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SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS
WITH FULLY NONLINEAR TWO POINT BOUNDARY

CONDITIONS II

H.B. THOMPSON

We establish existence results for two point boundary
value problems for second order ordinary differential equa-
tions of the form y" = f(x,y,yf), x G [0,1], where / satisfies the
Caratheodory measurability conditions and there exist lower
and upper solutions. We consider boundary conditions of the
form G(Q/(0),?/(l));(?/'(0),ΐ/'(l))) = 0 for fully nonlinear, contin-
u o u s G and of t h e form (y(i),y'(ι)) £ *J(j>), i — 0,1 for c losed

connected subsets J(ϊ) of the plane. We obtain analogues of
our results for continuous /. In particular we introduce com-
patibility conditions between the lower and upper solutions
and : (i) G; (ii) the J(i), i — 0,1. Assuming these compatibil-
ity conditions hold and, in addition, / satisfies assumptions
guarenteeing a'priori bounds on the derivatives of solutions
we show that solutions exist. As an application we generalise
some results of Palamides.

1. Introduction.

In this paper we consider two point boundary value problem for second order

ordinary differential equations of the form

(1.1) y" = f(x, y, y'), for almost all x e [0,1]

where / : [0,1] x E2 —)> K satisfies the Caratheodory conditions. By a

solution of (1.1) we mean a function y with y' absolutely continuous and y

satisfying (1.1) almost everywhere. The first class of boundary conditions

we will consider are of the form

(1-2) 0 = G((y(0),y(l));(2/'(0),j/'(l))),

where G : R2 x R2 -> M2 is continuous. We call boundary conditions of this

form fully nonlinear boundary conditions. The second class of boundary

conditions we will consider are of the form

(1.3) (y(i),y'(i))E J(i) for i = 0,1,
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where J{i) are continuua. We will call boundary conditions of this form
boundary set conditions.

We always assume that lower and upper solutions α < /?, respectively,
exist for (1.1) (see Definition 1 below). We prove analogues of our existence
results for the case / is continuous.

In paragraph 2 we introduce some notation, definitions and preliminary
results. We define lower and upper solutions which are the natural analogues
of those for continuous /. These cannot be used directly in maximum prin-
ciple arguments. We define strong lower and strong upper solutions which
can be used directly in maximum principle arguments and show how lower
and upper solutions can be approximated by strong lower and strong up-
per solutions, respectively, for an approximating differential equation. We
introduce the central notion of compatibility of the boundary conditions G
with the lower and upper solutions. In the literature when lower and upper
solutions are assumed to exist and the Picard, Neumann or Periodic bound-
ary conditions are considered the assumptions usually made are equivalent
to compatibility (see [29]).

In paragraph 3, we present our main existence results. If the boundary
conditions G are compatible with a and β and / satisfies additional assump-
tions guarenteeing a'priori bounds for y' for solutions y of (1.1), then there
exist solutions y of (1.1) and (1.2) satisfying a < y < β on [0,1]. The exis-
tence proofs follow the same general lines as in the case that / is continuous
(see [29]) but with an additional and more subtle modification argument
(see [28]).

In paragraph 4 we give some applications generalising some results of
Palamides [24].

In paragraph 5 we consider problem (1.1) and (1.3). We recall two types
of compatibility of the boundary sets <7(i), i = 0,1 with the lower and upper
solutions (see the author [29]). These are satisfied by the usual boundary
sets conditions considered in the literature. We give some existence results
for problem (1.1) and (1.3) when the boundary sets are compatible.

The compatibility conditions are concrete conditions involving the given
data which can be easily checked and are satisfied by just about every con-
crete existence result in the literature. Most existence results in the liter-
ature for (1.1) together with (1.2) or (1.3) which assume lower and upper
solutions exist follow as a corollary to our results. In many cases our results
can be used to significantly improve upon these results. This is especially
true for results concerning fully nonlinear boundary conditions as can be
seen for example in the application to Theorem 2.1 of Palamides [24] given
in paragraph 4. Also the central notion of compatibility extends to systems
with lower and upper solutions, to single equations and systems with lower
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and upper solutions replaced by other surfaces a'priori bounding solutions.
We will discuss these extensions of our ideas and further applications of our
results and their extensions in forthcoming papers.

The literature on problem (1.1) and (1.2) is vast and for further informa-
tion we refer the interested reader to the excellent monographs by Bailey,
Waltman and Shampine [2], Bernfeld and Lakshmikantham [9], Gaines and
Mawhin [11], Guenther, Granas and Lee [12], Hartman [13], and Mawhin
[19] and their references.

2. Background Notation, Definitions and Results.

In order to state our results we need some notation.
As usual we say a function / : [0,1] x M2 —» M satisfies the Caratheodory

conditions if
l f ('tillp) ι s measurable for each (y,p) G M2

2. f(x, , •) is continuous for almost all a? € [0,1]

3. to each I > 0 there is an integrable function τ\ : [0,1] —>• M satisfying
\f(x,y,p)\ < rt(x) for all (y,p) G [—Z,/]2 and almost all x G [0,1].

