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NIELSEN NUMBERS FOR ROOTS OF MAPS OF
ASPHERICAL MANIFOLDS

ROBIN BROOKS AND CHARLES ODENTHAL

Let / : X -» Y be a map of closed orientable manifolds of the
same dimension, and let a eY. The topological degree of / is
an algebraic count of the number of solutions to f(x) = α, but
not an actual count. The Nielsen number N(f,a) of roots is an
actual lower bound for the number of solutions. We investi-
gate conditions under which N(f,a) == (degree /|. Our question
is analogous to the question in fixed point theory: when is the
Lefschetz number equal to the fixed point Nielsen number?
We find equality when X = Y is an aspherical manifold whose
fundamental group satisfies the ascending chain condition on
normal subgroups, or if X and Y are aspherical manifolds with
virtually polycyclic fundamental groups. This includes infra-
solvmanifolds. Similar results are obtained for nonorientable
manifolds by considering their orientable double covers.

1. Introduction.

Suppose / : X -> Y a mapping of topological spaces, and a G Y. A point
x G X is a root of (/,α) if f(x) = a. When X and Y are closed orientable
manifolds, the topological degree of / is an algebraic count of the number
of roots of (/, a). However, neither it - nor its absolute value - provide an
actual count of the number of roots. For example, map the Riemann sphere
(C U oo) onto itself by f(z) = z3. Then the degree of / is 3, but there is just
one root of f(z) = 0.

An analogous situation exists in fixed point theory, where the Lefschetz
number L(f) is an algebraic count, but not an actual count, of the number
of fixed points of /. In fixed point theory, the (fixed point) Nielsen number,
JV(/), is a homotopically invariant lower bound on the actual number of
fixed points of /. Although, in general, the fixed point Nielsen number is
not the same as the Lefschetz number, it was shown in [8] that for maps
of an n-dimensional torus N(f) = \L(f)\. This result was generalized by
Anosov [1] and Fadell and Husseini [9] to self-maps of nilmanifolds. Numer-
ous extensions of the fixed point results have been made by Keppelman and
McCord [13], Kwasik and Lee [15], Lee [16], and McCord [18, 19, 20, 21]
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to generalizations of nilmanifolds: infranilmanifolds, solvmanifolds, and in-
frasolvmanifolds. McCord's paper [19] also applies to coincidences, i.e., so-
lutions of the equation f(x) = g(x) where f,g:X-+Y are two mappings
between, possibly, different spaces.

By analogy with fixed point theory, the Nielsen number N(f, a) of roots of
f(x) = a was defined in [4 and 7] (there it is called the Δ 2 Nielsen number).
The definition is recalled in Section 2 below (see [14, pp. 123-138] for a
very readable account of the Nielsen theory of roots). It has for roots the
same or analogous properties as the ordinary fixed point Nielsen number.
In particular, it is a lower bound for the number of roots of (/, a) and is
invariant under homotopies of /. In fact, for maps of closed manifolds,
both Nielsen numbers are special cases of the coincidence Nielsen number
N(f,g), which is a lower bound on the number of solutions to f(x) — g(x).
For orientable closed manifolds, there is also a Lefschetz coincidence number
L(f^g) that specializes to the degree of /, when g is a constant map, and
the fixed point Lefschetz number when g is the identity map.

In this paper, we address the question for roots: When is the Nielsen num-
ber iV(/, a) of a map f :-*Y equal to the absolute value of the degree of /?
This is a simpler question than the corresponding question for coincidences
or even for fixed points. As a consequence, we are able to use elementary
methods and obtain sharper results.

A space X is aspherical iff it is connected and all its higher homotopy
groups, πnX for n > 1, are trivial. Equivalently, the universal cover of
X is contractible. The space X is also called an Eilenberg-MacLane space
of type K(π11) where π is the fundamental group of X. The homotopy
of aspherical spaces and their maps depends entirely on their fundamental
group homomorphisms. Because we are examining the relation between the
Nielsen number (determined largely by fundamental group behavior), and
the degree of a map (determined by homology in the top dimension), it is
natural to limit our attention to these manifolds, where, at least in principle,
both can be computed in terms of fundamental group homomorphisms.

