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CONTINUITY OF CONVEX HULL BOUNDARIES

LINDA KEEN AND CAROLINE SERIES

In this paper we consider families of finitely generated
Kleinian groups {Gμ} that depend holomorphically on a
parameter μ which varies in an arbitrary connected do-
main in C. The groups Gμ are quasiconformally conju-
gate. We denote the boundary of the convex hull of the
limit set of Gμ by dC{Gμ). The quotient dC(Gμ)/Gμ is
a union of pleated surfaces each carrying a hyperbolic
structure. We fix our attention on one component Sμ

and we address the problem of how it varies with μ. We
prove that both the hyperbolic structure and the bending
measure of the pleating lamination of Sμ are continuous
functions of μ.

1. Introduct ion. A discrete subgroup G C PSL{2, C) is both a
subgroup of aut(C) and a group of isometries of hyperbolic 3-space,
H 3 . The regular set Ω = Ω(G) is the subset of C on which the
elements of G form a normal family, and the limit set Λ(G?) is its
complement. An important object of study in the Thurston theory
of hyperbolic 3-manifolds is the boundary in H 3 of the convex hull
of A(G). This boundary carries all of the essential geometric infor-
mation about G. Its connected components are examples of what
Thurston calls pleated surfaces. They carry an intrinsic hyperbolic
metric with respect to which they are complete hyperbolic surfaces.
Denote the convex hull boundary by dC = dC{G). Each compo-
nent of dC "faces" a certain component of Ω; more precisely, each
component of dC is the image of a component of Ω under the retrac-
tion map defined in Section 2. Topologically, but not conformally,
the components of dC/G are equivalent to the components of Ω/G
determined by this correspondence.

Suppose now that {Gμ} is a family of Kleinian groups depending
holomorphically on a parameter μ that varies in a connected domain
D C C in such a way that the groups Gμ are all quasiconformally
conjugate. For the sake of readability we often drop the G and
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write Ω(/i) for Ω(Gμ) and dC(μ) for dC(Gμ) etc. Let dC*(μ) be a
particular component of dC(μ) that faces a connected component
Ω*(μ) of Ω(μ). For example, {Gμ} might be a family of quasi-
Fuchsian groups and Ω* (μ) one of the two components of the regular
set.

In this paper we address the problem of how the pleated sur-
face Sμ = <9C*(μ)/Stab(Ω*(μ)) varies with μ, where Stab(Ω*(μ)) is
the stabilizer of the component Ω* in Gμ. A pleated surface con-
sists of a union of totally geodesic pieces and bending lines; this
set of bending lines, known as the bending or pleating locus, is a
geodesic lamination on the surface. This lamination supports a nat-
ural transverse measure, the bending measure, that measures the
angle through which successive flat pieces are bent as one moves
along the transversal.

What we prove here is that both the hyperbolic structure and
the bending measure of Sμ are continuous functions of μ. Precise
statements of our results are at the beginning of Section 4.

There is a natural topology on the space of all pleated surfaces
homeomorphic to a given surface. This is defined carefully in
[3, Section 5.2]. To see that our surfaces vary continuously in this
topology, one needs the continuity of the hyperbolic structure on
Sμ. The result then follows easily using methods similar to those
given here. It is proved in [3, Section 5.3] that the map from pleated
surfaces to laminations with the Thurston topology is continuous.
This is a weaker version of our result. All the notions, convex hull
boundary, pleated surface, bending measure, etc. were introduced
by Thurston in [14]. This paper depends heavily on the detailed
account of these topics in [5]. A more rapid introduction to pleated
surfaces is also to be found in [13].

We were originally led to these questions in the course of our
investigations of the Maskit embedding of the Teichmύller space
of a punctured torus [7, 9]. Our work there is the first step in
a program to define new moduli (called pleating coordinates) for
more general spaces of Kleinian groups. These coordinates reflect
the geometry of the convex hull boundary. As is already apparent in
[7, 9] and [8], the results in this paper play a crucial role in this plan.
Although our results here are certainly not unexpected, the proofs
are surprisingly non-trivial and do not appear in the literature.
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The outline of our paper is as follows. In Section 2 we carefully
describe the general setup outlined above. In Section 3 we recall
the definitions of geodesic laminations, pleated surfaces, etc. that
we need. In Section 4 we prove our theorems.

We would like to thank David Epstein, Steve Kerckhoίf and Curt
McMullen for helpful discussions on the results of this paper. In ad-
dition, we would like to thank the referee for his care in reading the
paper and for his comments. This paper is considerably improved
thereby. We would also like to acknowledge the support of the NSF
in the US, the SERC in the UK, the Danish Technical University
and the IMS at SUNY, Stony Brook.

2. The general setup. In this section we establish notation
and explain the general situation that we discuss in this paper. As
in the introduction, H3 is hyperbolic three space. Its boundary is
the sphere at infinity, C. Let G C aut(C) be a finitely generated
Kleinian group. For simplicity, we always assume that our groups
are torsion free. Then G acts by isometries on H3 and by conformal
automorphisms on C. That part of C on which the elements of
G form a normal family is the regular set Ω = Ω(G) of G and
the complement is the limit set Λ = Λ(G). Alternatively, Λ is the
closure of the set of fixed points of loxodromic elements of G.

We form the convex hull C = C{G) in H3 of A; that is, C is the
intersection with H3 of all closed hyperbolic half-spaces of H3 U C
containing A. Let dC = dC(G) be the boundary of C. Then dC
carries an intrinsic hyperbolic metric (see [5, Theorem 1.12.1]).

Let Ω* be a fixed component of Ω(G). The assumption that G
is finitely generated implies, by the Ahlfors finiteness theorem, that
Ω*/Stab(Ω*) is a compact Riemann surface of finite genus from
which at most finitely many points have been removed. In general,
the limit set A is not contained in a circle. If it is, the convex core is
contained in a two-dimensional hyperbolic plane (see [14, Chap. 8]).
We make the convention in this case that the boundary of the core is
"two sided". More precisely, if C is a circle on C and if A = C, then
dC is the two sided hyperbolic plane spanned by C and, if the group
G is Fuchsian, each side is a separate component. If A C C, A φ C
then dC is the union of the Nielsen regions of the top and the bottom
sides and these form a single component.

