L^p-BOUNDEDNESS OF THE HILBERT TRANSFORM AND MAXIMAL FUNCTION ALONG FLAT CURVES IN \mathbb{R}^n

SARAH N. ZIESLER

We consider the Hilbert transform and maximal function associated to a curve $\Gamma(t) = (t, \gamma_2(t), \ldots, \gamma_n(t))$ in \mathbb{R}^n . It is well-known that for a plane convex curve $\Gamma(t) = (t, \gamma(t))$ these operators are bounded on L^p , $1 , if <math>\gamma'$ doubles. We give an *n*-dimensional analogue, $n \ge 2$, of this result.

1. Introduction. Let $\Gamma : \mathbb{R} \longrightarrow \mathbb{R}^n$ be a curve in \mathbb{R}^n , $n \ge 2$, with $\Gamma(0) = 0$. We define the associated Hilbert transform, \mathcal{H}_{Γ} and maximal function \mathcal{M}_{Γ} by

$$\mathcal{H}_{\Gamma}f(x) = \mathrm{p.\,v.}\int_{-\infty}^{\infty}f(x-\Gamma(t))rac{dt}{t}$$

and

$$\mathcal{M}_{\Gamma}f(x) = \sup_{r>0} \frac{1}{r} \int_0^r |f(x - \Gamma(t))| dt,$$

respectively. We use p. v. to indicate that we are taking a principal value integral.

There has been considerable interest in finding conditions on Γ which give $L^2(\mathbb{R}^n)$ -boundedness or $L^p(\mathbb{R}^n)$ -boundedness, $1 , of <math>\mathcal{H}_{\Gamma}$ and \mathcal{M}_{Γ} , when Γ is permitted to be flat (i.e. vanish to infinite order) at the origin; the case of well-curved Γ was dealt with in the 1970's, see for example [7].

The aim of this paper is to give an n-dimensional analogue of the following well-known theorem for plane curves.

THEOREM 1.1. [1]. Let $\Gamma : \mathbb{R} \longrightarrow \mathbb{R}^2$, $\Gamma(t) = (t, \gamma(t))$ be a convex curve such that $\gamma \in C^2(0, \infty)$ is either even or odd and $\gamma(0) = \gamma'(0) = 0$. Suppose that $\exists 1 < \lambda < \infty$ such that $\forall t \in (0, \infty)$

(1)
$$\gamma'(\lambda t) \ge 2\gamma'(t).$$

Then

$$\begin{aligned} \|\mathcal{H}_{\Gamma}f\|_{p} &\leq C \|f\|_{p} \\ \|\mathcal{M}_{\Gamma}f\|_{p} &\leq C \|f\|_{p}, \quad 1$$

Conditions such as (1) are known as doubling conditions; in this case we say that γ' doubles.

In \mathbb{R}^n we shall consider curves $\Gamma(t) = (t, \gamma_2(t), \ldots, \gamma_n(t))$ which are of class $C^n(0, \infty)$ and such that $\Gamma(0) = 0$. The convexity hypothesis for plane curves we replace by the "convexity" hypothesis used in the *n*-dimensional results of [6] and [4].

So we define determinants D_j , j = 1, ..., n by

$$D_j = \det \begin{pmatrix} 1 & \gamma'_2 & \cdots & \gamma'_j \\ 0 & \gamma''_2 & \cdots & \gamma''_j \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \gamma_2^{(j)} & \cdots & \gamma_j^{(j)} \end{pmatrix}$$

and say that Γ is "convex" if

(2)
$$D_j(t) > 0, \quad j = 2, ..., n, t \in (0, \infty).$$

We also introduce the determinants N_j , j = 1, ..., n, given by

$$N_j = \det egin{pmatrix} t & \gamma_2 & \cdots & \gamma_j \ 1 & \gamma_2' & \cdots & \gamma_j' \ dots & dots & \ddots & dots \ 0 & \gamma_2^{(j-1)} & \cdots & \gamma_j^{(j-1)} \end{pmatrix},$$

and as in [6] define functions h_j , j = 1, ..., n, by

(3)
$$h_j(t) = \frac{N_j(t)}{D_{j-1}(t)},$$

where we take $D_0 \equiv 1$.

In order to state our theorem we also introduce the differential operators L_k , of [6], defined by

(4)
$$L_{1}f = \frac{df}{dt}$$
$$L_{k+1}f = \frac{h_{k}}{h'_{k+1}}(L_{k}f)', \quad k = 1, \dots, n-1.$$

It is also useful to have the following formula, proven via a Sylvester determinant identity in [6]:

(5)
$$L_k f(t) = \frac{E_k f(t)}{D_k(t)}, \quad k = 1, \dots, n,$$

where

$$E_k f(t) = \det \begin{pmatrix} 1 & \gamma'_2(t) & \cdots & \gamma'_{k-1}(t) & f'(t) \\ 0 & \gamma''_2(t) & \cdots & \gamma''_{k-1}(t) & f''(t) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \gamma_2^{(k)}(t) & \cdots & \gamma_{k-1}^{(k)}(t) & f^{(k)}(t) \end{pmatrix}.$$

From this we can see, immediately, that

- (6) $L_k \gamma_j = 0, \quad j = 1, \dots, k-1; k = 1, \dots, n$
- (7) $L_k \gamma_k = 1, \quad k = 1, \ldots, n.$

Our result is the following.

THEOREM 1.2. Let $\Gamma : \mathbb{R} \longrightarrow \mathbb{R}^n$, $\Gamma(t) = (t, \gamma_2(t), \dots, \gamma_n(t))$, $n \ge 2$, be an odd curve in \mathbb{R}^n , of class $C^n(0, \infty)$ such that $\Gamma(0) = 0$ and (2) is satisfied. Suppose that $\exists A \in \operatorname{GL}(n, \mathbb{R})$ such that, with $\widetilde{\Gamma}(t) = (t, \widetilde{\gamma}_2(t), \dots, \widetilde{\gamma}_n(t)) := A\Gamma(t)$, $\widetilde{\Gamma}$ also satisfies (2) and

(8)
$$\lim_{t\to 0} L_j \tilde{\gamma}_k(t) = 0 \quad j = 1, \dots, n-1, k = j+1, \dots, n.$$

Suppose also that $\exists 1 < \lambda < \infty$ such that, $\forall t \in (0, \infty)$,

(9)
$$L_k \widetilde{\gamma}_{k+1}(\lambda t) \ge 2L_k \widetilde{\gamma}_{k+1}(t), \quad k = 1, \dots, n-1.$$

Then

$$\begin{aligned} \|\mathcal{H}_{\Gamma}f\|_{p} &\leq C \|\dot{f}\|_{p}, \\ \|\mathcal{M}_{\Gamma}f\|_{p} &\leq C \|\dot{f}\|_{p}, \quad 1$$

REMARKS. (a) Since L^p -boundedness of \mathcal{H}_{Γ} and of \mathcal{M}_{Γ} is a $\operatorname{GL}(n, \mathbb{R})$ invariant property, in the proof we shall assume, without loss of generality, that the initial curve Γ satisfies (8) and (9).

(b) For n = 2 our theorem is precisely Theorem 1.1.

(c) It is easily checked that the "convexity" hypothesis, (2), is equivalent to requiring that

$$(L_k \gamma_{k+1})' > 0, \quad k = 1, \dots, n-1.$$

Thus, for the class of "convex" curves our conditions are natural analogues of the γ' doubling condition for plane convex curves (i.e. those for which $(L_1\gamma)' > 0$).