The degree of / : X —> Y is defined only when X and Y are orientable.
But, for any nonorientable manifold X, there is a two sheeted covering
p : X° —» X by an orientable manifold X° unique up to covering space
isomorphism. This is called the orientable double covering. Following Mc-
Cord [20], we shall use it to state results for nonorientable manifolds. (To
define X°, consider the action of the fundamental group πX on the universal
covering space of X. The elements whose action preserves orientation form
a subgroup of index two. Let p : X° —> X be the corresponding covering,
i.e., p#πX° is the subgroup of πX whose action preserves orientation.)

The following theorem is proved in Section 2.
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Theorem 1. Suppose f : X -» Y a map of closed aspherical manifolds
of the same dimension and a is any point in Y. Suppose further that the
homomorphism /# : πX -> πY induced on the fundamental groups is a
monomorphism. Then the Nielsen number N(f,a) = |coker/# | > 0. More-
over, depending on orientability, we have one of the following three cases:
1. Y is orientable. Then X is also orientable and

2. X is orientable but Y is not Let r : Y° -> Y be the orientable double
covering. Then there is a lift f° : X -> Y° of f through r and

N(f,a) = 2\degreef°\.

3. Neither X nor Y are orientable. Let p : X° -> X and r : Y° -> Y be
the orientable double coverings. Then there is a lift f° : X° -> Y° of f op
through r and

JV(/,α) = |degree/°|.

The hypothesis that /# : πX —> πY be monomorphic is very strong. It
amounts to assuming that / : X -> Y is homotopy equivalent to a covering
map. It is satisfied, however, in two important instances treated in Theorems
2 and 3 below.

A group G satisfies the ascending chain condition on normal subgroups iff
every strictly increasing chain of normal subgroups of G has finite length.

Theorem 2. Suppose G a torsion free group satisfying the ascending chain
condition on normal subgroups. Then any endomorphism G -* G with finite
cokernel is a monomorphism.

This is proved in Section 3 below. The fundamental groups of finite di-
mensional aspherical spaces are torsion free. Also, in order for a map of
closed manifolds to have non-zero Nielsen number, its induced fundamental
group homomorphism must have finite cokernel. Thus Theorem 2 should
apply to a large number of aspherical manifolds.

However, Theorem 2 only applies in the case of self maps / : X —> X. We
also would like conditions that can be applied when domain and range are
different. A group is poly cyclic iff it has a normal series whose factor groups
are all cyclic. It is virtually polycyclic iff it contains a polycyclic subgroup of
finite index. By cdG we mean the cohomological dimension of G. In Section
4 we use the Hirsch number and results of Bieri [2, 3] to prove
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Theorem 3. Suppose G and H torsion free virtually polycyclic groups and
cdG = cdH. Then any homomorphism G —> H with finite cokernel is a
monomorphism.

This theorem applies to an important class of aspherical manifolds: the
infrasolυmanifolds. The following description is taken from [10, pp. 15-18].
A closed manifold is an infrasolvmanifold iff it is a double coset space T\L/K
where L is a Lie group which is both virtually connected and virtually solv-
able, K is a maximal compact subgroup of L, and Γ is a torsion free, co-
compact, discrete subgroup of L. Infrasolvmanifolds are aspherical and have
torsion free virtually polycyclic fundamental groups. Every torsion free vir-
tually polycyclic group is the fundamental group of an infrasolvmanifold.
Two infrasolvmanifolds are homeomorphic if they have the same fundamen-
tal groups. In fact, in dimensions other than three, it is known that every
closed aspherical manifold with virtually polycyclic fundamental group is
homeomorphic to an infrasolvmanifold. The class of infrasolvmanifolds in-
cludes solvmanifolds (polycyclic fundamental group), infranilmanifolds (vir-
tually nilpotent fundamental group), and nilmanifolds (nilpotent fundamen-
tal group). The following theorem therefore applies at least to all infrasolv-
manifolds.

Theorem 4. Suppose f : X —> Y a map of closed aspherical manifolds of

the same dimension, and either X = Y and πX satisfies the ascending chain

condition on normal subgroups, or πX is virtually polycyclic. The following

are equivalent:

1. ΛΓ(/,α)>0,

2. N(f,a) = |Coker/# : πX -» πY\,
3. |Coker/# : πX -» πY\ < oo,
4. fφ : πX —• πY is a monomorphism and therefore Theorem 1 can be
applied to compute iV(/, a) in terms of topological degree.

