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I/-BOUNDEDNESS OF THE HILBERT TRANSFORM
AND MAXIMAL FUNCTION ALONG FLAT CURVES

IN Rn

SARAH N. ZIESLER

We consider the Hubert transform and maximal func-
tion associated to a curve Γ(t) — (t, 72(ί),... , Jn(t)) in E n. It
is well-known that for a plane convex curve Γ(t) = (t,j(t))
these operators are bounded on Lp, 1 < p < 00, if 7' dou-
bles. We give an n-dimensional analogue, n > 2, of this
result.

1. Introduct ion. Let Γ : R —> Rn be a curve in Rn, n > 2,
with Γ(0) = 0. We define the associated Hubert transform, Ί~Lγ and
maximal function MY by

x) = p v Γ
J-c

dt

Ύ
and

Mrf(x) = sup - Γ \f(x - T(t))\dt,
r>0 T JO

respectively. We use p. v. to indicate that we are taking a principal
value integral.

There has been considerable interest in finding conditions on Γ
which give L2(Rn)-boundedness or I/(Rn)-boundedness, 1 < p <
00, of Ήγ and Λ4r> when Γ is permitted to be flat (i.e. vanish to
infinite order) at the origin; the case of well-curved Γ was dealt with
in the 1970's, see for example [7].

The aim of this paper is to give an n-dimensional analogue of the
following well-known theorem for plane curves.

THEOREM 1.1. [1]. Let Γ : R —> R 2,Γ(ί) = (ί,7(ί)) be a
convex curve such that 7 G C2(0,oo) is either even or odd and
7(0) = 7'(0) = 0. Suppose that 31 < λ < 00 such that Vί G (0,00)

(1) 7 ' (λί) > 2 7 '(ί).

383



384 S.N. ZIESLER

Then

\\Ήrf\\P < C\\f\\,

\\Mrf\\P < Kp<oo.

Conditions such as (1) are known as doubling conditions; in this
case we say that 7' doubles.

In Rn we shall consider curves Γ(ί) = (ί, 72(̂ )5 ,Ίn{t)) which
are of class Cn(0,00) and such that Γ(0) = 0. The convexity hy-
pothesis for plane curves we replace by the "convexity" hypothesis
used in the n-dimensional results of [6] and [4].

So we define determinants Dj, j = 1,... , n by

j = det
iί-

iψ - Ίf)
and say that Γ is "convex" if

(2) Dj(t)>0, j = 2 , . . . , n , ί € ( 0 , o o ) .

We also introduce the determinants Nj, j = 1 , . . . , n, given by

j = det

72 Ίj- \

M-V uϋ-i)

and as in [6] define functions hj, j = 1,... , n, by

(3) hAt) = — ^ M T ,

where we take DQ = 1.
In order to state our theorem we also introduce the differential

operators Lk, of [6], defined by

(4) L f~df
Llf~Jt

' fc+l
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It is also useful to have the following formula, proven via a Sylvester
determinant identity in [6]:

(5)

where

LJ(t) = ¥πr, k = l,...,n,
Dk(t)

f"(t)

From this we can see, immediately, that

/Λ»\ T f\ ' -1 1 - 1 1 - 1I I-Λ 1 / . ry . —— I I η I Ir I \c I T)y j ) ± J k J j — U , J — l , . . . , / i 1 , / i — 1 , . . . , / &

(7) Lkηk = 1, k = 1,... ,n.

Our result is the following.

THEOREM 1.2. ZeίΓ : R — > R n , Γ(ί) = ( ί ,γ 2 ( ί ) , . . . ,7n(ί)), ^ >
2 ; be an odd curve in Mn, of class Cn(0, oo) suc/i ίΛαί Γ(0) = 0
and (2) is satisfied. Suppose that 3 A G GL(n, M) sϊ/c/i ί/mί;

f (ί) = ( ί , 7 2 ( ί ) , . . . ,7n(ί)) : = AΓ(t), f α/50 satisfies (2) and

(8) l i m L ^ ( ί ) = 0 j = 1, . . . , n - 1 , A ; = j + 1, . . . ,n .