As usual, we denote the closure of a set T by Γ and its boundary by dT.
We denote the space of m times continuously differentiable functions from A
to B endowed with the maximum norm by Cm(A; B). In the case of continu-
ous functions we abreviate this to C(A; B). We denote the space of measur-
able functions from A to B endowed with the usual norm by Lm(A\ B). In the
case β = Rwe omitt the B. We denote by VF2)1([α, b]) the Sobolev space of
functions y : [α, b] -» R with y' absolutely continuous and y" G Lλ([a^ b]) with
the usual norm. If A is a bounded open subset of Rn, p G Mn, / G C(A Rn)
and p £ f(dA) we denote the Brouwer degree of / on A at p by d(f,A,p).
It is common in the proof of existence of solutions of two point boundary
value problems for (1.1) to modify /. We do this making use of the following
functions (see [27]).

If c < d are given let π : R -> [c, d) be the retraction given by

(2.1) π(?/, c, d) = max{min{d, y}, c}.

For each e > 0, let K G C(R x (0, oc); [-1,1]) satisfy

1. K(-,e) is an odd function,

2. ϋΓ(ί,e) = 0 i f f £ = 0and

3. K{t,e) = 1 for alH > e/4.
If c < d and e > 0 are given, let T G C(M) be given by

(2.2)
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Let
ί( l-rr) ί , forθ<ί<x<l

yίx, t) — {
\(l-t)x, for 0 < a: < t < 1,

and w(yo,yi)(x) = j/0(l - x) + J/î  Let X = ^([0,1]) x R2 with the usual
product norm. Define C : C([0,1]) -> ^([O, 1]) by

x) = - / Q{x,t)φ(t)dt, for all (0,C,£>) G X

Clearly C is completely continuous.

Definition 1. We call Oί(β) a lower (upper) solution for (1.1) if α G

a"{x) > f(x,a(x),a'(x)), for almost all x G [0,1],

(β"{x) < f(x,β(x),β'(x)), for almost all x G [0,1]).

If a and β are lower and upper solutions for (1.1) on [0,1] we will assume
that a < β and set ω = {(x,y) G [0,1] x R2 : a(x) < y < β(x)} and ώ =
{(x,y) G [0,1] x R2 : a(x) <y< β{x)} We will call the pair nondegenerate
if Δ = (α(0),/?(0)) x (α(l),/5(l)) is nonempty. Let π Δ : R2 -> A be the
retraction given by

πA(C,D) = (τr(C,α(O),/3(O)),π(£»,α(l),/3(l))).

Lower and upper solutions themselves cannot be used in maximum prin-
ciple arguments consequently we introduce strong lower and upper solutions
(cf Ako [1]).

Definition 2. We call a G PV2>1([0,1]) a strong lower solution for (1.1) if
to each c G (0,1) there is an open interval Ic C (0,1) satisfying c G Ic and a
δ(c) > 0 such that

(2.4) a"(x) > f(x,u(x),υ(x)), for almost all x G /c,

where w, υ : Ic —> R are measurable and

(u(x), υ(a )) G (α(x) - 5, α(rr)] x (α'(c) - 5, α'(c) + δ).

Similarly we define a strong upper solution β by substituting β in place of
OL and reversing the inequalities above; in this case

(u(x)M*)) e \β(x),β(x)+δ) x (/3'(c) - δ,βί{c) + δ).

Let α < β be lower and upper solutions, respectively. In the next lemma

we show that there exist strong lower and strong upper solutions for an
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approximating equation which approximate the lower and upper solutions,
respectively.

Define ί / : [ 0 , l ] x R 2 - ^ K by

(2.5) g(x,y,p) = f(x, π(y, a{x),β{x)),p) for all x G [0,1].

L e m m a 3. Let f : [0,1] x R2 —> R satisfy the Caratheodory measurability
conditions. Let a < β be lower and upper solutions, respectively and g be
given by (2.5). Given e G (0,1) there is a continuous function κe : [0,1] x
R2 -> R such that \κ€(x,y)\ < e for all (x,y) G [0,1] x R. Moreover, setting

j(z>y,p) =g{x,yiP + Ke(xiy))i for all (x,y,p) G [0,1] x R2,

there exist strong lower and strong upper solutions a€ and β€, respectively,
for

(2.6) y" = j(x, y, y% for almost all x G [0,1]

satisfying

a(x) - e/2 < ae(x) < a(x) - e/6 < β(x) + e/6 < βe(x) < β{x) + e/2,

/or o//a; G [0,1].

The proof of [28, Lemma 7] by the author applies. Moreover we see that
α'(0) - αe /(0), β'(ϋ) - βe'(0) and |α'(z) - α e ' (z) | , | ^ ( ^ ) -/3 e /(x)| < e/2 on
[0,1].