We prove this theorem in Section 5.
Both the Klein bottle and its orientable double cover, the torus, provide

examples of infrasolvmanifolds. We use them in Section 6 below to illustrate
Theorems 1 and 4.

Finally, we give an example to show that asphericity alone is not enough to
imply (degree/1 = JV(/, α), even for closed orientable manifolds. It is known
that for closed orientable manifolds of the same dimension, degree/ φ 0
iff N(f,a) > 0, and in this case N(f,a) divides degree/ [14, p. 138]. The
following theorem is proved in Section 7. It shows that except for these
constraints, just about anything can happen.

Theorem 5. Let T be a surface of genus one (an ordinary torus) and T2 a
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surface of genus two (a double torus). Both T and T2 are aspherical closed
orientable two dimensional manifolds. For any integers k ^ 0 and n > 0
there is a map f : T2 -> T with Nielsen number ΛΓ(/, a) — n and degree
= kn.

We thank Professor Robert F. Brown for numerous helpful comments on
earlier drafts of this paper. We also thank the referee for a careful and
helpful critique.

2. The Nielsen number N(f,a) and proof of Theorem 1.

To define the Nielsen number of roots of f(x) = α, we first group the roots
into so-called root classes, and then define an essential root class. The
Nielsen number is then the number of essential root classes. The spaces
we are dealing with are all connected, locally path connected, and locally
simply connected. Therefore, instead of the usual definitions of root class
and essential root class, [4, 7] or [14, pp. 125-126], we use an equivalent but
more convenient characterization justified by Lemmas 1.1 and 1.2 in [5].

Let / : X —> Y be a map and a G Y. Assume X and Y connected,
locally path connected, and semi-locally simply connected. Then / induces
a homomorphism /# : πX -» πY of fundamental groups. Since the image
of /# is a subgroup of πY there is a covering q : YN —> Y such that q#
takes πYN isomorphically onto / # π J . We may lift / through q to get a
map fN:X-> YN and the commutative diagram:

For each point aN in the fibre q 1(a) over a the set of points fN (o>N) is
mapped into a by /. Each such set of points is a Nielsen root class of (/, a).
Two points in the same class are Nielsen equivalent. A class fN~ (aN) is
essential iff f±~ (aN) is non-empty for every map ff*:X-> YN homotopic
to fN. The number of essential root classes is the Nielsen number of (/, a)
and is denoted N(f,a).

We are interested in the case where Y is a manifold. Then either every
root class is essential or none are [6]. Thus, if iV(/, α) > 0, then the essential
root classes are in one-one correspondence with ς~1(α), which is also in one-
one correspondence with cokerg# = coker/#. Therefore, if AΓ(/, α) > 0,
theniV(/,α) = |Coker/#|.

We turn to a proof of Theorem 1.
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Proof of Theorem 1. Suppose, henceforth, that X and Y are both closed as-
pherical n-dimensional manifolds, and /# : πX ->> πY is a monomorphism.
Then fφ : πX -> πYN is an isomorphism, so since X and YN are both
aspherical, fN\X-ϊ YN induces homology isomorphisms in all dimensions
with all coefficient groups (in fact, fN is a homotopy equivalence [10, p. 8]).
Since X is compact, then Hn (X; Z2) = Z2, so Hn (YN; Z2) = Z2, and there-
fore YN is also compact (Otherwise Hn (YN\ Z2) = 0).

Since YN is compact, then for any point y € YN, the inclusion i : YN C
(Y^, Y^ — y) induces an isomorphism

ιn.Hn(Y ,L2)=nn{Y , r -

Thus
(i o / " ) : Hn (X]ΓZ2) S F n (Y", y N - y; Z2)

is non-zero. But this means y £ fN(X), for otherwise we could factor i o fN

through (YN — y, YN — y), and since

Hn(YN-y,YN-y)=0,

we would have (i o f N ) n = 0. Therefore fN and every map homotopic to fN

is surjective. Consequently, every root class is essential so

iV(/,α) = |coker/ # |>0.

