L^{p}-BOUNDEDNESS OF THE HILBERT TRANSFORM AND MAXIMAL FUNCTION ALONG FLAT CURVES IN \mathbb{R}^{n}

Sarah N. Ziesler

We consider the Hilbert transform and maximal function associated to a curve $\Gamma(t)=\left(t, \gamma_{2}(t), \ldots, \gamma_{n}(t)\right)$ in \mathbb{R}^{n}. It is well-known that for a plane convex curve $\Gamma(t)=(t, \gamma(t))$ these operators are bounded on $L^{p}, 1<p<\infty$, if γ^{\prime} doubles. We give an n-dimensional analogue, $n \geq 2$, of this result.

1. Introduction. Let $\Gamma: \mathbb{R} \longrightarrow \mathbb{R}^{n}$ be a curve in $\mathbb{R}^{n}, n \geq 2$, with $\Gamma(0)=0$. We define the associated Hilbert transform, \mathcal{H}_{Γ} and maximal function \mathcal{M}_{Γ} by

$$
\mathcal{H}_{\Gamma} f(x)=\text { p. v. } \int_{-\infty}^{\infty} f(x-\Gamma(t)) \frac{d t}{t}
$$

and

$$
\mathcal{M}_{\Gamma} f(x)=\sup _{r>0} \frac{1}{r} \int_{0}^{r}|f(x-\Gamma(t))| d t,
$$

respectively. We use p.v. to indicate that we are taking a principal value integral.

There has been considerable interest in finding conditions on Γ which give $L^{2}\left(\mathbb{R}^{n}\right)$-boundedness or $L^{p}\left(\mathbb{R}^{n}\right)$-boundedness, $1<p<$ ∞, of \mathcal{H}_{Γ} and \mathcal{M}_{Γ}, when Γ is permitted to be flat (i.e. vanish to infinite order) at the origin; the case of well-curved Γ was dealt with in the 1970's, see for example [7].

The aim of this paper is to give an n-dimensional analogue of the following well-known theorem for plane curves.

ThEOREM 1.1. [1]. Let $\Gamma: \mathbb{R} \longrightarrow \mathbb{R}^{2}, \Gamma(t)=(t, \gamma(t))$ be a convex curve such that $\gamma \in C^{2}(0, \infty)$ is either even or odd and $\gamma(0)=\gamma^{\prime}(0)=0$. Suppose that $\exists 1<\lambda<\infty$ such that $\forall t \in(0, \infty)$

$$
\begin{equation*}
\gamma^{\prime}(\lambda t) \geq 2 \gamma^{\prime}(t) . \tag{1}
\end{equation*}
$$

Then

$$
\begin{aligned}
\left\|\mathcal{H}_{\Gamma} f\right\|_{p} & \leq C\|f\|_{p} \\
\left\|\mathcal{M}_{\Gamma} f\right\|_{p} & \leq C\|f\|_{p}, \quad 1<p<\infty
\end{aligned}
$$

Conditions such as (1) are known as doubling conditions; in this case we say that γ^{\prime} doubles.

In \mathbb{R}^{n} we shall consider curves $\Gamma(t)=\left(t, \gamma_{2}(t), \ldots, \gamma_{n}(t)\right)$ which are of class $C^{n}(0, \infty)$ and such that $\Gamma(0)=0$. The convexity hypothesis for plane curves we replace by the "convexity" hypothesis used in the n-dimensional results of [6] and [4].

So we define determinants $D_{j}, \quad j=1, \ldots, n$ by

$$
D_{j}=\operatorname{det}\left(\begin{array}{cccc}
1 & \gamma_{2}^{\prime} & \cdots & \gamma_{j}^{\prime} \\
0 & \gamma_{2}^{\prime \prime} & \cdots & \gamma_{j}^{\prime \prime} \\
\vdots & \vdots & \ddots & \vdots \\
0 & \gamma_{2}^{(j)} & \cdots & \gamma_{j}^{(j)}
\end{array}\right)
$$

and say that Γ is "convex" if

$$
\begin{equation*}
D_{j}(t)>0, \quad j=2, \ldots, n, t \in(0, \infty) \tag{2}
\end{equation*}
$$

We also introduce the determinants $N_{j}, j=1, \ldots, n$, given by

$$
N_{j}=\operatorname{det}\left(\begin{array}{cccc}
t & \gamma_{2} & \cdots & \gamma_{j} \\
1 & \gamma_{2}^{\prime} & \cdots & \gamma_{j}^{\prime} \\
\vdots & \vdots & \ddots & \vdots \\
0 & \gamma_{2}^{(j-1)} & \cdots & \gamma_{j}^{(j-1)}
\end{array}\right)
$$

and as in [6] define functions $h_{j}, j=1, \ldots, n$, by

$$
\begin{equation*}
h_{j}(t)=\frac{N_{j}(t)}{D_{j-1}(t)}, \tag{3}
\end{equation*}
$$

where we take $D_{0} \equiv 1$.
In order to state our theorem we also introduce the differential operators L_{k}, of [6], defined by

$$
\begin{align*}
L_{1} f & =\frac{d f}{d t} \tag{4}\\
L_{k+1} f & =\frac{h_{k}}{h_{k+1}^{\prime}}\left(L_{k} f\right)^{\prime}, \quad k=1, \ldots, n-1
\end{align*}
$$

It is also useful to have the following formula, proven via a Sylvester determinant identity in [6]:

$$
\begin{equation*}
L_{k} f(t)=\frac{E_{k} f(t)}{D_{k}(t)}, \quad k=1, \ldots, n \tag{5}
\end{equation*}
$$

where

$$
E_{k} f(t)=\operatorname{det}\left(\begin{array}{ccccc}
1 & \gamma_{2}^{\prime}(t) & \cdots & \gamma_{k-1}^{\prime}(t) & f^{\prime}(t) \\
0 & \gamma_{2}^{\prime \prime}(t) & \cdots & \gamma_{k-1}^{\prime \prime}(t) & f^{\prime \prime}(t) \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \gamma_{2}^{(k)}(t) & \cdots & \gamma_{k-1}^{(k)}(t) & f^{(k)}(t)
\end{array}\right) .
$$

From this we can see, immediately, that

$$
\begin{array}{ll}
L_{k} \gamma_{j}=0, & j=1, \ldots, k-1 ; k=1, \ldots, n \tag{6}\\
L_{k} \gamma_{k}=1, & k=1, \ldots, n .
\end{array}
$$

Our result is the following.
Theorem 1.2. Let $\Gamma: \mathbb{R} \longrightarrow \mathbb{R}^{n}, \Gamma(t)=\left(t, \gamma_{2}(t), \ldots, \gamma_{n}(t)\right), n \geq$ 2 , be an odd curve in \mathbb{R}^{n}, of class $C^{n}(0, \infty)$ such that $\Gamma(0)=0$ and (2) is satisfied. Suppose that $\exists A \in \mathrm{GL}(n, \mathbb{R})$ such that, with $\tilde{\Gamma}(t)=\left(t, \tilde{\gamma}_{2}(t), \ldots, \tilde{\gamma}_{n}(t)\right):=A \Gamma(t), \tilde{\Gamma}$ also satisfies (2) and

$$
\begin{equation*}
\lim _{t \rightarrow 0} L_{j} \tilde{\gamma}_{k}(t)=0 \quad j=1, \ldots, n-1, k=j+1, \ldots, n \tag{8}
\end{equation*}
$$

Suppose also that $\exists 1<\lambda<\infty$ such that, $\forall t \in(0, \infty)$,

$$
\begin{equation*}
L_{k} \tilde{\gamma}_{k+1}(\lambda t) \geq 2 L_{k} \widetilde{\gamma}_{k+1}(t), \quad k=1, \ldots, n-1 \tag{9}
\end{equation*}
$$

Then

$$
\begin{aligned}
& \left\|\mathcal{H}_{\Gamma} f\right\|_{p} \leq C\|f\|_{p}, \\
& \left\|\mathcal{M}_{\Gamma} f\right\|_{p} \leq C\|f\|_{p}, \quad 1<p<\infty .
\end{aligned}
$$

Remarks. (a) Since L^{p}-boundedness of \mathcal{H}_{Γ} and of \mathcal{M}_{Γ} is a $\mathrm{GL}(n, \mathbb{R})$ invariant property, in the proof we shall assume, without loss of generality, that the initial curve Γ satisfies (8) and (9).
(b) For $n=2$ our theorem is precisely Theorem 1.1.
(c) It is easily checked that the "convexity" hypothesis, (2), is equivalent to requiring that

$$
\left(L_{k} \gamma_{k+1}\right)^{\prime}>0, \quad k=1, \ldots, n-1 .
$$

Thus, for the class of "convex" curves our conditions are natural analogues of the γ^{\prime} doubling condition for plane convex curves (i.e. those for which $\left.\left(L_{1} \gamma\right)^{\prime}>0\right)$.
(d) The condition that Γ be odd is convenient but not essential; it may be replaced by other conditions on Γ giving suitable compatibility of the two halves $\Gamma(t), t>0$ and $\Gamma(t), t<0$. For example each $\gamma_{k}, k=2, \ldots, n$ may be either even or odd; this will be clear from the proof.
(e) The role of (8) is to impose a certain ordering of the components of the curve. Further, it follows easily from Lemma 3 of [$\mathbf{6}$] (see Lemma 3.1) that each $L_{j} \gamma_{k}$ has at most $k-j$ zeros and at most $k-j-1$ changes of monotonicity on $(0, \infty)$; the normalization conditions (8) force the $L_{j} \gamma_{k}$ to be positive and increasing, thus much simplifying matters.