The connected components of the convex hull boundary are in
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one-to one correspondence with the components of Ω. Each compo-
nent of dC is identified with the component of Ω* it "faces", where
the meaning of "faces" is made precise as follows. If X is any closed
convex subset of H3 U C, there is (see [14, 5]) a canonical retrac-
tion map r from H3 U C to X whose restriction to C is defined as
follows: If x G X, define r(x) = x. If x G C \ X, find the largest
horoball tangent to C at α;, whose interior is disjoint from X, and
set r(x) to be the unique point of contact. Clearly, in this case,
r(x) G dX. Now for a component Ω* of Ω, we define dC* to be the
image of Ω* under the retraction onto C. We denote the quotient
<9C*/Stab(Ω*) by S — S(G). As explained in more detail in Sec-
tion 3.6, the quotients Ω*/ Stab(Ω*) and 5 are surfaces of the same
topological type.

REMARK. It is important to note that, although the two surfaces
are homeomorphic, the retraction map itself is not a homeomor-
phism, nor are the two quotient surfaces conformally the same. A
theorem of Sullivan, proved in detail in [5], is the assertion that if
Ω* is simply connected, the two surfaces with their natural Poincare
metrics are Lipschitz equivalent by a map with universally bounded
Lipschitz constant. Sullivan's theorem may fail, however, if Ω* is
not simply connected. For present purposes we simply need to know
that the surfaces have the same topology.

In this paper we study the geometry of S(G) as G varies holo-
morphically with respect to some parameter μ G C More precisely,
we suppose that D C C is a connected domain such that for each
μ G D, we have a Kleinian group Gμ. We suppose that μo G D is
some base point and that for each μ G f l w e have a quasiconformal
homeomorphism iμ: C —> C that induces a type preserving isomor-
phism φμ: Gμo —> Gμ\ that is, φμ maps parabolic and loxodromic
elements to elements of the same type. We assume that the maps iμ

depend holomorphically on μ. This implies, in particular, that for
each gμo G G μ o , the coefficients of gμ = φ(gμo) vary holomorphically
with μ. Such a family of groups is called a holomorphic family of
Kleinian groups. Given a component Ω*(μ0) and μ G D, we use the
quasiconformal conjugacy to determine Ω*(μ).

To describe the geometry of Sμ, we need to discuss geodesic lam-
inations and pleated surfaces. This we do in the next section.
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3. Geodesic laminations and pleated surfaces.

3.1. Geodesic laminations. Let S be a complete oriented hyper-
bolic surface of finite area.

A geodesic lamination on S is is a closed subset L of the surface
consisting of a disjoint union of simple geodesies. The components
of the lamination are called its leaves.

A transverse measure v on L is an assignment of a regular count-
ably additive measure to every interval transversal to L. If an in-
terval is a subinterval of another, the assigned measure agrees with
the restricted measure. Moreover, these measures are preserved by
any isotopy mapping one transversal to another and preserving the
leaves of the lamination. We call the pair (L, v) a measured lamina-
tion. By abuse of terminology we usually refer to v as a measured
lamination and write \v\ for the underlying point set L.

If 7 is a simple closed geodesic on S then we denote by δΊ the
measured lamination whose leaves consist of the geodesic 7 and
whose measure is an atomic unit mass on 7. We denote by Λ4C(S)
the space of measured laminations on S. The weak topology on
measures gives a natural topology on MC{S)\ a sequence vn e
MC(S) converges to v G MC(S) if /7 fdun converges to Jr fdv for
any open interval / transversal to all the \vn\ and \v\ and for any
continuous function /.

There is another way to describe the topology on MC(S) that
is more convenient for our purposes. Let S denote the set of free
homotopy classes of simple closed curves on S. In analogy with the
construction of the embedding of measured foliations into (R+)s

described in [6], one can define an embedding of MC(S) into (R + ) ' s

as follows. Fix v e M£(S), and let [ω] be a free homotopy class of
closed curves on S. Define

Here, the infimum is taken over curves ω consisting of arcs which
are either transversal to \v\ or which run along leaves of \v\. (The
z/-measure of any arc contained in a leaf of \v\ is defined to be zero.)
By suitably adapting the argument in [6] (Expose 6, V.l-V.) one
shows that the map of MC(S) to (R+)s given by v h-> v([ω\) is an
embedding.
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3.2. The length of a lamination. Suppose for the moment that
S is a compact surface and that v e MC(S). The length of z/, £{y),
is the total mass of the measure on S that is locally the product of
the measure v on transversals to \v\ and hyperbolic distance along
the leaves of \v\. Note that if 7 is a simple closed geodesic then £(δΊ)
is exactly the hyperbolic length in the usual sense. It is known that
ί\ λΛC{S) —> R+ is continuous. We prove a stronger version of this
fact in theorem 4.5.

For our applications in [7] and [8], it will be important to allow
the case in which the surface S has cusps. Thus in order to discuss
the length of a lamination, we should restrict ourselves to MCQ(S),

the set of measured laminations none of whose leaves go out to the
cusp. Now it is well known that for each cusp on S there is a horo-
cyclic neighborhood of definite size about the cusp such that any
simple geodesic that enters this neighborhood goes out to infinity
in the cusp. Therefore if v G MC0(S), its support is contained in
a compact subset of 5, and if T is transverse to v, then the lengths
of the leaves of \v\ between successive intersections with T are uni-
formly bounded, so the above definition of ί{y) still makes sense. It
will follow from theorem 4.5 that I is continuous on Λ4CQ(S).

If {Gμ} is a holomorphic family of Kleinian groups, then we write
ίμ for the length function on MCo(Sμ). One of our main results is
that, for v G MCo(Sμ), μ »-)• ίμ{y) is continuous.