Case 1. Y is orientable. Then YN, as a covering of an orientable man-
ifold, must also be orientable. Now fN : X —> YN induces a homol-
ogy isomorphism Hn (X) = Hn {YN) = Z, using integer coefficients, so X
must also be orientable and degree/^ = ±1. Since f = q° fN, we have
degree/ = (degreeg) (degree/^) = ibdegreeg. Since q is a covering, its
degree is N(f,a), the cardinality of q~1(a). Therefore iV(/, a) = |degree/|.

Case 2. X is orientable, but Y is not. Let r : Y° -> Y be the orientable
double covering. Since Hn (YN) £ ίfn W , ^ N is also orientable. The
covering q : YN ->- Y may therefore be lifted through r : Y° —>• Y to a
covering q° : Y^ -> Y° resulting in the commutative diagram
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where f° is defined to be q° o fN.
Now r~ι(a) consists of two points, a\ and α°, say. Since image q# =

image/#, then we may use q° : YN -> Y° to compute iV(/°,α?) and
N(f°,a°2). It follows that

+ N (f°y2) = Ig0-1 (α?)| + [gO"1 (α°)|

= \q~\a)\

Case 3. Neither X nor F is orientable. Let p : X° —> X be the orientable
double covering of X. Now treat / o p in the same way as / in Case 2 to
obtain the commutative diagram

X

Prom Case 2, iV(/op,α) = 2|degree/°|. But each root class of / is
covered by two root classes of / op so iV(/,α) = |degree/°|. D

3. Proof of Theorem 2.

Suppose h : G -> G an endomorphism with finite cokernel, and G is a torsion-
free group satisfying the ascending chain condition on normal subgroups. We
show that h is a monomorphism.

Assume, to the contrary, that kerh Φ 1. We show first that h2 = h o h
also has a finite cokernel, and second that ker h2 properly contains ker h. We
may then apply the same proof to h2 and then to /ι4, and so on, thereby
creating a properly ascending infinite sequence ker h C ker h2 C ker h4 C
of normal subgroups of G that contradicts the ascending chain assumption.

Because h induces a surjection of G/hG onto hG/h2G, we have [hG :
h?G] < [G : hG}. Thus,

[G : h2G] = [G : hG] [hG : h2G] < [G : hG]2 < oo.

So /i2 has finite cokernel.
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It remains to show that ker h2 properly contains ker h. We need to find an
x in ker/i2 that is not in ker/i. Let j / ^ 1 and y G ker/i. Since \G/hG\ < oo,
we have yn G hG for some n. Choose x with hx = yn. Since G is torsion
free and yφ\, then yn φ\. Thus, x 0 ker/ι. On the other hand, y G ker/i,
so h2x = hyn = 1, and therefore x G ker/i2.

4. The Hirsch number and a proof of Theorem 3.

For an arbitrary group G define its generalized Hirsch number, ghG, as
follows: For any integer n, ghG > n iff there is a normal series

1 = Go < Gi < < <Vχ <GP = G

for G in which at least n factors Gi/Gi-i are infinite. We define ghG = oo if
ghG > n for all integers n. Otherwise, ghG is the largest integer n for which
ghG > n.

Obviously

Proposition 4.1. ghG = 0 iff G is finite.

The most important property of gh is the following.

P r o p o s i t i o n 4 .2. Suppose that l—>K—ϊGA>Q-ϊlisa short exact

sequence of groups. Then ghG = ghK + ghQ.

Proof. We first show that ghG > ghK + ghQ. Let 1 = Ko < < Kp = K
and 1 = Qo < < Qq = Q be normal series for K and Q. Then 1 =
fK0 < < fKp = g~ιQo < - < g~λQq = G is a normal series for G.
Since / is injective, its first p factors are isomorphic to those in the sequence
for K. Since g is surjective, then g~ιQi —> Qi —ϊ Qi/Qi-i is surjective with
kernel g"1Qi^u so g~1Qilg~1Q%^\ — Qi/Qi-i Thus the last q factors are
isomorphic to those for Q. Therefore the sequence for G has as many infinite
factors as the number for K plus the number for Q.

We now show that ghG < ghK + ghQ. Let 1 = Go < < Gp = G be a
normal series for G. Define normal series for K and Q by Kι = f~ιGι and
Qi — gGi for z = 1,... ,p. We claim that for every i = 1,... ,p

\Gi/Gi-1\ = \Ki/Ki-1\.\Qi/Qi-1\.

