂  be a regular neighborhood of B in Xxl, such
that Fix(F) ΠΛΓ = C. Let ε > 0 be such that the 2ε-neighborhood
N2ε(B) is contained in intiV, and the 2ε-neighborhood N2ε{X) of
X in Rm retracts to X. Then, by the same methods as in [DG],
F is homotopic to a map Ff rel X x I\N, and there exists a regular
neighborhood N' of B, such that N' c iVε(5), and F ' and P are
ε-close on N', i.e. for each JC e TV', d(F'(x), P(x)) < e. So we
have a map (P - P')!-" Nf\C -> Ne(0)\{0} c Rm\{0}. Since ΛΓ; is
homeomorphic to Dm+ι, we can choose a point 4̂ G int iV7, such that
the map (P-Ff), restricted to dN' has an extension K'\ N' ^ Nε(0),
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with (K')~ι (0) = A. Now, let O: X x / -> RΛ be defined by: G' = F '
outside N', and G1 = P - K1 on TV'. Then F is homotopic to
Gf relX x I\N, with Fix(G') = (Fix F\C) U {A}. Because F is
homotopic to F ' by a special homotopy [DG], it follows that F' has
C as an isolated circle of fixed points, and / 2 ( F ' , C) = / 2 ( F , C) .
Next: because both the standard model SD and N' are (m+l)-balls,
the isotopy of the standard embedding SE for W can be extended to
an isotopy which sends SD to Nf, which together with Proposition
2.1 implies that / 2 ( F ' , C) = 0 if and only if (P - F ' ) , restricted
to dNf

 9 has an extension K: Nf —• TVε(0)\{0}, i.e. if and only if
/2(G', Λ) = 0. Hence, / 2 ( F , C) = /2(G', A).

If / 2 ( ^ 5 C) = 0, then i2{Gf, A) = 0, and so, the restriction of
(P - G') to a ^ ; has an extension K: N' -> iVε(0)\{0}. Let G be
defined using AT, in the same way as G' was defined using K'. Then
F is homotopic to G relX x 7\ΛΓ and Fix(G) = Fix(F)\C. D

Next, let C C I x / be an embedded circle on which F and P
are ε-close, as mentioned above, i.e. N2ε(X) retracts to X in R m ,
and d(F(x), P(Λ )) < ε for each x eW where FΓ is a small regular
neighborhood of C in X x 7. Assume that for each x e d W, F(x) Φ
P(x). Choose any orientation 0 for C, and let $? be an embedding
from the chosen isotopy class of embeddings for (W, C) . Let / =
F - F , let g denote the restriction of / o ^ to S 1 x S" 2" 1, and let

THEOREM 3.5. LetX,F,C,W,φ9f,g,k be as above, let m >
4, and for r > 1, let tj, 7 = 1, . . . , r, be arbitrary numbers with
ΣU = deg1(g). ΓΛen F w homotopic to a map G: X x I —• X,
relZ x7\ίT 5wc/z that:

(1) G Λα̂  r isolated circles of fixed points Ci, C 2 , . . . , Cr in W,
all of them "parallel to C;

(2) G does not have other fixed points in W\
(3) Σ Z*2(G? C/) = deg2(g), w/zere the sum is in πm{Sm-1)
(4) If we orient Cj with an orientation Oj compatible with the

orientation O on C (meaning that (C, O) and (Cj, Oj) determine
the same element in the first homology group H\(W)) then, for each
7 = l , 2 , . . . , r , iι(G9Cj9Oj) = tj; and

(5) If for each j , tj? = 1, then it is possible to make the circles
Cj transverse, which means that the graph of G and the graph of
the projection P: X x 7 —• X, intersect transversely in X x 7 x X at
each Cj.
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Proof. Let V = φ((0, 1) x Dm) c W, and let W = pOS1 x Bm),
where 2?m = Z)^ 2 . Then, by the creating procedure of fixed points
[BJ], there is a map ξ\ Bm -> Bm , with r fixed points, Lx, . . . , Lr,
whose indices are t\, ... , tr respectively, with their sum equal to
k. Moreover, if for each j , fy = 1, then the fixed points Lj are
transverse. Let h = id - ζ: 2?m —• Z>™, and let Λ| be its restriction to
d(Bm). Then deg(A|) = k with J9m and Df oriented by the induced
orientation from Dm . Let B\, . . . , Br be disjoint ball neighborhoods
of L i , . . . , Lr in Bm . Let C7 = ^(S 1 x •£/).> and let Vj = φ(SιxBj).
Using the map h, we define a map ^ : Sι x i?m —• Dψ , by ^ ( z , x) =
/z(x). By the definition of ψ, we have that deg^^l) = k = deg^g),
and deg2(^|) = 0, where ψ\ is the restriction of ψ to Sι xdBm . We
will consider two cases: when deg2(#) = 0, and when deg2(g) φ 0.