3.3. Pleated surfaces.
DEFINITION. A 'pleated surface in a hyperbolic 3-manifold N is

a complete hyperbolic surface S together with a map / : S -» N
with the following property:

Every point in S is in the interior of some geodesic arc
which is mapped to a geodesic arc in N.

REMARK. If S is orientable and if f(S) is contained in a single
hyperbolic plane in N we follow the convention that the plane is two
sided and that f(S) lies on the side determined by the orientation.

DEFINITION. The pleating locus of a pleated surface (5, /) is
the set of points in S that are contained in the interior of exactly
one geodesic arc which is mapped by / to a geodesic arc. We
shall often abuse language and identify both the pleated surface
and the pleating locus with their images in N. The pleating locus
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of a connected pleated surface is always a geodesic lamination by
[3, Lemma 5.1.4.]).

Let G be as in Section 2. Since each component Ω*(G?) is invari-
ant under its stabilizer in G, it follows that 5C*/Stab(Ω*(G?)) is
a connected pleated surface with respect to its intrinsic hyperbolic
metric. (See [5, 13] and Section 3.5.)

3.4. Support planes and the bending measure. The pleating
locus of a pleated surface has a naturally associated transverse mea-
sure, the bending measure. This is described in detail in [5] and [14]
(Section 8.6). Here, we recall briefly the construction. For simplic-
ity and ease of notation, we confine our discussion to the special
case of the convex hull boundary dC of a Kleinian group G.

DEFINITION. A support plane P for dC at a point x e dC is a
hyperbolic plane P containing x such that dC is contained entirely
in one of the two (closed) half spaces defined by P.

By [5, Corollary 1.6.3], a support plane for the limit set Λ inter-
sects dC in either

1. part of a geodesic plane bounded by geodesies all of whose
endpoints are in Λ or,

2. in a geodesic both of whose endpoints are in Λ.

Intersections of the first kind are called flat pieces and those of the
second are called bending lines. Each point of dC belongs either to
a flat piece or to a bending line. The pleating locus of dC consists
exactly of the set of bending lines, see [5],

A support plane is oriented by the normal pointing outwards from
dC. The bending angle between two intersecting support planes P, Q
is the absolute value of the angle Θ(P, Q) between these outward
normals.

Let π(x) denote the set of oriented support planes at x £ dC and
let

Z = Z{C) = Z(G) = {(x,P(x))\x e dC,P(x) e τr(x)} .

The topology on Z is induced from that of H3 x G 2 (H 3 ), where
G 2(H 3) is the Grassmanian of 2-planes in H 3 .

Any path ω in Z projects to a path in dC. Conversely we can
extend any path on dC to a path on Z as follows: either π(x) consists
of a unique point, in which case there is nothing to do, or, following
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[5, Definition 1.6.4] one can define the left and right extreme support
planes P and Q at x and add to the path an arc in which the first
coordinate x is fixed but the second moves continuously on the line
in G^H 3 ) from P to Q. From now on we will assume that all paths
on dC have been extended in this way to paths on Z.

Let ω: [0,1] —> Z be a path on dC as above. A polygonal approx-
imation to ω is a sequence

V = {ω{U) = (xi,Pi)} eZ, 0 = to < h < . < tn = 1,

such that Pi Π Pi+1 φ 0 V i = 0,... , n - 1. By [5, Lemma 1.8.3],
polygonal approximations always exist.

Let θ{ = θ(Pi-ι,Pi) be the bending angle between P^_i and P ,̂
i = l , . . . ,n.

DEFINITION. The bending β(ω) along ω is

where P runs over all polygonal approximations to ω.
Epstein and Marden show in [5, Section 1.11] that β defines a

transverse measure on the pleating locus of dC. By projection, it
induces a transverse measure, also denoted /?, on the pleating locus
of 5 = <9C*/Stab(Ω*(G)) for any connected component dC* of dC.

If {Gμ}, μ G D, is a holomorphic family of Kleinian groups we
use the notation βμ to denote the dependence of β on μ.

3.5. The intrinsic metric. As mentioned above, in [5] it is shown
that there is an intrinsic metric on dC with respect to which it is a
complete hyperbolic surface. Briefly, this is defined as follows.

Let ω be any path on S and let V = {(xi,Pi)} be a polygonal
approximation to ω. Let di be the hyperbolic length of the shortest
path from x<_χ to Xi in the planes P<_i U Pim

DEFINITION. The length £(ω) of ω is

where again V runs over all polynomial approximations to ω.

The distance between two points on dC is the length of the short-
est path joining them. This induces a metric on S in the obvious
way.
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If ω is a simple closed curve on 5, denote by £([ω]) the length in
this metric of the shortest curve in the free homotopy class [ω] of ω.

We have deliberately used the same notation ί for both the length
on the surface S and for the lamination length. This is because if
ω is a simple closed geodesic on S, the two definitions coincide.
Namely, the length £([ω]) on S is equal to the length £(δω) of the
measured lamination δω whose support is ω and whose transverse
measure is the atomic measure.

As usual we use the notation £μ to denote the dependence of £ on
μeD.

3.6. Transferring paths. In this section we give a proof of the
well known fact that the surface Sμ = dC/Gμ is homeomorphic to
the surface Ω*(μ)/ Stab(Ω*(μ)) for all groups Gμ in the holomorphic
family {Gμ} based at μ0 G D. We then show how to transfer paths
together with their polygonal approximations from ZQ to Zμ.

PROPOSITION 3.1. The surfaces

Sμ = dC/Gμ αndΩ*(μ)/Stab(Ω*(μ))

are homeomorphic for all μ G D.

Proof. The retraction map r: Ω* -* dC* defined in Section 2 is
injective except on the inverse image of points in dC* at which there
is more than one support plane. Such points all lie on bending lines
of dC*. Suppose that 7 is such a bending line. The region r~r(j)
is found as follows. Let Q\ and Q2 be planes perpendicular to the
extreme support planes along 7, and let the half plane determined
by Qi and not containing C(Λ) meet C in a disk Δ*, i = 1, 2. Then
Δi Π Δ2 is a lens shaped region in C bounded by the circular arcs
βι and βι that meet at the endpoints of 7 on C. By convexity, the
region between these arcs is entirely contained in Ω* and it is not
hard to see that it is exactly r~ι(η). We note that for distinct 7,
these regions are disjoint.

