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APPLICATIONS OF SUBORDINATION CHAINS TO
STARLIKE MAPPINGS IN C*

MARTIN CHUAQUI

We use the work of Pfaltzgraff on subordination chains
in C* to recover a growth theorem for starlike mappings
of the unit ball established recently by Barnard, FitzGer-
ald and Gong. We also introduce a class of strongly star-
like maps for which we construct, aided by the aforemen-
tioned technique, an explicit quasiconformal extension to
C™. Several examples are discussed at the end.

1. Introduction. Let f be a univalent map of the unit disc,
with f(0) = 0 and f’(0) = 1. The celebrated Koebe theorem as-
serts that the image of f contains a disc about the origin of radius
1/4, 1/4 being sharp. This theorem has no analogue in several com-
plex variables, whether one deals with normalized univalent maps
of the unit ball B™ or the polydisc. By normalized we mean fixing
the origin and having the identity as differential at that point. In
particular, the classical growth theorem in dimension 1
|| ||
@+ 17 = V= Ty
is no longer valid in higher dimensions. Remarkably, (1.1) persists
for arbitrary n when considering the subclass of starlike maps of
B"™, as Barnard, FitzGerald and Gong have recently shown [BFG
1]. The result is sharp. Recall that a map is called starlike if the
image is starlike with respect to the origin. Suffridge has given the
following alternative local characterization: let w(z) = (Df)~(f),
where the differential and the function are evaluated at z. Then f
is starlike if and only if

(1.1)

(1.2) Re(z,w(z)) > 0.

Here (a,b) = ¥ a;b; for a,b € C* [S 1]. When n = 1 then (1.2) re-
covers the condition Re{z?} > 0. The proof in [BFG 1] uses (1.2)
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to estimate | f| along the (arclength parametrized) preimages in
the ball of straight line segments in the image f(B").

On the other hand, the bounds in (1.1) hold for a more general
class of functions, namely those associated to subordination chains.
Let f(z,t) be a family of functions on B™ x [0, c0), holomorphic in z
for each ¢, normalized so that f(0,t) = 0 and Df(0,t) = €' 1. We say
that f(z,t) forms a subordination chain provided that for each s, t,
0 < s < t, there exists a (Schwarz) function v(z, s,t), holomorphic
in z, such that |v(z,s,t)| <1, v(0,s,t) =0 and

f(z,8) = f(v(z,s,t),1).

Note that |v(z, s,t)| < |2| as a consequence of Schwarz lemma. Sub-
ordination chains arise as solutions of the so called Léwner differ-
ential equation

(1.9 2 f(z,t) = DIz, 1)(h(z,0),

where h(z,t) is holomorphic in z, with h(0,t) = 0, Dh(0,t) = I and
Re(z, h(z,t)) > 0.

In connection to univalence and quasiconformal extension, subor-
dination chains were originally studied in the plane by Pommerenke
[P] and Becker [B], and later by Pfaltzgraff in higher dimensions
[Pf 1], [Pf 2].

The estimates in (1.1) for starlike maps follow from the general
theory by inserting f as the initial element f(z,0) of the subordi-
nation chain

fz,t) =€'f(2),
which satisfies (1.3) with h(z,t) = w(z). From this point of view
it is also natural to consider what we would like to call strongly
starlike maps. Let z € B™ and let ( € B. Then

0 < Re(Cz, w(C2)) = Re Y- Cau(c2) = 0P Re Yo 5262,

The function

(14) 90 = X722
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is holomorphic because w(0) = 0 and has non-negative real part.
Furthermore, since Dw(0) = I it follows that g(0) = 1. We say
that f is strongly starlike if the values of g lie on a fixed compact
subset of the right half-plane, independent of z. This is equivalent
to saying that

14+0(¢)
1.5 =7
(15) 00 =12
where 0(0) = 0 and |0({)| < ¢ < 1, ¢ an absolute constant.
For strongly starlike maps the following estimates hold:

Ed kd
2 < lf(z)l < (1 _clzl)z :

(16) T+ el

In addition, f will admit a quasiconformal extension to C" if it is
already quasiconformal in B™. This extra hypothesis guarantees a
Lipschitz continuous extension to the closed ball. The extension for
|z] > 1 is given by |2|f(z/|z|), which is Lipschitz continuous as well.
In the plane, quasiconformality in the disc is, of course, not an issue
and a quasiconformal extension exists simply as a consequense of
the strong starlikeness.