(d) The condition that Γ be odd is convenient but not essential; it may be replaced by other conditions on Γ giving suitable compatibility of the two halves $\Gamma(t)$, t > 0 and $\Gamma(t)$, t < 0. For example each $\gamma_k, k = 2, \ldots, n$ may be either even or odd; this will be clear from the proof.

(e) The role of (8) is to impose a certain ordering of the components of the curve. Further, it follows easily from Lemma 3 of [6] (see Lemma 3.1) that each $L_j\gamma_k$ has at most k-j zeros and at most k-j-1 changes of monotonicity on $(0,\infty)$; the normalization conditions (8) force the $L_j\gamma_k$ to be positive and increasing, thus much simplifying matters.

We note that if $\lim_{t\to 0} L_j \gamma_k(t)$ exists for all $1 \leq j \leq k-1 \leq n-1$, then we can find an $A \in \operatorname{GL}(n, \mathbb{R})$ such that $\tilde{\Gamma} = A\Gamma$ satisfies (8). To see this we first define an operator \mathcal{L} by

$$\mathcal{L}\Gamma(t) = \begin{pmatrix} L_1\gamma_1(t) \ L_2\gamma_1(t) \ \cdots \ L_n\gamma_1(t) \\ L_1\gamma_2(t) \ L_2\gamma_2(t) \ \cdots \ L_n\gamma_2(t) \\ \vdots \ \vdots \ \ddots \ \vdots \\ L_1\gamma_n(t) \ L_2\gamma_n(t) \ \cdots \ L_n\gamma_n(t) \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ L_1\gamma_2(t) & 1 & 0 & \cdots & 0 & 0 \\ L_1\gamma_3(t) \ L_2\gamma_3(t) & 1 & \cdots & 0 & 0 \\ \vdots \ \vdots \ \vdots \ \ddots \ \vdots \ \vdots \\ L_1\gamma_{n-1}(t) \ L_2\gamma_{n-1}(t) \ L_3\gamma_{n-1}(t) \ \cdots \ L_{n-1}\gamma_n(t) \ 1 \end{pmatrix},$$

using (6) and (7).

It is easily shown that if $A \in T_{-}$, the subgroup of $GL(n, \mathbb{R})$ consisting of lower triangular matrices with 1 in the top left-hand corner and positive diagonal entries, then A preserves "convexity", i.e. if

 Γ satisfies (2) then so does $A\Gamma$. Moreover, an easy calculation using (5) shows that if $A \in T_{-}$ and has diagonal entries all equal to 1 then

$$\mathcal{L}(A\Gamma) = A(\mathcal{L}\Gamma).$$

We now let $A = (\lim_{t\to 0} \mathcal{L}\Gamma(t))^{-1}$, where $\lim_{t\to 0} \mathcal{L}\Gamma(t)$ denotes the matrix with entries $\lim_{t\to 0} L_i \gamma_k(t)$. Then $\tilde{\Gamma} = A\Gamma$ is "convex" and $\lim_{t\to 0} \mathcal{L}\widetilde{\Gamma}(t)$ is the identity matrix, from which we see that $\lim_{t\to 0} L_j \widetilde{\gamma}_k(t) = 0, \quad j = 1, \dots, n-1; \quad k = j+1, \dots, n.$

Curves for which we do not have the existence of $\lim_{t\to 0} L_i \gamma_k(t)$ for all $1 \le j \le k - 1 \le n - 1$ may still satisfy the hypotheses of our theorem. Consider, for example the "convex" curve in \mathbb{R}^3 , $\Gamma(t) =$ $(t, t^3, -t^2)$; in this case we have $L_2\gamma_3(t) = -\frac{1}{3t}$. However taking A to be

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

we obtain the curve $\tilde{\Gamma}(t) = (t, t^2, t^3)$, which clearly satisfies the hypotheses (8) and (9).

(f) Theorem 1.1, after a technical adjustment to condition (1), may also be seen to hold for curves which are not $C^2(0,\infty)$ but convex and piecewise-linear. We say that a piecewise-linear γ curve is convex if

$$rac{\gamma(c)-\gamma(b)}{c-b} \geq rac{\gamma(b)-\gamma(a)}{b-a}, \quad 0 \leq a < b < c.$$

Our method of proof of Theorem 1.2 allows us to extract the following result for piecewise-linear curves in \mathbb{R}^n .

COROLLARY 1.3. Let $\Gamma : \mathbb{R} \longrightarrow \mathbb{R}^n$, $\Gamma(t) = (t, \gamma_2(t), \ldots, \gamma_n(t))$ be an odd curve such that $\Gamma(0) = 0$ and each γ_k , $k = 2, \ldots, n$, is convex and piecewise-linear on $[\lambda^j, \lambda^{j+1}], j \in \mathbb{Z}$, some $\lambda > 1$. Suppose

$$\frac{\gamma_k(\lambda^{j+1}) - \gamma_k(\lambda^j)}{\gamma_{k-1}(\lambda^{j+1}) - \gamma_{k-1}(\lambda^j)} \ge 2\frac{\gamma_k(\lambda^j) - \gamma_k(\lambda^{j-1})}{\gamma_{k-1}(\lambda^j) - \gamma_{k-1}(\lambda^{j-1})},$$

for $j \in \mathbb{Z}, k = 2, \ldots, n$. Then

$$\begin{aligned} \|\mathcal{H}_{\Gamma}f\|_{p} &\leq C \|f\|_{p} \\ \|\mathcal{M}_{\Gamma}f\|_{p} &\leq C \|f\|_{p}, \quad 1$$

2. Sketch of Proof. We define measures μ_k, σ_k on the curve Γ by

$$\int f \ d\mu_k = \frac{1}{\lambda^k (\lambda - 1)} \int_{\lambda^k}^{\lambda^{k+1}} f(\Gamma(t)) \ dt \quad \text{and}$$
$$\int f \ d\sigma_k = \int_{\lambda^k \le |t| \le \lambda^{k+1}} f(\Gamma(t)) \frac{dt}{t},$$

respectively. Then we have the associated Fourier multipliers

(10)
$$\hat{\mu}_k(\zeta) = \frac{1}{\lambda^k(\lambda - 1)} \int_{\lambda^k}^{\lambda^{k+1}} e^{i\zeta \cdot \Gamma(t)} dt$$

and

(11)
$$\hat{\sigma}_k(\zeta) = \int_{\lambda^k \le |t| \le \lambda^{k+1}} e^{i\zeta \cdot \Gamma(t)} \frac{dt}{t}.$$

We adopt the standard approach of decomposing \mathcal{H}_{Γ} as

$$\mathcal{H}_{\Gamma}f = \sum_{k} \sigma_{k} * f$$

and majorizing \mathcal{M}_{Γ} by

$$\mathcal{M}_{\Gamma}f \leq C \sup_{k} |\mu_{k} * f|.$$

From [4] the following theorem is easily extracted.