Now let Ω*/ ~ r be the quotient of Ω* obtained by identifying
points with the same image under r. Clearly r~ι{η)/ ~r is a single
open arc connecting the two endpoints of 7. Thus, by Moore's the-
orem, [12, Thm. 22], Ω*/ ~ r is homeomorphic to Ω*. Furthermore,
r induces a homeomorphism from Ω*/ ~ r to dC*. Since all of these
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operations are equivariant with respect to the action of G, it follows
that Ω*/Stab(Ω*) and S are homeomorphic. D

An easy consequence of Proposition 3.1 is that the surfaces Sμ

are homeomorphic for all μ in D. This follows since by assumption
the groups Gμ are quasiconformally conjugate so that there is a
quasiconformal homeomorphism between any two of the quotients
Ω*(μ)/Stab(Ω*(μ)) and Ω*(μ')/Stab(Ω*(μ'))

Next, if iμ is the quasiconformal homeomorphism of C that in-
duces the isomorphism φμ: Gμo -> G μ , then using Proposition 3.1
we see that it also induces a homeomorphism 5 μ o —> Sμ and an
isomorphism πι(Sμo) -> τrι(Sμ).

We also note that the inclusion Ω*(μ) <-» H3 U Ω*(μ) induces a
homomorphism

j μ : n (Ω*(μ)/Stab(Ω*(μ))) Si πχ(5μ) -> π x ( H 3 U Ω*(μ)/Gμ) Si G μ .

This map is injective if and only if Ω* is simply connected and
surjective if and only if Ω* is G-invariant. (See, for example, [11].)

The following proposition shows us how to transfer paths.

PROPOSITION 3.2. There is a homeomorphism Rμ: ZQ —» Zμ

that induces an isomorphism Rμ*: τrι(SμQ) —> πι(Sμ) such that Rμ

is compatible with j μ in the sense that φμjμo = jμRμ*

Proof. Note that the retraction map rμ: Ω*(μ) —> dCμ extends
naturally to a map fμ: Ω*(μ) -> Z(Cμ) taking z G Ω*(μ) to the pair
(rμ(z),Pr(z)), where Pr(z) is the support plane to dCμ tangent to
the horosphere through z and rμ(z) at rμ(z). As remarked in [5], (p.
144), fμ is a homeomorphism. (We shall prove a more precise version
of this result in Lemma 4.10 below.) Set Rμ = fμiμf~l: Z$ —>• Zμ.
By its definition, Rμ is obviously a homeomorphism conjugating the
actions of Go on Zo and Gμ on Zμ. Moreover, using the remarks
in Section 3.4 about extending paths on dC(μ) to Z μ , and noting
that this extension obviously respects homotopies, we see that Rμ

induces an isomorphism Rμ*: ττi(5μo) -> τri(5μ).

To see that Rμ is compatible with j μ , let ω be a path in
Ω*(μo)/Stab(Ω*(μo)) which maps to a non-trivial element g0 G Go
under j μ . Then ω lifts to a po-invariant path in Ω*(μ0) whose ends
limit at the fixed points g^ of go. (If go is parabolic these points
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coincide.) Clearly then Rμ(ω) lifts to a ^-invariant path in Ω*(μ)
whose ends limit at the points iμ{g^) = g^ giving the compatibil-
ity. D

3.7. Transferring laminations. Our aim in this section is to show
that the space of measured laminations on the surface Sμ = dC/Gμ

does not depend on μ so that we are justified in talking about the
space Λ4C(S) without referring to μ. We do this using the map
Rμ defined above. If υ is a family of pairwise disjoint geodesies
on SO, then we may use Rμ to define a family of pairwise disjoint
curves on Sμ. It is standard, (see e.g. [4]), that this family consists
of quasi-geodesics on Sμ, and hence may be replaced by a family
of homotopic geodesies on Sμ. Since a transverse measure may
be thought of simply as a measure on the space of geodesies, (see
[2]), we may talk about the space of measured laminations MC{S)
independently of μ.

4. The Theorems. In this section we state and then prove our
results. We keep the notation of Sections 2 and 3.

THEOREM 4.3. (Geodesic Length is Continuous). Let {Gμ}μeD be
a holomorphic family of Kleinian groups with connected component
Ω*(μ). Let dC*(μ) be the component of the convex hull boundary of
Gμ facing Ω*(μ), and let

Sμ = d£*(μ)/Stab(Ω*(μ)).

Then for each homotopy class [ω] € πi(S), the length function

is continuous.

COROLLARY 4.4. (Hyperbolic Structure is Continuous). For a
holomorphic family of Kleinian groups, the hyperbolic structure of
Sμ varies continuously with μ.

Proof. This is immediate from the theorem since the Teichmύller
space of a hyperbolic surface S is embedded in (M + ) 5 by the map

Note that in this embedding a point is determined by finitely
many lengths [6, Exp. 7].
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THEOREM 4.5. (Lamination Length is Continuous). For a holo-
morphic family of Kleinian groups the map

D x MCo(S) -> R+

defined by (μ, v) H* lμ{y) is jointly continuous.

THEOREM 4.6. (Bending is Continuous). For a holomorphic fam-
ily of Kleinian groups the map

D -> MC(S)

given by μ\-+ βμ is continuous.

Theorem 4.5, in consequence of the remarks at the end of Section
3.5, can be regarded as a generalization of Theorem 4.3. The proof
of joint continuity, however, requires some care. This we do at the
end of the paper.

REMARK. It is important to note that the lengths we are con-
cerned with here are defined by the hyperbolic structure of the con-
vex hull boundary and not by the hyperbolic structure induced from
the conformal structure of the sphere at infinity.