Case 1. If deg2(g0 = 0, then ψ\ is homotopic to g, which shows
that there is a map ψf: Sx x Dm —• Z>^, extending ^ and ^ , and
such that {ψf)~ι{0) = Sι x (L{ U U Lr). Then the map G defined
by G = F on XxI\W and by G = P-ψ;oφ~ι on H^, satisfies the
conclusions.

2. Let deg2(g) Φ 0. We use a method similar to the one
in Step 2 of the proof of Proposition 2.2. First we choose two
points A e Sι x dBm, and A! e Sι x dBx, and an arc a from
4̂ to ^ in Sι x i ? m , missing intl?! and all the other Bj's. Let

(N(a), iV(yί), N(B)) be a regular neighborhood triple of (a, A, A')
in (Sι xBm,Sιx dBm ,SxxdBλ). We can homotope the map ψ to
a map A, such that λ(N(a)) is a point in D™\{0}. Next we can re-
place λ by another map λ1, defined by λf = λ outside N(a)USι xBγ
the restrictions of λ' to N(A) and N(Ar) give nontrivial elements of
Km{Sm~l); λ' on Λ (̂α) is an extension of the map defined on dN(a),
and A7 on Sι x B\ is defined by coning the map from S1 x dB\ to
^ x O , where O is the center of i?i. In the case tj = 1 for each
j , we redefine λ1 on Sι x Bγ as follows. Let p be the restriction
of λ' to Sι x dBγ. Then deg^/?) = 1 in Z and deg2(/?) = 1 in
Z 2 , which implies that p is homotopic to the map h(m - 1) defined
by (1.9). Let B[ Q Bγ be a smaller concentric ball in B\ with the
same center O. We define λ' on the closure of Sι x (B\\B[) via the
homotopy from p to h(m - 1), and on Sι x B[ by coning h{m-\)
to Sx x O. For /l; defined in this manner, deg2(/l7|) ^ 0, where λ'\
is the restriction of λ1 to S 1 x dBm , which shows that λ'\ is homo-
topic to g. Hence, there is a map ψ': Sι x Dm —• Z>£" , extending λ7
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and g, such that (ψ')'ι(0) = Sι x ( I i U U i r ) . Then the map G
defined by G = F on X x J\FF and by G = P - y/Ό φ~ι on W,
satisfies the conclusions (1), (2), (3) and (4), because i2(G, Cj) = 0
for all j Φ 1, and /2(G, CΊ) = deg2(g). The map G satisfies con-
clusion (5) for each circle C/, j Φ \, because the map ^ is defined
by ψ(z, x) = Λ(x). The circle Ci is transverse, because for each
arc [A, B]CSι, the restriction of the map h{m-\) to [A, B]x B\
is homotopic to the map γ, defined by y(z, x) = Λ(m - l)(A9 x),
and because A7 was defined on 5 1 x B[ by coning h(m - 1) to

PROPOSITION 3.6. Lei X9 F, C,W, φ, f, g, and k be as above.
Then:

(1) F is homotopic to a map G\: X x / —• X, TQIX X I\W such
that: C is an isolated circle of fixed points for G\ and G\ does not
have other fixed points in W\ i\(G\, C) = \k\; and ii(G\, C) =

(2) If k Φ 0, then F is homotopic to a map G 2 : X x / —• X,
relX x I\W such that: Gι has \k\ isolated circles of fixed points
Ci C\k\ in W, all of them "parallel" to C; G2 does not have
other fixed points in W i\{Gi, Cj) = 1 yc?r ̂ αcΛ j G {1, . . . , |/:|}
and Y^iiiGi, Cj) = deg2(g), where the sum is in πm(Sm~ι). More-
over, it is possible to make the circles Cj transverse.

(3) If k = 0 and deg2(g) = 0, then F is homotopic to a map
(73: X x / -> X, TCIX x /\ W swc/z ίΛαί G3 Λα̂  no fixed points in W.