Suppose also that 31 < λ < oo such that, Vί G (0, oo),

(9) L k % + 1 (λt) > 2 L k % + λ ( t ) , fc = l , . . . , n - l .

| |^r/||p<C||/|U

1 < p < oo.

REMARKS, (a) Since ZΛboundedness of Wr and of Mr is a
GL(n, M) invariant property, in the proof we shall assume, without
loss of generality, that the initial curve Γ satisfies (8) and (9).

(b) For n = 2 our theorem is precisely Theorem 1.1.



386 S.N. ZIESLER

(c) It is easily checked that the "convexity" hypothesis, (2), is
equivalent to requiring that

0 , fc =

Thus, for the class of "convex" curves our conditions are natural
analogues of the 7' doubling condition for plane convex curves (i.e.
those for which (L17)' > 0).

(d) The condition that Γ be odd is convenient but not essential;
it may be replaced by other conditions on Γ giving suitable compat-
ibility of the two halves Γ(ί), t > 0 and Γ(ί), t < 0. For example
each 7fc, k = 2,.. . , n may be either even or odd; this will be clear
from the proof.

(e) The role of (8) is to impose a certain ordering of the compo-
nents of the curve. Further, it follows easily from Lemma 3 of [6]
(see Lemma 3.1) that each Ljjk has at most k — j zeros and at most
k—j — 1 changes of monotonicity on (0,00); the normalization con-
ditions (8) force the Ljjk to be positive and increasing, thus much
simplifying matters.

We note that if lim^o Iy7*(t) exists for all 1 < j < k — 1 < n — 1,
then we can find an A 6 GL(n, R) such that f = AT satisfies (8).
To see this we first define an operator C by

£Γ(t) =

(LιΊι{t)L2Ίι{t) - LnΊx{t)\
• • LnΊ2{t)

φ) L2jn(t) • • • LnΊn{t)j

/I 0 0 0
Lιj2(t) 1 0
LMt) L2j3(t) 1

0
0
0

using (6) and (7).
It is easily shown that if A 6 Γ_, the subgroup of GL(n, R) con-

sisting of lower triangular matrices with 1 in the top left-hand corner
and positive diagonal entries, then A preserves "convexity", i.e. if
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Γ satisfies (2) then so does AT. Moreover, an easy calculation using
(5) shows that if A € T_ and has diagonal entries all equal to 1 then

We now let A — (limt_^o£Γ(ί))~\ where lim^o £Γ(ί) denotes the
matrix with entries lim^o Ljjk(t). Then Γ = 4̂Γ is "convex"
and \imt-+0£Γ(t) is the identity matrix, from which we see that
limt-M) Lj%(t) = 0, j = 1,... , n - 1; k = j + 1,... , n.

Curves for which we do not have the existence of lim^o LjΎk(t)
for all 1 < j < k — 1 < n — 1 may still satisfy the hypotheses of our
theorem. Consider, for example the "convex" curve in E3, Γ(ί) =
(ί, ί3, — ί2); in this case we have L2

ry^{t) = —^. However taking A
to be

1 0 0
0 0 - 1

1 0

we obtain the curve Γ(ί) = (ί, ί2,ί3), which clearly satisfies the
hypotheses (8) and (9).

(f) Theorem 1.1, after a technical adjustment to condition (1),
may also be seen to hold for curves which are not C2(0, oo) but
convex and piecewise-linear. We say that a piecewise-linear 7 curve
is convex if

Ί(c) - Ί(b) Ύ(b) - ηf(a) Q a < ft < &

c — b b — a

Our method of proof of Theorem 1.2 allows us to extract the fol-
lowing result for piecewise-linear curves in Rn.

