ON A TAUBERIAN THEOREM FOR ABEL SUMMABILITY

Otto Szász

1. Introduction. In 1928 the author proved the following theorem [2, Section 2] :

Theorem A. If $p>1$ and

$$
\begin{equation*}
\sum_{\nu=1}^{n} \nu^{p}\left|a_{\nu}\right|^{p}=O(n), \quad n \longrightarrow \infty \tag{1.1}
\end{equation*}
$$

then Abel summability of the series $\sum_{n=0}^{\infty} a_{n}$ to s implies its convergence to s.
The theorem is the more general the smaller p is; it does not hold for $p=1$ [2, Section 1; 1, pp. 119, 122]. However, for this case Rényi proved the following theorem:

Theorem B. If

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{\nu=1}^{n} \nu\left|a_{\nu}\right|=l<\infty
$$

exists, then Abel summability of $\sum_{n=0}^{\infty} a_{n}$ to s implies convergence of the series to s.
2. Generalization. We give a simpler proof and at the same time a slight generalization of Theorem B.

Theorem l. Assume that

$$
\begin{equation*}
V_{n}=\sum_{\nu=1}^{n} \nu\left|a_{\nu}\right|=O(n) \tag{2.1}
\end{equation*}
$$

and that

$$
\begin{equation*}
\frac{1}{m} V_{m}-\frac{1}{n} V_{n} \longrightarrow 0 \tag{2.2}
\end{equation*}
$$

[^0]for every sequence $m=m_{n}$, such that $m_{n} / n \longrightarrow 1$ as $n \longrightarrow \infty$. Then Abel summa bility to s of $\sum_{n=0}^{\infty} a_{n}$ implies its convergence to s.

Property (2.2) is called slow oscillation of the sequence V_{n} / n.
Proof of Theorem 1. We write

$$
\sum_{\nu=0}^{n} a_{\nu}=s_{n}, \quad \sum_{\nu=0}^{n} s_{\nu}=(n+1) \sigma_{n}
$$

It is easy to verify that, for $k=0,1,2, \cdots$, we have

$$
\begin{equation*}
s_{n-1}-\sigma_{n+k}=\frac{n}{k+1}\left(\sigma_{n+k}-\sigma_{n-1}\right)-\frac{1}{k+1} \sum_{\nu=0}^{k}(k+1-\nu) a_{n+\nu} . \tag{2.3}
\end{equation*}
$$

It is known [see 2, Section 2] that if for a finite s we have

$$
\lim _{x \rightarrow 1} \sum_{n=0}^{\infty} a_{n} x^{n}=s
$$

then (2.1) implies $\sigma_{n} \longrightarrow s$; thus, if

$$
\begin{equation*}
\text { l.u.b. }\left|\sigma_{n-1}-\sigma_{n+k}\right|=\epsilon_{n}, \tag{2.4}
\end{equation*}
$$

then $\epsilon_{n} \longrightarrow 0$.
We now choose

$$
\begin{equation*}
k=k_{n}=\left[n \epsilon_{n}^{1 / 2}\right], \quad \text { so that } \quad k \leq n \epsilon_{n}^{1 / 2}<k+1 ; \tag{2.5}
\end{equation*}
$$

it follows, in view of (2.4), that

$$
\frac{n}{k+1}\left|\sigma_{n-1}-\sigma_{n+k}\right|<\epsilon_{n}^{1 / 2}
$$

In view of (2.3) our theorem will be proved if we show that

$$
\frac{1}{k+1} \sum_{\nu=0}^{k}(k+1-\nu) a_{n+\nu} \longrightarrow 0, \quad n \longrightarrow \infty
$$

Now

$$
\begin{aligned}
\left.\frac{1}{k+1} \right\rvert\, \sum_{\nu=0}^{k}(k & +1-\nu) a_{n+\nu} \mid \\
& \leq \frac{1}{k+1} \sum_{\nu=0}^{k}(n+\nu)\left|a_{n+\nu}\right| \frac{k+1-\nu}{n+\nu} \leq \frac{1}{n}\left(V_{n+k}-V_{n-1}\right)
\end{aligned}
$$

and

$$
\begin{align*}
& \frac{1}{n}\left(V_{n+k}-V_{n-1}\right)=\frac{V_{n+k}}{n+k} \cdot \frac{n+k}{n}-\frac{V_{n-1}}{n-1} \cdot \frac{n-1}{n} \tag{2.6}\\
& \quad=\frac{V_{n+k}}{n+k}-\frac{V_{n-1}}{n-1}+\frac{k}{n} \frac{V_{n+k}}{n+k}+\frac{1}{n} \frac{V_{n-1}}{n-1}
\end{align*}
$$