(4) If k = 0, <z«<i deg2(g) ^ 0, ί/ẑΛ2 i 7 is homotopic to a map
G4: X x / —• X y relX x I\W such that G4 has only one isolated fixed
point A in W, and i2(G4, A) = deg2(#).

Proof. (1) and (2) follow directly from Theroem 3.5.
(3) follows from Theorem 3.5 and Proposition 3.3.
(4) follows from Theorem 3.5 and Proposition 3.4. D

There is a converse to Proposition 3.4.

PROPOSITION 3.7. Let A be an isolated fixed point of F. Then
there is a regular neighborhood N of A, and a map G: X x / —• X,
homotopic to F relX x I\N, such that Fix(G) = (FixF\{^}) u C,
and /2(G, C) = / 2(JF , A), where C is an isolated circle of fixed points
of G which bounds a disk B in N, on which G and P are ε-close.
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Moreover, i\(G, C) can be chosen to be any number > 0, and if
i\(G9 C) = 1, then the circle C can be made transverse.

Proof. Let N be a small regular neighborhood of A, such that F
does not have other fixed points in N, and F and P are ε-close on
N. Let C be a circle in N missing A, and let W be a regular neigh-
borhood of C in N. Then Theorem 3.5 implies that F is homotopic
to a map /f relX x I\W, such that: i/ has two more circles of fixed
points C and C ; i2(H, C") = ι2(if, C) = i2(F, A) ^(Jf, C) is a
previously chosen number > 0 and C bounds a disk B missing A
and C, on which H and P are ε-close; and in the case i\(H, C) = 1,
the circle C is transverse. Then, Proposition 3.4 implies that H
is homotopic to a map H' relX x I\N' where iV7 is a small reg-
ular neighborhood of B, such that Fix(iί') = (Fix(/f)\C) U {^}
where A* is an isolated fixed point of Hf in JV with i2(H' 9 A!) =
i2(H', A). Then /ϊ7 is homotopic to a map G relX x I\N", where
iV/; is a small regular neighborhood of an arc from A to Af in N,
missing C, such that Fix(G) = Fix(H')\{A, A'}, i.e. Fix(G) =

C. •

PROPOSITION 3.8. Let f: KG -> X x I be an embedding, and let
id: KG -• X x / 6e ίΛ^ identity embedding of KG in R m + 1 , m > 4,
where KG is defined by (2.9). Then, f(KG) is isotopic to KG.

Proof. Since KG has a one dimensional core, and m > 4, it follows
that / and id are homotopic embeddings. This homotopy implies the
isotopy for m > 5. For m = 4, f(KG) can be isotoped to a new
position denoted again by f(KG), such that /(AΌ) Π #C? = 0 . The
(exterior) circles K\ and /(AΊ) are homotopic, and the homotopy can
be homotoped to an embedding h(Sι x / ) . Since Ki, ^ , /(-K2) and
/(-K3) are nullhomotopic in R 5, they bound disjoint embedded disks,
whose interiors are disjoint from h(Sι xl). These disks, together with
h(Sι x I), form an embedded S2 in R 5, which is unknotted, ([RS]),
and bound a standard D3 in R 5 . Since the circles K2, K3, f(K2)
and f{Kτ) are standard in S2, we obtain a standard KG x I in R 5 ,
such that A : G X { 0 } = A:G and A : G X { 1 } is isotopic to f(KG). Hence
A:G is isotopic to / ( £ ( ? ) . D

Let X, F be as above, let C2, C3 be two circles of fixed points of
F. Let f{KG) be an embedded disk with two holes in Xxl, such
that Cj = f(Kj), 7 = 2 , 3 , and f(KG) has a regular neighborhood
in Xxl whose intersection with Fix(F) is C 2 UC 3 . Let Q =
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and let H: (X xl x {0}) U (f(KG) x /) -> X be a partial homotopy

such that H(x, 0) = F(x), for all x e X x / , i / ( * , 1 ) = JC for all

x G /(A:G), and H{x, t) = x for all JC G C ; , 7 = 2, 3 and all t e l .