We note that if $\lim _{t \rightarrow 0} L_{j} \gamma_{k}(t)$ exists for all $1 \leq j \leq k-1 \leq n-1$, then we can find an $A \in \operatorname{GL}(n, \mathbb{R})$ such that $\tilde{\Gamma}=A \Gamma$ satisfies (8). To see this we first define an operator \mathcal{L} by

$$
\begin{aligned}
\mathcal{L} \Gamma(t) & =\left(\begin{array}{ccccc}
L_{1} \gamma_{1}(t) & L_{2} \gamma_{1}(t) & \cdots & L_{n} \gamma_{1}(t) \\
L_{1} \gamma_{2}(t) & L_{2} \gamma_{2}(t) & \cdots & L_{n} \gamma_{2}(t) \\
\vdots & \vdots & \ddots & \vdots \\
L_{1} \gamma_{n}(t) & L_{2} \gamma_{n}(t) & \cdots & L_{n} \gamma_{n}(t)
\end{array}\right) \\
& =\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
L_{1} \gamma_{2}(t) & 1 & 0 & \cdots & 0 & 0 \\
L_{1} \gamma_{3}(t) & L_{2} \gamma_{3}(t) & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
L_{1} \gamma_{n-1}(t) & L_{2} \gamma_{n-1}(t) & L_{3} \gamma_{n-1}(t) & \cdots & 1 & 0 \\
L_{1} \gamma_{n}(t) & L_{2} \gamma_{n}(t) & L_{3} \gamma_{n}(t) & \cdots & L_{n-1} \gamma_{n}(t) & 1
\end{array}\right),
\end{aligned}
$$

using (6) and (7).
It is easily shown that if $A \in T_{-}$, the subgroup of $\mathrm{GL}(n, \mathbb{R})$ consisting of lower triangular matrices with 1 in the top left-hand corner and positive diagonal entries, then A preserves "convexity", i.e. if
Γ satisfies (2) then so does $A \Gamma$. Moreover, an easy calculation using (5) shows that if $A \in T_{-}$and has diagonal entries all equal to 1 then

$$
\mathcal{L}(A \Gamma)=A(\mathcal{L} \Gamma)
$$

We now let $A=\left(\lim _{t \rightarrow 0} \mathcal{L} \Gamma(t)\right)^{-1}$, where $\lim _{t \rightarrow 0} \mathcal{L} \Gamma(t)$ denotes the matrix with entries $\lim _{t \rightarrow 0} L_{j} \gamma_{k}(t)$. Then $\widetilde{\Gamma}=A \Gamma$ is "convex" and $\lim _{t \rightarrow 0} \mathcal{L} \tilde{\Gamma}(t)$ is the identity matrix, from which we see that $\lim _{t \rightarrow 0} L_{j} \tilde{\gamma}_{k}(t)=0, \quad j=1, \ldots, n-1 ; \quad k=j+1, \ldots, n$.

Curves for which we do not have the existence of $\lim _{t \rightarrow 0} L_{j} \gamma_{k}(t)$ for all $1 \leq j \leq k-1 \leq n-1$ may still satisfy the hypotheses of our theorem. Consider, for example the "convex" curve in $\mathbb{R}^{3}, \Gamma(t)=$ $\left(t, t^{3},-t^{2}\right)$; in this case we have $L_{2} \gamma_{3}(t)=-\frac{1}{3 t}$. However taking A to be

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right)
$$

we obtain the curve $\tilde{\Gamma}(t)=\left(t, t^{2}, t^{3}\right)$, which clearly satisfies the hypotheses (8) and (9).
(f) Theorem 1.1, after a technical adjustment to condition (1), may also be seen to hold for curves which are not $C^{2}(0, \infty)$ but convex and piecewise-linear. We say that a piecewise-linear γ curve is convex if

$$
\frac{\gamma(c)-\gamma(b)}{c-b} \geq \frac{\gamma(b)-\gamma(a)}{b-a}, \quad 0 \leq a<b<c .
$$

Our method of proof of Theorem 1.2 allows us to extract the following result for piecewise-linear curves in \mathbb{R}^{n}.

Corollary 1.3. Let $\Gamma: \mathbb{R} \longrightarrow \mathbb{R}^{n}, \Gamma(t)=\left(t, \gamma_{2}(t), \ldots, \gamma_{n}(t)\right)$ be an odd curve such that $\Gamma(0)=0$ and each $\gamma_{k}, k=2, \ldots, n$, is convex and piecewise-linear on $\left[\lambda^{j}, \lambda^{j+1}\right], j \in \mathbb{Z}$, some $\lambda>1$. Suppose

$$
\frac{\gamma_{k}\left(\lambda^{j+1}\right)-\gamma_{k}\left(\lambda^{j}\right)}{\gamma_{k-1}\left(\lambda^{j+1}\right)-\gamma_{k-1}\left(\lambda^{j}\right)} \geq 2 \frac{\gamma_{k}\left(\lambda^{j}\right)-\gamma_{k}\left(\lambda^{j-1}\right)}{\gamma_{k-1}\left(\lambda^{j}\right)-\gamma_{k-1}\left(\lambda^{j-1}\right)},
$$

for $j \in \mathbb{Z}, k=2, \ldots, n$.
Then

$$
\begin{aligned}
& \left\|\mathcal{H}_{\Gamma} f\right\|_{p} \leq C\|f\|_{p} \\
& \left\|\mathcal{M}_{\Gamma} f\right\|_{p} \leq C\|f\|_{p}, \quad 1<p<\infty .
\end{aligned}
$$

2. Sketch of Proof. We define measures μ_{k}, σ_{k} on the curve Γ by

$$
\begin{aligned}
& \int f d \mu_{k}=\frac{1}{\lambda^{k}(\lambda-1)} \int_{\lambda^{k}}^{\lambda^{k+1}} f(\Gamma(t)) d t \quad \text { and } \\
& \int f d \sigma_{k}=\int_{\lambda^{k} \leq|t| \leq \lambda^{k+1}} f(\Gamma(t)) \frac{d t}{t}
\end{aligned}
$$

respectively. Then we have the associated Fourier multipliers

$$
\begin{equation*}
\hat{\mu}_{k}(\zeta)=\frac{1}{\lambda^{k}(\lambda-1)} \int_{\lambda^{k}}^{\lambda^{k+1}} e^{i \zeta \cdot \Gamma(t)} d t \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\sigma}_{k}(\zeta)=\int_{\lambda^{k} \leq|t| \leq \lambda^{k+1}} e^{i \zeta \cdot \Gamma(t)} \frac{d t}{t} . \tag{11}
\end{equation*}
$$

We adopt the standard approach of decomposing \mathcal{H}_{Γ} as

$$
\mathcal{H}_{\Gamma} f=\sum_{k} \sigma_{k} * f
$$

and majorizing \mathcal{M}_{Γ} by

$$
\mathcal{M}_{\Gamma} f \leq C \sup _{k}\left|\mu_{k} * f\right| .
$$

From [4] the following theorem is easily extracted.
Theorem 2.1. Let $\Gamma: \mathbb{R} \longrightarrow \mathbb{R}^{n}, \Gamma(t)=\left(t, \gamma_{2}(t), \ldots, \gamma_{n}(t)\right)$ be an odd curve in $\mathbb{R}^{n}, \Gamma(0)=0$. Suppose \exists a family of dilation matrices $\left\{A_{k}\right\} \subseteq \mathrm{GL}(n, \mathbb{R})$ such that
(a) $\exists \alpha$ such that $\left\|A_{k+1}^{-1} A_{k}\right\| \leq \alpha<1$
(b) A_{k+1}^{-1} supp $\mu_{k} \subseteq$ fixed ball
(c) $\left|\hat{\mu}_{k}(\zeta)\right| \leq C\left|A_{k}^{*} \zeta\right|^{-\varepsilon}$ for some $\varepsilon>0$.