COROLLARY 1.3. Let Γ : R —> Rn, Γ(ί) = (t,y2(t)t... ,7«(*))
be an odd curve such that Γ(0) = 0 and each 7^, k — 2, . . . ,n,
is convex and piecewise-linear on [Xj,Xj+l], j € Z, some λ > 1.
Suppose

for j e Z, k = 2,... , n.
Then

\\Hτf\\P < C\\f\\p

\\Mrf\\, < C\\f\\p, Kp<oo.
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2. Sketch of Proof. We define measures μk->&k on the curve Γ

by

dt

respectively. Then we have the associated Fourier multipliers

do)

^λfc<|ί|<λfc+1 t '

and

(ID KO-l

We adopt the standard approach of decomposing Ήγ as

and majorizing Mr by

< Csnp\μk
k

From [4] the following theorem is easily extracted.

THEOREM 2.1. Let Γ : E —> Rn, Γ(ί) = (ί,7 2(*),.. ,7n(<))
δe an odd cwrϊ e m Mn,Γ(0) = 0. Suppose 3 a family of dilation
matrices {A^} C GL(n, R) such that

(12) (a) 3 a such that lA^AΛ < a < 1

(b) A~^+λ supp μk C ^a ed ball

(c) |£fc(C)l < C|^fcCΓε f°r s o m e ε > 0 -

ΓΛen

s u p | μ f c * / | <

\\Ήrf\\, < C\\f\\t
1 < p < oo.
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In (8a) we use || || to denote the operator (matrix) norm. We
note that the conditions of the theorem do not involve σ&. This is
because, in view of the cancellation property,

= 0

and the fact that Γ is odd, (12b) and (12c) give also analogous
statements for σ .̂ Without the assumption that Γ is odd we require
also that

^A +I S UPP σk Ξ̂ fixed ball

and

\fa(ζ)\ < C\A*kζ\'ε for some ε > 0.

Condition (12a) is known as Riviere's condition and enables a
Calderόn-Zygmund theory with respect to balls {AjB}, for B the
unit ball in M71, and thence an "annular" Littlewood-Paley decom-
position to be developed.

Conditions (12b) and (12c) give decay estimates for μk (and άk)
which may be combined with the Littlewood-Paley theory, along
with a bootstrapping argument, to give the result. In [4] the authors
find conditions on Γ under which (12c) holds, (12a) and (12b) being
easily satisfied with an appropriate choice of the dilation matrices.

Our approach is to consider, for each k, the points ζ eRn where
(12c) may fail and to develop a conical Littlewood-Paley decompo-
sition to deal with these "bad" £, in the spirit of [1] or [5].

In Section 3 we shall give some essential properties of "convex"
curves and define our choice of dilation matrices {A^}. In Section
4 we consider the set of ζ £ W1 where the required decay estimates
for /ifc, <Tfc may fail and show that these ζ are contained in a cone
Ck- Next we give conditions on Γ, of which there are | n ( n — 1),
under which these Ck form a Littlewood-Paley decomposition and
show how they may be reduced to the n — 1 conditions, (9), in the
statement of our theorem. Finally in Section 5 we indicate how to
combine the conical Littlewood-Paley theory of Section 4 with the
"annular" Littlewood-Paley theory of Theorem 2.1 to complete the
proof.

3. "Convexity" and dilation matrices. Most of the conse-
quences of "convexity" that we shall need are dealt with in [6].
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First, from Lemma 2 of [6] we know that for a "convex" curve we

have, for k — 2, . . . , n, t G (0, oo)

(13) hk(t) > 0 and tik{t) > 0.

The tool we have for estimating oscillatory integrals such as frk is

Van der Corput's lemma; in order to be able to use this we need to

know that ζ.Γf has a bounded number of changes of monotonicity

on each [λfc, λ f c + 1). This is given in Lemma 3 of [6].

LEMMA 3.1. ([6, Lemma 3]). Let Γ e Cn(0,oo) be a "con-

vex" curve in Mn, Γ(ί) = (ί,7 2(ί),. . ,7n(*)) such that Γ(0) =

0. Then for ζ = (Ci, C2, • , ζn) e Mn, Ln(ζ.Γ) = ζn and for

j = 1, 2, . . . , n, Lj(ζ.T) has at most n — j zeros in (0, 00), provided

The proof of this in [6] establishes the identity (5) mentioned

previously, the result then following easily. We shall also need the

following:

LEMMA 3.2. Let Γ e Cn(0,oo), Γ(ί) = (t,72(<),- - ,7n(ί)), Γ :
R —> W1 be a "convex" curve in W1, satisfying also (8) ; i.e.

limLjfc7j+i(i) = 0, j = kΊ... ,n - 1, k = 1,.. . , n - 1.