PROPOSITION 3.9. Let F9Cjt f(KG) and H be as above. Let
the natural orientation of Cj agree with the induced orientation from
f{KG), and let iλ(F, C2) = iχ(F, C 3 ). Then there is a neighborhood
N of f (KG) f and a map G: Xxl -> X, homotopic to FτelXxI\N,
such that: C\ is an isolated circle of fixed points of G whose natu-
ral orientation agrees with the one induced from f(KG)\ Fix(G) =
(Fix(F)\(C2 U C3)) U d ix(G, Cx) = h(F, C2) and i2(G9 Cx) =
i2{F, C2) + ^ ( i 7 , C3). Moreover, if C2 αnrf C3 αr^ transverse, then
C\ can be made transverse.

Proof. Let TV be a regular neighborhood of f(KG) in Xxl,
such that Fix(F) n TV = C2 U C 3 . Let ε > 0 be such that the
2ε-neighborhood N2ε(f(KG)) is contained in intiV, and the 2ε-
neighborhood N2ε(X) of X in Rm retracts t o X . Then, by the same
methods as in [DG], F is homotopic to a map F1 relX x 7\JV,
and there exists a regular neighborhood Nr of f(KG), such that
N' C Nε(f(KG)), and F r and P are ε-close on Λ^;, i.e. for each
x G N'9 d{F'{x),P{x)) < e. Let ϋΓJ = {(z,0) G A:σ| |z| = 8},
be a circle in KG parallel to AΊ, and let C[ = /(AΓJ). Let Ĥ
be a small regular neighborhood of C\ containing C[, contained in
N', and missing C 2 , C3. Then, by Theorem 3.5, Ff is homotopic
to a map Gf rt\X x I\W, such that: Fix(<7) = Fix(jp) u C{ U C[
^(G 7 , Ci) = /i(F, C[) = ii(-F, C2) the natural orientations on Q ,
C[ are opposite, i.e. they determine opposite elements in H\{W)\
h{G', CO = ^ ( G ' , C{) = / 2 ( F , C2) + ^ ( i 7 , C 3 ); the natural orien-
tation of C\ agrees with the one induced from f(KG), i.e. f(K\)
and if C 2 , C3 are transverse, then Ci and C[ can be made trans-
verse. Let / ' : KG —> X x I be the embedding obtained from / by
pushing in the collar from Kγ to K[. Let N" be a regular neighbor-
hood of f(KG) contained in N'. Let λ: SKG -+ N' be a homeo-
morphism obtained from the isotopy between ΛΓG and f'(KG), and
let λ' be its restriction to dSK U SX// (see II). So we have a map
(P - Gf) o A: dSK U 5i^iί -^ Df \{0}, i.e. a map ξ o ζ o (P - Gr) o
λr: dSKuSKG -> 5 m " 1 , where f: D™ -> Z)m is the homeomorphism
defined by multiplication by 1/e, and <̂ : i)m\{0} ~> ̂ S'""1 is defined
by ξ(x) = Λ- x. From the choices in the creation of the new circles of
fixed points C\, C[, it follows that for the map φ = ξoζo(P-G')oλ'
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the restrictions fj to dSKj and ψ to dSKG, satisfy the conditions
(1) and (2) of Proposition 2.4. This implies that the restriction of the
map (P - G') to dN" has an extension φ'\ N' -> Of \{0}, and the
map G: I x / ^ X defined by: G = Gf on XxI\N" and G = P - p '
on iV7', satisfies the conclusion of the proposition. α

In the preceding proposition, we replaced two circles of fixed points
by one. A similar argument holds for replacing one circle of fixed
points by two.

Let X, F be as above, let C\ be an isolated circle of fixed points
of F. Let f(KG) be an embedded disk with two holes in X x / , such
that C\ = f(K\), and f{KG) has a regular neighborhood in X x /
whose intersection with Fix(F) is C\. Let Cj = f(Kj), j = 2,3,
and let 77: (X x 7 x {0}) U (f(KG) x / ) - > I b e a partial homotopy
such that H(x, 0) = F(x), for all x e X x / , 77(x, 1) = x for all
x e f(KG), and H(x, t) = x for all JC € CΊ and all t e l .

PROPOSITION 3.10. Let F, C}, , /(AΓG) <zra/ 77 fe as afove, feί
natural orientation of C\ and the induced orientation from f(KG),
i.e. from f(Kj) agree. Then there is a neighborhood N of f(KG),
and a map G: X x 7 —• X, homotopic to F relX x I\N, such that:
C2, C3 are circles of fixed points of G whose natural orientation agrees
with the one induced from f(KG) Fix(G) = (Fix(F)\Ci) U C2 U C3

h(G9 C2) = Ϊ Ί ( G , C3) = i i ( F , CO; a«^ /2(G, C2) + i'2(G, C3) =
z 2 (F, Ci). Moreover, if C\ is transverse, then C 2 , C3 can Z?