If the claim is true, then whenever a factor group in the series for G is
infinite, then at least one of the corresponding ones for K or for G must
also be infinite. This implies that the number of infinite factors in the series
for K, plus the number in the series for Q, must be at least as great as the
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number in the series for G, so ghG < ghK + ghQ. It remains to prove the
claim.

For each i = 0,... ,p there is a short exact sequence 1 —> Ki -4 Gi ^
Qi —>> 1, where /* and g{ are restrictions of / and g. The composition
Ki —> Gi —> Gj/Gj-i has kernel f~ιGi-ι = -R^-i, and therefore induces
a monomorphism /' : Ki/K^i -» G^/G^-i, where f {xK^i) = f(x)Gi-ι.
The composition Gi -+ Qi -* Qi/Qi-i is a surjection whose kernel g^ιQi-ι
contains G;_i, so ft induces a surjection g1 : Gi/Gi-ι —> Qi/Qi-ι where
g' (xGi-ι) = g(x)Qi-\. It suffices to show that the sequence 1 —> Ki/Ki-i —>
Gi/Gi-i —• Qi/Qi-ι —> 1 is exact, for then, by Lagrange's Theorem, we
have \Gi/Gi-ι\ = \KijKi_λ\ |Qi/Qi-i| Since /' injects and g' surjects, we
have exactness at Ki/K^i and Qi/Qi-i Also, for any x E Ki we have
/fo(aθ) = 1, so 3' (/' (a /fi-!)) = g' (f(x)Gi.1) = g(f(x))Qi^ = Q^ = 1 €
Qi/Qi-i- Thus image/' C kernel#'. It remains to show kernel#' C image/'.
Suppose xGi-ι G kernel3. Then p(α ) 6 Qt-i There is therefore a y G G^_i
with y(j/) = g(x). Then g(xy~ι) — 1, so zy"1 = /(z) for some z G UTj.
Then f'lzKi-x) = f(z)Gi^1 = xy^G^ = xG^u

 s i n c e y"1 e Gi-i Thus
a;Gi_i G image/'. D

Proposition 4.3. Suppose H a subgroup of finite index in G. Then gh.H —

Proof, Since H has finite index, it has only a finite number of conjugates
in G, so the intersection core G of these conjugates also has finite index,
and is normal in both H and G. By Proposition 4.1, gh(G/coreif) =
gh (H/ core H) = 0. Applying Proposition 4.2 to the exact sequences 1 —•
core if -> i ϊ ->• (H/coτeH) -> 1 and 1 -> coreίΓ -> G -» (G/coτeH) -> 1
we get ghiί = gh (core # ) + 0 = ghG. D

Proposition 4.4. Suppose ghG = ghiί < oo, / : G —» i ϊ Λαs /iniίe cokernel,
and G is torsion free. Then f is a monomorphism.

Proof. Prom Proposition 4.3, gh (image/) = φH. Prom Proposition 4.2
applied to the exact sequence 1 —> ker/ -> G -» image/ 4 1 we have
gh(ker/) = ghG — gh (image/). Thus gh(ker/) = 0. By Proposition 4.1,
ker/ is finite. But G is torsion free, so this implies ker/ = 1. D

In 1938 Karl Hirsch showed [12] that when G is polycyclic, and 1 =
Go < < Gp = G is a normal series with cyclic factor groups, then the
number of infinite cyclic factors does not depend on the choice of series (see
also [22, pp. 150-154]). This number is now [11, p. 149] called the Hirsch
number of G, denoted by h G.
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Proposition 4.5. ghG = hG for any polycyclic group G.