We associate with these strong lower and strong upper solutions ae and
β€ the function 7 : E —>• R given by

(o(l) - D){a'{\) - α£'(l))/(α(l) - ae(l)), for £» < o(l)

0, for α(l) < ΰ <

), for £> >

Definition 4. Let a < β be lower and upper solutions for (1.1) on [0,1]. We
say / satisfies the Bernstein-Nagumo-Zwirner condition if there exist L > 0,
h G C([0,oo);(0,oc)), h G ^([α™,/^]; (0,oo)) and r G #([0,1]; (0,oo))
such that

(2.7)
\f(x,y,p)\ < h(\p\)h(y)+r(x), for all (x,y) e [0,1] x (α(x),/3(x)) and

(2.8)
/"•̂  sd s f^M - [^
I 7-7-7- > / h(s)ds + K r(x)dx,

Jσ ϊι(s) Jam Jo
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where K = sup{s//ι(s) : s G [<τ,L]}, βλf =τnax{β(x) : x G [0,1]},
am = min{a(x) : x G [0,1]} and σ = max{|/3(l) - α(0)|, \β(0) - α(l) |}.

See Bernstein [10], Nagumo [20], Scorza Dragoni [26], Zwirner [30] and
Thompson [28].

Remark 5. In the special case h — 1 and r — 0 this has been called the
Bernstein-Nagumo condition by some authors (see Granas et al [12]).

For the convenience of the reader and the sake of completeness we recall
some notation and definitions from [29].

Definition 6. We call the vector field Φ = (ψ0^1) G C(Δ;M2) strongly
inwardly pointing on Δ if for all (C, D) G dA

(2 9) </>V(0),£) > a'(0),ψ°(β(0),D) < β'(0) and

" ' Φ1{C

We call Φ inwardly pointing if the strict inequalities are replaced by weak
inequalities.

Definition 7. Let G e C(Δ xR 2 ;R 2 ) . We say G is strongly compatible
with a and β if for all strongly inwardly pointing Φ on Δ

(2.10) g(C, D)^0 for all (C, D) € dA and

(2.11)

where

(2.12) g(C, D) = G((C, D); Φ(C, D)) for all (C, D) G Δ.

We say G is compatible with a and β if there is a sequence {Gi}^ strongly
compatible with a and β which converges to G uniformly on compact subsets
of Δ x R 2 .

3. Existence of Solutions.

Theorem 1. Assume that f satisfies the Carathέodory measurability con-
ditions, that there exist nondegenerate lower and upper solutions a < β
for (1.1) and f satisfies the Bernstein-Nagumo-Zwirner condition. If G G
C(Δ x M2;]R2) is compatible with a and β, then problem (1.1) and (1.2) has
a solution y lying between a and β.

Proof. Assume first that G is strongly compatible with a and β.
We approximate the lower and upper solutions by strong lower and strong

upper solutions ae and /3% respectively, for the approximating differential
equation (2.6). We modify this equation for y not between a and β to
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obtain a second pair of constant strong lower and strong upper solutions
ae and /?e, respectively, satisfying ae < ae < a < β < βe < βe. We also
modify the boundary conditions so that they are compatible with a6 and βe.
We reformulate the approximating problem as a coupled system of integral
and boundary condition equations and show that a solution of the modified
problem lies in the region where j is unmodified and hence is solution of the
approximating equation and modified boundary conditions. We obtain the
required solution by using compactness to find a subsequence converging to
the desired solution. We use Schauder degree theory to prove existence for
the modified problem and compute the degree using a homotopy; it is easier
to construct a suitable homotopy for the modified equation and boundary
conditions.

Extend h to R by h(y) — h(π(y,am,βM)) By (2.8) and the Monontone

convergence theorem there exist e0 > 0 such that

— — - > / h(s)ds + K / (r(x) + eo)dx.

Choose N > max{|α'(α;)|, \β'(x)\,L : x € [0,1]} + e0, and let

(3.2) k(x,y,p) =j(x,π{y,ae(x),βe{x)),π{p,-N,N)), and

l(x,y,p) =(1 -

(3.3)

where π and T are given by (2.1) and (2.2), respectively. Let ae = am — e
and βe = βM + e. Thus / satisfies the Caratheodory conditions on [0,1] x M2

and by continuity, for almost all x £ [0,1] and e small enough

(3.4) \l(x,V,p)\ < (h(\p\)+eo)h(y) + (r(x) +c 0),

Consider

(3.5) y" = l(x,y,yf), for almost all x E [0,1]

together with

(3.6)

Suppose that (3.5) and (3.6) has a solution ye satisfying ae < ye < βe and
\ye'\ < L on [0,1]. Then by compactness there is a subsequence y€i converging
in VF2'1([0,1]) to y, say, as ê  converges to 0 and y is the required solution.
To see this proceed as follows. First a < y < β and \y'\ < L on [0,1]. Since
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κ€τ converges uniformly to 0, letting ê  go to 0 in the the integral equation
satisfied by yu and noting that / and I coincide for (a;, y) G ώ it follows that
y is a solution of the (1.1). Now j(y€t(l)^a€i^β€t) converges to 0 and thus y
satisfies the boundary conditions.