In the last section we will discuss in some detail several examples
of starlike and strongly starlike mappings. We shall also present a
way of efficiently computing the normalized map f for a given w.

2. Subordination chains and growth. Let f be starlike, so
that (1.5) holds with |6(¢)] < ¢ < 1, and let w = (Df)~!(f). The
next lemma is due to Pfaltzgraff (Lemma 2.1, [Pf 1]). The proof,
which we shall omit, is based on an application of Schwarz lemma
to the function g(().

LEMMA 1. The function w satisfies

1+ clz|

L=cld  Retz w(z) < [ ot

2.1 2
(2.1) ] 1+clz] ~

Let the chain f(z,t) be defined by

f(z,t) =€'f(2).
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Then
2 (1) = €1(2) = (D)) = D (2, 1) h(z, 1)

with h(z,t) = w(z). It follows now from Theorem 2.2 in [Pf 1] that
f(z,t) is a subordination chain. His result applies to a more general
class of functions h(z,t), whereas in our case one can show more or
less directly that f(z,t) forms a subordination chain. Let v(z,s,t)
be defined by

(2.2) v(z,s,t) = 157 f(2)).

This is well-defined for 0 < s < t because f is starlike. By construc-
tion

(23)  f(z,5) = €'f(2) = €' (v(z,5,1)) = f(v(2,5,1),1) .

We need to show that v is a Schwarz function. Since f(0) = 0 it
follows that v(0, s,t) = 0. From (2.2) we have

2 vz 5,1) = (DAY 1(2) = (DN (2)),

where Df is evaluated at f~!(e*~*f(z)). Using starlikeness we have

%v(z,s,t) = —w(fH (e f(2))) = ~w(v(z,s,1)) .

We compute

9 - G
~o(z, 5,0 = 2o(z,5,0)] 5[0z 5,)

= 2Re <v(z, s,t), %v(z, s, t)>

hence
(2.4)
%Iv(z, s,t)] = —[v(z,5,t)| " Re (v(z, 5,1), w(v(2,5,t)) <0.

Since v(z, s,s) = z we conclude that |v(z, s, t)] < |z|.
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THEOREM 1. The function f satisfies

4 4
< 1A < o

25) ErEe

Proof. Using (2.4) together with the bounds in (2.1), a simple
integration yields

] 12
v . besdl

(26) Aoz, = A=)
and

(27) es Izl < et |’U(Z, 8, t)l

(1+clz])2 — 1+ clu(z,s,1)])?

(see Lemma 2.2 in [Pf 1]). Observe that, as a consequence of the
normalizations on f, (2.2) implies that

tl_lglo v(z,s,t) =0

and
: t . 8
Jim e v(z,s,t) =€ f(z).

The bounds in (2.5) follow now by taking the limit in (2.6) and
(2.7). O

3. Extensions to B” and C".

THEOREM 2. Let f be a strongly starlike map of B™ and suppose
that f admits a continuous exrtension to the closure B®. Then the
eztension is univalent in B™.

Proof. We follow Pfaltzgraff. Let f(z,t) be the associated subor-
dination chain with Schwarz functions v(z,s,t), 0 < s < ¢. The
estimate (2.6) implies that v(B",s,t) C B™ when s < t. If f
admits a continuous extension to the closed ball, then for s < %,
f(B™,s) C f(B"t) as a consequence of the relation (2.3). This
enables us to define a continuous extension of v(z,s,t) to B® via
the equation

v(z, Sat) = f-l(f(z, 3)7t) .
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For |z| < 1,
t
|z —v(z,s,t)| = l/ h(v(z,s,7),T)dT

1 1
(3.1) < [t < 752,

It is easy to see that this estimate holds as well for |z| < 1. We
can now show that f is univalent in the closed ball. Suppose that
f(z1) = f(22) for 21,2, € B*. Then for t > 0

f(z1) = f(v(21,0,1),8) = f(v(22,0,2),8) = f(z2),
and since f is univalent in B™ we conclude that
v(21,0,t) = v(22,0,1).
By letting ¢ — 0, (3.1) implies that z; = 2. O

Unlike in the case n = 1, when a holomorphic map in the unit
disc is trivially quasiconformal, this additional assumption becomes
essential when studying quasiconformal extensions in higher dimen-
sions. Recall that a map f : 2 C R™ — R™ is said to be quasi-
conformal if it is differentiable a.e., ACL (absolutely continuous on
lines) for almost all lines, and

[IDfII™ < K|det Df| a.e. Q.
Here ||Df|| stands for the usual norm
IDfIl = sup{|Df(X)| : |X| =1}
and the constant K is called the quasiconformal distortion of the

map f.