Then

$$
\begin{aligned}
\left\|\sup _{k}\left|\mu_{k} * f\right|\right\|_{p} & \leq C\|f\|_{p} \\
\left\|\mathcal{H}_{\Gamma} f\right\|_{p} & \leq C\|f\|_{p}, \quad 1<p<\infty .
\end{aligned}
$$

In (8a) we use $\|\cdot\|$ to denote the operator (matrix) norm. We note that the conditions of the theorem do not involve σ_{k}. This is because, in view of the cancellation property,

$$
\int d \sigma_{k}=0
$$

and the fact that Γ is odd, (12b) and (12c) give also analogous statements for σ_{k}. Without the assumption that Γ is odd we require also that

$$
A_{k+1}^{-1} \operatorname{supp} \sigma_{k} \subseteq \text { fixed ball }
$$

and

$$
\left|\hat{\sigma}_{k}(\zeta)\right| \leq C\left|A_{k}^{*} \zeta\right|^{-\varepsilon} \text { for some } \varepsilon>0
$$

Condition (12a) is known as Rivière's condition and enables a Calderón-Zygmund theory with respect to balls $\left\{A_{j} B\right\}$, for B the unit ball in \mathbb{R}^{n}, and thence an "annular" Littlewood-Paley decomposition to be developed.

Conditions (12b) and (12c) give decay estimates for $\hat{\mu}_{k}$ (and $\hat{\sigma}_{k}$) which may be combined with the Littlewood-Paley theory, along with a bootstrapping argument, to give the result. In [4] the authors find conditions on Γ under which (12c) holds, (12a) and (12b) being easily satisfied with an appropriate choice of the dilation matrices.

Our approach is to consider, for each k, the points $\zeta \in \mathbb{R}^{n}$ where (12c) may fail and to develop a conical Littlewood-Paley decomposition to deal with these "bad" ζ, in the spirit of [1] or [5].

In Section 3 we shall give some essential properties of "convex" curves and define our choice of dilation matrices $\left\{A_{k}\right\}$. In Section 4 we consider the set of $\zeta \in \mathbb{R}^{n}$ where the required decay estimates for $\hat{\mu}_{k}, \hat{\sigma}_{k}$ may fail and show that these ζ are contained in a cone C_{k}. Next we give conditions on Γ, of which there are $\frac{1}{2} n(n-1)$, under which these C_{k} form a Littlewood-Paley decomposition and show how they may be reduced to the $n-1$ conditions, (9), in the statement of our theorem. Finally in Section 5 we indicate how to combine the conical Littlewood-Paley theory of Section 4 with the "annular" Littlewood-Paley theory of Theorem 2.1 to complete the proof.
3. "Convexity" and dilation matrices. Most of the consequences of "convexity" that we shall need are dealt with in [6].

First, from Lemma 2 of [6] we know that for a "convex" curve we have, for $k=2, \ldots, n, t \in(0, \infty)$

$$
\begin{equation*}
h_{k}(t)>0 \quad \text { and } \quad h_{k}^{\prime}(t)>0 . \tag{13}
\end{equation*}
$$

The tool we have for estimating oscillatory integrals such as $\hat{\mu}_{k}$ is Van der Corput's lemma; in order to be able to use this we need to know that $\zeta . \Gamma^{\prime}$ has a bounded number of changes of monotonicity on each $\left[\lambda^{k}, \lambda^{k+1}\right)$. This is given in Lemma 3 of $[\mathbf{6}]$.

Lemma 3.1. ([6, Lemma 3]). Let $\Gamma \in C^{n}(0, \infty)$ be a "convex" curve in $\mathbb{R}^{n}, \Gamma(t)=\left(t, \gamma_{2}(t), \ldots, \gamma_{n}(t)\right)$ such that $\Gamma(0)=$ 0 . Then for $\zeta=\left(\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}\right) \in \mathbb{R}^{n}, L_{n}(\zeta . \Gamma)=\zeta_{n}$ and for $j=1,2, \ldots, n, L_{j}(\zeta . \Gamma)$ has at most $n-j$ zeros in $(0, \infty)$, provided $\zeta_{n} \neq 0$.

The proof of this in [6] establishes the identity (5) mentioned previously, the result then following easily. We shall also need the following:

Lemma 3.2. Let $\Gamma \in C^{n}(0, \infty), \Gamma(t)=\left(t, \gamma_{2}(t), \ldots, \gamma_{n}(t)\right), \Gamma$: $\mathbb{R} \longrightarrow \mathbb{R}^{n}$ be a "convex" curve in \mathbb{R}^{n}, satisfying also (8), i.e.

$$
\lim _{t \rightarrow 0} L_{k} \gamma_{j+1}(t)=0, \quad j=k, \ldots, n-1, k=1, \ldots, n-1
$$

Then for $t \in(0, \infty)$

$$
\begin{gather*}
\left(L_{k} \gamma_{j}\right)^{\prime}(t)>0 \quad \text { and } \quad\left(L_{k} \gamma_{j}\right)(t)>0, \tag{14}\\
k=1, \ldots, n-1, j=k+1, \ldots, n .
\end{gather*}
$$

In particular $\gamma_{j}^{\prime \prime}>0, j=2, \ldots, n$.
Proof. We recall that, for $k=1, \ldots, n-1$,

$$
L_{k+1} f=\frac{h_{k}}{h_{k+1}^{\prime}}\left(L_{k} f\right)^{\prime} .
$$

So by (7) we have, for $k=1, \ldots, n-1, t \in(0, \infty)$

$$
\left(L_{k} \gamma_{k+1}\right)^{\prime}(t)=\frac{h_{k+1}^{\prime}(t)}{h_{k}(t)}>0,
$$

using (13). Then (8) gives us also

$$
L_{k} \gamma_{k+1}(t)>0, \quad k=1, \ldots, n-1, t \in(0, \infty)
$$

We now fix $j \in\{k+1, \ldots, n\}$ and suppose that for some $k \in$ $\{1, \ldots, j\}, t \in(0, \infty)$,

$$
\left(L_{k} \gamma_{j}\right)^{\prime}(t)>0 \quad \text { and } \quad L_{k} \gamma_{j}(t)>0
$$

Then, for $t \in(0, \infty)$,

$$
\left(L_{k-1} \gamma_{j}\right)^{\prime}(t)=\frac{h_{k}^{\prime}(t)}{h_{k-1}(t)} L_{k} \gamma_{j}(t)>0
$$

using again (13). We also have $L_{k-1} \gamma_{j}(t)>0, t \in(0, \infty)$, using (8). The result now follows by induction.

Corollary 3.3. Let Γ be as in the lemma. Suppose also that $\Gamma(0)=0, \gamma_{k}^{\prime}(0)=0, k=2, \ldots, n$. Then for $k=2, \ldots, n$
(a) γ_{k}^{\prime} is increasing and non-negative on $(0, \infty)$
(b) γ_{k} is increasing and non-negative on $(0, \infty)$
(c) $\gamma_{k}\left(\lambda^{j+1}\right) \geq \lambda \gamma_{k}\left(\lambda^{j}\right), \quad \forall j \in \mathbb{Z}$.

