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CROSSCAP NUMBER OF A KNOT

HITOSHI MURAKAMI AND AKIRA YASUHARA

B. E. Clark defined the crosscap number of a knot to be the
minimum number of the first Betti numbers of non-orientable
surfaces bounding it. In this paper, we investigate the cross-
cap numbers of knots. We show that the crosscap number of
74 is equal to 3. This gives an affirmative answer to a ques-
tion given by Clark. In general, the crosscap number is not
additive under the connected sum. We give a necessary and
sufficient condition for the crosscap number to be additive
under the connected sum.

0. Introduction.

We study knots in the 3-sphere S3. The genus g{K) of a knot K is the
minimum number of the genera of Seifert surfaces for it [11]. Here a Seifert
surface means a connected, orientable surface with boundary K. In 1978, B.
E. Clark [3] defined the crosscap number C(K) oϊK to be the minimum num-
ber of the first Betti numbers of connected, non-orientable surfaces bounding
it. (For the trivial knot, it is defined to be 0 instead of 1.) He proved the fol-
lowing inequality and asked whether there exist knots for which the equality
holds.

C{K) < 2g(K) + 1.

Note that since C (trivial knot) = 0, the equality does not hold for the trivial
knot. In this paper, we give an example which satisfies the equality showing
that C(74) = 3. (We use the notation of J. W. Alexander and B. G. Briggs
for knots [1]. See also [9] and [2].)

Clark also studied how the crosscap number behaves under the connected
sum. If we denote by T(K) the minimum number of the first Betti numbers
of connected, unoriented surfaces bounding it (an unoriented surface means
a surface which is orientable or not), T(K) is additive under the connected
sum, i.e., Y(K^K2) = Y(Kλ) + T(K2) [3, Lemma 2.7] as H. Schubert proved
for the genus [10]. Note that Y(K) = min(2g(K), C(K)). A proof is given by
an ordinary "cut-and-paste" argument. See for example [9, Theorem 5A14].
But such an argument does not apply to the crosscap number because one of
the two surfaces obtained from a non-orientable surface by cutting along an
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arc may be orientable. But Clark proved that C(Kι$K2) is either C(Kλ) +
C(K2) — 1 or C(Kχ) + C(K2) More precisely, he proved that

C(Kλ) + C(K2) - 1 < C{KX%K2) < C{KX) + C{K2).

If we put Kι = K2 = 74, we have the first equality and if we put Kx = K2 =
3i, we have the second equality (this is not so interesting). More generally,
we can show that the second equality holds if and only if C(Ki) = Γ(Ki) for
i — 1 and 2.

1. Inequalities.

In this section, we will give some inequalities concerning Γ(JFC) and C(K).
As an upper bound for C(K), Clark proved the following by adding a

half-twisted band to a Seifert surface as in Figure 1.1.

Proposition 1.1. (B.E. Clark [3, Proposition 2.6]).

C{K) < 2g(K) + 1.

Now we give another upper bound in terms of the crossing number. Let
n(K) be the minimum crossing number of a knot K. Then we have

Proposition 1.2.

2

where [x] denotes the greatest integer which does not exceed x.

Proof. Let D be a diagram in S2 of K with minimum crossings. We colour
the regions of D with black and white like a chess-board and denote by 6
and w the numbers of black regions and white regions respectively. Then
we can construct two surfaces bounding K form the black regions and the
white regions. So T(K) is less than or equal to the first Betti number of
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these surfaces. Since the number of all the regions is n(K) + 2, we have

if n(K) is even,

max(6, w) > <

if n(K) is odd.

Now from an argument using the Euler characteristics, we have

Γ(K) < 1 + n(K) - max(6, w) <

Thus the proof is complete. D

For the crosscap number, we have

Proposition 1.3.

C(K) < [-

Proof. If the surface constructed above is non-orientable, the inequality
clearly holds. If it is orientable and its first Betti number is strictly less
than [n(K)/2], then we can add a half-twisted band as in Figure 1.1 and
make it non-orientable. (This was observed by Clark in the proof of [3,
Proposition 2.6].) Since the first Betti number increases by one, the in-
equality still holds. So we assume without loss of generality that the surface
constructed from the black regions (black surface) is orientable and its first
Betti number is equal to [n(K)/2].

If n(K) = 2 or 3 mod 4, then [n(K)/2] is odd. But this cannot occur
since a surface with odd first Betti number must be non-orientable.