THEOREM 2.1. Let $\Gamma : \mathbb{R} \longrightarrow \mathbb{R}^n$, $\Gamma(t) = (t, \gamma_2(t), \dots, \gamma_n(t))$ be an odd curve in $\mathbb{R}^n, \Gamma(0) = 0$. Suppose \exists a family of dilation matrices $\{A_k\} \subseteq \operatorname{GL}(n, \mathbb{R})$ such that

(12)
(a)
$$\exists \alpha \text{ such that } ||A_{k+1}^{-1}A_k|| \leq \alpha < 1$$

(b) $A_{k+1}^{-1} \text{ supp } \mu_k \subseteq \text{ fixed ball}$
(c) $|\hat{\mu}_k(\zeta)| \leq C |A_k^* \zeta|^{-\varepsilon} \text{ for some } \varepsilon > 0.$

Then

$$\begin{aligned} \left\| \sup_{k} |\mu_{k} * f| \right\|_{p} &\leq C \|f\|_{p} \\ \|\mathcal{H}_{\Gamma} f\|_{p} &\leq C \|f\|_{p}, \qquad 1$$

In (8a) we use $\|\cdot\|$ to denote the operator (matrix) norm. We note that the conditions of the theorem do not involve σ_k . This is because, in view of the cancellation property,

$$\int d\sigma_k = 0$$

and the fact that Γ is odd, (12b) and (12c) give also analogous statements for σ_k . Without the assumption that Γ is odd we require also that

$$A_{k+1}^{-1}$$
 supp $\sigma_k \subseteq$ fixed ball

and

$$|\hat{\sigma}_k(\zeta)| \leq C |A_k^* \zeta|^{-\varepsilon}$$
 for some $\varepsilon > 0$.

Condition (12a) is known as Rivière's condition and enables a Calderón-Zygmund theory with respect to balls $\{A_jB\}$, for B the unit ball in \mathbb{R}^n , and thence an "annular" Littlewood-Paley decomposition to be developed.

Conditions (12b) and (12c) give decay estimates for $\hat{\mu}_k$ (and $\hat{\sigma}_k$) which may be combined with the Littlewood-Paley theory, along with a bootstrapping argument, to give the result. In [4] the authors find conditions on Γ under which (12c) holds, (12a) and (12b) being easily satisfied with an appropriate choice of the dilation matrices.

Our approach is to consider, for each k, the points $\zeta \in \mathbb{R}^n$ where (12c) may fail and to develop a conical Littlewood-Paley decomposition to deal with these "bad" ζ , in the spirit of [1] or [5].

In Section 3 we shall give some essential properties of "convex" curves and define our choice of dilation matrices $\{A_k\}$. In Section 4 we consider the set of $\zeta \in \mathbb{R}^n$ where the required decay estimates for $\hat{\mu}_k$, $\hat{\sigma}_k$ may fail and show that these ζ are contained in a cone C_k . Next we give conditions on Γ , of which there are $\frac{1}{2}n(n-1)$, under which these C_k form a Littlewood-Paley decomposition and show how they may be reduced to the n-1 conditions, (9), in the statement of our theorem. Finally in Section 5 we indicate how to combine the conical Littlewood-Paley theory of Section 4 with the "annular" Littlewood-Paley theory of Theorem 2.1 to complete the proof.

3. "Convexity" and dilation matrices. Most of the consequences of "convexity" that we shall need are dealt with in [6].

First, from Lemma 2 of [6] we know that for a "convex" curve we have, for $k = 2, ..., n, t \in (0, \infty)$

(13)
$$h_k(t) > 0$$
 and $h'_k(t) > 0$.

The tool we have for estimating oscillatory integrals such as $\hat{\mu}_k$ is Van der Corput's lemma; in order to be able to use this we need to know that $\zeta . \Gamma'$ has a bounded number of changes of monotonicity on each $[\lambda^k, \lambda^{k+1})$. This is given in Lemma 3 of [6].

LEMMA 3.1. ([6, Lemma 3]). Let $\Gamma \in C^n(0,\infty)$ be a "convex" curve in \mathbb{R}^n , $\Gamma(t) = (t, \gamma_2(t), \ldots, \gamma_n(t))$ such that $\Gamma(0) = 0$. Then for $\zeta = (\zeta_1, \zeta_2, \ldots, \zeta_n) \in \mathbb{R}^n$, $L_n(\zeta, \Gamma) = \zeta_n$ and for $j = 1, 2, \ldots, n, L_j(\zeta, \Gamma)$ has at most n - j zeros in $(0, \infty)$, provided $\zeta_n \neq 0$.

The proof of this in [6] establishes the identity (5) mentioned previously, the result then following easily. We shall also need the following:

LEMMA 3.2. Let $\Gamma \in C^n(0,\infty)$, $\Gamma(t) = (t, \gamma_2(t), \ldots, \gamma_n(t))$, $\Gamma : \mathbb{R} \longrightarrow \mathbb{R}^n$ be a "convex" curve in \mathbb{R}^n , satisfying also (8), i.e.

$$\lim_{t \to 0} L_k \gamma_{j+1}(t) = 0, \quad j = k, \dots, n-1, \ k = 1, \dots, n-1.$$

Then for $t \in (0, \infty)$

(14) $(L_k \gamma_j)'(t) > 0$ and $(L_k \gamma_j)(t) > 0$,

 $k = 1, \dots, n - 1, \ j = k + 1, \dots, n.$

In particular $\gamma_j'' > 0, \ j = 2, \ldots, n.$

Proof. We recall that, for $k = 1, \ldots, n - 1$,

$$L_{k+1}f = \frac{h_k}{h'_{k+1}}(L_k f)'.$$

So by (7) we have, for $k = 1, ..., n - 1, t \in (0, \infty)$

$$(L_k \gamma_{k+1})'(t) = \frac{h'_{k+1}(t)}{h_k(t)} > 0,$$

using (13). Then (8) gives us also

$$L_k \gamma_{k+1}(t) > 0, \quad k = 1, \dots, n-1, \ t \in (0, \infty).$$

We now fix $j \in \{k + 1, ..., n\}$ and suppose that for some $k \in \{1, ..., j\}, t \in (0, \infty)$,

$$(L_k\gamma_j)'(t) > 0$$
 and $L_k\gamma_j(t) > 0.$

Then, for $t \in (0, \infty)$,

$$(L_{k-1}\gamma_j)'(t) = \frac{h'_k(t)}{h_{k-1}(t)}L_k\gamma_j(t) > 0,$$

using again (13). We also have $L_{k-1}\gamma_j(t) > 0$, $t \in (0, \infty)$, using (8). The result now follows by induction.

COROLLARY 3.3. Let Γ be as in the lemma. Suppose also that $\Gamma(0) = 0, \gamma'_k(0) = 0, k = 2, ..., n$. Then for k = 2, ..., n

(a) γ'_k is increasing and non-negative on $(0,\infty)$

(b) γ_k is increasing and non-negative on $(0,\infty)$

(c) $\gamma_k(\lambda^{j+1}) \ge \lambda \gamma_k(\lambda^j), \quad \forall j \in \mathbb{Z}.$

Proof. Immediate from Lemma 3.2.