Proof. Immediate from Lemma 3.2.
Lemma 3.4. Let Γ be as in Lemma 3.2. Then, for $t \in(0, \infty)$,

$$
\left(\frac{L_{k} \gamma_{j+1}}{L_{k} \gamma_{j}}\right)^{\prime}(t)>0, \quad \forall j=k, \ldots, n-1, k=1, \ldots, n-1
$$

Proof. We proceed by induction. Let $k \in\{1, \ldots, n-1\}$ be fixed. Then

$$
\left(\frac{L_{k} \gamma_{k+1}}{L_{k} \gamma_{k}}\right)^{\prime}=\left(L_{k} \gamma_{k+1}\right)^{\prime}=\frac{h_{k+1}^{\prime}}{h_{k}}>0
$$

Now we suppose that

$$
\left(\frac{L_{m} \gamma_{k+1}}{L_{m} \gamma_{k}}\right)^{\prime}>0, \quad \text { for some } m \in\{2, \ldots, k\}
$$

Then

$$
\begin{equation*}
\left(\frac{L_{m} \gamma_{k+1}}{L_{m} \gamma_{k}}\right)^{\prime}=\left(\frac{\left(L_{m-1} \gamma_{k+1}\right)^{\prime}}{\left(L_{m-1} \gamma_{k}\right)^{\prime}}\right)^{\prime}>0 \tag{15}
\end{equation*}
$$

So by the Second Mean Value Theorem, if $\varepsilon \in(0, t)$,

$$
\frac{L_{m-1} \gamma_{k+1}(t)-L_{m-1} \gamma_{k+1}(\varepsilon)}{L_{m-1} \gamma_{k}(t)-L_{m-1} \gamma_{k}(\varepsilon)}=\frac{\left(L_{m-1} \gamma_{k+1}\right)^{\prime}(\eta)}{\left(L_{m-1} \gamma_{k}\right)^{\prime}(\eta)},
$$

for some $\eta \in(0, t)$. Then, by (15) and (8),

$$
\begin{equation*}
\frac{L_{m-1} \gamma_{k+1}(t)}{L_{m-1} \gamma_{k}(t)}<\frac{\left(L_{m-1} \gamma_{k+1}\right)^{\prime}(t)}{\left(L_{m-1} \gamma_{k}\right)^{\prime}(t)} . \tag{16}
\end{equation*}
$$

Hence, using (16) and (14),

$$
\left(\frac{L_{m-1} \gamma_{k+1}}{L_{m-1} \gamma_{k}}\right)^{\prime}=\frac{\left(L_{m-1} \gamma_{k}\right)^{\prime}}{\left(L_{m-1} \gamma_{k}\right)}\left\{\frac{\left(L_{m-1} \gamma_{k+1}\right)^{\prime}}{\left(L_{m-1} \gamma_{k}\right)^{\prime}}-\frac{L_{m-1} \gamma_{k+1}}{L_{m-1} \gamma_{k}}\right\}>0 .
$$

Thus, by induction, for each fixed $k \in\{1, \ldots, n-1\}$ we have

$$
\left(\frac{L_{m} \gamma_{k+1}}{L_{m} \gamma_{k}}\right)^{\prime}>0, \quad \forall m=1, \ldots, k
$$

We now turn to defining our dilation matrices $\left\{A_{k}\right\}$. The choice of these is motivated by the fact that we are looking for a theory which admits piecewise-linear curves; we want, therefore, the A_{k} to have entries involving at most 1 derivative of $\gamma_{k}, k=2, \ldots, n$.

We define the diagonal matrix A by

$$
A(t)=\left(\begin{array}{cccc}
t & 0 & \cdots & 0 \\
0 & \gamma_{2}(t) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \gamma_{n}(t)
\end{array}\right)
$$

and put $A_{j}=A\left(\lambda^{j}\right), j \in \mathbb{Z}$.
That these matrices satisfy (12a) and (12b) is trivial, using Corollary 3.3 .
4. A conical Littlewood-Paley decomposition. We wish to consider the $\zeta \in \mathbb{R}^{n}$ where we cannot expect (12c) to hold. By Lemma 3.1c) we know that $\zeta . \Gamma^{\prime}$ has at most $(n-2)$ changes of monotonicity in $(0, \infty)$, thence must have a bounded number of changes of monotonicity in each interval $\left[\lambda^{k}, \lambda^{k+1}\right)$.

So, by Van der Corput's lemma, if

$$
\begin{equation*}
\left|\zeta . \Gamma^{\prime}(t)\right| \geq \frac{C}{\lambda^{k}}\left|A_{k}^{*} \zeta\right| \quad \forall t \in\left[\lambda^{k}, \lambda^{k+1}\right) \tag{17}
\end{equation*}
$$

then

$$
\left|\hat{\mu}_{k}(\zeta)\right| \leq C\left|A_{k}^{*} \zeta\right|^{-1} .
$$

We consider, therefore, the set of ζ where (17) may fail, i.e.

$$
\bigcup_{t \in\left[\lambda^{k}, \lambda^{k+1}\right)} C_{k}^{t}
$$

where

$$
C_{k}^{t}:=\left\{\zeta \in \mathbb{R}^{n}:\left|\zeta \cdot \Gamma^{\prime}(t)\right|<\frac{\varepsilon}{\lambda^{k}}\left|A_{k}^{*} \zeta\right|\right\} .
$$

Here $\varepsilon>0$ may be as small as we like.
Proposition 4.1. (a) Let Γ be a "convex" $C^{n}(0, \infty)$ curve in \mathbb{R}^{n}. Then \exists cones C_{k} such that

$$
\bigcup_{t \in\left(\lambda^{k}, \lambda^{k+1}\right)} C_{k}^{t} \subseteq C_{k}:=\bigcup_{m=1}^{n-1}\left(C_{k m} \cup \widetilde{C}_{k m}\right)
$$

where

$$
\begin{aligned}
& C_{k m}=\left\{\zeta: \sum_{j=m}^{n} \zeta_{j} L_{m} \gamma_{j}\left(\lambda^{k}\right)<\varepsilon \sum_{j=m}^{n}\left|\zeta_{j}\right| L_{m} \gamma_{j}\left(\lambda^{k}\right)\right. \text { and } \\
&\left.\sum_{j=m}^{n} \zeta_{j} L_{m} \gamma_{j}\left(\lambda^{k+1}\right)>-\varepsilon \sum_{j=m}^{n}\left|\zeta_{j}\right| L_{m} \gamma_{j}\left(\lambda^{k+1}\right)\right\}
\end{aligned}
$$

and $\zeta \in C_{k m} \Longleftrightarrow-\zeta \in \widetilde{C}_{k m}$.
(b) Let Γ be piecewise-linear on $\left[\lambda^{k}, \lambda^{k+1}\right], k \in \mathbb{Z}$ and γ_{j} convex, $j=2, \ldots, n$. Then

$$
\bigcup_{t \in\left[\lambda^{k}, \lambda^{k+1}\right)} C_{k}^{t} \subseteq C_{k 1} \cup \tilde{C}_{k 1}
$$

where $C_{k 1}, \widetilde{C}_{k 1}$ are as defined in (a).
Proof. Let $\zeta \in \underset{t \in\left[\lambda^{k}, \lambda^{k+1}\right)}{\bigcup} C_{k}^{t}$. We suppose first that $\zeta . \Gamma^{\prime}$ is monotoneincreasing on $\left[\lambda^{k}, \lambda^{k+1}\right)$. Then $\forall t \in\left[\lambda^{k}, \lambda^{k+1}\right)$,

$$
L_{1}(\zeta \cdot \Gamma)\left(\lambda^{k}\right)=\zeta \cdot \Gamma^{\prime}\left(\lambda^{k}\right) \leq \zeta \cdot \Gamma^{\prime}(t) \leq \zeta \cdot \Gamma^{\prime}\left(\lambda^{k+1}\right)=L_{1}(\zeta \cdot \Gamma)\left(\lambda^{k+1}\right) .
$$

Hence

$$
\begin{equation*}
L_{1}(\zeta . \Gamma)\left(\lambda^{k}\right)<\frac{\varepsilon}{\lambda^{k}}\left|A_{k}^{*} \zeta\right| \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{1}(\zeta . \Gamma)\left(\lambda^{k+1}\right)>-\frac{\varepsilon}{\lambda^{k}}\left|A_{k}^{*} \zeta\right| . \tag{19}
\end{equation*}
$$

By Corollary 3.3 and the definition of the A_{k} we have

$$
\frac{1}{\lambda^{k}}\left|A_{k}^{*} \zeta\right| \leq \sum_{j=1}^{n} \gamma_{j}^{\prime}\left(\lambda^{k}\right)\left|\zeta_{j}\right| \leq \sum_{j=1}^{n} \gamma_{j}^{\prime}\left(\lambda^{k+1}\right)\left|\zeta_{j}\right|,
$$

which, together with (18) and (19), gives

$$
\begin{aligned}
\sum_{j=1}^{n} \zeta_{j} L_{1} \gamma_{j}\left(\lambda^{k}\right) & =L_{1}(\zeta . \Gamma)\left(\lambda^{k}\right) \\
& <\varepsilon \sum_{j=1}^{n}\left|\zeta_{j}\right| \gamma_{j}^{\prime}\left(\lambda^{k}\right)=\varepsilon \sum_{j=1}^{n}\left|\zeta_{j}\right| L_{1} \gamma_{j}\left(\lambda^{k}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{j=1}^{n} \zeta_{j} L_{1} \gamma_{j}\left(\lambda^{k+1}\right) & =L_{1}(\zeta \cdot \Gamma)\left(\lambda^{k+1}\right) \\
& >-\varepsilon \sum_{j=1}^{n}\left|\zeta_{j}\right| \gamma_{j}^{\prime}\left(\lambda^{k+1}\right)=-\varepsilon \sum_{j=1}^{n}\left|\zeta_{j}\right| L_{1} \gamma_{j}\left(\lambda^{k+1}\right) .
\end{aligned}
$$

Thus, if $\zeta \cdot \Gamma^{\prime}$ is monotone-increasing on $\left[\lambda^{k}, \lambda^{k+1}\right.$), then $\zeta \in C_{k 1}$. Similarly, if $\zeta \cdot \Gamma^{\prime}$ is monotone-decreasing on $\left[\lambda^{k}, \lambda^{k+1}\right.$), then $\zeta \in \widetilde{C}_{k 1}$.