Next we consider the case that n(K) = 0 mod 4. Since the first Betti
number of the white surface is also [n(K)/2] = n(K)/2 in this case, the
result follows since the white surface must be non-orientable (if n(K) Φ 0)
as indicated in Figure 1.2 and so we can choose the white one. (It was
observed by Clark in the proof of Theorem 2.1 in [3] that either black or
white surface is non-orientable.) If n(K) = 0, then K is the trivial knot and
the equality holds from the definition.

Finally we consider the case that n(K) = 1 mod 4. Let b and w be
the numbers of black regions and white regions respectively, and B and
W the black and the white surfaces respectively. From the assumption,
βx(B) = [n{K)/2] = (n{K) - l)/2 and so we have b = (n(K) + 3)/2 since
βι(B) = 1-1- n(K) — 6, where βλ denotes the first Betti number. Since
b + w = n(K) + 2, we have

n(K) = 2w-l.
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or

Figure 1.2.

Figure 1.3.

Now we see that the number of edges of every white region is even, since
otherwise an arc a indicated in Figure 1.3 is non-orientable and so is B.

Let 2xλ, 2x2, -.. , and 2xw be the numbers of edges of white regions. Since
the number of all the edges is 2n(K), we have

Since n(K) = 2w — 1, we see there exists a white region which has only two
edges. If we replace a neighbourhood of this region as in Figure 1.4, we have
a non-orientable surface B1 with the same first Betti number. So we have
C(K) < A(S') = βx(B) = [n(K)/2].

So the proof is complete. D

Observation 1.4. The inequalities in Propositions 1.2 and 1.3 are best
possible if n(K) = 0, 1, or 3 mod4, i.e., we have examples satisfying the
equalities in these cases.

Proof. If n(K) = 4m for some integer m > 0, we take (Im4i, where Um4χ
is the connected sum of m copies of 4i. Since }Jm4i is alternating, we have
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Figure 1.4.

oooo

(c)

Figure 1.5.

(b)

rc(|Jm4i) = 4m from Tait's conjecture [5], [7], [12]. As indicated in Figure
1.5(a), C(AX) < 2. From Proposition 2.1, we see that C(4χ) = 2 since Ax

is not a cable knot. So we have Γ(4X) = min(2^(4i),C(41)) = 2. Thus
C(tlm4i) = Γ(fm4!) = 2m = [4ra/2] from the additivity of T(K). So the
equalities in Propositions 1.2 and 1.3 follow in this case.

If n(K) = Am + 1 (m > 1), then we take 52tt(tlm-i4i). (̂52H(tlm-i
4χ)) is equal to Am 4- 1 as above. Since Γ(52) = C(52) = 2 from Figure
1.5(b) and Proposition 2.1, we see that C(52tt(ttm-i4i)) = Γ^HOU-i^)) =
2m = [(4m + l)/2] by the same reason as above. This gives the equalities
for n(K) =4m + l.

If n(K) = Am + 3 (m > 0), we take 31|l(t)m41). Since Γ(3i) - C(3i) = 1
(see Figure 1.5(c)), we have 0(3^(^1)) = Γ^fKMi)) - 2m + l - [(4m +
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3)/2], and the proof is complete. D

Remark 1.5. As shown in Figure 1.5(d), Γ(63) = C(63) < 3. (Note
that 5(63) = 2.) But the authors do not know whether the equality holds or
not. If it holds, then the equalities in Propositions 1.1 and 1.2 also hold for
n{K) ΞΞ 2 mod 4.

Let D(K) be the double branched cover of S3 branched along a knot K
and e2(K) be the minimum number of generators of Hλ (D(K)\ Z). Then for
a lower bound, we have

Proposition 1.6. Γ(K) > e2(K). Thus we have C(K) > e2(K) and
2g(K)>e2(K).

Proof. Since we can construct the double branched cover of K by cutting
along an unoriented surface bounding it, we have T(K) > e2(K). The second
and the third inequalities follow from the definition of T(K). D

2. Knots with crosscap number two.

If a knot bounds a Mόbius band, it is a cable knot of the centre line of the
band. So we have the following proposition due to Clark [3, Proposition 2.2].

Proposition 2.1. (B.E. Clark). A non-trivial knot has crosscap number
one if and only if it is a (2, p)-cable of some knot for an odd integer p.

Now consider knots with crosscap number two.
For an unoriented surface F with boundary a knot K, C. McA. Gordon

and R. A. Litherland define a Goeritz matrix Gp{K) as follows [4]. Choose
a generator system {αi,α 2,... ,α^} for ί f ^ F Z). Then the (z,j)-entry of
Gp{K) is defined to be lk(αz, rα^), where Ik is the linking number, α̂  is a
1-cycle representing a^ and raj is a 1-cycle in 5 3 — F obtained by pushing
off 2aj.