We show that there is such a solution ye. First

αc" = 0 > -(\k(x,u{x),υ(x))\+e)

— l(xyu(x),v(x)), for almost all x G [0, l],u(x) < am — 2e/3.

Thus ae is a strong lower for

(3.7) y" = θl(x, y, y') for almost all x G [0,1]

for each θ G (0,1]. Similarly β€ is a strong upper solution for (3.7).

Letώ€ = {{x,ye) G [0, l]xR : ae{x) < ye < β€{x)} and Δ e - (αe(0),/?e(0))x

Suppose that ye is a solution of (3.7) with ae < ye < βe on [0,1] and
θ G [0,1]. Then \ye/\ < L by the standard argument (see for example the
author [28]). Suppose that ye is a solution of (3.5) and (3.6) satisfying
ote < ye < βe and (ye(0), y e(l)) G Δ € . We show that ae < ye < βe on [0,1] and
hence ye is the required solution. Suppose for example that ye(t) < ae(t) for
some t G [0,1]. Prom the boundary conditions and continuity we may assume
that ae — ye attains its positive maximum at t G (0,1). Thus ae'(t) — ye'(t).
From (3.3) and the continuity of a6' and yef there is an interval Jt C It such
that we have

< l(x,a€(x),a€f(x)) < ae"(x) for almost all x G Jt

a contradiction. Similarly ye < βe on [0,1], Thus ye is the required solution.
We show that y€ exists. As the proof is similar to that in [29, Theorem 1]

we only sketch the proof highlighting the differences.
Let Ω€ = {y E ^([0,1]) : ae < y < βe,\y'\ < JV, on [0,1]} and Γe -

Ωe x Δ e C X.
Define C : ^([0,1]) -> Lx([0,1]) by

Let Φ be a strongly inwardly pointing vector field on Δ and let Λ : Δ€ -> R2

be given by

(3.8) Λ(C,D) = G(πA(C,D);*(πΛ(C,D))).
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Then Λ φ 0 on 9Δ€, since G is strongly compatible with a and β. Define
U : Γ t x [0,1] ->• X by

C, £>, 0) = (0 + ££(<£) - w(C, D), V(φ, C, D, θ)) for θ e [2/3,1],

H(φ, C, D, θ) = (φ + 3(0 - lβ)CC(φ) - w(C, D),Λ(C, D))

for θ € [1/3,2/3] and

H(φ,C,D,θ) = (φ-Ww{C,D) - (1 -36>)(αt + βe)/2,Λ(C,D))

for 0 e [0,1/3], where

,D,θ)) and

+ 3(l-0)Φ(τrΔ(C,D)).

Clearly ?ΐ is completely continuous. Now H(y€,y€(0),ye(l), 1) = 0 iff ye is a
solution of (3.5) and (3.6) with (ye,ye(0),ye(l)) G fc. If there is a solution
(ye,ye(0),ye(l)) in dΓe we are through.

Assume that there is no such solution. We show that H is a homotopy
for Schauder degree on Γe at 0. Assume that there is a solution (y€,C,D)
of U(y\ C, D, θ) = 0 in <9Γe with θ e [0,1). Prom the formula for U we see
that θi [0,1/3).

Assume that θ € [2/3,1). As in the case θ = 1, ae(x) < ye(x) < βe(x) on

[ ] ) ( )
Assume (y€(0),ye(l)) e dAe. lΐye(l) = αe(l), then ye'(ΐ) < α e '(l). This

leads to the contradiction that <S(y€,y€(O),y€(l),0) < OL'{\) and
V(y€,ye(0),ye(l),θ) φ 0. The other cases (ye(0),ye(l)) G <9ΔC follow simi-
larly.

Now a€ < ye < βe on (0,1) since αe and ^€ are strong lower and strong
upper solutions, respectively, for (3.5). Thus ye £ dΩ,€ and there are no
solutions of U{ye, C, D, θ) = 0 with θ E [2/3,1] and {ye, C, Z>) E dΓe.

Assume that θ E [1/3,2/3). Since Λ(C,D) / 0 on dAe there are no
solutions (y€,C,D) with (C,D) E 9Δe. The proof that ye £ 3Ω€ is similar
to that for θ e [2/3,1).

Thus Ή, is a homotopy for the Schauder degree. Now H(φ,C,D,ϋ) =
(φ - c, ̂ 4(C, D)) where c E Ω€ is a constant and A Φ 0 in Δ€ \ Δ. Thus by
the Homotopy invariance, Reduction and Excision properties of Schauder
degree

, 0),ΓCΪ0)
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Thus there is a solution ye of (3.5) and (3.6) and hence a solution y of (1.1)
and (1.2).