LEMMA 3.4. Let Γ be as in Lemma 3.2. Then, for $t \in (0, \infty)$,

$$\left(\frac{L_k\gamma_{j+1}}{L_k\gamma_j}\right)'(t)>0,\quad\forall j=k,\ldots,n-1,\ k=1,\ldots,n-1.$$

Proof. We proceed by induction. Let $k \in \{1, ..., n-1\}$ be fixed. Then

$$\left(\frac{L_k\gamma_{k+1}}{L_k\gamma_k}\right)' = (L_k\gamma_{k+1})' = \frac{h'_{k+1}}{h_k} > 0.$$

Now we suppose that

$$\left(\frac{L_m\gamma_{k+1}}{L_m\gamma_k}\right)' > 0, \text{ for some } m \in \{2, \dots, k\}.$$

Then

(15)
$$\left(\frac{L_m\gamma_{k+1}}{L_m\gamma_k}\right)' = \left(\frac{(L_{m-1}\gamma_{k+1})'}{(L_{m-1}\gamma_k)'}\right)' > 0.$$

Π

So by the Second Mean Value Theorem, if $\varepsilon \in (0, t)$,

$$\frac{L_{m-1}\gamma_{k+1}(t) - L_{m-1}\gamma_{k+1}(\varepsilon)}{L_{m-1}\gamma_{k}(t) - L_{m-1}\gamma_{k}(\varepsilon)} = \frac{(L_{m-1}\gamma_{k+1})'(\eta)}{(L_{m-1}\gamma_{k})'(\eta)},$$

for some $\eta \in (0, t)$. Then, by (15) and (8),

(16)
$$\frac{L_{m-1}\gamma_{k+1}(t)}{L_{m-1}\gamma_{k}(t)} < \frac{(L_{m-1}\gamma_{k+1})'(t)}{(L_{m-1}\gamma_{k})'(t)}.$$

Hence, using (16) and (14),

$$\left(\frac{L_{m-1}\gamma_{k+1}}{L_{m-1}\gamma_{k}}\right)' = \frac{(L_{m-1}\gamma_{k})'}{(L_{m-1}\gamma_{k})} \left\{\frac{(L_{m-1}\gamma_{k+1})'}{(L_{m-1}\gamma_{k})'} - \frac{L_{m-1}\gamma_{k+1}}{L_{m-1}\gamma_{k}}\right\} > 0.$$

Thus, by induction, for each fixed $k \in \{1, ..., n-1\}$ we have

$$\left(\frac{L_m\gamma_{k+1}}{L_m\gamma_k}\right)' > 0, \quad \forall m = 1, \dots, k.$$

 \Box

We now turn to defining our dilation matrices $\{A_k\}$. The choice of these is motivated by the fact that we are looking for a theory which admits piecewise-linear curves; we want, therefore, the A_k to have entries involving at most 1 derivative of γ_k , k = 2, ..., n.

We define the diagonal matrix A by

$$A(t) = \begin{pmatrix} t & 0 & \cdots & 0 \\ 0 & \gamma_2(t) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \gamma_n(t) \end{pmatrix}$$

and put $A_j = A(\lambda^j), \ j \in \mathbb{Z}$.

That these matrices satisfy (12a) and (12b) is trivial, using Corollary 3.3.

4. A conical Littlewood-Paley decomposition. We wish to consider the $\zeta \in \mathbb{R}^n$ where we cannot expect (12c) to hold. By Lemma 3.1c) we know that $\zeta \cdot \Gamma'$ has at most (n-2) changes of monotonicity in $(0, \infty)$, thence must have a bounded number of changes of monotonicity in each interval $[\lambda^k, \lambda^{k+1})$.

So, by Van der Corput's lemma, if

(17)
$$|\zeta.\Gamma'(t)| \ge \frac{C}{\lambda^k} |A_k^*\zeta| \quad \forall t \in [\lambda^k, \lambda^{k+1}),$$

then

$$|\hat{\mu}_k(\zeta)| \le C |A_k^* \zeta|^{-1}.$$

We consider, therefore, the set of ζ where (17) may fail, i.e.

$$\bigcup_{t\in[\lambda^k,\lambda^{k+1})}C_k^t,$$

where

$$C_k^t := \left\{ \zeta \in \mathbb{R}^n : |\zeta \cdot \Gamma'(t)| < \frac{\varepsilon}{\lambda^k} |A_k^* \zeta| \right\}.$$

Here $\varepsilon > 0$ may be as small as we like.

PROPOSITION 4.1. (a) Let Γ be a "convex" $C^n(0,\infty)$ curve in \mathbb{R}^n . Then \exists cones C_k such that

$$\bigcup_{t \in [\lambda^k, \lambda^{k+1})} C_k^t \subseteq C_k := \bigcup_{m=1}^{n-1} (C_{km} \cup \widetilde{C}_{km})$$

where

$$C_{km} = \left\{ \zeta : \sum_{j=m}^{n} \zeta_j L_m \gamma_j(\lambda^k) < \varepsilon \sum_{j=m}^{n} |\zeta_j| L_m \gamma_j(\lambda^k) \text{ and} \right.$$
$$\left. \sum_{j=m}^{n} \zeta_j L_m \gamma_j(\lambda^{k+1}) > -\varepsilon \sum_{j=m}^{n} |\zeta_j| L_m \gamma_j(\lambda^{k+1}) \right\}$$

and $\zeta \in C_{km} \iff -\zeta \in \widetilde{C}_{km}$.

(b) Let Γ be piecewise-linear on $[\lambda^k, \lambda^{k+1}], k \in \mathbb{Z}$ and γ_j convex, $j = 2, \ldots, n$. Then

$$\bigcup_{t\in[\lambda^k,\lambda^{k+1})} C_k^t \subseteq C_{k1} \cup \tilde{C}_{k1},$$

where C_{k1}, \tilde{C}_{k1} are as defined in (a).

 $\begin{array}{l} \textit{Proof. Let } \zeta \in \bigcup_{t \in [\lambda^k, \lambda^{k+1})} C_k^t. \text{ We suppose first that } \zeta.\Gamma' \text{ is monotone-increasing on } [\lambda^k, \lambda^{k+1}). \text{ Then } \forall \ t \in [\lambda^k, \lambda^{k+1}), \end{array}$

$$L_1(\zeta.\Gamma)(\lambda^k) = \zeta.\Gamma'(\lambda^k) \le \zeta.\Gamma'(t) \le \zeta.\Gamma'(\lambda^{k+1}) = L_1(\zeta.\Gamma)(\lambda^{k+1}).$$

Hence

(18)
$$L_1(\zeta.\Gamma)(\lambda^k) < \frac{\varepsilon}{\lambda^k} |A_k^*\zeta|$$

and

(19)
$$L_1(\zeta.\Gamma)(\lambda^{k+1}) > -\frac{\varepsilon}{\lambda^k} |A_k^*\zeta|.$$

By Corollary 3.3 and the definition of the A_k we have

$$\frac{1}{\lambda^k} |A_k^* \zeta| \le \sum_{j=1}^n \gamma_j'(\lambda^k) |\zeta_j| \le \sum_{j=1}^n \gamma_j'(\lambda^{k+1}) |\zeta_j|,$$

which, together with (18) and (19), gives

$$\sum_{j=1}^{n} \zeta_j L_1 \gamma_j(\lambda^k) = L_1(\zeta \cdot \Gamma)(\lambda^k)$$
$$< \varepsilon \sum_{j=1}^{n} |\zeta_j| \gamma'_j(\lambda^k) = \varepsilon \sum_{j=1}^{n} |\zeta_j| L_1 \gamma_j(\lambda^k)$$

and

$$\sum_{j=1}^{n} \zeta_j L_1 \gamma_j(\lambda^{k+1}) = L_1(\zeta \cdot \Gamma)(\lambda^{k+1})$$

> $-\varepsilon \sum_{j=1}^{n} |\zeta_j| \gamma'_j(\lambda^{k+1}) = -\varepsilon \sum_{j=1}^{n} |\zeta_j| L_1 \gamma_j(\lambda^{k+1}).$

Thus, if $\zeta \cdot \Gamma'$ is monotone-increasing on $[\lambda^k, \lambda^{k+1})$, then $\zeta \in C_{k1}$. Similarly, if $\zeta \cdot \Gamma'$ is monotone-decreasing on $[\lambda^k, \lambda^{k+1})$, then $\zeta \in \widetilde{C}_{k1}$.