REMARK. Suppose that Ω*(μ) is not simply connected. Then
certain closed curves on Sμ lift to closed curves on Ω*(μ). Such
curves can never be in the pleating locus of dC*] that is, in the image
of D under the map β in theorem 4.6. For by [5, Section 1.6.3], the
bending lines of dC are geodesies with both endpoints in Λ, and
hence they cannot correspond to closed curves in Ω*.

Proofs of t h e Theorems.

The proofs of Theorems 4.3 and 4.6 are essentially the same so
we prove them together. Note that the crux of the proofs lies in
Propositions 4.8 and 4.12.

Suppose that {Gμ}μeo is a holomorphic family of Kleinian groups
based at μQ with a particular component Ω*(μ) chosen as in Section
2. We saw in Section 3.6, that there is a well defined correspon-
dence between homotopy classes of curves on Sμ and Sμ>. If ωμ is a
curve on 5 μ , we write [ωμ] for its homotopy class and [αy] for the
corresponding class in τri(5μ/).
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What we have to prove is that for each homotopy class [ω], the
functions μ H-» βμ([ωμ]) and μ ι-» ^μ([ωμ]) are continuous in μ.
Clearly, it will be enough to prove this as μ varies in a compact
subset /C of D. The results will follow directly from the following
lemma:

LEMMA 4.7. Given e > 0, there exists δ > 0 such that

(1) PAM)fa
and

(2) tμ<(M)

whenever μ, μr 6 /C and \μ — μ'| < δ.

The constant 5 depends on /C and [ω] but not on μ. The uni-
formity of this estimate in μ is essential; otherwise we would only
get semi-continuity of the functions ίμ and βμ. We are therefore
obliged to work to obtain a good uniform estimate on the error in-
volved in approximating the bending along a path ω by summing
along a polygonal approximation to ω.

We begin by finding error estimates on approximations to the
bending and length for a fixed group G = Gμ. Later we discuss the
problem of varying the group.

DEFINITION. A polygonal approximation V =
path ω in Z is an (α, s)-approximation if

to a

max i-ι,Pi) < a

and

where dω is distance along ω measured in the intrinsic metric on

PROPOSITION 4.8. (Error Estimate). There is a universal con-
stant K, and a function s(a), 0 < s(a) < I, such that ifV is an
(α, s(a))-approximation to a path ω in Z, where a < π/2, then

(3) <Kaί{ω)
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and

(4) < Kaί(ω)

where, as above, £(ω) is the length of ω in the intrinsic metric on
dC\

Proof. We begin with the first estimate, inequality 3. This is
similar to the estimates in [5, p. 135] and [13, p. 257]. Let V =
{(xi, Pi)} be a polygonal approximation to ω. We shall estimate the
contribution to inequality 3 for the segment of path between X{-\
and Xi.

We can choose a hyperbolic plane H through Xi-χ and x^ such
that the shortest path from x̂ _χ to Xi in the planes Pι-\ UPi is con-
tained in the intersections of these planes with H. Let the segments
of this path in Pi_i and Pi have lengths a\ and a2 respectively and
let b be the length of the geodesic 7 in H3 from Xi-\ to Xi. Thus
d\ + a2 — b is an upper bound for the error. By assumption the angle
θi between the planes P _̂i and Pi is less than a.

Let A = Pi_i Π Pi Π H and let B be the foot of the perpendicular
from A to 7. Let b\ and 62 be the distances from x̂ _i and Xi
to B respectively, so that b = b\ + b2. Adapting the argument
in ([13, p. 258]) to the hyperbolic situation, we see that provided
a < τr/2, since the acute angles of the triangle Axi-γXi are less than
α, we have

tanhα^ < tanh^secα, i = 1,2.

Also note that bi < α» < b < dω(xi-ι,Xi).
We can choose s = s(α), 0 < s(a) < 1, such that ifdω(xi-ι,Xi) <

s then tanhα^ > (1 — α)αi, i = 1, 2. Using tanhfej < bi we find

αi + α2 < (61 + 62) sec α + a{a\ + 02)

and hence
aχ + a2 — b < Kadω(xi-ι,Xi)

as required.
For the second estimate, inequality 4, we consider how the ap-

proximating sum changes as we repeatedly refine V. As before, we
shall verify the estimate on the section of the path between x^i and
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Xi. Let (z,P) = Ui(t), ίj_i < t < U be an intermediate partition
point on this section.

We use the following fact, proved in [5, Section 1.10]: there is
either a unique horosphere E through xz_i and orthogonal to each
of the three planes, Pi_i, P, P; or a there is a unique hyperbolic plane
E orthogonal to each of them.

Call the lines in which these planes intersect J51, ^_ l5/,Zi respec-
tively. The angles between these lines are exactly the dihedral angles
between the corresponding planes. When we add the point (z, P)
to the partition, the angle sum Σv Q% is decreased by

(5) θili-uψ-θίli-uQ-θfrli).

If E is a horosphere, the lines form a Euclidean triangle in E, and
the sum in expression (5) is zero. If E is a hyperbolic plane, the
lines form a hyperbolic triangle Δ in E and the expression in (5) is
just the hyperbolic area of Δ.

In figure 1 we see the triangle Δ. The points x\_x,z',x\ are the
projections onto E of the points Xi-i, z,X{.

Since we do not change the error between the actual bending
and the bending measured along the polynomial approximation by
adding a point to V for which E is a horosphere, we proceed adding
points until we find a point (z, P) for which E is hyperbolic.

We claim that the total error in the approximating sum along the
segment from x^_i to Xi is bounded by the area of the region R in
E enclosed by the lines k-i,k and the curve dC* Π E. (Note that
dC* (Ί E φ 0 by convexity.)