Then for t G (0, 00)

(14) {LkΊj)\t) > 0 and (LkΊj)(t) > 0,

k = 1,... , n — 1, j = A: + 1,.. . , n.

/n particular 7" > 0, j = 2,. . . , n.

Proof. We recall that, for k = 1,... , n — 1,

£*+i/ = 77—(Lkf)'
nk+ι

So by (7) we have, for k = 1,... , n — 1, ί G (0, 00)

' = W > °



OPERATORS ALONG FLAT CURVES 391

using (13). Then (8) gives us also

LkΊk+ι{t) > 0, A; = 1,... , n - 1, t € (0, oo).

We now fix j G {k + 1 , . . . ,n} and suppose that for some k £
{ 1 , . . . ,j}, ίG(0,oo),

)'(t) > 0 and LkΊj(t) > 0.

Then, for t € (0,oo),

^ 0,

using again (13). We also have Z/^-iTj(^) > 0 , ί G (0, oo), using (8).
The result now follows by induction. D

COROLLARY 3.3. Let Γ be as in the lemma. Suppose also that
Γ(0) = 0,7^(0) = 0, k = 2 , . . . , n. Then fork = 2,...,n

(a) η'k is increasing and non-negative on (0, oo)
(b) j k is increasing and non-negative on (0, oo)
(c) 7*(λ'"+1) > λ7fc(λ^)3 Vj G Z.

Proof. Immediate from Lemma 3.2. D

LEMMA 3.4. Let Γ be as in Lemma 3.2. 77ιen, /or ί G (0, oo),

ψ 0)
V L 7 /

Proof. We proceed by i n d u c t i o n . L e t k £ {1,... ,n— l } b e fixed.
T h e n

V
Now we suppose that

I LmΊk

Then

> 0, for some m € {2 , . . . , k}.
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So by the Second Mean Value Theorem, if ε G (0, t),

{Lm-\Ίk)'(η)

for some 77 € (0,ί). Then, by (15) and (8),

Lm-iΊk(t) (Lm-iΊk)'(t) '

Hence, using (16) and (14),

T h u s , by i n d u c t i o n , for each fixed & e { l , . . . , n — l } w e have

, Vm = l k.

D

We now turn to defining our dilation matrices {Ak}. The choice
of these is motivated by the fact that we are looking for a theory
which admits piecewise-linear curves; we want, therefore, the Ak to
have entries involving at most 1 derivative of 7*, k = 2, . . . , n.

We define the diagonal matrix A by

ft 0 0 \

0

and put A5 = A(λ j), j e Z.
That these matrices satisfy (12a) and (12b) is trivial, using Corol-

lary 3.3.

4. A conical Littlewood-Paley decomposition. We wish to
consider the ( G Rn where we cannot expect (12c) to hold. By
Lemma 3.1c) we know that ζ.Γ' has at most (n — 2) changes of
monotonicity in (0,00), thence must have a bounded number of
changes of monotonicity in each interval [λ*, λk+1).
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So, by Van der Corput's lemma, if

(17) \ζT'(t)\>^\A*kζ\ Vίe[λ*,λ*+1),

then
\μk(ζ)\<C\A*kζ\-\

We consider, therefore, the set of ζ where (17) may fail, i.e.

U
te[\k,\k+1)

where

Here ε > 0 may be as small as we like.

PROPOSITION 4.1. (a) Let Γ be a "convex" Cn(0, oo) curve in
W1. Then 3 cones C& such that

U ClCCk^XiiCtmUCtrn)
m = l

and

hl) > ~e Σ \QLmΊj{\k+l)
j=m j=m

and ζ G Ckm ^=> -ζ G Ckm.
(b) Let Γ be piecewise-linear on [λk,λk+ι], k e Z and jj convex,

j = 2,. . . , n. Then

n

n

\k) < ε ]Γ

ki.Cki are as defined in (a).