THEOREM 3. Let f be a quasiconformal, strongly starlike map of
B™ with |w| uniformly bounded. Then f admits a Lipschitz continu-
ous extension to B™ and a quasiconformal extension to C*.

Proof. We first show that ||Df|| is uniformly bounded in B".
This will imply that f admits a Lipschitz continuous extension to
the closed ball.
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The first inequality in (2.1) together with the Cauchy-Schwarz
inequality imply that

1—c|z| < ful.

5o S

Since Df(w) = f, it follows from (2.5) that

w 1+ clz| 1+c
Df{—]|< < .
o1 ()| < a2 < i
Note that the Cauchy-Riemann equations guarantee that, with the
canonical identifications, D f(w) = f remains true in the real sense.

Since f is quasiconformal in B™, we conclude that for some constant
K and all unit vectors X,

1+¢

DS < K

This proves that ||Df|| is uniformly bounded in the ball. (Because
|w| is uniformly bounded, a similar argument implies that the in-
fimum of |Df(X)| over all unit vectors is bounded below by some
positive constant, and therefore f is actually quasi-isometric in B™.)

Let us still denote by f the extension to B® and define F : R** —
RZn by

(1), <1
(3-2) F“”‘bAﬂﬁx|4>1‘

This definition is natural from the point of view of subordination
chains. We claim that F' is the desired quasiconformal extension of
f. Tt is clear that F is continuous in R?®. Note that

f(z,0), |z] <1

3.3 F(z) = .
(3:3) ) {f(lz—,,loglzl), ol >1

Since f(B",s) C f(B™,t) for 0 < s < t and since f is univalent in
the closed ball, we conclude that, in any case, F' is univalent in R?".
In order to show that F' is quasiconformal, we follow a standard
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argument of dilation (see, e.g., [B], [Pf 2]). For r < 1 we consider
the functions F; defined by

(s, <1
Frle) = {lzlf(r,—:—'), o> 1"

where 0 <7 < 1.

Since f is Lipschitz continuous in the closed ball, it is easy to see
that, as r tends to 1, F, — F uniformly in B™. It follows that the
convergence is uniform on compact subsets of R?". We are left to
show that F, is quasiconformal in R?" and that the quasiconformal
distortion is uniformly bounded when 7 is close to 1. It is clear
that F, is differentiable away from the set {|z] = 1}, therefore it is
differentiable a.e.. For |z| < 1,

(3.4) DF,(z) =rDf(rz)
hence ||DF,|| is uniformly bounded in B®. When |z| > 1 we have
(3.5)
z2\" 2
DF,(z) = f (r—) grad |z| + r|2|Df (r———) (IzI‘II - |z|‘3sz) :

|2| |2|

We explain the notation. Using the standard identification of C*
with R?" a complex vector a is written in real components (a;).
Then aTb stands for the (2n) X (2n) matrix with entries a;b;. Since
|f], IDf|| and grad |z| = |z|~'z are uniformly bounded, equation
(3.5) shows that so is ||DF;|| for |z| > 1. From the continuity of F,
everywhere it follows that this map is Lipschitz continuous in R?",
and hence ACL a.e.

Because f is quasiconformal in B™, (3.4) implies that the same
holds for F,.. Furthermore, the quasiconformal distortions in B™ are
the same. For |z| > 1 we use (3.5). Let { = 7|z|~2. Then

(36  DE()=Ds) | u@¢c+r (1-5¢)}
= DF(Q) {r1+-(w(c) - ¢}
= rDF(Q) {1+ w(0) - ¢}
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Let M=M(() be the matrix r~2(w(¢) — ¢)T¢. It is easy to see that
[IM]] = r~2Jw(¢) — ¢||¢], which is uniformly bounded by the as-
sumption on w. Also, since M has rank 1,

det(I+M) =1+ trM =1+ r"2Re((,w(¢) - ¢)
=72 Re(¢, w(())

1—ch|> l-c
1+¢¢] ~ 1+c¢

> r?|¢)?

Equation (3.6) gives

IDE () < rIIDF(OI] T+ M]]
(3.7) < rIDFOIA+ M) < Kl DF(OII

for some absolute constant K;. It also follows from (3.6) that

(3.8) |det DF,(z)| = r**|det Df(¢)| | det(I+ M)|
nl—¢C
> | det Df(Q)]

Finally, since f is quasiconformal in B", (3.7) and (3.8) imply

IDE,(2)|™" < KM |IDF(OIP < KK det D(C)]
-mlte

<r
- 1—-c¢

KK?™|det DF,(2)] .