FIGURE 1. The region R.
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Consider the triangle Δi introduced by adding a new partition
point (w,Q) G ω between x;_i and z. The sides of Δi are the in-
tersections of the planes Pz_i, Pz and Q with E. Arguing as above,
the change in the approximating sum is measured in the plane E\
determined by the planes P<_i,Q,P as above; it is either zero or
the hyperbolic area of A[ formed by the intersection of the planes
Pj_i,<2, P with Eι. In the latter case, since orthogonal projection
decreases area, we have area(A[) < area(Aι). An inductive argu-
ment now proves the claim.

We now bound the hyperbolic area of R by comparing with Eu-
clidean area in the disk model D. It is an easy computation to see
that a Euclidean triangle with one exterior angle a and opposite
side of length h < 1 has area bounded by ha. If we map the plane
E to the diskD placing the vertex li-\C\li at the origin, then by con-
vexity, the region R is contained in the Euclidean triangle, 0, x\_x,x\
(here we have identified x\_x and x\ with their images in D).

By assumption dω(x{-ι, Xi) < s and hence the hyperbolic distance
in H3 satisfies d(xi-ι,Xi) < s. Since x\_x and x\ are perpendicular
projections onto E of Xj_i and Xi, d(xf

i__1,x
r

i) < s, where this is in
measured in E. Since a < τr/2, the triangle 0,x^_1?^ in the hyper-
bolic plane E is entirely contained in a circle of bounded Euclidean
radius. Hence there is a bounded comparison between Euclidean
and hyperbolic area. Choosing 5 to ensure that h < 1 in the above,
the result follows. D

We now consider the effect of varying the group Gμ. The key
point is to show that the maps Rμ defined in Section 3.6 depend
continuously on μ. This result is Proposition 4.12. We begin with
an easy observation about support planes. (See Section 3.4.)

LEMMA 4.9. (Support Planes). Let C C C be a circle containing
at least two points of A and such that int(C) C Ω* (here int(C)
denotes one of the complementary components of C in C ). Then
C is a support plane of dC.

Proof Let P{C) denote the plane in H 3 that meets C in C and
let z be the center of int(C). No hemisphere centered at z whose
(Euclidean) radius is less than the radius of C can be a support plane
of dC because Λ Π int(C) = 0; on the other hand, P(C) certainly
meets dC. Thus, P(C) is a support plane. D
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In what follows we work in a neighborhood in D of our base point
μo We shall, however, take care that all our estimates are indepen-
dent of the base point. First, however, we need some notation.

We denote by d(*, *) Euclidean distance in H3UC, and by dist(*; *)
the natural metric on H3 x <j?2(H3) which induces d on the first fac-
tor and the dihedral angle metric on the second. For ζ G H3, ht(ζ")
denotes the Euclidean height of ζ above C in the upper half space
model of H3.

In the next lemma we prove that the modulus of continuity of the
retraction f defined in Section 3.6 depends only on the Euclidean
height in H3 of the image under r.

LEMMA 4.10. Let Λ C C be an arbitrary closed set with diameter
greater than some constant c > 0 and let K be a closed bounded
convex subset of a connected component of C — Λ. Let r be the
retraction o / f f f l C onto the convex hull C of Λ. Then the map
f is uniformly continuous on K, where the modulus of continuity
depends only on α = d{K, Λ), b = snpzeK d(z, Λ) and c.

Proof Let z,w G K and let f(z) = (ξ,Pξ),f(w) = (η,Pη) where
Pξ and Pη are support planes to C at ξ and η respectively. Since z
and w lie in the same component of C —Λ, the hemispheres bounded
by Pξ and P^, and containing z and w cannot be nested. Since K is
compact in C there are clearly constants a' and &', depending only
on α, b and c, such that

0 < α / < ( h t ( 0 , h t ( τ ? ) ) < 6 ' ,

for all z,w G K and such that the diameters of the horospheres
tangent to the support planes at r(£) and r(η) are also bounded
between a1 and b'. Taking account of these bounds we see the fol-
lowing:

1. If Pς = Pη then d(ξ, η) depends only on z, w and is uniformly
small as \z — w\ -» 0, with constants depending only on a' and b'.

2. If ξ = 77, Pξ φ Pη, then \z — w\ is small if and only if
dist(£, Pξ; 77, Pη) is small, again uniformly with constants depend-
ing only on a1 and b'.

3. If ξ Φ 77, Pξ φ Pη, but PξΓ\Pη φ 0, we can find, since K is con-
vex, a point ζ G Pξ Π Pη such that all points in the preimage r~~ι(ζ)
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are in K. Choosing any point in the preimage and applying cases 1
and 2 to the resulting pairs, (z9f-

1(ζ9Pξ)), (f^1(ζ,Pς),f"1(ζ,Pη))
and ( r " 1 ^ , Pη), w) in turn, we see that \z — w\ is small if and only if
dist(ξ, Pς] 77, Pη) is small, again uniformly with constants depending
only on a1 and V.

4. If PξΠPη = 0 then, because ht(£) and ht(τy) are bounded below,
\z — w\ is uniformly bounded below, so this case does not need to
be considered.

Now combining these observations, we obtain estimates that im-
ply the uniform continuity. D

Next we estimate the change in fμ(z) as we vary μ.

LEMMA 4.11. Let {Gμ},μ G D be a holomorphic family of
Kleinian groups based at μo. Assume, without loss of generality, that
the groups are normalized so that the chosen component Ω*(μ) is
bounded in C. Let K C Ω*(μo) be convex and compact. Then, given
e > 0, there exists δ > 0, depending only on e and on d(K, Λ(μo))
such that

1. K C Ω*(μ) whenever \μ — μo | < δ, and

2. dist(rμ(z); fo(z)) < e whenever \μ — μo\ < δ and z 6 K.

Proof. 1. Let a = d(K,A(μo)) and let c be a lower bound on
the diameter of Λ(μo) Using the uniform continuity of iμ(z) (see
Section 3.6) we see that there exists #o > 0 such that d{K, Λ(μ)) >
α/2 and the diameter of Λ(μ) is greater than c/2 whenever \μ—μo\ <
δ0. Since d(K,w) > d(K,A(μ)) for any w £ Ω*(μ), we see that K
is contained in Ω*(μ) for all such μ.