We note here that if Γ is piecewise-linear on $[\lambda^k, \lambda^{k+1}]$, then $\zeta \cdot \Gamma'$ is constant on $(\lambda^k, \lambda^{k+1})$; by a suitable definition of $\zeta \cdot \Gamma'(\lambda^k)$ we may take $\zeta \cdot \Gamma'$ to be constant on $[\lambda^k, \lambda^{k+1})$ and thus (b) is proven.

We now suppose that $\zeta \cdot \Gamma'(t)$ is not monotone on $[\lambda^k, \lambda^{k+1}]$. Then $\exists t_0 \in [\lambda^k, \lambda^{k+1}]$ such that $\zeta \cdot \Gamma''(t_0) = 0$. Then

$$L_2(\zeta \cdot \Gamma)(t_0) = \frac{h_1}{h'_2} \zeta \cdot \Gamma''(t_0) = 0.$$

If then $L_2(\zeta \cdot \Gamma)$ is monotone-increasing on $[\lambda^k, \lambda^{k+1})$,

$$L_2(\zeta \cdot \Gamma)(\lambda^k) \le 0 = L_2(\zeta \cdot \Gamma)(t_0) \le L_2(\zeta \cdot \Gamma)(\lambda^{k+1})$$

and so $\zeta \in C_{k2}$; similarly $\zeta \in \tilde{C}_{k2}$ if $L_2(\zeta \cdot \Gamma)$ is monotone-decreasing on $[\lambda^k, \lambda^{k+1})$. If $L_2(\zeta \cdot \Gamma)$ is not monotone on $[\lambda^k, \lambda^{k+1})$, then $\exists t_1 \in [\lambda^k, \lambda^{k+1})$ such that $(L_2(\zeta \cdot \Gamma))'(t_1) = 0$, from which we obtain $L_3(\zeta \cdot \Gamma)(t_1) = 0$ and so if $L_3(\zeta \cdot \Gamma)$ is monotone on $[\lambda^k, \lambda^{k+1})$, we obtain $\zeta \in C_{k3} \cup \tilde{C}_{k3}$. We repeat this process iteratively. By Lemma 3.1 $L_n(\zeta \cdot \Gamma)(t) = \zeta_n$ so it follows that $L_{n-1}(\zeta \cdot \Gamma)$ must be monotone on $[\lambda^k, \lambda^{k+1})$ and hence the final possibility is that $\zeta \in C_{k(n-1)} \cup \tilde{C}_{k(n-1)}$.

We now wish to find conditions on Γ under which these cones give a Littlewood-Paley decomposition for $L^p(\mathbb{R}^n)$. The next result, in the same spirit as the lacunary Littlewood-Paley decomposition of [5], leads to the choice of these conditions. First we give our definition of lacunarity.

Definition 4.2. Let $\{\mathcal{E}_k(n,\varepsilon)\}$ be a family of cones in \mathbb{R}^n given by

$$\begin{aligned} \mathcal{E}_k(n,\varepsilon) &= \left\{ \zeta \in \mathbb{R}^n : \sum_{j=1}^n \alpha_k^j \zeta_j < \varepsilon \sum_{j=1}^n \alpha_k^j |\zeta_j| \quad \text{and} \\ &\sum_{j=1}^n \alpha_{k+1}^j \zeta_j > -\varepsilon \sum_{j=1}^n \alpha_{k+1}^j |\zeta_j| \right\}, \end{aligned}$$

where α_k^j are positive reals, $j = 1, ..., n, \ k \in \mathbb{Z}$ and $\varepsilon > 0$ is small. If

(20)
$$\frac{\alpha_{k+1}^j}{\alpha_k^j} \ge 2\frac{\alpha_{k+1}^{j-1}}{\alpha_k^{j-1}}, \quad \forall \ k \in \mathbb{Z}, \ j = 2, \dots, n,$$

then the $\mathcal{E}_k(n,\varepsilon)$ are said to be lacunary.

We define "smoothed-out" characteristic functions $\Psi_k^{n,\epsilon}$ of the cones $\mathcal{E}_k(n,\epsilon)$ as follows.

Let $\Psi^{n,\varepsilon}$ be a C^{∞} function away from 0, homogeneous of degree zero such that

$$\Psi^{n,\varepsilon}(\zeta) = \begin{cases} 1 & \sum_{j=1}^{n} \zeta_j < \varepsilon \sum_{j=1}^{n} |\zeta_j| \\ 0 & \sum_{j=1}^{n} \zeta_j > -2\varepsilon \sum_{j=1}^{n} |\zeta_j|, \end{cases}$$

and put

$$\Psi_k^{n,\varepsilon}(\zeta) = \Psi^{n,\varepsilon}(\alpha_k^1\zeta_1,\ldots,\alpha_k^n\zeta_n)\Psi^{n,\varepsilon}(-\alpha_{k+1}^1\zeta_1,\ldots,-\alpha_{k+1}^n\zeta_n).$$

Associated to these $\Psi_k^{n,\varepsilon}$ are operators T_k given by

$$\widehat{(T_kf)}(\zeta) = \Psi_k^{n,\varepsilon}(\zeta)\widehat{f}(\zeta), \quad k \in \mathbb{Z}.$$

THEOREM 4.3. If $\{\mathcal{E}(n,\varepsilon)\}$ is a lacunary family of cones in \mathbb{R}^n then

$$\left\| \left(\sum_{k} |T_k f|^2 \right)^{1/2} \right\|_p \le C \|f\|_p, \quad 1$$

Proof. It suffices to show that $\sum_k \pm \Psi_k^{n,\varepsilon}$ is a multiplier for $L^p(\mathbb{R}^n)$, $1 , independently of the choice of <math>\pm$; the result then follows by a standard Rademacher function argument. We use the formulation of the Marcinkiewicz multiplier theorem given in [2]. So, we let ϕ^n be a $C_0^{\infty}(\mathbb{R}^n)$ function such that $0 \le \phi^n \le 1$ and

$$\phi^{n}(\zeta) = \begin{cases} 1 & 1 \le |\zeta_{j}| \le 2, \ j = 1, \dots, n \\ 0 & \text{off } \frac{1}{2} \le |\zeta_{j}| \le 4, \ j = 1, \dots, n, \end{cases}$$

and define $L^2_{\alpha}(\mathbb{R}^n)$ to be the *n*-parameter Sobolev space given by

$$L^{2}_{\alpha}(\mathbb{R}^{n}) = \left\{ g : \|g\|^{2}_{L^{2}_{\alpha}} = \int |\hat{g}(\zeta)|^{2} \prod_{i=1}^{n} (1+\zeta^{2}_{i})^{\alpha} d\zeta < \infty \right\}.$$

Then, by Theorem A of [2], it suffices to show that

(21)
$$\sup_{i_1,\ldots,i_n} \left\| \sum_k \pm \Psi_k^{n,\epsilon}(2^{i_1}\zeta_1,\ldots,2^{i_n}\zeta_n)\phi^n(\zeta) \right\|_{L^2_\alpha(\mathbb{R}^n)} < \infty,$$

for some $\alpha > \frac{1}{2}$.