We note here that if Γ is piecewise-linear on $\left[\lambda^{k}, \lambda^{k+1}\right]$, then $\zeta \cdot \Gamma^{\prime}$ is constant on ($\lambda^{k}, \lambda^{k+1}$); by a suitable definition of $\zeta \cdot \Gamma^{\prime}\left(\lambda^{k}\right)$ we may take $\zeta \cdot \Gamma^{\prime}$ to be constant on [$\lambda^{k}, \lambda^{k+1}$) and thus (b) is proven.

We now suppose that $\zeta \cdot \Gamma^{\prime}(t)$ is not monotone on $\left[\lambda^{k}, \lambda^{k+1}\right)$. Then $\exists t_{0} \in\left[\lambda^{k}, \lambda^{k+1}\right)$ such that $\zeta \cdot \Gamma^{\prime \prime}\left(t_{0}\right)=0$. Then

$$
L_{2}(\zeta \cdot \Gamma)\left(t_{0}\right)=\frac{h_{1}}{h_{2}^{\prime}} \zeta \cdot \Gamma^{\prime \prime}\left(t_{0}\right)=0 .
$$

If then $L_{2}(\zeta \cdot \Gamma)$ is monotone-increasing on $\left[\lambda^{k}, \lambda^{k+1}\right)$,

$$
L_{2}(\zeta \cdot \Gamma)\left(\lambda^{k}\right) \leq 0=L_{2}(\zeta \cdot \Gamma)\left(t_{0}\right) \leq L_{2}(\zeta \cdot \Gamma)\left(\lambda^{k+1}\right)
$$

and so $\zeta \in C_{k 2}$; similarly $\zeta \in \widetilde{C}_{k 2}$ if $L_{2}(\zeta \cdot \Gamma)$ is monotone-decreasing on $\left[\lambda^{k}, \lambda^{k+1}\right)$. If $L_{2}(\zeta \cdot \Gamma)$ is not monotone on $\left(\lambda^{k}, \lambda^{k+1}\right)$, then $\exists t_{1} \in\left[\lambda^{k}, \lambda^{k+1}\right)$ such that $\left(L_{2}(\zeta \cdot \Gamma)\right)^{\prime}\left(t_{1}\right)=0$, from which we obtain $L_{3}(\zeta \cdot \Gamma)\left(t_{1}\right)=0$ and so if $L_{3}(\zeta \cdot \Gamma)$ is monotone on $\left[\lambda^{k}, \lambda^{k+1}\right)$, we obtain $\zeta \in C_{k 3} \cup \widetilde{C}_{k 3}$. We repeat this process iteratively. By Lemma $3.1 L_{n}(\zeta \cdot \Gamma)(t)=\zeta_{n}$ so it follows that $L_{n-1}(\zeta \cdot \Gamma)$ must be monotone on ($\lambda^{k}, \lambda^{k+1}$) and hence the final possibility is that $\zeta \in C_{k(n-1)} \cup \widetilde{C}_{k(n-1)}$.

We now wish to find conditions on Γ under which these cones give a Littlewood-Paley decomposition for $L^{p}\left(\mathbb{R}^{n}\right)$. The next result, in the same spirit as the lacunary Littlewood-Paley decomposition of [5], leads to the choice of these conditions. First we give our definition of lacunarity.

Definition 4.2. Let $\left\{\mathcal{E}_{k}(n, \varepsilon)\right\}$ be a family of cones in \mathbb{R}^{n} given by

$$
\begin{aligned}
\mathcal{E}_{k}(n, \varepsilon)=\left\{\zeta \in \mathbb{R}^{n}: \sum_{j=1}^{n} \alpha_{k}^{j} \zeta_{j}<\varepsilon\right. & \sum_{j=1}^{n} \alpha_{k}^{j}\left|\zeta_{j}\right| \quad \text { and } \\
& \left.\sum_{j=1}^{n} \alpha_{k+1}^{j} \zeta_{j}>-\varepsilon \sum_{j=1}^{n} \alpha_{k+1}^{j}\left|\zeta_{j}\right|\right\}
\end{aligned}
$$

where α_{k}^{j} are positive reals, $j=1, \ldots, n, k \in \mathbb{Z}$ and $\varepsilon>0$ is small. If

$$
\begin{equation*}
\frac{\alpha_{k+1}^{j}}{\alpha_{k}^{j}} \geq 2 \frac{\alpha_{k+1}^{j-1}}{\alpha_{k}^{j-1}}, \quad \forall k \in \mathbb{Z}, j=2, \ldots, n \tag{20}
\end{equation*}
$$

then the $\mathcal{E}_{k}(n, \varepsilon)$ are said to be lacunary.
We define "smoothed-out" characteristic functions $\Psi_{k}^{n, \varepsilon}$ of the cones $\mathcal{E}_{k}(n, \varepsilon)$ as follows.

Let $\Psi^{n, \varepsilon}$ be a C^{∞} function away from 0 , homogeneous of degree zero such that

$$
\Psi^{n, \varepsilon}(\zeta)= \begin{cases}1 & \sum_{j=1}^{n} \zeta_{j}<\varepsilon \sum_{j=1}^{n}\left|\zeta_{j}\right| \\ 0 & \sum_{j=1}^{n} \zeta_{j}>-2 \varepsilon \sum_{j=1}^{n}\left|\zeta_{j}\right|,\end{cases}
$$

and put

$$
\Psi_{k}^{n, \varepsilon}(\zeta)=\Psi^{n, \varepsilon}\left(\alpha_{k}^{1} \zeta_{1}, \ldots, \alpha_{k}^{n} \zeta_{n}\right) \Psi^{n, \varepsilon}\left(-\alpha_{k+1}^{1} \zeta_{1}, \ldots,-\alpha_{k+1}^{n} \zeta_{n}\right) .
$$

Associated to these $\Psi_{k}^{n, \varepsilon}$ are operators T_{k} given by

$$
\widehat{\left(T_{k} f\right)}(\zeta)=\Psi_{k}^{n, \varepsilon}(\zeta) \hat{f}(\zeta), \quad k \in \mathbb{Z}
$$

Theorem 4.3. If $\{\mathcal{E}(n, \varepsilon)\}$ is a lacunary family of cones in \mathbb{R}^{n} then

$$
\left\|\left(\sum_{k}\left|T_{k} f\right|^{2}\right)^{1 / 2}\right\|_{p} \leq C\|f\|_{p}, \quad 1<p<\infty
$$

Proof. It suffices to show that $\sum_{k} \pm \Psi_{k}^{n, \epsilon}$ is a multiplier for $L^{p}\left(\mathbb{R}^{n}\right)$, $1<p<\infty$, independently of the choice of \pm; the result then follows by a standard Rademacher function argument. We use the formulation of the Marcinkiewicz multiplier theorem given in [2]. So, we let ϕ^{n} be a $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ function such that $0 \leq \phi^{n} \leq 1$ and

$$
\phi^{n}(\zeta)= \begin{cases}1 & 1 \leq\left|\zeta_{j}\right| \leq 2, j=1, \ldots, n \\ 0 & \text { off } \frac{1}{2} \leq\left|\zeta_{j}\right| \leq 4, j=1, \ldots, n\end{cases}
$$

and define $L_{\alpha}^{2}\left(\mathbb{R}^{n}\right)$ to be the n-parameter Sobolev space given by

$$
L_{\alpha}^{2}\left(\mathbb{R}^{n}\right)=\left\{g:\|g\|_{L_{\alpha}^{2}}^{2}=\int|\hat{g}(\zeta)|^{2} \prod_{i=1}^{n}\left(1+\zeta_{i}^{2}\right)^{\alpha} d \zeta<\infty\right\}
$$

Then, by Theorem A of [2], it suffices to show that

$$
\begin{equation*}
\sup _{i_{1}, \ldots, i_{n}}\left\|\sum_{k} \pm \Psi_{k}^{n, \varepsilon}\left(2^{i_{1}} \zeta_{1}, \ldots, 2^{i_{n}} \zeta_{n}\right) \phi^{n}(\zeta)\right\|_{L_{\alpha}^{2}\left(\mathbb{R}^{n}\right)}<\infty \tag{21}
\end{equation*}
$$

for some $\alpha>\frac{1}{2}$.
We show (21) for $\alpha=1$ and for convenience take $\varepsilon=\frac{1}{2^{2 n}}$. Our proof is by induction on n; the argument for $n=2$ is contained in the inductive step and therefore we omit it.