Suppose now that G is compatible with a and β. Then there is a sequence
{^i}£i strongly compatible with a and β and converging uniformly to G
on compact subsets of A x i 2 . Let y{ be the corresponding solutions. By
compactness there is a subsequence of the y{ converging in W2>1([0,1]) to
the desired solution. D

Remark 8. In the case Δ is degenerate we have to modify the result. Let
a < β be lower and upper solutions for (1.1), respectively and suppose, for
example, that α(0) = β(0). Then we set Δ — (α(l),/3(l)) and change the
other conditions as follows.

We call the vector field Φ G C(Δ) strongly inwardly pointing on Δ if for

all D edA

We call Φ inwardly pointing if the strict inequalities are replaced by weak
ones.

Let G G C(Δ x R) and Q{D) = G(D, Φ(Z>)) for all D G Δ. We say G is
strongly compatible with a and β if for all strongly inwardly pointing Φ on

A

Q(P) φ 0 for all D G dA and

We define compatible as before. Theorem 1 and its proof are modified in
the obvious way. In the degenerate case α(0) = β(0) and α(l) = β(l) strong
compatibility implies that there are no solutions to the problem.

As mentioned earlier our central idea leads to existence results provided /
is such that there are a'priori bounds on y' for solutions y satisfying a < y <
β. We now discuss the case where / satisfies the Nagumo-Knobloch-Schmitt
condition.

Definition 9. Let a < β be lower and upper solutions for (1.1) on [0,1].

We say / satisfies the Nagumo-Knobloch-Schmitt conditions relative to a

and β if there exists Φ < T G Cι([0,1] x R) such that

(3.9) f(x,y,Φ(x,y)) > Φx{x,y) + Φy{x,y)Φ(x,y) and

(3.10) f(x,y,Ύ(x,y))<Ύx(x,y) + Ύy(

for almost all x G [0,1] and all y G [a(x),β(x)].
See Nagumo [21, 22], Knobloch [16, 17] and Schmitt [25].
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Theorem 2. Assume that there exist nondegenerate lower and upper so-
lutions a < β for (1.1), that f satisfies the Nagumo-Knobloch-Schmitt con-
dition, that G G C(Δ x R2;R2) is compatible with a and β, that a'(x) >
Φ(x,a(x)) and Ύ(x,β(x)) > β'{x) almost everywhere and moreover
G({C,D) (E,F)) = 0 only if E G [Φ(0, C), T(0, C)]. Then problem (1.1)
and (1.2) has a solution y lying between a and β.

Proof. Again we modify /. Choose

N > max{|Φ(α;,y)UT(^y)|, \a'(x)\,\β'(x)\ : (x,v) G ώ}

and let

l(x,y,p) =

( y) - p), f{x,y,p)}, for p < Φ(x,y)

< min{/(a;, y, Ύ(x, y)) + (T(x, y) - p), /(re, y,p)}, for p > T(a;5 y)

[f(x,y,p), otherwise

and

m(x, y,p) = l(x, y, π(p, -JV, N)).

Thus α and /? are lower and upper solutions for

(3.11) y" = m(x,y,y') for almost all # G [0,1].

It is easy to see that m satisfies the conditions of Theorem 1 and thus there
is a solution y of problem (3.11) and (1.2) satisfying α < y < β. To show
that this is a solution of our problem it suffices to show that Φ(x, y) < y' <
Ύ(x,y). From the boundary conditions there are no solutions for y'(0) £
[Φ(0,y(0)),T(0,y(0))]. Suppose that y'(t) < Φ(t,y(*)) for some t G (0,lj.
By continuity and the definition of N we may choose t and u G (0, t) such
that — N < y'(x) < Φ(x,y(x)) for all x G (u,t] and y'(u) = Φ(u,y(u)). Now

(yf(x) - Φ{x,y{x)))f = m(x,y(x),y'{x))

- Φx(x,y(x)) - Φy(x,y(x))Φ(x,y(x))

> f(x,y(x),Φ{x,y(x)))

- Φx(x,y(x)) - Φy(x,y(x))Φ(x,y(x)) > 0,

a contradiction. Thus Φ(x,y) < y'. Similarly the y' < Ύ(x,y) and the result

follows. D

Remark 10. The conditions G((C, D)] (E, F)) = 0 only if

JSe[Φ(0,C),T(0,C)],
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(3.9) and (3.10) guarentee the solution y satisfies

Φ{x,y(x)) < y'(x) < Ύ(x,y(x)).

There are other ways to guarentee this as for example in the case of periodic
boundary conditions where we may replace the inequality signs in (3.9) and
(3.10) by not equals to signs. See for example Schmitt [25].

4. Applications.

To show that the boundary conditions (1.2) are compatible we must show
that (2.11) holds. Usually this follows easily from the properties of Brouwer
degree (see, for example, Lloyd [18]) however the following lemma often
suffices.

Lemma 11. Let M = {M^M1) G C(Δ;M2) satisfy

M°{a(0),D) <0,M°(/?(0),£>) > 0

and
Mι(C,a(\)) < ΰ,Mι{C,β{\)) > 0

for all (C, D) G Δ and

M(C,D) φO

for all (C,D) G <9Δ; then d(M,Δ,0) φ 0.