2. Assume the diameter of Λ(μ) is bounded below by c. Pick
z e K. Since d(K, Λ(μ)) > α/2 for |μ — μo | < δOj we have a constant
a" independent of z so that htr μ (z) > a11. Let ro(z) = (£, Po)> so
that P o is a support plane to dC(Λ(μ0)) at ξ. Consider the family of
horospheres tangent to C at z and let 7 be the hyperbolic geodesic
through ξ and z. We parametrize this family as Hu where t denotes
signed Euclidean distance along 7 from ξ to Ht. (The distance is
negative on the segment between z and ξ.) The horosphere Ho is
tangent to P o Let St be the solid closed hemisphere in H3 UC (Eu-
clideanly) concentric to Po through the point Htf\^ and containing
z.
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By a straightforward computation1 we see that given e > 0, we
can find e1 > 0 such that if |ί | < ex and if u G Ht Π (H3 - S_£1),
then

(6) d i s t ( £ , P 0 ; ^ ^ ) <e.

where Pu denotes the hyperbolic plane tangent to Ht at u. Note
that the choice of ei is independent of z since ht(£) > α", Vc G K.

By construction, 5_C1 Γ)C(μo) = 0 so there are no points of Λ(μ0)
in 5_ e i. Using the uniform continuity of iμ we can find δ\ > 0 such
that \μ — μo\ < 5χ implies there are no points of Λ(μ) inside S-€l.
Thus, rμ(z) <£ Ht for t < -ei, and rμ(z) G M3 - S_£1.

Suppose that P o Π dC(μ0) is not a bending line. Then we can
find points Zi G Λ(μo)j i = 1, 2,3, such that ξ is in the hyperbolic
convex hull of {zι,z2,zs}. Again by the uniform continuity of iμ,
Iv(^ ) — ̂ t| ~> 0 as μ —> μ0 j

 a n d hence we can find points ξμ G C(μ)
arbitrarily close to ξ for μ close to μO If Po^dC(μo) is a bending line
it suffices to use its endpoints z\, z2. Now an open ball with center
ξ and radius t\ intersects all the horospheres Hu \t\ < ei, so we can
find δ2 such that \μ — μo | < 2̂ implies ξμ G iίί for some |ί| < e\.
Once again the choice of δ2 is uniform in μ since ht(£) > a".

Now let 5 = min(50^i,^2) Then for \μ — μo\ < δ there are
points ξμ G C(μ) in a ball of radius ei about ξ. It follows from
the above that the expanding horospheres can't hit C(μ) for t <
—€χ but they must hit by the time i = c\ since by then they have
enclosed some point ξμ. The first time Ht hits C(μ) it does so at
a point η of dC(μ)\ moreover, the tangent plane Pη to this Ht is a
support plane. Therefore fμ(z) = (η,Pη). By inequality 6 we see
that dist(7/, Pη; ξ, Pξ) < e a s required. D

Now we can make the statement of continuity that we need.

PROPOSITION 4.12. Let Gμ be a holomorphic family of groups
as above. Then the map

Rμ = rμiμrΰι: Z(G0) x D -> Z(Gμ)

is jointly continuous.
1Do the computation in the case ξ lies directly above z and conjugate re-

membering that although conjugation doesn't preserve Euclidean distance, the
Euclidean and hyperbolic metrics are equivalent in a bounded region of HP.
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Proof. First note that the map is well defined in a neighborhood
of μo by Lemma 4.11, part 1. Given w G Z(Go) we have

d i s t { ] μ μ ^

(w; f^μf^
ι{wγj + dist< dist (

The first term is small by the continuity of ΓQ and iμ, independently
of the choice of μo by Lemma 4.10. The second term is uniformly
small by Lemma 4.11, part 2, with z = iμrQ1(w). D

We are ready now to prove our main theorems. We want to prove
that the lengths and the bending measure change continuously as
we vary the group. Suppose we are given a path ωQ in Z(Go) that
projects to the homotopy class of some curve 70 on SO = Sμo. We
will need a bound on the lengths of the paths ωμ = Rμ(ωo) for nearby
μ. This will enable us to control the number of partition points in
the estimates and to complete the proof of the main theorem.

LEMMA 4.13. (Bound on Path Lengths). Suppose that μ varies in
a relatively compact set K, C D, μo G K,, and that ωo is a rectifiable
path in Z(GQ). Then there exists M > 0 such that for all μ G K the
path ωμ = jRμ(α o) € Z(Gμ) satisfies ίμ{ωμ) < M and βμ(ωμ) < M.

Proof Let VQ = {(x^Pi) G Z(G0),i = 0,. . . ,n} be a polygonal
approximation to α;0. The points Rμ(xi,Pi),i = 0,.. . ,n form a
polygonal approximation to wμ = Rμ(ωo). Prom Lemma 4.11 and
Proposition 4.12 we see that the dist(xi,Pij Rμ(xi,Pi)) varies con-
tinuously with μ (independently of μ0) provided that ωμ stays in
a compact part of H 3 . Clearly lengths and angles measured along
polygonal approximations are upper bounds for the same quanti-
ties measured along the paths ωμ themselves. Therefore, since /C is
compact the bounds exist. D

Proofs of Theorems 4.3 and 4.6. We are finally in a position to
complete the proof of Theorems 4.3 and 4.6. We carry out the proof
for the bending angle β; the proof for the length function is entirely
similar. We always suppose we are working in a compact set /C C D,
and that we are given μ0 G /C, a homotopy class [ω0] of paths on So,
and e > 0. Write β0 for βμo. Let M be an upper bound for lengths
and total bending of paths ωμ in the homotopy class of [cjμ], chosen
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as in Lemma 4.13. We may assume that ω0 has been chosen so that
A > M < βo([ωo]) + € and that io(ωo) < M, βo(ωo) < M.

By subdividing the bending angle at bending lines if necessary,
we may find an (e, s(e)/2)-partition V with \V\ < Jg£ = N, where
\V\ denotes the number of points in the partition V. (Here s(e) is
chosen as in Proposition 4.8 and we assume e < τr/2.)