using (2.2) and (2.5), we see that

$$
\begin{equation*}
\frac{1}{n}\left(V_{n+k}-V_{n-1}\right) \rightarrow 0 \quad \text { as } \quad \frac{k}{n} \rightarrow 0 \quad \text { and } \quad n \longrightarrow \infty \tag{2.7}
\end{equation*}
$$

and thus Theorem 1 is proved.
Rényi observed that the Theorems A and B are overlapping. We now show that Theorem 1 includes not only Theorem B, but also Theorem A. Clearly (2.1) follows from (1.1) by Hölder's inequality. Furthermore,

$$
\begin{aligned}
V_{n+k}-V_{n}= & \sum_{\nu=n+1}^{n+k} \nu\left|a_{\nu}\right| \leq k^{(p-1) / p}\left(\sum_{\nu=n+1}^{n+k} \nu p\left|a_{\nu}\right|^{p}\right)^{1 / p} \\
& =k^{(p-1) / p} O\left[(n+k)^{1 / p}\right]
\end{aligned}
$$

hence,

$$
\frac{1}{n}\left(V_{n+k}-V_{n}\right)=\frac{k}{n} O\left[\left(\frac{n}{k}\right)^{1 / p}\right]=O\left[\left(\frac{k}{n}\right)^{(p-1) / p}\right] \rightarrow 0 \quad \text { as } \frac{k}{n} \longrightarrow 0
$$

It now follows from (2.6) that (2.2) holds; thus (1.1) implies (2.1) and (2.2), which proves our assertion.

An example of a sequence $V_{n}>0$, and increasing, for which (2.2) holds,
while $n^{-1} V_{n} \uparrow \infty$, is

$$
V_{n}=n \log n, \quad n \geq 2
$$

because

$$
\frac{V_{n+k}}{n+k}-\frac{V_{n}}{n}=\log \left(1+\frac{k}{n}\right) \longrightarrow 0, \quad \text { as } \frac{k}{n} \longrightarrow 0, \quad n \longrightarrow \infty
$$

3. A more general result. A generalization of Theorem A is the following [see 5, p. 56]:

Theorem A'. If for some $p>1$, we have

$$
\begin{equation*}
\sum_{\nu=1}^{n} \nu^{p}\left(\left|a_{\nu}\right|-a_{\nu}\right)^{p}=O(n), \quad n \longrightarrow \infty \tag{3.1}
\end{equation*}
$$

then the Abel summability of $\sum_{n=0}^{\infty} a_{n}$ implies its convergence to the same value.
An analogue to Theorem 1 is the theorem:
Theorem 2. Assume that

$$
\begin{equation*}
U_{n}=\sum_{\nu=1}^{n} \nu\left(\left|a_{\nu}\right|-a_{\nu}\right)=O(n) \tag{3.2}
\end{equation*}
$$

and that

$$
\begin{equation*}
\frac{1}{m} U_{m}-\frac{1}{n} U_{n} \longrightarrow 0 \quad \text { as } \frac{m}{n} \longrightarrow 1, \quad n \longrightarrow \infty \tag{3.3}
\end{equation*}
$$

If now $\sum_{n=0}^{\infty} a_{n}$ is Abel summable to s, then it converges to s.
Proof of Theorem 2. We have

$$
-\sum_{\nu=1}^{n} \nu a_{\nu} \leq \sum_{\nu=1}^{n} \nu\left(\left|a_{\nu}\right|-a_{\nu}\right)=O(n) ;
$$

hence [see 5, the Lemma on p.52] Abel summability of $\sum_{n=0}^{\infty} a_{n}$ implies its summability ($C, 1$). From (2.3) we have

$$
\begin{aligned}
s_{n-1}-\sigma_{n+k} & \leq \frac{n}{k+1}\left(\sigma_{n+k}-\sigma_{n-1}\right) \\
& +\frac{1}{k+1} \sum_{\nu=0}^{k}(k+1-\nu)\left(\left|a_{n+\nu}\right|-a_{n+\nu}\right)
\end{aligned}
$$

from (2.4) and (2.5) we obtain

$$
\frac{n}{k+1}\left(\sigma_{n+k}-\sigma_{n-1}\right)<\epsilon_{n}^{1 / 2} .
$$

Using the same argument as in the proof of Theorem 1 , replacing V_{n} by U_{n}, we find that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup s_{n} \leq s \tag{3.4}
\end{equation*}
$$