Proo/. Let ζ" G IJ C{. We suppose first that ζ.Γ' is monotone-

increasing on [λfc, λ f c + 1). Then V t e [λk, λ f c + 1),

Li(C.Γ)(λ*) = C Γ'(λ*) < C Γ'(ί) < C-Γ(λ*+1) = LxίC-
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Hence

(!8) Li(C Γ)(λ*) < 4τ\AK\
ΛK

and

By Corollary 3.3 and the definition of the Ak we have

1 * , "

λ i=i i=i

which, together with (18) and (19), gives

and

Thus, if ζ - Γ' is monotone-increasing on [λk,λk+1), then ζ e
Similarly, if ζ Γ' is monotone-decreasing on [λfc, λ^"1"1), then ζ G Cki

We note here that if Γ is piecewise-linear on [λ*, λk+1)> then C * Γ'
is constant on (Xk,Xk+1)] by a suitable definition of ζ Γ^λ*) we
may take ζ Γ; to be constant on [λ*, λ^4"1) and thus (b) is proven.

We now suppose that ζ Γ'(ί) is not monotone on [λ*, λ*^1). Then
3 to e [λ*, λ ^ 1 ) such that C Γ"(ΐ0) = 0. Then

If then Z/2(C Γ) is monotone-increasing on [λk,

L2(ζ • T)(\k) < 0 = L2(C Γ)(ίo) < L2(ζ • Γ)(\k+1)
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and so ζ e C\a\ similarly ζ e Ck2 if £ 2 ( C O is monotone-decreasing
on [λ*,λ*+1) . If L2{ζ Γ) is not monotone on [λ*,λ*+ 1), then
3 ίi e [λ*,λfc+1) such that (L2(ζ Γ))'(*i) = 0, from which we
obtain L3(ζ Γ)(ίχ) = 0 and so if L3(£ Γ) is monotone on [λ*, λk+1),
we obtain ζ G C^ U Ckz- We repeat this process iteratively. By
Lemma 3.1 Ln(ζ Γ)(ί) = ζn so it follows that Ln_χ(ζ" Γ) must
be monotone on [λfc,λfc+1) and hence the final possibility is that

C ^ Cfc(π-l)

We now wish to find conditions on Γ under which these cones
give a Littlewood-Paley decomposition for Ifζfii71). The next result,
in the same spirit as the lacunary Littlewood-Paley decomposition
of [5], leads to the choice of these conditions. First we give our
definition of lacunarity.

Definition 4.2. Let {£fc(n, ε)} be a family of cones in Rn given by

and

where α^ are positive reals, j — 1,... , n, h £ Z and ε > 0 is small.
If

(20) ^ ± i > 2 4 4 > V * e Z , j = 2 , . . . , n ,

then the £k(n,ε) are said to be lacunary.
We define αsmoothed-out" characteristic functions Φ£'ε of the

cones Sk(n,ε) as follows.
Let Φn > ε be a C°° function away from 0, homogeneous of degree

zero such that

n n

and put
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Associated to these ψ£'ε are operators 7* given by

C57)(O = ΦΓ(0/(0, kez.
THEOREM 4.3. // {£(n, ε)} is a lacunary family of cones in

then
1/2

1 < p < oo.

Proof. It suffices to show that Σk ± φ £ ' e is a multiplier for
1 < p < oo, independently of the choice of ±; the result then
follows by a standard Rademacher function argument. We use the
formulation of the Marcinkiewicz multiplier theorem given in [2].
So, we let φn be a C%°(Rn) function such that 0 < φn < 1 and

θ off | < ICJI < 4 , j = l,...,n,

and define L^(Rn) to be the n-parameter Sobolev space given by

Lim = {g: \\g\\ha = j IMOI2 Π(i+ (t < ooj.