Applying Proposition 4.8 we find

<KeM.

Now using Lemma 4.11, given η > 0, we can find a neighborhood
Uo of μ0 G /C such that for all μ 6 UQ we have an (e + η,s(e + η))-
polygonal approximation Vμ = {(x^ P()}fLQ to a path ωμ e [ωμ]
such that

< Nη.

Applying Proposition 4.8 to Vμ, we find

_ : K(e + η)M.

Choosing η = e2s(e) we get

\βo(ωo) - βμ(ωμ)\ < KM (2e + e2s(e)) + 2M2e.

This proves inequality 1 of Lemma 4.7 and hence completes the
proof of Theorem 4.6. D

Proof of Theorem 4.5. In Section 3.6 we used the function Rμ to
transfer laminations from Sμo to Sμ. Here it will be more convenient
to pass to the universal cover to obtain this correspondence. For
each μ, there is a normalized Fuchsian group Γμ acting on D, where
D is the unit disk, that uniformizes the hyperbolic surface 5 μ . Since
Sμ is compact with at most finitely many punctures, Λ(Γμ) = dB.
By Corollary 4.4 the hyperbolic structures of the surfaces Sμ and
hence the Fuchsian groups Γμ depend continuously on μ; that is,
the point Γμ determines in the Teichmϋller space T(Γμ o) depends
continuously on μ.
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It is well known (see e.g. [1]) that all quasiconformal homeo-
morphisms hμ: D -* D inducing the isomorphism ψμ: Γμ o -> Γμ

extend to 3D and agree there. Such boundary maps are continu-
ous and hence determined by their values at the fixed points of the
hyperbolic elements of Γμ o. By the measurable Riemann mapping
theorem, [1], hμ depends continuously on μ. Hence if 7 is a geodesic
in D with endpoints 7 ± on 3D, then hμ{η) has endpoints hμ^) on
3D and these depend continuously on μ.

Now we use the natural identification of geodesies in D with
their endpoints on 3D. Thus geodesies are represented by points
in X = (3D x 3D - {diag})/Z2, where Z 2 acts on 3D x 3D by ex-
changing the factors. So if u0 is a measured lamination on Sμo, \I/Q\
lifts to a TΓI (S) invariant subset of X and v$ corresponds to a TΓI (S)
invariant measure on X, (see [2] for details). By the continuity of
hμ on 3D, the correspondence of measured laminations is continu-
ous. By Proposition 3.2 this correspondence is compatible with the
correspondence described in Section 3.7.

To obtain the joint continuity of tμ{y) asserted in Theorem 4.5,
we will show that tμ{y) is equicontinuous in the variable μ for fixed
v. To do this, fix (μo,^o) G D x MC0(S). We call a set R c S a
regular flow box for z/0 if:

(i) R is a closed hyperbolic rectangle embedded in 5,
(ii) the horizontal sides Γ, V of R are either disjoint from
11/01 o r a r e transversal to |z/0|. If a leaf 7 of |i/0| intersects
JR then it intersects both T and T7 and,
(iii) the vertical sides of R are disjoint from \I/Q\.

It is clear that the family T — F{VQ) of regular flow boxes for i/0

form a semi-algebra of sets; that is, if B,B' G T then B Π Bf e T
and J3 — B' is a finite union of sets in T. Thus we can find a cover
of S by sets in T whose interiors are pairwise disjoint and so that
a finite number, say J5i,... , i?n cover |ι/0| Recall from Section 3.2
that |z/0| is contained in a compact part of 5.

To obtain a suitable expression for the length of |i/0| it is conve-
nient to use the natural identification of geodesies in D with end-
points in the space X defined above.

If (x,y) G X, let 7(2, j/) be the geodesic in D joining x to y. If
β is a lift to D of a regular flow box B G T with 7(0;, y) Π £? ^ 0,
denote by f(μo) = fβi00^)^) the hyperbolic length of the arc



CONTINUITY OF CONVEX HULL BOUNDARIES 205

ηf(x9 y) IΊ B. Clearly f(μo) is independent of the lift B of B.
Let Bu . . . , Bn be a set of lifts of Bu . .. , Bn. Then,

(7) i

Now let μ vary in £> and fix B £ ^(VQ) with lift B. The endpoints,
ξi,... ,ξ 8 on9Dof the extended sides of B vary continuously with
μ under the maps hμ as do the endpoints of the leaves of £Ό(AO

Thus the geodesies joining the appropriate pairs of the points hμ(ξj),
j — 1,... , 8, define the lift of a regular flow box B(μ) for v0 for all
μeD.

The boxes Bi{μ) still form a disjoint cover for |i/0| so that

(8) 4,(1/0) = Σ /- , fBi(μ)(hμχiKv) dvo(hμX, hμy).

Since the function fB(μ)(hμ(x),hμ(y))(μ) is also obviously continu-
ous in μ, we obtain the continuous dependence of the function Zμ{v$)
on μ.

Now let us vary v\ let vk e MCo(S), k = 1,... oo be a sequence
such that z/fc —> uQ. Because the vertical sides of each flow box B
do not intersect |z/0|, we see that the same is true for \uk\ for k
large enough, and by taking a subsequence if necessary, that the
sets 2?i,... , Bn are also a cover of \vk\ by regular flow boxes for vk.

By the definition of the topology on MC0(S), the sum Σ?=i vk(Bi)
is bounded for all fc. Thus the expression (8) holds with vk replacing
z/o, and we see that μ -> ίμ{y) is equicontinuous in μ.

There is clearly an upper bound on /$. (x, y) (μ) for μ in a compact
subset of D. Moreover, it follows from the definition of the topology
on MCo(S) and from formula (8) that v -> ίμ{y) is continuous on
on some neighborhood of VQ for fixed μ.

Finally, the equicontinuity of lμ{y) in μ for fixed v and the con-
tinuity in v for fixed μ is enough to imply the joint continuity as
claimed.
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