The normal Euler number e(F) of F is defined to be —lk(K,K'), where
K' is the intersection of F and the boundary of the regular neighbourhood
of K in S3 with orientation parallel to that of K.

Now a result of Gordon and Litherland is as follows [4, Corollary 5].

where σ(K) is the signature of K and sign(Gjp(ίί)) is the signature of
the symmetric matrix Gp{K). Note that σ(K) is by definition equal to
sign(GF(K)) for orientable surface F. We also note that a Goeritz matrix
is uniquely determined if one fixes a generator system for HX(F; Z).
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Figure 2.1.

Figure 2.2.

Now we will prove

Theorem 2.2. Suppose that a knot K bounds a non-orientable surface F
with the first Betti number two. Then one can choose a generator system
for Hχ(F]Z) so that the Goeritz matrix GF(K) corresponding to it is of the
following form.

with σ(K) = sign(GF(K)) - (I + 2m + n) for some odd integers I and n and
some even integer m. Note that I + 2m + n is the sum of all the entries in
GF(K).

Proof. We may assume that F is a disc with two non-orientable bands as
indicated in Figure 2.1. We also assume that crossings of bands are as in
Figure 2.2, except near their heads. Figure 2.3 shows an example.

Choosing a generator system {α, β) as in figure 2.4, we see that the Goeritz
matrix corresponding to it is

Λk(α, ra) lk(α, τb)\ (
\\k(b, TO) lk(6, Tb))

Here a and b are 1-cycles representing a and β respectively, A and B are
bands α and β pass through respectively, and w(X, Y) is the sum of the
signs of crossings of bands X and Y with signs determined as in Figure 2.5.
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Figure 2.3.

Figure 2.4.

Note that lk(α,τ&) = lk(6, rα) = 21k(α,&), so w(A,B) = w(B,A) and both
w(A, B) and w(B,A) are even.

We also see that the normal Euler number of F is — 2{2w(A, A)+w(A, B) +
w(B,A) + 2w(B,B)} — 4 (the last 4 comes from single crossings near the
heads of the bands).

Prom (*), we have

σ(K)=sign(GF(K))

- {2w(A, A) + w(A, B) + w(B, A) + 2w(B, B)} - 2.

Thus the proof is complete putting / = 2w(A, A) +1, n = 2w(B, B) +1, and
m = tϋ(A, J3) = w(B, A). D

Similarly we can prove

Theorem 2.3. // C(K) < d, then we can choose a d x d Goeritz matrix of
the following form.

GF{K) = (Oy)
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positive negative

Figure 2.5.

Figure 3.1.

with an odd, ai3 even (ί φ j), and σ(K) — sign(GF(if)) — J2ij=ϊ a>ij

3. Crosscap number of 74.

In this section we will prove

Theorem 3.1. C{74) = 3.

As is well known and shown in Figure 3.1, we have #(74) = 1. Thus
C(74) < 3 from Proposition 1.1. So we need to prove C(74) > 2.

Note that Proposition 1.6 is not useful at all, since it does not take ori-
entability into account.

Proof of Theorem 3.1. Suppose that C(74) < 2. Then there exists a non-
orientable surface F with dF = 74 and Hλ(F]Z) ^ Z Θ Z. The Goeritz
matrix GF(74) determined by a generator system of H1(F;Z) is a 2 x 2-
matrix. If one changes a generator system by using a unimodular matrix
P, then a Goeritz matrix becomes P ίG jp(74)P, where Pι is the transposed'
matrix of P. Since the absolute value of the determinant of a Goeritz matrix
of a knot is equal to the order of i2Ί(.D(74); Z), the determinant of Gi?(74) is
ί l 5 . Prom an elementary theory of binary quadratic forms (see for example
[8, 3.5]), there are the following seven cases to be considered after changes
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of generator systems.

with e = ί l .
First of all, we consider the linking form λ : Hx (2?(74); Z) xfΓi(JD(74); Z) -»

Q/Z. (For the definition and the way to calculate it from the Goeritz matrix,
see [4]. ) Since the Goeritz matrix corresponding to the oriented Seifert sur-
face described in Figure 3.1 is (^4 _x

4) with appropriate generator system,
there is a generator g of Jff1(Z?(74); Z) (= Z/15Z) such that λ(g,g) = -4/15
in Q/Z. From an easy calculation, we see that the cases (i) with ε = — 1,
(iv) with ε = — 1, and (vii) with ε = 1 are possible. Thus we only need to
consider

Now we use Theorem 2.2. Since σ(74) = —2, there exists an integral
matrix Q = (vq

s) withps — qr=t 1 such that the diagonal entries of QtMQ
is odd and that

(**) sign(M) — (the sum of all the entries in QtMQ) — —2,

where M is X, Y, or Z.
We note that the diagonal entries of QιYQ are even. This contradicts

the fact that the diagonal entries of QιYQ must be odd. (Here the equation
(**) is not used.)