Suppose, therefore, that

$$
\sup _{i_{1}, \ldots, i_{n-1}}\left\|\sum_{k} \pm \Psi_{k}^{n-1, \tilde{\varepsilon}}\left(2^{i_{1}} \zeta_{1}, \ldots, 2^{i_{n-1}} \zeta_{n-1}\right) \phi^{n-1}(\zeta)\right\|_{L_{1}^{2}\left(\mathbb{R}^{n-1}\right)}<\infty
$$

with $\tilde{\varepsilon}=\frac{1}{2^{2 n-2}}$, under the hypothesis that

$$
\begin{equation*}
\frac{\alpha_{k+1}^{j}}{\alpha_{k}^{j}} \geq 2 \frac{\alpha_{k+1}^{j-1}}{\alpha_{k}^{j-1}}, \quad \forall k \in \mathbb{Z}, j=2, \ldots, n-1 \tag{22}
\end{equation*}
$$

and consider

$$
\sup _{i_{1}, \ldots, i_{n}}\left\|\sum_{k} \pm \Psi_{k}^{n, \varepsilon}\left(2^{i_{1}} \zeta_{1}, \ldots, 2^{i_{n}} \zeta_{n}\right) \phi^{n}(\zeta)\right\|_{L_{1}^{2}\left(\mathbb{R}^{n}\right)},
$$

assuming that (22) now holds also for $j=n$.
We suppose that, for some $k, \Psi_{k}^{n, \varepsilon}\left(2^{i_{1}} \zeta_{1}, \ldots, 2^{i_{n}} \zeta_{n}\right) \phi^{n}(\zeta) \neq 0$, i.e.

$$
\begin{gathered}
\sum_{j=1}^{n} \alpha_{k}^{j} 2^{i_{j}} \zeta_{j}<2 \varepsilon \sum_{j=1}^{n} \alpha_{k}^{j} 2^{i_{j}}\left|\zeta_{j}\right| \\
\sum_{j=1}^{n} \alpha_{k+1}^{j} 2^{i_{j}} \zeta_{j}>-2 \varepsilon \sum_{j=1}^{n} \alpha_{k+1}^{j} 2^{i_{j}}\left|\zeta_{j}\right|
\end{gathered}
$$

and

$$
\frac{1}{2} \leq\left|\zeta_{j}\right| \leq 4, \quad j=1, \ldots, n
$$

Case 1. Suppose that for some $j_{0} \in\{1, \ldots, n\}$

$$
\alpha_{k}^{j_{0}} 2^{i_{0}}\left|\zeta_{j o}\right| \leq \frac{1}{2^{2 n}} \sum_{j=1}^{n} \alpha_{k}^{j} 2^{i_{j}}\left|\zeta_{j}\right|
$$

and

$$
\alpha_{k+1}^{j_{0}} 2^{i_{j}}\left|\zeta_{j_{0}}\right| \leq \frac{1}{2^{2 n}} \sum_{j=1}^{n} \alpha_{k+1}^{j} 2^{i_{j}}\left|\zeta_{j}\right| .
$$

In this instance we find that

$$
\begin{aligned}
& \Psi_{k}^{n, \varepsilon}\left(2^{i_{1}} \zeta_{1}, \ldots, 2^{i_{n}} \zeta_{n}\right) \neq 0 \\
& \quad \Longrightarrow \Psi_{k}^{n-1, \tilde{\varepsilon}}\left(2^{i_{1}} \zeta_{1}, \ldots, 2^{i_{j_{0}-1}} \zeta_{j_{0}-1}, 2^{i_{j_{0}+1}} \zeta_{j_{0}+1}, \ldots, 2^{i_{n}} \zeta_{n}\right) \neq 0 .
\end{aligned}
$$

Taking $2^{i_{j}}=1$, which we may by homogeneity of $\Psi^{n, \varepsilon}$, the problem is reduced to the $(n-1)$-dimensional case and we are done, by the inductive hypothesis.

Case 2. Suppose that for all $j \in\left\{\frac{1}{v}, \ldots, n\right\}$ either

$$
\begin{equation*}
\alpha_{k}^{j} 2^{i^{j}}\left|\zeta_{j}\right| \geq \frac{1}{2^{2 n}} \sum_{j=1}^{n} \alpha_{k}^{j} 2^{i_{j}}\left|\zeta_{j}\right| \tag{23}
\end{equation*}
$$

or

$$
\begin{equation*}
\alpha_{k+1}^{j} 2^{i_{j}}\left|\zeta_{j}\right| \geq \frac{1}{2^{2 n}} \sum_{j=1}^{n} \alpha_{k+1}^{j} 2^{i_{j}}\left|\zeta_{j}\right| . \tag{24}
\end{equation*}
$$

Let us suppose that

$$
\alpha_{k}^{n} 2^{i_{n}}\left|\zeta_{n}\right| \geq \frac{1}{2^{2 n}} \sum_{j=1}^{n} \alpha_{k}^{j} 2^{i^{j}}\left|\zeta_{j}\right| .
$$

Then by the lacunarity conditions (20) we have

$$
\alpha_{k+m}^{n} 2^{i_{n}}\left|\zeta_{n}\right| \geq 2 \sum_{j=1}^{n-1} \alpha_{k+m}^{j} 2^{i_{j}}\left|\zeta_{j}\right| \quad \forall m \geq N, \text { say } .
$$

Then if $\zeta_{n}>0$ we find

$$
\begin{aligned}
\sum_{j=1}^{n} \alpha_{k+m}^{j} 2^{i_{j}} \zeta_{j} & \geq \alpha_{k+m}^{n} 2^{i_{n}}\left|\zeta_{n}\right|-\sum_{j=1}^{n-1} \alpha_{k+m}^{j} 2^{i_{j}}\left|\zeta_{j}\right| \\
& \geq \frac{1}{3} \sum_{j=1}^{n} \alpha_{k+m}^{j} 2^{i_{j}}\left|\zeta_{j}\right|,
\end{aligned}
$$

whilst if $\zeta_{n}<0$ we have

$$
\sum_{j=1}^{n} \alpha_{k+m}^{j} 2^{i^{i}} \zeta_{j} \leq-\frac{1}{3} \sum_{j=1}^{n} \alpha_{k+m}^{j} 2^{i_{j}}\left|\zeta_{j}\right| .
$$

Thus

$$
\begin{equation*}
\Psi_{k+m}^{n, \varepsilon}\left(2^{i_{1}} \zeta_{1}, \ldots, 2^{i_{n}} \zeta_{n}\right)=0 \quad \forall m \geq N . \tag{25}
\end{equation*}
$$

If we assume that (24) holds for $j=n$ then the same argument follows. Further, $\forall \zeta$ with $\Psi_{k}^{n, \varepsilon}\left(2^{i_{1}} \zeta_{1}, \ldots, 2^{i_{n}} \zeta_{n}\right) \neq 0$, for each $j_{0} \in$ $\{1, \ldots, n\}$, we have either

$$
\alpha_{k}^{j_{0}} 2^{i_{j}}\left|\zeta_{j_{0}}\right| \leq \frac{1+2 \varepsilon}{1-2 \varepsilon} \sum_{j \neq j_{0}} \alpha_{k}^{j} 2^{i_{j}}\left|\zeta_{j}\right|
$$

or

$$
\alpha_{k+1}^{j_{0}} 2^{i_{j 0}}\left|\zeta_{j_{0}}\right| \leq \frac{1+2 \varepsilon}{1-2 \varepsilon} \sum_{j \neq j_{0}} \alpha_{k+1}^{j} 2^{i_{j}}\left|\zeta_{j}\right| .
$$

This, together with (23), (24), lacunarity and $\phi^{n}(\zeta) \neq 0$ gives that $2^{i_{j}} \sim 1 \forall j=1, \ldots, n$. So using (25) we obtain

$$
\sup _{i_{1}, \ldots, i_{n}}\left|\sum_{k} \pm \Psi_{k}^{n, \varepsilon}\left(2^{i_{1}} \zeta_{1}, \ldots, 2^{i_{n}} \zeta_{n}\right) \phi^{n}(\zeta)\right|<\infty .
$$

It is trivial to check that differentiating with respect to any ζ_{j} causes no problem. This concludes the proof.