This follows since S — ΘM + (1 — Θ)(I — p) is a homotopy of M with I ~p
where / is the identity on M2 and p G Δ is any point.

Problems of the form (1.1) and (1.2), usually for the case / is continuous,
have been considered by many authors. Shooting methods have been used
combined variously with the maximum principle, with the Jordan separation
theorem, the Kneser-Hukuhara continuum theorem and/or the Wazewski
retraction theorem. Often these have been refined in the process. See Baxley
[4], Baxley and Brown [3], Bernfeld and Palamides [8], Jackson and Klassen
[14], Jackson and Palamides [15], Palamides [23, 24] and their references. In
[24] Palamides used an extension of Wazewski's retraction principle involving
the Kneser-Hukuhara continuum theorem and the maximum principle to
prove the following existence result.

Theorem 2.1 of [24], Let f satisfy the Caratheodory conditions and for
each fixed p G R and almost all x G [0,1] let / (#, ,p) be nondecreasing for
y G [a(x),β(x)], where a(x) = -m + j(x) and β(x) — m — j(x), j(x) —
{l-[l + Kvmvx)ίv-ιVv)l(K{ι>-l)mv-1) and K > 0,m > 0,v = 2/c + l, k -
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1,2,..., and rh — — 7;(1) are such that: For each p > 0 there exists a

nondecreasing real-valued function M(p) such that

\f(x,y,p2) ~ f(x,y,Pi)\ < M(p)\p2 - p i | , for \p2 -pλ\ < p

\ for\p\>m

for almost all x G [0,1] and all y G [a(x),β(x)], where M(ρ) < Kρv, for
p > rh. Let f satisfy the Knobloch-Nagumo-Schmitt condition. Assume that
there exists θ0 G (π/4, π/2) such that G((C,D);(P,Q)) is continuous for
(C,P,D,Q) eExE, where

E = j(C,Ctan<9) : -m < C < m and - < θ < θo\ and

E = [a(l),β(l)]x[qm,qM]

where qm = min{Φ(l,y) : a{ΐ) < y < β(l)} and qM = max{T(l,?/) :

Oί{l) < y < /?(1)} Moreover assume that:
1. For each fixed C G [-m, m],φe [π/4, θ0] and (D, Q) G E

and g1(y^D);(Cta>nφ^q) are nondecreasing functions with respect to

the corresponding variables y,z or q but ^1((C, z); (Ctan</>, q)) is

(strictly) increasing with respect to both variables z and q and fur-

thermore for each y G [—m, m] and θ G [π/4, θ0] we have

(4.1) ^((y,

2. For each point y G [—m, ra] we

Φ(O,y)<y,ytan0o<ϊ(O,ί/).

3. For eαcΛ pair of points (yι,zuqι) and (y2, z2,q2) £ [—m, m]x E we have

(4.2) go((yuz1);(yι,qι))go((y2,z2);(y2t3inθo,q2))<0.

Then problem (1.1) and (1.2) has a solution y such that for all x G [0,1]

a(x) < y(x) < β(x) and Φ(x,y(x)) < y'(x) < Ύ(x,y(x)).

We indicate how this result can be generalised after first showing how it
follows from our Theorem 2.
Outline. As in [24], a < β are lower and upper solutions for (1.1). There
are two cases to consider. The first case is #°((C, D); (C, Q)) not identically
0 on [α(0),/?(0)] x E. We modify G without changing its zero set and also
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denote the modification by G. Then we extend G to A x E2 without changing
its zero set when (D, Q) G E so that the extension is compatible with a and
β. Then solutions of the new problem are solutions.

Replace g°((C,D);(P,Q)) by Cgo((C,D);(P,Q)). Let Si : [α(0),/?(0)] ->
R, i = 1,2 be defined by

—sA—C) = s2(C) = <

V ' X ' \C, forC<0.

By (4.2), replacing g° by — g°, if necessary, we may assume that

go((C,D);(s2(C),Q))<0

and
go((C,D);(s1(C),Q))>0

for all (D,Q) G JS. We extend g° as a continuous function toΔxR 2 satisfying
g°{(C,D)i(P,Q)) < 0 for all P > s2(C) and go((C,D);(P,Q)) > 0 for all
P < sx(C) for all (D,Q) G [α(l),/3(l)] x R. By (4.1), and monotonicity,
^((C,α(l));(P,Q)) < 0 for all qm <Q< a'(l) and g\{C,β{ΐ)Y (P, Q)) > 0
for all qM > Q > β'{l) and all (C,P) E JE; it is not difficult to show
from the definition of lower and upper solutions and the Knobloch-Nagumo-
Schmitt condition that qm < α'(l) and β'(l) < qM- Extend g1 to a continuous
function o n Δ x R 2 so that ^((C,α(l)); (P,Q)) < 0 for all Q < a'(l) and
gι({C,β{ΐ))-, (P,Q)) > 0 for all Q > β'(l). It is easy to see that G now has
the required properties. We show that a'(x) > Φ(x,a(x)) and Ύ(x,β(x)) >
β'{x) almost everywhere so that Theorem 2 applies and a solution exists.