Proof. Suppose G polycyclic, and let 1 = Go < < Gp = G be a normal
series in which each factor Gi/Gi-ι is cyclic. Clearly hG 0 = 0 = ghG0.
Assume 0 < i < p and ghGj_i = hG<«i. By definition of h, hGi — hGi_i if
Gi/Gi-ι is finite cyclic, and hGi = hG^ι + 1 if Gj/Gi_i is infinite cyclic. On
the other hand, if H is infinite cyclic, then φH = 1, since every normal series
for H has exactly one infinite factor, so by exactness of 1 -» G*_i -> Gι ->
Gi/Gi-ι -> 1, and Propositions 4.1 and 4.2, we also have ghG; = ghG;_i if
Gi/Gi-ι is finite cyclic, and ghG^ = ghG;_i + 1 if G^/G^-i is infinite cyclic.
Thus ghGi = hGi, so by induction, ghG = hG. D

In [2, p. 390] Bieri uses the Lyndon-Hochschild-Serre spectral sequence
to show that every polycyclic group is a Poincare duality group with coho-
mological dimension equal to its Hirsch number. He also shows [2, p. 384]
that a torsion free extension of a Poincare duality group by a finite factor
group is a Poincare duality group of the same cohomological dimension (see
also [3] for these results). Combining Bieri's results with Propositions 4.3
and 4.5 gives

Proposition 4.6. Every torsion free virtually polycyclic group G is a Poincare
duality group with cdG = ghG.

Theorem 3 follows immediately from Proposition 4.4 and 4.6.

5. Proof of Theorem 4.

We show 1=»2=»3=M=»1.
1 =* 2 =* 3. If N(f,a) > 0, then [6, p. 725] N{f,a) = |coker/# |. But

[14, p. 126] JV(/,o) < oo, so |coker/#| < oo.
3 =» 4. Suppose |coker/#| < oo. Since X and Y are both aspherical

manifolds, the groups πX and πY are torsion free. If X = Y and πX
satisfies the ascending chain condition, then Theorem 2 implies that /# is a
monomorphism. In the other case, if πX is virtually polycyclic, then so is
its image f#πX. But, since /#πX has finite index in πY, this implies πY
is also virtually polycyclic, so Theorem 3 implies that /# : πX -> πY is a
monomorphism.

4 => 1. This follows from Theorem 1.

6. Maps of the torus and Klein bottle.

In this section we illustrate Theorems 1 and 4 by computing the Nielsen
number for maps of the two-dimensional torus T and Klein bottle K. Both
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spaces are two-dimensional closed infrasolvmanifolds, so Theorems 1 and 4
apply. Since the torus is orient able and the Klein bottle is not, we may use
these spaces to illustrate all three cases of Theorem 1.

Build if as a CW complex by attaching two one-cells B and C by their
ends to a single zero-cell, forming a figure-eight, or "bouquet of two circles".
To this attach a two-cell by its boundary, so the boundary traces out the
curve BCB~ιC. Then in terms of generators and relations,

= (B,C\BCB~1C = 1).

Similarly, build T by attaching two one-cells Dx and D2 to a single zero-
cell forming another bouquet of two circles, and then attach a two-cell so its
boundary traces out the curve DλD2D^1D2

ι. Then

πT = (D1,D2\D1D2Dϊ1D2-
1) = 1.

Because πT is free abelian on the two generators Dx and D2, the homo-
morphism /# : πT —> πT induced by a map has a matrix relative to the
basis Dι and D2. We make repeated use of the fact that the degree of / is
given by the determinant of this matrix. (Sketch of proof: The generator of
the top cohomology group H2(T) is the cup-product D{\!D2 of the cocycles
dual to Dλ and D2, so f2 (D{ V D;) = (det A) (D{ V D;).)

Although πX is not abelian, the relation BCB~ιC = 1 may still be used
to express any element in πK uniquely in the form BxCy. The relation also
implies that CyBx = BxCy if x is even, and CyBx = BxC~y if x is odd.
In particular, (BxCy) = B2x whenever x is odd. It also implies B2 and
C commute, so together they freely generate an abelian subgroup of πK
of index two. The monomorphism q# : πT —>> πK defined by q#Dx = B2

and q#D2 = C takes πT isomorphically onto this subgroup. In fact, q# is
induced by the orient able double covering q :T —ϊ K.

The following four propositions give formulas for the Nielsen number for
maps T -> T, T -> K, K -> Γ, and K -> K. In the K -> T case, the
Nielsen number is always zero. In the other cases, the formulas are given in
terms of the images of the generators of the fundamental groups under the
induced homomorphisms.

Proposition 6.1. Suppose f : T —> T a map and let A be the matrix of
/ # : πT -> πT relative to the basis Cλ and C2. Then N(f,a) = \detA\.