We next employ the identity, similar to (2.3),

$$
\begin{aligned}
s_{n}-\sigma_{n-k-1}= & \frac{n+1}{k+1}\left(\sigma_{n}-\sigma_{n-k-1}\right) \\
& +\frac{1}{k+1} \sum_{\nu=0}^{k}(k-\nu) a_{n-\nu}, \quad k=0,1,2, \cdots,
\end{aligned}
$$

and the inequality

$$
a_{\nu} \geq a_{\nu}-\left|a_{\nu}\right|
$$

The same reasoning as before now yields

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \inf _{n} \geq s \tag{3.5}
\end{equation*}
$$

Finally (3.4) and (3.5) prove Theorem 2.
It is clear from the proof that condition (3.3) can be replaced by

$$
\frac{1}{n}\left(U_{m}-U_{n}\right) \longrightarrow 0, \quad \text { as } \frac{m}{n} \longrightarrow 1, \quad n \longrightarrow \infty
$$

4. An equivalent result. A glance at the proof of Theorem 1 shows that the following lemma holds:

Lemma l. If V_{n} is positive and monotone increasing, and if

$$
\begin{equation*}
V_{n}=O(n), \quad \text { as } n \longrightarrow \infty \tag{4.1}
\end{equation*}
$$

and (2.2) holds, then

$$
\begin{equation*}
\frac{1}{n}\left(V_{m}-V_{n}\right) \longrightarrow 0 \tag{4.2}
\end{equation*}
$$

$$
\text { as } \frac{m}{n} \longrightarrow 1, \quad n \longrightarrow \infty
$$

We now prove the inverse:
Lemma 2. If $V_{n}>0$, and increasing, and if (4.2) holds, then (4.1) and (2.2) hold.

Proof. We write

$$
V_{n}=n \omega_{n}, \quad \omega_{n} \geq 0
$$

and

$$
\begin{equation*}
\frac{1}{n}\left(V_{m}-V_{n}\right)=\omega_{m}-\omega_{n}+\left(\frac{m}{n}-1\right) \omega_{m} \tag{4.3}
\end{equation*}
$$

Let

$$
\max _{\nu \leq n} \omega_{\nu}=\rho_{n} ;
$$

then $\rho_{n} \uparrow \rho \leq \infty$. If $\rho<\infty$, then $V_{n}=O(n)$. Suppose now that $\rho=\infty$; then there are infinitely many indices $m=m_{\nu}$, so that $\omega_{m}=\rho_{m}$ for $m=m_{\nu}, \nu=1,2,3, \cdots$. For these m and for $n<m$, from (4.3) we get

$$
\begin{equation*}
\frac{1}{n}\left(V_{m}-V_{n}\right)>\left(\frac{m}{n}-1\right) \rho_{m} \tag{4.4}
\end{equation*}
$$

We now choose

$$
n=\frac{m \rho_{m}{ }^{1 / 2}}{1+\rho_{m}^{1 / 2}}<m,
$$

so that

$$
\frac{m}{n}=\frac{1+\rho_{m}^{1 / 2}}{\rho_{m}^{1 / 2}} \longrightarrow 1 ;
$$

then, using (4.4), we have

$$
\frac{1}{n}\left(V_{m}-V_{n}\right)>\rho_{m}^{1 / 2} \longrightarrow \infty
$$

in contradiction to the assumption (4.2). It follows that (4.1) holds; finally (2.2) follows from (4.1), (4.2), and (4.3). This proves Lemma 2.

We now prove the following theorem:
Theorem 3. Let $U_{n}=\sum_{\nu=1}^{n} \nu\left(\left|a_{\nu}\right|-a_{\nu}\right)$; if

$$
\begin{equation*}
\frac{1}{n}\left(U_{m}-U_{n}\right) \longrightarrow 0, \quad \text { as } \frac{m}{n} \longrightarrow 1, \quad n \longrightarrow \infty \tag{4.5}
\end{equation*}
$$

and if $\sum_{n=0}^{\infty} a_{n}$ is Abel summable, then $\sum_{n=0}^{\infty} a_{n}$ is convergent to the same value.
Proof of Theorem 3. In view of Lemma 2, Theorem 3 includes Theorem 2; it also includes Theorem 1, because of Lemma 2, and of the inequality

$$
U_{m}-U_{n} \leq 2\left(V_{m}-V_{n}\right), \quad m>n
$$

Conversely, by Lemma 2, (4.5) implies (3.2) and (3.3), so that Theorem 3 is equivalent to Theorem 2, and is thus valid.