Now a'(0) = -m = α(0) so α'(0) > Φ(0,α(0)) by assumption (2). Sup-
pose that z(t) — a'(t) - Φ(ί,α(t)) < 0 for some t G (0,1]. By continuity we
may choose u G [0,i) such that z(u) — 0 and z < 0 on (u,t]. By (2.3), (2.8)
and the lipschitz condition on / there is a constant k such that

z'{x) > f{x, a(x),a!{x)) - Φx{x, a(x)) - Φy(x, a{x))af(x)

> f(x, a{x), a'{x)) - f{x, α(ar), Φ(x, a(x)))

- Φy(x,a(x))(a'(x) - Φ(x,a(x)))

> kz(x)

for almost all x G [u,<], a contradiction. Thus a'(x) > Φ(x,a(x)) almost
everywhere. Similarly Ύ(x,β(x)) > β'(x) almost everywhere.

The second case is g°((C,D)] (C,Q)) identically 0 on [α(0),/?(0)] x E. In
this case we replace E by the set E1 = {(C,C) : C G [α(0),/3(0)]} and
Si(C) = s2(C) = C. The rest of the proof remains unchanged. D
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Remark 12. In the second case of the proof above the boundary condition
g° admits the solution y(0) — j/'(0) and in our proof we have effectively
replaced g° by the simpler y(0) — y'(0) and our solution satisfies this.

In the above proof the monotonicity assumptions on g1 are used only to
guarentee that g1((C,a(l))](PJQ)) < 0 for all qm < Q < a'(I)
and ^((C,/3(l));(P,g)) > 0 for all qM > Q > β'(l) and all (C,P) G E
and hence can be relaxed. In Palamides's proof they are required in a shoot-
ing argument and it is not clear how they can be weakened.

We do not need either the local lipschitz or monotonicity conditions on
/ required in Palamides's proof for application of the maximum principle
in a shooting argument. We used the local lipschitz condition only along
(x,a{x),a'(x)) and (x,β(x),β'(x)) and only to show that Ύ(x,β(x)) > β'{x)
and a'{x) > Φ(x,a(x)) almost everywhere. We used the monotonicity
condition on / only in the construction of the lower and upper solutions.
Palamides also used the monotonicity condition on / in the construction of
the lower and upper solutions.

Moreover the other results of [24] also follow from our Theorems 1 and 2;
in the statement of Theorem 2.2 of [24] conditions on g have been omitted
although the intended conditions are clear.

We illustrate the improvement our results represent over [24] by modifying
the example presented there.

Example. Let

f(x,y,p) = -sin a; — (cos £ - y2)2smy — p5 for x e [0,1],

y(0) + (y2(l) - y'2(l))/10 and

= y(0) + y'(0) + 6y(l) + y'(l) + sin(y(0) - y'

Thus we have translated the x interval so it is now [0,1] and modified / in
the y variable so that it is no longer monotonic with respect to y. In view of
our remark above Palamides's example has a solution with y(0) = y'(0) so we
have modified g° to avoid this. Also we modified g1 to avoid monotonicity.

To see that there is a solution we apply Theorem 2 to a modified prob-
lem. We let β(x) = π/2 = -a(x) and Ύ(x,y) = 2 = -Φ(x,y). It is
easy to check that the a < β are lower and upper solutions and that
the Knobloch-Nagumo-Schmitt condition is satisfied. As above we set
E = [-π/2, π/2] x [-2,2] but replace E by E2 = E. It is easy to check that
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if Φ is a strongly inwardly pointing vector field with |Φ| < 2 then conditions
(2.10) and (2.11) are satisfied. We modify G for (y'(O),τ/'(l)) g [-2,2]2 by
projecting (y'(0), y'(l)) in the obvious way so that the modified G is strongly
compatible with a and β. Thus, by Theorem 2 there is a solution y of the
modified problem. However given the bounds on y and on y' the solution
lies in the region where G was not modified. Thus y is the required solution.

Notice that from our analysis of Theorem 2.1 of [24] and the above it is
clear we could have obtained existence of solutions for the example of [24]
from our Theorem 2 using constant α, /?, T and Φ.

5. Boundary Set Conditions.

In this section we consider problem (1.1) and (1.3) again assuming that there
exist lower and upper solutions a < /3, respectively, and look for solutions y
lying between a and β.

Problems of the form (1.1) and (1.3) for the case / is continuous have been
considered by many authors. Shooting methods have been used combined
with with the Jordan separation theorem (see Bebernes and Praker [7] and
Bebernes and Wilhelmsen [5, 6] and their references).

We show that analogues of the results of Bebernes and Praker [7] for the
case / is continuous can be derived from our results.