Proof. The proof is the same as the proof of Proposition 3.9 except
that we have to use Theorem 3.5 twice, once to create two circles of
fixed points C 2 , Cf

2, and once more to create the other two circles of
fixed points C3, Cf

z. D

IV. One parameter Nielsen fixed point theory. Let F : I x / - > I ,
I C E " an m-dimensional, compact connected, oriented manifold,
m > 4 be as in III. Let . 4 , 5 be two fixed points of F. It is said
that A and B are in the same fixed point class if there is an arc
α: [0, 1] —• X x 7 from A to B and a homotopy between F o a and
P o α rel{0, 1}. The relation of being in the same fixed point class
is an equivalence. It follows directly from the definition, that if A, B
belong to a circle of fixed points then they are in the same fixed point
class. Two circles of fixed points are in the same fixed point class if
and only if their points are in the same fixed point class.
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Next we recall some definitions and facts, and improve Theorems
9.8 and 10.1 from [DG], where it was assumed tht F is transverse
to P, which implies that for each isolated circle of fixed points C,

Let E be the space of all (continuous, not necessarily PL) paths
ω(t) in X x / x X from the graph T{F) = {(x, t9 F(x, t))\(x9 t) G
X x /} of F to the graph Γ(P) = {(JC, t9 x)\(x9 t) e X x /} of P,
i.e. maps ω: [0, 1] -> X x / x X, such that ω(0) G Γ(F) and ω(l) G
Γ(P). Let CΪ9...9Ck be isolated circles in Fix(jF) n int(JΓ x / ) ,
oriented by the natural orientations, and let V = (J C/. Then F
determines a family of circles V in is via the constant paths in E,
i.e. each oriented isolated circle of fixed points C: Sι -+ X x I of
F determines an oriented circle C : Sι —* £" defined by C;(z) =
con(C(z)) where con(C(z)) is the constant path at C(z) = (x9 to),
i.e. con(C(z))(ί) = (x9tθ9x) for each t e [0, 1]. The definitions of
a fixed point class and E imply that two fixed points A and B are
in a single fixed point class if and only if the correspondent points
A1 and Bf in E are in a single path component of E ([DG]). Since
any two points A, B from a circle of fixed points are in a single fixed
point class, it follows that a family V of circles of fixed points is in
a single fixed point class if and only if there is a compact orientable
surface SQ and a map ϋ: So —• E, such that a part of 95Ό is mapped
homeomorphically to V. As it is shown in [DG], such a surface
SO a n d a map # exist if and only if there is an embedded compact
orientable surface S i n l x / such that V QdS and there is a partial
homotopy H: X x I x {0}uS x I -+ X satisfying: H(x, 0) = F(x)
for all x e X x / , H(x9 I) = x for all JC e S9 and J ϊ ( * , /) = x for
all x G F and all ί.

Now we recall a variation of Theorem 9.8 from [DG].

THEOREM 9.8 [DG]. Let F: X x I -> X be transverse to P with
no fixed points in d(X x I) and transverse fixed point set Let K =
\JCj be a union of circles of fixed points such that V lies in a path
component of E. If the geometric I-cycle in E defined by V with the
natural orientations on the Cj 's is Z-homologous to zero, and if the
connected surface S spanning V can be chosen with trivial associated
Z 2 obstruction, then there is a neighborhood, N, of V in m\(X x I)
containing no other fixed points of F, and a homotopy from F to
HrtlXx I\N, such that Fix(H) = Fix(F)\V.

Theorem 10.1 in [DG] shows that the vanishing of the obstructions
is not only sufficient, but also necessary.
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THEOREM 10.1 [DG]. With the notation as in Theorem 9.8, let there
exist a compact neighborhood N of V in int(X x /) containing no
other fixed points of F and, a homotopy between F and G, relX x
I\N, such that Fix(G) = Fix(F)\V. Then there is a connected surface
S, spanning V with a partial homotopy as above, whose associated
Z2-obstruction vanishes.