We show (21) for $\alpha = 1$ and for convenience take $\varepsilon = \frac{1}{2^{2n}}$. Our proof is by induction on n; the argument for n = 2 is contained in the inductive step and therefore we omit it.

Suppose, therefore, that

$$\sup_{i_1,\ldots,i_{n-1}} \left\| \sum_k \pm \Psi_k^{n-1,\widetilde{\varepsilon}}(2^{i_1}\zeta_1,\ldots,2^{i_{n-1}}\zeta_{n-1})\phi^{n-1}(\zeta) \right\|_{L^2_1(\mathbb{R}^{n-1})} < \infty,$$

with $\tilde{\varepsilon} = \frac{1}{2^{2n-2}}$, under the hypothesis that

(22)
$$\frac{\alpha_{k+1}^j}{\alpha_k^j} \ge 2\frac{\alpha_{k+1}^{j-1}}{\alpha_k^{j-1}}, \quad \forall \ k \in \mathbb{Z}, \ j = 2, \dots, n-1$$

and consider

$$\sup_{i_1,\ldots,i_n} \left\| \sum_k \pm \Psi_k^{n,\epsilon}(2^{i_1}\zeta_1,\ldots,2^{i_n}\zeta_n)\phi^n(\zeta) \right\|_{L^2_1(\mathbb{R}^n)},$$

assuming that (22) now holds also for j = n. We suppose that, for some $k, \Psi_k^{n,\varepsilon}(2^{i_1}\zeta_1, \ldots, 2^{i_n}\zeta_n)\phi^n(\zeta) \neq 0$, i.e.

$$\sum_{j=1}^{n} \alpha_{k}^{j} 2^{i_{j}} \zeta_{j} < 2\varepsilon \sum_{j=1}^{n} \alpha_{k}^{j} 2^{i_{j}} |\zeta_{j}|$$
$$\sum_{j=1}^{n} \alpha_{k+1}^{j} 2^{i_{j}} \zeta_{j} > -2\varepsilon \sum_{j=1}^{n} \alpha_{k+1}^{j} 2^{i_{j}} |\zeta_{j}|$$

and

$$\frac{1}{2} \le |\zeta_j| \le 4, \quad j = 1, \dots, n.$$

Case 1. Suppose that for some $j_0 \in \{1, \ldots, n\}$

$$lpha_k^{j_0} 2^{i_{j_0}} |\zeta_{j_0}| \leq rac{1}{2^{2n}} \sum_{j=1}^n lpha_k^j 2^{i_j} |\zeta_j|$$

and

$$\alpha_{k+1}^{j_0} 2^{i_{j_0}} |\zeta_{j_0}| \le \frac{1}{2^{2n}} \sum_{j=1}^n \alpha_{k+1}^j 2^{i_j} |\zeta_j|.$$

In this instance we find that

$$\Psi_{k}^{n,\varepsilon}(2^{i_{1}}\zeta_{1},\ldots,2^{i_{n}}\zeta_{n})\neq 0$$

$$\implies \Psi_{k}^{n-1,\widetilde{\varepsilon}}(2^{i_{1}}\zeta_{1},\ldots,2^{i_{j_{0}-1}}\zeta_{j_{0}-1},2^{i_{j_{0}+1}}\zeta_{j_{0}+1},\ldots,2^{i_{n}}\zeta_{n})\neq 0.$$

Taking $2^{i_{j_0}} = 1$, which we may by homogeneity of $\Psi^{n,\varepsilon}$, the problem is reduced to the (n-1)-dimensional case and we are done, by the inductive hypothesis.

Case 2. Suppose that for all $j \in \{1, \ldots, n\}$ either

(23)
$$\alpha_k^j 2^{i_j} |\zeta_j| \ge \frac{1}{2^{2n}} \sum_{j=1}^n \alpha_k^j 2^{i_j} |\zeta_j|$$

or

(24)
$$\alpha_{k+1}^{j} 2^{i_{j}} |\zeta_{j}| \ge \frac{1}{2^{2n}} \sum_{j=1}^{n} \alpha_{k+1}^{j} 2^{i_{j}} |\zeta_{j}|.$$

Let us suppose that

$$lpha_k^n 2^{i_n} |\zeta_n| \ge rac{1}{2^{2n}} \sum_{j=1}^n lpha_k^j 2^{i_j} |\zeta_j|.$$

Then by the lacunarity conditions (20) we have

$$lpha_{k+m}^{n} 2^{i_n} |\zeta_n| \ge 2 \sum_{j=1}^{n-1} lpha_{k+m}^{j} 2^{i_j} |\zeta_j| \quad \forall \ m \ge N, \ \text{say.}$$

Then if $\zeta_n > 0$ we find

$$\sum_{j=1}^{n} \alpha_{k+m}^{j} 2^{i_j} \zeta_j \ge \alpha_{k+m}^{n} 2^{i_n} |\zeta_n| - \sum_{j=1}^{n-1} \alpha_{k+m}^{j} 2^{i_j} |\zeta_j|$$
$$\ge \frac{1}{3} \sum_{j=1}^{n} \alpha_{k+m}^{j} 2^{i_j} |\zeta_j|,$$

whilst if $\zeta_n < 0$ we have

$$\sum_{j=1}^{n} \alpha_{k+m}^{j} 2^{i_j} \zeta_j \le -\frac{1}{3} \sum_{j=1}^{n} \alpha_{k+m}^{j} 2^{i_j} |\zeta_j|.$$

Thus

(25)
$$\Psi_{k+m}^{n,\varepsilon}(2^{i_1}\zeta_1,\ldots,2^{i_n}\zeta_n)=0 \quad \forall \ m \ge N.$$

If we assume that (24) holds for j = n then the same argument follows. Further, $\forall \zeta$ with $\Psi_k^{n,\varepsilon}(2^{i_1}\zeta_1,\ldots,2^{i_n}\zeta_n) \neq 0$, for each $j_0 \in \{1,\ldots,n\}$, we have either

$$\alpha_k^{j_0} 2^{i_{j_0}} |\zeta_{j_0}| \le \frac{1+2\varepsilon}{1-2\varepsilon} \sum_{j \ne j_0} \alpha_k^j 2^{i_j} |\zeta_j|$$

or

$$\alpha_{k+1}^{j_0} 2^{i_{j_0}} |\zeta_{j_0}| \le \frac{1+2\varepsilon}{1-2\varepsilon} \sum_{j \ne j_0} \alpha_{k+1}^j 2^{i_j} |\zeta_j|.$$

This, together with (23), (24), lacunarity and $\phi^n(\zeta) \neq 0$ gives that $2^{i_j} \sim 1 \forall j = 1, \ldots, n$. So using (25) we obtain

$$\sup_{i_1,\ldots,i_n} \left| \sum_k \pm \Psi_k^{n,\varepsilon}(2^{i_1}\zeta_1,\ldots,2^{i_n}\zeta_n)\phi^n(\zeta) \right| < \infty.$$

It is trivial to check that differentiating with respect to any ζ_j causes no problem. This concludes the proof.