Since the sum of all the entries in QιXQ is equal to — (p + q)2 — 15(r + s)2,
we have

-2 + (p + q)2 + 15(r + s)2 = -2

from (**). But the solution to this equation is p + q = r + s = 0, which is
impossible since Q must be unimodular.

The sum of all entries in QιZQ is equal to (p + q)2 — 15(r + s)2. So we
have

(p + q)2-l5(r + s)2 = 2.

But this is also impossible since the equation becomes

(p + q)2 =2mod 3.
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Thus the proof is complete. D

Remark 3.2. As W. B. R. Lickorish mentioned in [6], 74 bounds a Mobius
band in a 4-ball. So we cannot prove Theorem 3.1 by using a 4-dimensional
technique.

Remark 3.3. We cannot prove that C(63) > 2 using Theorem 2.2, since
the matrix (_J6 ~7

6) satisfies the condition of the theorem and the linking
form determined by it coincides with that of 63.

4. Behaviour under the connected sum.

Clark studied the behaviour of the crosscap number under the connected
sum and show the following inequality.

Proposition 4.1. (B.E. Clark [3, Theorem 2.8]).

C(KX) + C(K2) - 1 < C(K$K2) < C(KX) + C(K2).

We will prove this proposition carefully to obtain a necessary and sufficient
condition for the equalities (Proposition 4.3). Our proof is essentially the
same as Clark's. Before proving this, we prepare a lemma.

Lemma 4.2.

4- Γ(ϋf2), Γ ^ ) + C(K2)).

Proof. It is easy to see

C{K4K2) < mm^CiK,) + Γ(tf2),Γ(tfx) + C{K2)).

So we prove

C(K^K2) > uή

Let F be a non-orientable surface bounding K^K2 with βι(F) = C(Kι$K2).
Let S be a 2-sphere separating the two connected summands. We may
assume that the intersection of S and F is the disjoint union of simple loops
and an arc. Let D be a disc bounding an innermost loop in S with no loop
or arc in it.

We see that dD cuts F into two connected components. For otherwise the
(unoriented) surface F' obtained from "cut-and-paste" along D has the first
Betti number βι(F) — 2. On the other hand, we can construct from F" a
non-orientable surface with the first Betti number βι (F) — 1 adding a twisted
band as in Figure 1.1 if necessary, which contradicts to the minimality of F.
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So we have a surface F' with boundary Kχ$K2 and a closed surface F"
after "cut-and-paste" along D. Prom the minimality, F" is a sphere and so
F' is non-orientable.

Continuing these processes, we can construct a non-orientable surface
which intersects S only in an arc.

Thus we have two unoriented surfaces i<\ and F2 bounding K\ and K2

respectively with βι (Fι)+βι(F2) = βι (F). Since F is a boundary-connected-
sum of Fι and F2, either Fi or F2 is non-orientable.

If Fι is non-orientable, then we have C(KX) < βx(Fι) and T(K2) < βι{F2).
Thus C(K^K2) = β1(F) = β1(F1)+β2(F2) > C{KX) + T{K2) . If F2 is non-
orientable, we have C(K^K2) > T(Kχ) + C(K2). So we have the required
inequality and the proof is complete. D

Proof of Proposition 4.1. Since Γ(K) = min(2g(K),C(K)) and C{K) <
2g{K) + 1 from Proposition 1.1, we have C(K) - T(K) < 1. So C(KX) +
Γ(K2) > C(Kλ) + C(K2) - 1 and Γ ^ ) + C(K2) > C(ud) + C(K2) - 1.
Therefore we have the required formula from the previous lemma. D

Now we see that C(K^K2) is equal to C(KX) + C(K2) - 1 or C(KX) +
C(K2). Since Γ(K) < C(K), we have from Lemma 4.2 a necessary and
sufficient condition to decide which value it takes.

Proposition 4.3. C{K^K2) = C(KX) + C{K2) if and only if

Since C(74) = 3 > Γ(74) = 2, we have

Corollary 4.4.

In particular, we see C(74#74) = 5.
Since g(K) > 1 for a non-trivial knot K, we have

Corollary 4.5. For any non-trivial knots Kχ,K2,... ,UΓn with C(Ki) <
2(i = 1,2,... , n), we have

+ c(κ2) + ... + c(κn).
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