This shows that F, is quasiconformal for positive r and that, for r
close to 1, the quasiconformal distortion is uniformly bounded. The
proof is now finished. O

In dimension 1, it is not necessary to assume quasiconformality
in the ball or uniform boundedness of |w|. The first condition is
automatically satisfied with K = 1 and the second one can be es-
tablished from the strong starlikeness using Schwarz lemma.

4. Some examples. This section will be devoted to presenting
examples of starlike and strongly starlike mappings. We will also
address the question of existence and uniqueness of the map f with
(Df)~'(f) = w, where w is a given normalized function satisfying
Re(z,w) > 0.
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EXAMPLE 1. Let f(21,22) = (21,22 — 2122). Then
1 0
Df= (—zg 1— zl)

(PN () =w= (a1, 72 .

21

and

Recall the function g in (1.4) given by g(¢) = E,z'iﬂi%—zl, where
z € OB™ and ¢ € B!. Here
_ (2 (22 _ 1-— |Z1|221C

M= A Aoy = o

and it can be written in the form i—fg where
-1 1-— 2
w2 2O=1__(-laP)aC

9O +1 T 2= L+ |znP)al
Hence

2|1 —|=?) a1+ |z 1
o< T 1aP ~ 24 lalit o)) S 2

It follows that f is strongly starlike. The map f is Lipschitz con-
tinuous but not quasiconformal in B?: the eigenvalues of Df are 1
and 1 — 2; and their ratio is not uniformly bounded. Observe also
that ||w||e = 0.

EXAMPLE 2. Let f(z1,2) = (21, 22(1 — 2)71/3). Then

1 0
Df = 2229 1
T=D7 1 =27

z(1 — 2z§)> |

3
1—2

and
091 =u= (=
In this case g is given by

|22°(1 = 22}¢°)
9(¢) = |Z1|2 + Zzll(_ Zf’C;
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and the corresponding function o is easily computed to be

- japEe
O = T [P

Hence

|2 (1 = |z ?) |21 (1 + |z1) < 1

lo(Ol < 5= 2P+ ]a) 2+ |all+|a)@+ a]?) =

This shows that f is strongly starlike. This time, f is not Lips-
chitz continuous and, as before, the map fails to be quasiconformal.
Again, |[w]]oo = oo,

ExXAMPLE 3. A vast class of strongly starlike mappings with
uniformly bounded w can be obtained by prescribing w in the form

(4.1) w(z) = (I+E,) (I - E,)(2),

where E, is an n X n matrix depending holomorphically in z with
Eo =0 and ||E, || £ ¢ < 1. (For convenience we shall simply write
E for E,.) Indeed,

w+z=I+E)"{1-E)(z) + A+E)(2)} = 2(1+E)"(2)
and similarly
w—z=—-2EI+E)(2) = —E(w +2),
hence
lw— 2 < ||E|lw+ 2.

The general form of Schwarz lemma implies that |[|E|| < ¢|z| and
s0

lw— 2 < PJeflw + 2.
From this we conclude that

2 |21 + clz]

21 —c|2]
<
g Re(z,u) < |o' 1=

1+clz| —

where the right hand inequality is a consequence of the definition of
w and the Cauchy-Schwarz inequality. This shows that a mapping f
with (Df)~1(f) = w is strongly starlike. But can w with Re(z, w) >
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0 be prescribed arbitrarily? In dimension 1 the solution f can be
found explicitly by integration. In higher dimension we consider the
flows

dz
(4.2) i w(2)
and

dF
(4.3) o= F.

The condition of starlikeness, (Df)(w) = f, translates to the fact
that f takes integral curves of (4.2) to those of (4.3). We will call
such a map a conjugation of flows. Both vector fields in question, w
and the identity, have an isolated critical point at 0 and moreover,
the latter is simply the linear part of w at the origin. Conjugating a
given flow to its linear part at a critical point is a classical problem
in the theory of stability of ordinary differential equations, and the
existence of a (local) conjugating map depends on the nature of the
eigenvalues of the aforementioned linear part. Depending also on
the degree of smoothness of the vector field, it is a problem that can
be posed in the C*,C® or holomorphic category ([H]).