Proof. If det 4̂ = 0, then /# is not a monomorphism, so Theorem 4 implies
iV(/, α) = 0. If det A φ 0, then / # is a monomorphism so Case 1 of Theorem
1 implies N(f,a) = |degree/| = |det A\. D
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Proposition 6.2. Let f : T -> K be a map and /# : πT -> πif ite induced
homomorphism. Let

6, c, d, and e are characterized by fφDx = BbCd and fφD2 = BcCe.
If both b and c are even, then N(f,a) = |detA|. Otherwise, fφ is not
monomorphic, and iV(/, a) = 0.

Proof. If fφ is not monomorphic, then Theorem 4 implies that iV(/, a) = 0.
Suppose henceforth that fφ is monomorphic. Then, from Case 2 of Theorem
1, there is a lift /° : T -> T of / through g, so <?# o /° = / # . Then /££>! =
£>*Df for some integers x and y. Thus £ 6 C d = qφ o /° A = qφD\D\ =

B2xC2/, so /^J?! = P p C f and 6 is even. Similarly /£D 2 = #ί/2£>2 a n d c i s

even. Prom Case 2 of Theorem 1, JV(/,α) = 2 |degree/01. But

degree/0 = det

Therefore, iV(/, α) = det A. D

Proposition 6.3. For any map f : K -+T, N(f,a) = 0.

Proof. Since T is orientable and If is not, Case 1 of Theorem 1 implies that fφ
cannot be a monomorphism. (This also follows from the fact that πK is not
abelian, but πT is.) Therefore Theorem 4 implies that iV(/, o) = 0. D

Proposition 6.4. Let f : K —>• K be a map. Then there are integers b, d,
and e such that f#B = BbCd, fφC = Ce, and either b is odd or e = 0. In
either event, N(f,a) = \be\.

Proof. Clearly /#J5 = BbCd and }ΦC = BcCe for some integers 6, c, d and
e. We need to show that c = 0, and that either b is odd or e = 0.

One can show that the commutator subgroup of πK is (C2), so fφC2 G
(C2). But the relation BCB~ιC = 1 implies / # C 2 = £ 2 c C x (where x =
(—l)ce + e), so 2c = 0, and therefore c = 0.

One computes 1 = fφBCB'xC = BbCdCeC-dB-bCe = Cx where a; =
(~l)δe + e. Since α; = 0, either 6 is odd or e = 0.

If either b = 0 or e = 0, then / # is not monomorphic, so Theorem 4
implies that JV(/,α) = |6e| = 0. Suppose now that both 6 ^ 0 and e φ 0.
Then /# is monomorphic so we apply Case 3 of Theorem 1. To do so we
need to find /£ : πT -> πT so that /# o g # = <j# o /£ .

Now / # o 9 # J D ! = / # J B 2 = (J36Cd)2. But b is odd, since e / 0, so

(BbCd)2 = J3 2 d. Hence / # o g # A = B2b = g # DΪ. Also, / # o 9 # D 2 =
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fφC = Ce = qΦDe

2. So define /£ by f%Dλ = £>}, and /#£>2 = D|, to get
/ # oq# = q^ o/£. Since the matrix of /£ : πT -> πT has determinant 6e, the
degree of f° : T -> T is 6e. By Case 3 of Theorem 1, iV(/, a) = |degree/°| =
\be\. a

7. Maps from the double torus to the ordinary torus.

The ordinary two dimensional torus and double torus T2 are well known to
be closed, orientable, and aspherical. In this section we classify the maps
from T2 into T. In particular, for any integers n > 0 and k φ 0, we exhibit
a map with N(fy a) = n and degree/ = n&, thus proving Theorem 5.

We use the usual CW structure for T2: Four one-cells CΊ, C2, C3, and
C4 have their ends attached to a single zero-cell to form a "bouquet of four
circles." To this, the boundary of a single two-cell is attached so that the
boundary traces out the curve

C1C2C1 (72 C3C4C3 C4

We use the same CW structure for T as in the previous section. Then

πT2 = \C\,C2<>Cz,Cά\C\C<ιCx C2 C3C^C3 C4 = 1 )

πT = {DuD2\DιD2D^ιD-1 = l ) .