Let us now see how may apply Theorem 4.3 to our cones C_{k}. It is clear that if we have a Littlewood-Paley theory for each $\left\{C_{k m}\right\}$, $\left\{\widetilde{C}_{k m}\right\}, m=1, \ldots, n-1$, where we consider $C_{k m}, \widetilde{C}_{k m}$ as cones in \mathbb{R}^{n-m+1}, then this will suffice to give a Littlewood-Paley theory for the C_{k}. We define now

$$
\begin{gathered}
\Phi_{k m}(\zeta)=\Psi_{k}^{n, \varepsilon}\left(0, \ldots, 0, \zeta_{m}, L_{m} \gamma_{m+1}\left(\lambda^{k}\right) \zeta_{m+1}, \ldots, L_{m} \gamma_{n}\left(\lambda^{k}\right) \zeta_{n}\right) \\
\times \Psi_{k}^{n, \varepsilon}\left(0, \ldots, 0,-\zeta_{m},-L_{m} \gamma_{m+1}\left(\lambda^{k+1}\right) \zeta_{m+1}, \ldots,-L_{m} \gamma_{n}\left(\lambda^{k+1}\right) \zeta_{n}\right)
\end{gathered}
$$

and put

$$
\Phi_{k}(\zeta)=\sum_{m=1}^{n-1} \Phi_{k m}(\zeta) ;
$$

we associate to Φ_{k} the operator S_{k} given by

$$
\begin{equation*}
\widehat{\left(S_{k} f\right)}(\zeta)=\Phi_{k}(\zeta) \hat{f}(\zeta) . \tag{26}
\end{equation*}
$$

Proposition 4.4. If

$$
\begin{equation*}
\frac{L_{m} \gamma_{j+1}\left(\lambda^{k+1}\right)}{L_{m} \gamma_{j}\left(\lambda^{k+1}\right)} \geq 2 \frac{L_{m} \gamma_{j+1}\left(\lambda^{k}\right)}{L_{m} \gamma_{j}\left(\lambda^{k}\right)}, \tag{27}
\end{equation*}
$$

$\forall k \in \mathbb{Z}, j=m, \ldots, n-1 ; m=1, \ldots, n-1$, then

$$
\left\|\left(\sum_{k}\left|S_{k} f\right|^{2}\right)^{1 / 2}\right\|_{p} \leq C\|f\|_{p}, \quad 1<p<\infty .
$$

Proof. If, for fixed m,

$$
\frac{L_{m} \gamma_{j+1}\left(\lambda^{k+1}\right)}{L_{m} \gamma_{j}\left(\lambda^{k+1}\right)} \geq 2 \frac{L_{m} \gamma_{j+1}\left(\lambda^{k}\right)}{L_{m} \gamma_{j}\left(\lambda^{k}\right)} \quad \forall k \in \mathbb{Z}, j=m, \ldots, n
$$

then the family of cones $\left\{C_{k m}\right\}$, and hence also $\left\{\widetilde{C}_{k m}\right\}$, may be considered as lacunary in \mathbb{R}^{n-m+1}, i.e. $\sum_{k} \pm \Phi_{k m}(\zeta)$ is a multiplier in $L^{p}\left(\mathbb{R}^{n}\right), 1<p<\infty$. Thus if (27) is satisfied we have that $\sum_{k} \sum_{m=1}^{n-1} \pm \Phi_{k m}(\zeta)$ is a multiplier for $L^{p}\left(\mathbb{R}^{n}\right)$. This gives the result.

Thus, assuming (27), the cones C_{k} give a Littlewood-Paley decomposition of \mathbb{R}^{n}. Let us now see how the $\frac{1}{2} n(n-1)$ conditions of (27) relate to the conditions in the statement of our theorem, i.e. (9).

Lemma 4.5. Let $\Gamma: \mathbb{R} \longrightarrow \mathbb{R}^{n}$ be a "convex" curve such that $\Gamma \in C^{n}(0, \infty), \Gamma(0)=0$ and

$$
\begin{equation*}
\lim _{t \rightarrow 0} L_{m} \gamma_{k+1}(t)=0 \text { for } m=1, \ldots, n-1, k=m, \ldots, n-1 . \tag{28}
\end{equation*}
$$

Suppose $\exists 1<\lambda<\infty$ such that

$$
\begin{equation*}
L_{k} \gamma_{k+1}(\lambda t) \geq 2 L_{k} \gamma_{k+1}(t) \quad k=1, \ldots, n-1 \tag{29}
\end{equation*}
$$

Then $\exists 1<\mu<\infty$ such that

$$
\begin{equation*}
\frac{L_{m} \gamma_{k+1}(\mu t)}{L_{m} \gamma_{k}(\mu t)} \geq 2 \frac{L_{m} \gamma_{k+1}(t)}{L_{m} \gamma_{k}(t)}, \tag{30}
\end{equation*}
$$

$$
m=1, \ldots, n-1, k=m, \ldots, n-1 .
$$

Proof. Fix k. Clearly, by hypothesis (29), (30) holds for $m=k$, with $\mu=\lambda$. We now suppose that (30) holds for $m=j$ and show that it is then also true for $m=j-1$. Now

$$
\begin{aligned}
L_{j-1} \gamma_{k}(\lambda t) & =\frac{L_{j-1} \gamma_{k}(\lambda t)}{L_{j-1} \gamma_{k-1}(\lambda t)} \cdot \frac{L_{j-1} \gamma_{k-1}(\lambda t)}{L_{j-1} \gamma_{k-2}(\lambda t)} \cdots L_{j-1} \gamma_{j}(\lambda t) \\
& \geq 2 L_{j-1} \gamma_{k}(t),
\end{aligned}
$$

by Lemma 3.4 and (29). Then

$$
\begin{aligned}
\frac{L_{j-1} \gamma_{k+1}\left(\mu^{3} t\right)}{L_{j-1} \gamma_{k}\left(\mu^{3} t\right)} & \geq \frac{1}{2} \cdot \frac{L_{j-1} \gamma_{k+1}\left(\mu^{3} t\right)-L_{j-1} \gamma_{k+1}\left(\mu^{2} t\right)}{L_{j-1} \gamma_{k}\left(\mu^{3} t\right)-L_{j-1} \gamma_{k}\left(\mu^{2} t\right)} \\
& \geq \frac{1}{2} \cdot \frac{\left(L_{j-1} \gamma_{k+1}\right)^{\prime}\left(\mu^{2} t\right)}{\left(L_{j-1} \gamma_{k}\right)^{\prime}\left(\mu^{2} t\right)}
\end{aligned}
$$

by the Second Mean Value Theorem and Lemma 3.4. Thus

$$
\begin{aligned}
\frac{L_{j-1} \gamma_{k+1}\left(\mu^{3} t\right)}{L_{j-1} \gamma_{k}\left(\mu^{3} t\right)} & \geq \frac{1}{2} \cdot \frac{L_{j} \gamma_{k+1}\left(\mu^{2} t\right)}{L_{j} \gamma_{k}\left(\mu^{2} t\right)} \\
& \geq 2 \frac{L_{j} \gamma_{k+1}(t)}{L_{j} \gamma_{k}(t)}, \text { by inductive hypothesis } \\
& =2 \frac{\left(L_{j-1} \gamma_{k+1}\right)^{\prime}(t)}{\left(L_{j-1} \gamma_{k}\right)^{\prime}(t)} \\
& \geq 2 \frac{L_{j-1} \gamma_{k+1}(t)}{L_{j-1} \gamma_{k}(t)}
\end{aligned}
$$

by Second Mean Value Theorem, Lemma 3.4 and hypothesis (28).