In his thesis, Poincaré answered the question for holomorphic
w and his result applies in our particular and simplest case when
all eigenvalues are equal to 1 ([A, p.181]). The solution f is a
biholomorphism in a neighborhood of the origin and can be extended
to the ball since w is holomorphic there and has no other critical
points.

Poincaré’s proof consists of first showing that there exists a for-
mal power series solution and then proving convergence of the re-
sulting series. When w is given explicitly, there is an often more
effective way of computing the map f. We will obtain f as a limit
of conjugating maps, and since for the moment we are interested
in constructing examples only, certain facts will be claimed here
without proofs. Because the vector field w is transverse to centered
spheres, for € < |z| < 1 we can define uniquely a continuous map f,
by the conditions:

(1) fe(z) = z for [2| = ¢,

(2) fe conjugates the flows for |z| > e.
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These maps are quite easy to deal with as the flows now have no
critical points. A simple integration together with Lemma 1 yields
the estimates

(1 - ec)?|z]

(1 + ec)?|2|
<12 < (T

(44 T+ dl2)?

Using the fact that Re(z,w) > 0 and that Dw(0) = I it can be
shown that as € — 0, {f.} converges uniformly on compact subsets
of the punctured ball. In addition, the limiting map f satisfies

|f(2) = 2| = o(|z]) -

Therefore, f can be extended as a differentiable map at 0, with
Df(0) = I. By construction, f is a conjugation and we conclude
that it must be the desired biholomorphisms. (If Fj, F5 are two
conjugations with DF;(0) = DF,(0) then G = F; o F; ! conjugates
the flow along rays from the origin to itself. Since DG(0) = I it
is easy to show that G must be the identity, thus F; = F,.) With
this, (4.4) gives back the growth for starlike and strongly starlike
mappings.

EXAMPLE 4. Let w(z1,22) = (21(1 + 22), 22(1 + 21)). Then w is
normalized and

Re(Z,w) = |z1|°Re(1 + ) + |22|/* Re(1 + z,) > 0.
The equations for the w-flow are

dz dz

d_tl =2(1+2;) and Ef— = 25(1 + 21)

and can be solved by first eliminating the parameter. If the initial
conditions are z,(0) = ea and 2z,(0) = €b, |a|?> + |b|> = 1, then one
finds

t

_ ea(a — b)e
(45) 21 (t) - a — bet(b—a) ge(a—b)et

and

_ eb(b — a)et
(46) 22(t) - b — agecla—b)ge(b—a)et
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The map f, is defined so that
(4‘7) fe (21 (t)a ZZ(t)) = (Eaeta fbet) .

From this we have to once again eliminate the parameter ¢ and then
let € =& 0. With f. = (f1, f2) (we have omitted the e-dependence),
equations (4.5), (4.6) and (4.7) give

fi—f . fi(fi = f2)
a — becb—a)efi—f2 - fl — fzefl—f2ef(b"‘a)

Z1=a

and
_ 2= f)
2= fo — frefr—freele=b)

We let € = 0 to obtain

_ hlh =)
(4'8) 1= fi— f2ef1—f2 ’
) _ _hlfa 1)

2= f2 — frefe=ft”

To invert this system first observe that

2 _f fi—f
4.10 — = —el'7
( ) 2 h

which inserted in (4.8) gives
(411) f1 - f2 =21 —29.
Equation (4.10) and (4.11) finally yield the mapping f = (/fi, f2):

_ zi(z1 — m)e”

hi= 21651 — zZoe?2 |
zo(29 — 21)e®
o=
29€*2 — z el
It can be checked directly that indeed Df(w) = f. The reader
interested in verifying this may want to use (4.11) and (4.10) (after
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taking logarithms) to obtain useful relations between the partial
derivatives of f; and fs.

Finally we would like to mention a related problem we might
address in a future paper. The first two examples in this section
exhibited strongly starlike mappings that were not quasiconformal.
As pointed out at the time, in both cases ||w||c = 0o. So far, we
have been unable to produce an example of a strongly starlike map
with finite ||w||, which is not quasiconformal. A proof that all
strongly starlike mappings with ||w||. < 00 are quasiconformal has
also eluded us, even in the case when w is given as in (4.1). There are
some partial results, nevertheless. The map f will be quasiconformal
provided the mappings f. are uniformly quasiconformal, at least for
small e. This is the case when, for instance, w is given as in (4.1)
and the entries of E have uniformly bounded derivatives.
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tioned the fact that the growth theorem for starlike mappings ob-
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