Then, by Theorem A of [2], it suffices to show that

(21) sup < oo,

for some a > \.
We show (21) for a = 1 and for convenience take ε = ψ%. Our

proof is by induction on n; the argument for n = 2 is contained in
the inductive step and therefore we omit it.

Suppose, therefore, that

sup
z i , . . . , i n _ i

with ε =

(22)

< oo,

2^_2, under the hypothesis that

*fc+l
Γ > 2 ^ , V i b G Z , j = 2 , . . . , n - l
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and consider

sup

assuming that (22) now holds also for j — n.
We suppose that, for some k, ΦjJ '^ 'Ci, ..., 2inζn)φn(ζ) φ 0, i.e.

3=1 3=1

and

Case 1. Suppose that for some jo G {1,.. . , n}

and

In this instance we find that

0.

Taking 2ljo = 1, which we may by homogeneity of Φ n > ε, the problem
is reduced to the (n — 1)-dimensional case and we are done, by the
inductive hypothesis.

Case 2. Suppose that for all j G {1,... , n} either

(23)

or

(24)

3=1

3=1
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Let us suppose that

1 A

Then by the lacunarity conditions (20) we have

n - l

αϊ+^ICnl > 2 Σ c4+m2^|0| V m > N, say.

Then if Cn > 0 we find

n - l

whilst if ζn < 0 we have

1 A

Thus

(25) - ,2i"Cn) = 0 V m > i V .

If we assume that (24) holds for j = n then the same argument
follows. Further, V C with Φfc'ε(2ilCi, , 2inζn) φ 0, for each j 0 e
{1,. . . , n}, we have either

or

This, together with (23), (24), lacunarity and φn(ζ) Φ 0 gives that
21J ~ IVJ = 1,... , n. So using (25) we obtain

sup < oo.
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It is trivial to check that differentiating with respect to any ζj causes
no problem. This concludes the proof. D

Let us now see how may apply Theorem 4.3 to our cones Ck It
is clear that if we have a Littlewood-Paley theory for each {Ckm},
{Ckm} > m = 1,... , n — 1, where we consider Ckm > Ckm as cones in
jjn-m+i ^ t ] i e n this will suffice to give a Littlewood-Paley theory for
the Ck We define now

Φ*m(C) = Φ Γ ( 0 , • , 0, Cm, £m7m+l(λ*)Cm+l, . . . , LmΊn(Xk)ζn)

and put

Φfc(C) =
m=l

we associate to Φ& the operator Sk given by

(26) (S7)(o = Φt(o/(c)

PROPOSITION 4.4. //

( 2 7 ) Lm Ύ j +i(A f c + 1) > 2ί

VfceZ, j = m, . . . , n — 1; m = 1,... , n — 1, ί/ien

\ l / 2

<C\\f\\
p t

Proof. If, for fixed m,

then the family of cones {Cfem}, and hence also {Cfcm}? may be
considered as lacunary in Rn~m + 1,i.e. Σfc±Φfcm(C) is a multiplier
in LP(Rn), 1 < p < oo. Thus if (27) is satisfied we have that
Σk Σm=\ ±Φfcm(C) is a multiplier for Z ^ R " ) . This gives the re-
sult. D
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Thus, assuming (27), the cones C* give a Littlewood-Paley de-
composition of Rn. Let us now see how the \n(n — 1) conditions of
(27) relate to the conditions in the statement of our theorem, i.e.
(9).

LEMMA 4.5. Let Γ : R —> Rn be a "convex" curve such that
ΓeCn(0,oo), Γ(0) = 0 and

(28)
limim7fc+i(ί) = 0 for m = 1,... , π — 1, k = m,... ,n — 1.

Suppose 3 1 < λ < oo such that

(29) LkΊk+λ{Xt) > 2Lkjk+1(t) k = 1,.. . , n - 1.

Then 3 1 < μ < oo such that

M M Lmη/k+ι(μt) Lmηk+ι{t)
K } LmΊk{μt) - LmΊk{t) '

m = 1,... ,n — 1, k = m,... ,n — 1.