Now we improve both of these theorems by the following:

THEOREM 4.1. Let F: X x / —• X be tranverse to P with no fixed
points in d(X x /) and transverse fixed point set as in [DG]. Let V =
U Cj be a union of isolated circles of fixed points, such that V1 lies in
a path component of E. Then, there is a neighborhood, N, of V in
int(X x /) containing no other fixed points of F, and a homotopy from
F to H relX x I\N, such that Fix(H) = Fix(F)\V, if and only if:
the geometric I-cycle in E defined by V with the natural orientations
on the Cj fs is Z-homologous to zero; and Σ i2(F, Cj) = 0.

Proof. The proof is similar to the proof in [DG]. Let the geo-
metric 1-cycle determined by V be Z-homologous to zero and let
Σh(F 9 Cj) = 0. The fact that the geometric 1-cycle determined
by V is zero implies the existence of an embedded, oriented, com-
pact, connected surface S c int(X x /) spanning V and inducing the
natural orientation on the circles in V, together with a partial homo-
topy K: (X x / x {0}) u(SxI)-+X, with K(x, 0) = F{x) for all
x e Xxl, K(x, 1) = x for all x e S, and K(x, t) = x for all x e V
and all t ([DG]). Then by the cutting argument given in [DG], and
by Propositions 3.9 and 3.10, S can be reduced to a disk B. This
cutting argument gives a homotopy from F to a map G relX x I\N'
for a neighborhood N' of V, such that: Fix(G) = (Fix(F)\K) U dB
iι{G,ΘB) = 1; and i2(G,dB) = £ i ' 2 ( F , C, ) = 0. Further, by
Proposiy tion 3.4, G is homotopic to a map H rel (X x I)\N" for a
neighborhood N" of B, such that Fix(#) = Fix(G)\dB = Fix(F)\V.

Conversely, suppose there exist a neighborhood N of V and a ho-
motopy from F to H relX x I\N, such that Fix(H) = Fix(F)\V.
Then as it is shown in [DG], the 1-cycle in E determined by V is Z-
homologous to zero, and there exists a surface S as above, whose asso-
ciated Z2-obstruction is zero. But the associated Z2-obstruction for S
is obtained after the cutting argument, which by Propositions 3.9 and
3.10, implies that the Z2-obstruction for S is equal to Σ i2(F, Cj),
and hence, Σ HF, C, ) = 0. D
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In the above theorems we used repeatedly a family of isolated trans-
verse circles of fixed points V and its corresponding family V in the
space of paths E. Next we generalize this notion slightly. Let V be
a family of isolated circles of fixed points (not necessarily transverse)
and isolated fixed points (which cannot be transverse). For such a set
V, let V be the subset of E defined as above using constant paths.
Then V is a family of circles and points in E. A set V is in a single
fixed point class if and only if V is in a single path component of
E. For an isolated oriented circle of fixed points C, let {C} be the
element from Hχ(E) determined by the geometric 1-cycle C. For
such sets V we define two indices.

DEFINITION 4.1. Let V be a family of isolated circles of fixed points
C\, ... 9 Cjς (not necessarily tranverse) and isolated fixed points
A\, . . . , Ar in a single fixed point class. Let Cj be oriented by
the natural orientation. We define the index 1 of V, denoted by
indi(F, V), to be the element Σh(F, Cj) {Cj} in HX(E). We
define the index 2 of V, denoted by ind 2 (F, V), to be the element
Έi2(F9Cj) + Σi2(F9Ai) inZ 2 .

The improvement in Theorem 4.1 is the fact that the Z 2 obstruction
does not depend on the surface. But there is another improvement.
In [DG] the cutting argument was not producing new circles of fixed
points, and here the cutting argument is producing new circles of fixed
points. The generalization of this is the following theorem.

THEOREM 4.2. Let V be a family of isolated circles of fixed points
and isolated fixed points of F in a single fixed point class. Then there
is a neighborhood N of V missing other fixed points and a homotopy
from F to G xt\X x I\N, such that: Fix(G) = (Fix(F)\F) u C,
where C is an isolated circle of fixed points of G; indi(G, C) —
0 if and only if ϊnάχ{F 9 V) = 0; and ind2(G, C) = ind 2 (i 7 , V).
Moreover, the circle C can be chosen to be transverse, which implies
that iι(G, C) = 1.

Proof. The proof consists of the following steps.