Let us now see how may apply Theorem 4.3 to our cones C_k . It is clear that if we have a Littlewood-Paley theory for each $\{C_{km}\},$ $\{\tilde{C}_{km}\}, m = 1, \ldots, n-1$, where we consider C_{km}, \tilde{C}_{km} as cones in \mathbb{R}^{n-m+1} , then this will suffice to give a Littlewood-Paley theory for the C_k . We define now

$$\Phi_{km}(\zeta) = \Psi_k^{n,\varepsilon}(0,\ldots,0,\zeta_m,L_m\gamma_{m+1}(\lambda^k)\zeta_{m+1},\ldots,L_m\gamma_n(\lambda^k)\zeta_n)$$

$$\times \Psi_k^{n,\varepsilon}(0,\ldots,0,-\zeta_m,-L_m\gamma_{m+1}(\lambda^{k+1})\zeta_{m+1},\ldots,-L_m\gamma_n(\lambda^{k+1})\zeta_n)$$

and put

$$\Phi_k(\zeta) = \sum_{m=1}^{n-1} \Phi_{km}(\zeta);$$

we associate to Φ_k the operator S_k given by

(26)
$$\widehat{(S_k f)}(\zeta) = \Phi_k(\zeta)\widehat{f}(\zeta).$$

PROPOSITION 4.4. If

(27)
$$\frac{L_m \gamma_{j+1}(\lambda^{k+1})}{L_m \gamma_j(\lambda^{k+1})} \ge 2 \frac{L_m \gamma_{j+1}(\lambda^k)}{L_m \gamma_j(\lambda^k)},$$

 $\forall k \in \mathbb{Z}, j = m, ..., n - 1; m = 1, ..., n - 1, then$

$$\left\| \left(\sum_{k} |S_k f|^2 \right)^{1/2} \right\|_p \le C \|f\|_p, \quad 1$$

Proof. If, for fixed m,

$$\frac{L_m \gamma_{j+1}(\lambda^{k+1})}{L_m \gamma_j(\lambda^{k+1})} \ge 2 \frac{L_m \gamma_{j+1}(\lambda^k)}{L_m \gamma_j(\lambda^k)} \quad \forall \ k \in \mathbb{Z}, \ j = m, \dots, n$$

then the family of cones $\{C_{km}\}$, and hence also $\{\tilde{C}_{km}\}$, may be considered as lacunary in \mathbb{R}^{n-m+1} , i.e. $\sum_k \pm \Phi_{km}(\zeta)$ is a multiplier in $L^p(\mathbb{R}^n)$, 1 . Thus if (27) is satisfied we have that $<math>\sum_k \sum_{m=1}^{n-1} \pm \Phi_{km}(\zeta)$ is a multiplier for $L^p(\mathbb{R}^n)$. This gives the result. Thus, assuming (27), the cones C_k give a Littlewood-Paley decomposition of \mathbb{R}^n . Let us now see how the $\frac{1}{2}n(n-1)$ conditions of (27) relate to the conditions in the statement of our theorem, i.e. (9).

LEMMA 4.5. Let $\Gamma : \mathbb{R} \longrightarrow \mathbb{R}^n$ be a "convex" curve such that $\Gamma \in C^n(0,\infty), \ \Gamma(0) = 0$ and

(28) $\lim_{t\to 0} L_m \gamma_{k+1}(t) = 0 \text{ for } m = 1, \dots, n-1, \ k = m, \dots, n-1.$

Suppose $\exists 1 < \lambda < \infty$ such that

(29)
$$L_k \gamma_{k+1}(\lambda t) \ge 2L_k \gamma_{k+1}(t) \quad k = 1, \dots, n-1.$$

Then $\exists 1 < \mu < \infty$ such that

(30)
$$\frac{L_m \gamma_{k+1}(\mu t)}{L_m \gamma_k(\mu t)} \ge 2 \frac{L_m \gamma_{k+1}(t)}{L_m \gamma_k(t)},$$

 $m = 1, \ldots, n - 1, \ k = m, \ldots, n - 1.$

Proof. Fix k. Clearly, by hypothesis (29), (30) holds for m = k, with $\mu = \lambda$. We now suppose that (30) holds for m = j and show that it is then also true for m = j - 1. Now

$$L_{j-1}\gamma_k(\lambda t) = \frac{L_{j-1}\gamma_k(\lambda t)}{L_{j-1}\gamma_{k-1}(\lambda t)} \cdot \frac{L_{j-1}\gamma_{k-1}(\lambda t)}{L_{j-1}\gamma_{k-2}(\lambda t)} \cdots L_{j-1}\gamma_j(\lambda t)$$

$$\geq 2L_{j-1}\gamma_k(t),$$

by Lemma 3.4 and (29). Then

$$\frac{L_{j-1}\gamma_{k+1}(\mu^{3}t)}{L_{j-1}\gamma_{k}(\mu^{3}t)} \geq \frac{1}{2} \cdot \frac{L_{j-1}\gamma_{k+1}(\mu^{3}t) - L_{j-1}\gamma_{k+1}(\mu^{2}t)}{L_{j-1}\gamma_{k}(\mu^{3}t) - L_{j-1}\gamma_{k}(\mu^{2}t)}$$
$$\geq \frac{1}{2} \cdot \frac{(L_{j-1}\gamma_{k+1})'(\mu^{2}t)}{(L_{j-1}\gamma_{k})'(\mu^{2}t)},$$

by the Second Mean Value Theorem and Lemma 3.4. Thus

$$\begin{aligned} \frac{L_{j-1}\gamma_{k+1}(\mu^{3}t)}{L_{j-1}\gamma_{k}(\mu^{3}t)} &\geq \frac{1}{2} \cdot \frac{L_{j}\gamma_{k+1}(\mu^{2}t)}{L_{j}\gamma_{k}(\mu^{2}t)} \\ &\geq 2\frac{L_{j}\gamma_{k+1}(t)}{L_{j}\gamma_{k}(t)}, \text{ by inductive hypothesis} \\ &= 2\frac{(L_{j-1}\gamma_{k+1})'(t)}{(L_{j-1}\gamma_{k})'(t)} \\ &\geq 2\frac{L_{j-1}\gamma_{k+1}(t)}{L_{j-1}\gamma_{k}(t)}, \end{aligned}$$

by Second Mean Value Theorem, Lemma 3.4 and hypothesis (28). $\hfill \Box$

Lemma 4.5 and Proposition 4.4 together give us

PROPOSITION 4.6. Let $\Gamma : \mathbb{R} \longrightarrow \mathbb{R}^n$ be a "convex" curve such that $\Gamma \in C^n(0,\infty), \Gamma(0) = 0$ and $\lim_{t\to 0} L_j \gamma_k(t) = 0, \quad \forall \ j = 1, \ldots, n-1; \ k = j+1, \ldots, n$. Suppose that $\exists \ 1 < \lambda < \infty$ such that

$$L_k \gamma_{k+1}(\lambda t) \ge 2L_k \gamma_{k+1}(t), \quad k = 1, \dots, n-1.$$

Then

$$\left\| \left(\sum_{k} |S_k f|^2 \right)^{1/2} \right\|_p \le C \|f\|_p.$$

In view of Proposition 4.1 (b), which defines the cones for a piecewise-linear curve, we also have a corresponding result for piecewise-linear curves if we replace the hypotheses of Proposition 4.6 with those of Corollary 1.3.