Proo/. Fix /c. Clearly, by hypothesis (29), (30) holds for m = k,
with μ = λ. We now suppose that (30) holds for m = j and show
that it is then also true for m = j — 1. Now

by Lemma 3.4 and (29). Then

l
- 2 '
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by the Second Mean Value Theorem and Lemma 3.4. Thus

> 1

2

> 2

2 LjΊk{μH)

LjΊk(t)
, by inductive hypothesis

Lj-i7k+ι(t)

by Second Mean Value Theorem, Lemma 3.4 and hypothesis (28).

Lemma 4.5 and Proposition 4.4 together give us

PROPOSITION 4.6. Let Γ : K —> Rn be a "convex" curve such
t h a t Γ 6 C n ( 0 , o o ) , Γ ( 0 ) = 0 a n d l i m t _ » 0 £ j 7 f c ( * ) = 0 , V j =
1,... , n — 1; k = j + 1,... ,n. Suppose that 3 1 < λ < oo such
that

Lkηk+ι(λt) > 2Lfc7fc+1(ί), k = 1,... ,n - 1.

Then
l/2

<C\\f\\9.

In view of Proposition 4.1 (b), which defines the cones for a
piecewise-linear curve, we also have a corresponding result for piece-
wise-linear curves if we replace the hypotheses of Proposition 4.6
with those of Corollary 1.3.

5. Proof of Theorem 1.2. We now have a family of dilation
matrices {Ak} satisfying

(31) 3 a such that < OL < 1

(32) C fixed ball
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and a family of cones {Ck} with associated operators
(26) satisfying the Littlewood-Paley inequality

(33) Σ \Sk
1/2

< C\\f\\t

and such that

(34) C*c*=HAfc(C)l<CΊ4kCΓ.

given by

We let / = Skf + (I — S*)/, k G Z, and consider first sup^ |μ& *
/ | . We use the standard technique of combining a bootstrapping
argument with the Littlewood-Paley theory to obtain an ZAresult,
starting with just the L2-result. Now,

sup I
k

By (33), PlanchereΓs theorem and the fact that the μ* have unit
mass we immediately have

Λ<C\\fh.

For B we use comparison of μk with a measure vk given by

where p G CQ°, 0 < p < 1 and J p = 1. It is easily verified that
supfc \vk*f\ is majorized by the Hardy-Littlewood maximal operator
associated to balls AkB, where B is the unit ball in W1, and thus,
by [3], Proposition 2.2,

(35)

Then

B<

sup \uk *
k

sup|(μfc-i/fc) * (I - Sk)f\

sup \ι/k * Skf\

K p < o o .

sup \uk * f\
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Now, by the same argument as used for A,

<C\\f\\2,

so it remains to show that

sap\(μk - ι/k) * (I - Sk)f\ <c\\fh

Taking into account (34) the proof of this is essentially contained in
the proof of Proposition 5.1, [3]. To pass from the L2-result to the
Z^-result we have the following analogue of Proposition 5.1, [3].

PROPOSITION 5.1. Suppose

sup \μk * f\ < C\\f\\~, for some Kp<2.

Then

sup \μk * f\ < σii/ii,

Proof. First we note that, under the hypothesis of the proposition,

(36)
1/2

<c ΣIΛ
1/2

V JjL < p < Jt., exactly as in [3]. Then

sup \μk *
k < k

sup \ι/k * f\

= A + B + D + E.

1/2

Σ k * -sib/I5

^ A:

1/2

8Up|(/ifc-I/*)* ( 7 -

Now (36) together with (33) gives suitable bounds for A and B,

< P < ^ whilst D < C\\f\\p, VI < p < oo, by (35). It remains,



404 S.N. ZIESLER

therefore, to bound E. Again the proof that E < C | | / | | p ,

is essentially contained in Proposition 5.1, [3].
< p

Proposition 5.1 completes the proof of ZZ-boundedness of supfc |μ
/ | and thence of Mr- Noting that from (33) we may also obtain

<c 1 < p < oo,

we may now deduce the result for ΉΓ from that for A4r, following
the argument in [3].
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