Since T2 and T are aspherical, every homomorphism πT2 —>• πT is in-
duced by a map T2 —> T, unique up to homotopy. Since πT is abelian,
the homomorphisms πT2 —> πT are in one to one correspondence with their
abelianizations HχT2 -> HXT on the first homology groups. Thus, given any
homomorphism iίiT2 —> H\T, there is an unique (up to homotopy) map
T2 -* T inducing it. We therefore concentrate on homology.

Now HχT2 is free abelian on the four generators CΊ, C2, C3, and C4, and
HiT is free abelian on the two generators D± and D2. So for any map
/ : T2 —> T, there is a 2 x 4 integer matrix

^ _ /flll fll2 fll3 fll4 ]

\^α2i α22 α23 α24 y

for /1 : HXT2 -> ̂ T , relative to the bases {CΊ,... , C4} and {Du D2}, and
any such matrix determines a map f :T2 -^T (up to homotopy).

In terms of this matrix, |coker/#| = |coker/χ| is the greatest common
divisor of all the determinants of 2 x 2 submatrices of A [4, p. 39]. Thus, if
degree/ φ 0, then

jV(/?α) =g. c.d.{detB|J3a2 x 2submatrix of A}.
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In order to compute the degree of /, we use the cohomology rings H*T2

and H*T.

Proposition 7.1. Let C x *,.- , C2 and D^D^ be the 1-cocycles dual to
C i , . . . , C 4 , and DX,D2. Then
1. DίVΰ 2 * = -£>* V D{ = V*, where F* generates H2T, and D{ V D{ =

D; v D; = o.
2. C{ V C* = -C2* V d = C* V C4* = -C4* V C* = I/*, wΛere t/* generates
H2T2, and C* V C* = 0 /or α// oίΛer i, j.

Proof. For a proof of 1 see [17, p. 348]. We use 1 to sketch a proof of 2.

First, define a homomorphism g# : πT2 —> πT by g#Cχ = Z>i, g#C2 = i?2
and 5#C3 = g#C4 = 1. Then g# may be induced by a map # : T2 -> Γ
that is a relative homeomorphism of the single two-cell of T2 (relative to the
boundary) onto the single two-cell of Γ, and maps the path CιC2CϊιC2

λ

onto the boundary DιD2D^1D2

ι of the two-cell of T, and takes the rest
of the boundary, C^C^C^Cl1^ to the single zero-cell of T. Since g is a
relative homeomorphism of the two-cell of T2 onto the two-cell of T, it in-
duces homology and cohomology isomorphisms in dimension two. Therefore
g* {V*) is a generator of H2 (T2). Let U* = g* (F*). Then U* = 5* (V*) =
g* (Dl V D;) = g* (DJ) V 5* (£>;) = C{ V C2*. A similar construction shows

To compute C{ V C3* = 0, redefine g# : πT2 -> πT by gΦd = Du

g#C3 = .D2, and g#C2 = g#C4 = 1. Then y# is induced by a free group ho-
momorphism (Ci,.. . , C4) —)• (Z?i, D2) that takes the relator CιC2Cϊ1C2

1G^
CAC^Cil to DιDϊ1D2Dz1 = 1 G ( A , # 2 ) . But this implies that p # may
be factored through the free group (Dι,D2). Since this is the group of
the figure-eight space (bouquet of two circles), any map g : T2 -» T in-
ducing g# is homotopic to a map that may be factored through the figure-
eight. The figure-eight is one-dimensional, so 5* (H2T2) = 0. Therefore
C* V C; = 9 * (£>; V D ) = O. Similarly C? V C4* = C2* V C* = C* V C* = 0.

The other products may be computed from these by antisymmetry. D

The matrix for f1 : HιT2 —> HλT relative to the dual bases is the trans-
pose of A. Therefore

= f1(D*1)Vf1(D*2)

j

U* + (αi 3 α 2 4 - a14a23) U*
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SO

degree/ = α χ i °12 a13

Finally, let k and n be any integers with k φ 0 and n > 0. Choose
/ : T2 -> T so that /x : # i T 2 -* # i T has the matrix

/nfc 0 n θ\
^ 0 1 1 0 J "

Then
degree/ = nk + 0 = nfc,

and, since degree/ φ 0,

JV(/, α) = g. c. d.{nk, nk, 0, -n, 0,0} = n

which proves Theorem 5.
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