Step 1. Conclusion (4) of Proposition 3.6 implies that F is ho-
motopic to a map F\ relX x I\N\ where N\ is a small compact
neighborhood of the circles of fixed points Cj with i\(F, Cj) = 0,
such that: these circles are replaced by fixed points; the new family
V\ is in a single fixed point class of F\ indi(Fi V\) = 0 if and only
if indiCF, V) = 0; and i n d ^ , Vx) = ind2(V, V).
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Step 2. Proposition 3.7 implies that F\ is homotopic to a map
Fι relX x 7\iV2 > where iV2 is a small compact neighborhood of the
fixed points Aj in V\, such that: the fixed points Aj are replaced
by circles of fixed points Kj the new family V2 is in a single fixed
point class of F 2 ; each geometric 1-cycle Kj in E determined by
Kj is nullhomotopic, and moreover, Z-homologous to zero; Kj are
transverse and ι"i (JF^ , Kj) — \ and /^(T^, Kj) = h(F\ > Aj). This
implies that i n d i ^ , V2) = 0 if and only if indi(F, F) = 0, and

3. Proposition 3.6 implies that F2 is homotopic to F$ relX x
where ΛΓ3 is a small compact neighborhood of V2, such that:

each circle Cj from V2 is replaced by ^(T^, C, ) circles; the fam-
ily K3 is in a single fixed point class; for each circle Cj in F$, C,
is transverse and i\(F$, Cj) = 1 ind 1(7*3, F$) = 0 if and only if
indi (F, V) = 0 and ind 2 (F 3 , F3) = ind 2 (F, V).

Step 4. We reduce the number of circles of fixed points in F3 by
induction. Let C\, C2 be two circles in F3. Since they are in a single
fixed point class there is an arc a from C\ to C2 and a homotopy
from F^oa to Poa, i.e. a partial homotopy Hf: I x / x { 0 } U α ( / ) x / ^
X from F3 to P. The partial homotopy can be extended to a partial
homotopy H: X x / x {0} U pίlTG) * I-+X where φ: KG->XxI
is an embedding such that: φ{KG) is contained in a small regular
neighborhood N4 of Q U C2 Uα(7) ^(^2) = Q ^(^3) = C2 and
the orientation on Cj induced from the orientation on KG via φ
agrees with the natural orientation. Then Proposition 3.9 implies that
7*3 is homotopic to a map F4 rel X x 7\iV4 such that: the family V4 =
(F3\{Ci, C2})U{φ(Kχ)} is in a single fixed point class; for each circle
Cj in V4, Cj is transverse and i\(F4, Cj) = 1 ind^T^, V4) = 0 if
and only if indi(F, F) = 0; and ind 2 (F 4 , F4) = ind 2 (F, F ) . The
same process can be applied to F4, so that at the end we will obtain
a map G which satisfies all the conclusions of the Theorem.

We note that Step 4 can be applied directly to F and F , obtaining
all the conclusions of the theorem except the moreover part, if F
consists only of isolated circles of fixed points and if there is a number
s > 0 such that, for each circle Cj in F , iχ(F, Cj) = s. D

Next we give another improvement of Theorem 4.1.

THEOREM 4.3. Let X c Rm 6e an m-dimensional compact con-
nected orientable manifold, m > 4, let F: X x I -+ X, and let
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V C int(X x /) be a family of isolated circles of fixed points and isolated
fixed points of F in a single fixed point class. Then, there exists a com-
pact neighborhood N of V and a homotopy from F to GτέiXxI\N
such that Fix(G) = Fix(F)\V if and only if md{(F, V) = 0 in
HX{E), and ind 2 (i 7 , V) = 0 in Z 2 .

Proof. The proof follows from Theorems 4.2 and 4.1. D

DEFINITION 4.2. Let F have only isolated circles of fixed points and
isolated fixed points. A fixed point class V is said to be inessential
if inάχ(F, V) = 0 and ind 2 (i 7 , V) = 09 and essential otherwise. We
denote by N(F) the number of essential fixed point classes.

Finally, we state the following theorem about the number and types
of fixed point classes whose proof follows from the above results. Let
F, X be as above, and m > 4.

THEOREM 4.4. (1) F is homotopic to a map G\ such that G\ has
exactly N(F) fixed point classes.

(2) F is homotopic to a map G2 such that G2 has exactly N(F)
isolated circles of fixed points.

(3) F is homotopic to a map Gτ> such that G3 has exactly N(F)
isolated transverse circles of fixed points.

(4) If F is homotopic to a map H such that H has only isolated
circles of fixed points and isolated fixed points, then the number of fixed
point classes of H is bigger than or equal to N{F).
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