5. Proof of Theorem 1.2. We now have a family of dilation matrices $\{A_k\}$ satisfying

(31) $\exists \alpha \text{ such that } ||A_{k+1}^{-1}A_k|| \le \alpha < 1$

(32)
$$A_{k+1}^{-1} \operatorname{supp} \mu_k \subseteq \text{ fixed ball}$$

and a family of cones $\{C_k\}$ with associated operators S_k given by (26) satisfying the Littlewood-Paley inequality

(33)
$$\left\| \left(\sum_{k} |S_{k}f|^{2} \right)^{1/2} \right\|_{p} \leq C \|f\|_{p}$$

and such that

(34)
$$\zeta \notin C_k \Longrightarrow |\hat{\mu}_k(\zeta)| \le C |A_k^* \zeta|^{-1}.$$

We let $f = S_k f + (I - S_k) f$, $k \in \mathbb{Z}$, and consider first $\sup_k |\mu_k * f|$. We use the standard technique of combining a bootstrapping argument with the Littlewood-Paley theory to obtain an L^p -result, starting with just the L^2 -result. Now,

$$\left\| \sup_{k} |\mu_{k} * f| \right\|_{2} \leq \left\| \sup_{k} |\mu_{k} * S_{k} f| \right\|_{2} + \left\| \sup_{k} |\mu_{k} * (I - S_{k}) f| \right\|_{2}$$

= $A + B$.

By (33), Plancherel's theorem and the fact that the μ_k have unit mass we immediately have

$$A \le C \|f\|_2.$$

For B we use comparison of μ_k with a measure ν_k given by

$$\nu_k(x) = \rho\left(A_{k+1}^{-1}x\right) \det A_{k+1}^{-1},$$

where $\rho \in C_0^{\infty}$, $0 \leq \rho \leq 1$ and $\int \rho = 1$. It is easily verified that $\sup_k |\nu_k * f|$ is majorized by the Hardy-Littlewood maximal operator associated to balls $A_k B$, where B is the unit ball in \mathbb{R}^n , and thus, by [3], Proposition 2.2,

(35)
$$\left\| \sup_{k} |\nu_k * f| \right\|_p \le C ||f||_p, \quad 1$$

Then

$$B \leq \left\| \sup_{k} |(\mu_{k} - \nu_{k}) * (I - S_{k})f| \right\|_{2} + \left\| \sup_{k} |\nu_{k} * f| \right\|_{2} + \left\| \sup_{k} |\nu_{k} * S_{k}f| \right\|_{2}.$$

Now, by the same argument as used for A,

$$\left\|\sup_{k} |\nu_k * S_k f|\right\|_2 \le C ||f||_2,$$

so it remains to show that

$$\left\|\sup_{k} |(\mu_{k} - \nu_{k}) * (I - S_{k})f|\right\|_{2} \le C ||f||_{2}.$$

Taking into account (34) the proof of this is essentially contained in the proof of Proposition 5.1, [3]. To pass from the L^2 -result to the L^p -result we have the following analogue of Proposition 5.1, [3].

PROPOSITION 5.1. Suppose

$$\left\|\sup_{k} |\mu_{k} * f|\right\|_{\widetilde{p}} \leq C ||f||_{\widetilde{p}}, \quad \text{for some } 1 < \widetilde{p} \leq 2.$$

Then

$$\left\|\sup_{k} |\mu_{k} * f|\right\|_{p} \leq C ||f||_{p} \quad \forall \ p > \frac{2\widetilde{p}}{\widetilde{p}+1}.$$

Proof. First we note that, under the hypothesis of the proposition,

(36)
$$\left\| \left(\sum_{k} |\mu_{k} * f|^{2} \right)^{1/2} \right\|_{p} \leq C \left\| \left(\sum_{k} |f_{k}|^{2} \right)^{1/2} \right\|_{p},$$

$$\forall \frac{2\widetilde{p}}{\widetilde{p}+1} , exactly as in [3]. Then$$

$$\begin{aligned} \left\| \sup_{k} |\mu_{k} * f| \right\|_{p} &\leq \left\| \left(\sum_{k} |\mu_{k} * S_{k} f|^{2} \right)^{1/2} \right\|_{p} + \left\| \left(\sum_{k} |\nu_{k} * S_{k} f|^{2} \right)^{1/2} \right\|_{p} \\ &+ \left\| \sup_{k} |\nu_{k} * f| \right\|_{p} + \left\| \sup_{k} |(\mu_{k} - \nu_{k}) * (I - S_{k}) f| \right\|_{p} \\ &= A + B + D + E. \end{aligned}$$

Now (36) together with (33) gives suitable bounds for A and B, $\forall \frac{2\tilde{p}}{\tilde{p}+1} , whilst <math>D \leq C \|f\|_p$, $\forall 1 , by (35). It remains,$

therefore, to bound E. Again the proof that $E \leq C ||f||_p$, $\forall \frac{2\tilde{p}}{\tilde{p}+1} < p$ is essentially contained in Proposition 5.1, [3].

Proposition 5.1 completes the proof of L^p -boundedness of $\sup_k |\mu_k * f|$ and thence of \mathcal{M}_{Γ} . Noting that from (33) we may also obtain

$$\left\|\sum_{k} S_k f_k\right\|_p \le C \left\|\left(\sum_{k} |S_k f_k|^2\right)^{1/2}\right\|_p, \quad 1$$

we may now deduce the result for \mathcal{H}_{Γ} from that for \mathcal{M}_{Γ} , following the argument in [3].

Acknowledgement. I would like to thank my thesis adviser, Tony Carbery for his encouragement and valuable suggestions. I would also like to thank the referee for his/her many useful comments, which greatly improved the presentation of this material.

References

- H. Carlsson, M. Christ, A. Cordoba, J. Duoandikoetxea, J.L. Rubio de Francia, J. Vance, S. Wainger and D. Weinberg, L^p estimates for maximal functions and Hilbert transforms along flat convex curves in ℝ², Bull. Amer. Math. Soc., 143 (1986), 263-267.
- [2] A. Carbery, Differentiation in lacunary directions and an extension of the Marcinkiewicz multiplier theorem, Ann. Inst. Fourier, 38 (1988), 157-168.
- [3] A. Carbery, M. Christ, J. Vance, S. Wainger and D. Watson, Operators associated to flat plane curves: L^p estimates via dilation methods, Duke Math. J., 59 (1989), 675-700.
- [4] A. Carbery, J. Vance, S. Wainger and D. Watson, The Hilbert transform and maximal function along flat curves, dilations and differential equations, Amer. J. Math., 116, no. 5 (1994), 1203-1239.
- [5] A. Nagel, E.M. Stein and S. Wainger, Differentiation in lacunary directions, Proc. Nat. Acad. Sci. USA, 75 (1978), 1060-1062.
- [6] A. Nagel, J. Vance, S. Wainger and D. Weinberg, The Hilbert transform for convex curves in \mathbb{R}^n , Amer. J. Math., 108 (1986), 485-504.
- [7] E.M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc., 84 (1978), 1239-1295.

Received November 10, 1992 and in revised form May 18, 1993. Supported by SERC.

UNIVERSITY COLLEGE DUBLIN BELFIELD, DUBLIN 4 REPUBLIC OF IRELAND