Lemma 4.5 and Proposition 4.4 together give us
Proposition 4.6. Let $\Gamma: \mathbb{R} \longrightarrow \mathbb{R}^{n}$ be a "convex" curve such that $\Gamma \in C^{n}(0, \infty), \Gamma(0)=0$ and $\lim _{t \rightarrow 0} L_{j} \gamma_{k}(t)=0, \quad \forall j=$ $1, \ldots, n-1 ; k=j+1, \ldots, n$. Suppose that $\exists 1<\lambda<\infty$ such that

$$
L_{k} \gamma_{k+1}(\lambda t) \geq 2 L_{k} \gamma_{k+1}(t), \quad k=1, \ldots, n-1
$$

Then

$$
\left\|\left(\sum_{k}\left|S_{k} f\right|^{2}\right)^{1 / 2}\right\|_{p} \leq C\|f\|_{p} .
$$

In view of Proposition 4.1 (b), which defines the cones for a piecewise-linear curve, we also have a corresponding result for piece-wise-linear curves if we replace the hypotheses of Proposition 4.6 with those of Corollary 1.3.
5. Proof of Theorem 1.2. We now have a family of dilation matrices $\left\{A_{k}\right\}$ satisfying

$$
\begin{equation*}
\exists \alpha \text { such that }\left\|A_{k+1}^{-1} A_{k}\right\| \leq \alpha<1 \tag{31}
\end{equation*}
$$

$$
\begin{equation*}
A_{k+1}^{-1} \operatorname{supp} \mu_{k} \subseteq \text { fixed ball } \tag{32}
\end{equation*}
$$

and a family of cones $\left\{C_{k}\right\}$ with associated operators S_{k} given by (26) satisfying the Littlewood-Paley inequality

$$
\begin{equation*}
\left\|\left(\sum_{k}\left|S_{k} f\right|^{2}\right)^{1 / 2}\right\|_{p} \leq C\|f\|_{p} \tag{33}
\end{equation*}
$$

and such that

$$
\begin{equation*}
\zeta \notin C_{k} \Longrightarrow\left|\hat{\mu}_{k}(\zeta)\right| \leq C\left|A_{k}^{*} \zeta\right|^{-1} . \tag{34}
\end{equation*}
$$

We let $f=S_{k} f+\left(I-S_{k}\right) f, k \in \mathbb{Z}$, and consider first $\sup _{k} \mid \mu_{k} *$ $f \mid$. We use the standard technique of combining a bootstrapping argument with the Littlewood-Paley theory to obtain an L^{p}-result, starting with just the L^{2}-result. Now,

$$
\begin{aligned}
\left\|\sup _{k}\left|\mu_{k} * f\right|\right\|_{2} & \leq\left\|\sup _{k}\left|\mu_{k} * S_{k} f\right|\right\|_{2}+\left\|\sup _{k}\left|\mu_{k} *\left(I-S_{k}\right) f\right|\right\|_{2} \\
& =A+B .
\end{aligned}
$$

By (33), Plancherel's theorem and the fact that the μ_{k} have unit mass we immediately have

$$
A \leq C\|f\|_{2}
$$

For B we use comparison of μ_{k} with a measure ν_{k} given by

$$
\nu_{k}(x)=\rho\left(A_{k+1}^{-1} x\right) \operatorname{det} A_{k+1}^{-1},
$$

where $\rho \in C_{0}^{\infty}, 0 \leq \rho \leq 1$ and $\int \rho=1$. It is easily verified that $\sup _{k}\left|\nu_{k} * f\right|$ is majorized by the Hardy-Littlewood maximal operator associated to balls $A_{k} B$, where B is the unit ball in \mathbb{R}^{n}, and thus, by [3], Proposition 2.2,

$$
\begin{equation*}
\left\|\sup _{k}\left|\nu_{k} * f\right|\right\|_{p} \leq C\|f\|_{p}, \quad 1<p<\infty . \tag{35}
\end{equation*}
$$

Then

$$
\begin{aligned}
B \leq & \left\|\sup _{k}\left|\left(\mu_{k}-\nu_{k}\right) *\left(I-S_{k}\right) f\right|\right\|_{2}+\left\|\sup _{k}\left|\nu_{k} * f\right|\right\|_{2} \\
& +\left\|\sup _{k}\left|\nu_{k} * S_{k} f\right|\right\|_{2}
\end{aligned}
$$

Now, by the same argument as used for A,

$$
\left\|\sup _{k}\left|\nu_{k} * S_{k} f\right|\right\|_{2} \leq C\|f\|_{2},
$$

so it remains to show that

$$
\left\|\sup _{k}\left|\left(\mu_{k}-\nu_{k}\right) *\left(I-S_{k}\right) f\right|\right\|_{2} \leq C\|f\|_{2} .
$$

Taking into account (34) the proof of this is essentially contained in the proof of Proposition 5.1, [3]. To pass from the L^{2}-result to the L^{p}-result we have the following analogue of Proposition 5.1, [3].

Proposition 5.1. Suppose

$$
\left\|\sup _{k}\left|\mu_{k} * f\right|\right\|_{\tilde{p}} \leq C\|f\|_{\tilde{p}}, \quad \text { for some } 1<\tilde{p} \leq 2 .
$$

Then

$$
\left\|\sup _{k}\left|\mu_{k} * f\right|\right\|_{p} \leq C\|f\|_{p} \quad \forall p>\frac{2 \tilde{p}}{\tilde{p}+1} .
$$

Proof. First we note that, under the hypothesis of the proposition,

$$
\begin{equation*}
\left\|\left(\sum_{k}\left|\mu_{k} * f\right|^{2}\right)^{1 / 2}\right\|_{p} \leq C\left\|\left(\sum_{k}\left|f_{k}\right|^{2}\right)^{1 / 2}\right\|_{p} \tag{36}
\end{equation*}
$$

$\forall \frac{2 \tilde{p}}{\tilde{p}+1}<p<\frac{2 \tilde{p}}{\tilde{p}-1}$, exactly as in [3]. Then

$$
\begin{aligned}
\left\|\sup _{k}\left|\mu_{k} * f\right|\right\|_{p} \leq & \left\|\left(\sum_{k}\left|\mu_{k} * S_{k} f\right|^{2}\right)^{1 / 2}\right\|_{p}+\left\|\left(\sum_{k}\left|\nu_{k} * S_{k} f\right|^{2}\right)^{1 / 2}\right\|_{p} \\
& +\left\|\sup _{k}\left|\nu_{k} * f\right|\right\|_{p}+\left\|\sup _{k}\left|\left(\mu_{k}-\nu_{k}\right) *\left(I-S_{k}\right) f\right|\right\|_{p} \\
& =A+B+D+E .
\end{aligned}
$$

Now (36) together with (33) gives suitable bounds for A and $B, \forall \frac{2 \tilde{p}}{\tilde{p}+1}$ $<p<\frac{2 \tilde{p}}{\tilde{p}-1}$, whilst $D \leq C\|f\|_{p}, \forall 1<p<\infty$, by (35). It remains,
therefore, to bound E. Again the proof that $E \leq C\|f\|_{p}, \forall \frac{2 \widetilde{p}}{\tilde{p}+1}<p$ is essentially contained in Proposition 5.1, [3].

Proposition 5.1 completes the proof of L^{p}-boundedness of $\sup _{k} \mid \mu_{k} *$ $f \mid$ and thence of \mathcal{M}_{Γ}. Noting that from (33) we may also obtain

$$
\left\|\sum_{k} S_{k} f_{k}\right\|_{p} \leq C\left\|\left(\sum_{k}\left|S_{k} f_{k}\right|^{2}\right)^{1 / 2}\right\|_{p}, \quad 1<p<\infty
$$

we may now deduce the result for \mathcal{H}_{Γ} from that for \mathcal{M}_{Γ}, following the argument in [3].

Acknowledgement. I would like to thank my thesis adviser, Tony Carbery for his encouragement and valuable suggestions. I would also like to thank the referee for his/her many useful comments, which greatly improved the presentation of this material.

References

[1] H. Carlsson, M. Christ, A. Cordoba, J. Duoandikoetxea, J.L. Rubio de Francia, J. Vance, S. Wainger and D. Weinberg, L^{p} estimates for maximal functions and Hilbert transforms along flat convex curves in \mathbb{R}^{2}, Bull. Amer. Math. Soc., 143 (1986), 263-267.
[2] A. Carbery, Differentiation in lacunary directions and an extension of the Marcinkiewicz multiplier theorem, Ann. Inst. Fourier, 38 (1988), 157-168.
[3] A. Carbery, M. Christ, J. Vance, S. Wainger and D. Watson, Operators associated to flat plane curves: L^{p} estimates via dilation methods, Duke Math. J., 59 (1989), 675-700.
[4] A. Carbery, J. Vance, S. Wainger and D. Watson, The Hilbert transform and maximal function along flat curves, dilations and differential equations, Amer. J. Math., 116, no. 5 (1994), 1203-1239.
[5] A. Nagel, E.M. Stein and S. Wainger, Differentiation in lacunary directions, Proc. Nat. Acad. Sci. USA, 75 (1978), 1060-1062.
[6] A. Nagel, J. Vance, S. Wainger and D. Weinberg, The Hilbert transform for convex curves in \mathbb{R}^{n}, Amer. J. Math., 108 (1986), 485-504.
[7] E.M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc., 84 (1978), 1239-1295.

Received November 10, 1992 and in revised form May 18, 1993. Supported by SERC.

University College Dublin
Belfield, Dublin 4
Republic of Ireland