To show that Theorem 1 is actually more general than Theorem B we give an example of a sequence ω_{n} so that $n \omega_{n}$ is increasing, ω_{n} is slowly oscillating and $\omega_{n}=O(1)$, but $\lim \omega_{n}$ does not exist. Let

$$
\omega_{n}=\sum_{\nu=1}^{n} \nu^{-1} \epsilon_{\nu}, \quad \text { where } \epsilon_{\nu}= \pm 1
$$

choose $\epsilon_{\nu}=+1$ as long as $\omega_{n} \leq 3 ; \nu=1,2, \cdots, n_{1}$, say. Choose $\epsilon_{\nu}=-1$ as long as $\omega_{n} \geq 2 ; \nu=1+n_{1}, 2+n_{1}, \cdots, n_{2}$, say; and so on. It is clear that $\omega_{n}=O(1)$, and that $\lim \omega_{n}$ does not exist. Furthermore, for $n \leq n_{1}, \omega_{n} \uparrow$, for $n_{1}<n \leq n_{2}, \omega_{n} \downarrow$, and so on. Now

$$
(n+1) \omega_{n+1}-n \omega_{n}=n\left(\omega_{n+1}-\omega_{n}\right)+\omega_{n+1} \geq \frac{3}{2}-1=\frac{1}{2}
$$

hence $n \omega_{n} \uparrow$. Finally

$$
\left|\omega_{m}-\omega_{n}\right| \leq \sum_{\nu=n+1}^{m} \frac{1}{\nu}<\frac{m-n}{n} \longrightarrow 0, \quad \text { for } \frac{m}{n} \longrightarrow 1
$$

hence ω_{n} is slowly oscillating.
5. Another equivalent result. We first establish the following lemma.

Lemma 3. Suppose that $U_{n} \geq 0$ and increasing, with $U_{0}=0$, and let

$$
\begin{array}{rlr}
b_{n}=\frac{1}{n}\left(U_{n}-U_{n-1}\right), & n \geq 1, & b_{0}
\end{array}=0 ;
$$

Then whenever $k=k(n)$ is so chosen that $k / n \rightarrow 0$, as $n \rightarrow \infty$, the two statements

$$
\begin{equation*}
\frac{1}{n}\left(U_{n+k}-U_{n}\right) \longrightarrow 0 \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{n+k}-B_{n} \longrightarrow 0 \tag{5.4}
\end{equation*}
$$

are equivalent.
Proof. From (5.1) we have

$$
U_{n}=\sum_{\nu=0}^{n} \nu b_{\nu}, \quad U_{n+k}-U_{n}=\sum_{\nu=n+1}^{n+k} \nu b_{\nu} .
$$

Now

$$
B_{n+k}-B_{n}=\sum_{\nu=n+1}^{n+k} b_{\nu} \leq \frac{1}{n} \sum_{\nu=n+1}^{n+k} \nu b_{\nu}=\frac{1}{n}\left(U_{n+k}-U_{n}\right) ;
$$

thus (5.3) implies (5.4). Furthermore,

$$
B_{n+k}-B_{n} \geq \frac{1}{n+k}\left(U_{n+k}-U_{n}\right) ;
$$

hence (5.4) implies (5.3). This proves the lemma.
We note that

$$
B_{n}=\frac{1}{n} U_{n}+\sum_{\nu=1}^{n-1} \frac{1}{\nu(\nu+1)} U_{\nu}
$$

and

$$
U_{n}=n B_{n}-\sum_{\nu=0}^{n-1} B_{\nu}
$$

It is an immediate consequence of Lemma 3 that Theorem 3 is equivalent to the following theorem (for a direct proof see [4, Theorem IV]).

Theorem 4. If

$$
\sum_{\nu=n+1}^{n+k}\left(\left|a_{\nu}\right|-a_{\nu}\right) \longrightarrow 0, \quad \text { as } \frac{k}{n} \longrightarrow 0, \quad n \longrightarrow \infty
$$

then Abel summability of $\sum_{n=0}^{\infty} a_{n}$ implies convergence of the series to the same value.

A generalization of this theorem to Dirichlet series and to Laplace integrals, on different lines, is given in [3].

References

1. A. Rényi, On a Tauberian the orem of O. Szász, Acta Univ. Szeged. Sect. Sci. Math. 11 (1946), 119-123.
2. O. Szász, Verallgemeinerung eines Littlewoodschen Satzes über Potenzreihen, J. London Math. Soc. 3 (1928), 254-262.
3. -, Verallgemeinerung und neuer Beweis einiger Sätze Tauberscher Art, Sitzungsberichte d. Bayer. Akad. d. Wissenchaften $z u$ München, 59 (1929), 325-340.
4. -, Generalization of two theorems of Hardy and Littlewood on power series, Duke Math. J., 1 (1935), 105-111.
5. Introduction to the theory of divergent series, University of Cincinnati, Cincinnati, 1944; Hafner, New York, 1948.

[^0]: Received April 10, 1950. The preparation of this paper was sponsored (in part) by the Office of Naval Research.

 Pacific J. Math. 1 (1951), 117-125.