In order to state our results we need some notation (see Bebernes and
Fraker [7]). For x G [0,1] let C(x) = {(x,y,p) EώxR}, Sa(x) = {(x,y,p) G
C{x) : y = α(x)}, and Sβ(x) = {(x,y,p) G C(x) : y — β(x)}. For the conve-
nience of the reader and the sake of completeness we recall the definition of
compatibility of boundary sets (see [29]).

Definition 13. We say the pair of sets {J{0),J(ϊ)} C R2 is strongly
compatible, respectively compatible, for (1.1), a and β if there exists G G
C(Δ x KP IR2) which is strongly compatible, respectively compatible, for
(1.1), a and β and such that G{{C,D);{E,F)) φ 0 for all (C,E,D,F) £
J(0) x J(l).

Definition 14. Let J{%) C [α(i),/3(ΐ)] x M, i = 0 or 1 be a closed
connected set. We say it is of compatible type 1 if there is (α(i),ιx(i)) G
J(i), where (-l)*(α'(i) - u(i)) > 0, and there is (β(i),u(i)) G J{i), where
(—l)ι(u(i) — β'(i)) > 0. We say it is of compatible type 2 if for every p G M
there is y G [α(i),/?(i)] such that (y,p) G J(ϊ). If it is of compatible type 1
or 2 we say simply it is of compatible type.

Theorem 3 [29, Theorem 4]. Let the sets J(i) C M2, i = 0,1 be of
compatible type, then the pair {̂ 7(0), i7(l)} is compatible for (1.1), a and β.

The next result is an immediate consequence of Theorems 1 and 3.
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Theorem 4. Assume that there exist lower and upper solutions, a < β,
respectively, for (1.1), that f satisfies a Bernstein-Nagumo-Zwirner condi-
tion and and that the sets J{i), i ~ 0,1 are of compatible type. Then there
is a solution of (1.1) and (1.3) lying between a and β.

We now state the analogue for measurable / of [7, Theorem 1].

Theorem 5. Assume that there exist lower and upper solutions a < β
for (1.1) and that for any B2 > 0 and t0 G (0,1] there is N(B2) > 0 such
that any solution of (1.1) with \y'(0)\ < B2 and a(x) < y(x) < β(x) for all
x G [(Mo] satisfies \y'(x)\ < N(B2) for all x G [0,<0] If J(fy is compact and
of compatible type 1 and J(l) is of compatible type 2, then problem (1.1)
and (1.3) has a solution lying between a and β.

Proof By compactness there is B2 > 0 such that (y(0),y'(0)) G J(0)
implies that \y'{0)\ < B2. By assumption we may choose N such that \y'\ <
N for all solutions y of (1.1) with {x,y) G ώ on [0,1] and L such that
L > max{\a'(x)l \β'(x)\,N : x G [0,1]}. Let

j(x,y,p) = f(x,y,π(p\-L,L))

for all {x,y,p) G [0, l ] x R 2 . Consider

(5.1) V" = j(x,v,y') for all are [0,1]

together with (1.3). Now α and β are lower and upper solutions for (5.1) so
by Theorem 4 there is a solution y for this problem between α and β. Assume
that \y'\ > L for some x G [0,1]. Set t = min{z G [0,1] : \y'{x)\ < L}. By
continuity and the choice of L, we have t > 0 and |y'(x)| < L for all x G [0, t].
Thus y is a solution of (1.1) on [0, ί] lying between α and β but \y'{t)\ > N a
contradiction. Thus \y'\ < L on [0,1] and y is the required solution. D

The above result can be sharpened as follows.

Definition 15. Set

(5.2) So - {(y, -L) : α(0) < y < β(0)} U {(α(0),p) : α;(0) > p > -L},

(5.3) 5 2 - {(y, L) : α(0) < y < /3(0)} U {(/3(0),p) : /J'(0) < p < L},

(5.4) 5i = {(y, -L) : α(l) < y < β(l)} U {(/?(l),p) : ^(1) > p > -L} and

(5.5) S3 = {(y, L) : α(l) < y < β(l)} U {(α(l),p) : α ;(l) <p<L}.

We can now state the analogue for measurable / of [7, Theorem 3].

Theorem 6. Assume that there exist lower and upper solutions a < β for
(1.1) and that f satisfies a Bernstein-Nagumo-Zwirner condition. Further
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assume that J(i) C C(i), i = 0,1 are closed connected sets satisfying J(ϋ)Π

{So U S2} ^Φ and J(l) Π {SΊ U 53} 7̂  0, wΛere tfie S{ are given by (5.2) to

(5.5) and L > max{|a'(a;)|, \β'(x)\ : x G [0,1]} satisfies (2.8). TΛen fftere is

α solution y lying between a and β.

Proof. This follows since either {β(0),u) G J ( 0 ) for some u > β'(0) or

(y, L) G ,7(0) for some y G [α(0), /?(0)) and we add the straight line segment

joining (y,L) to (β(0),L) to ,7(0). Similarly, either (α(0),u) G J(0) for

some it < α'(0) or (y, —L) G ^7(0) for some y G (α(0),/?(0)] and we add

the straight line segment joining (y, — L) to (α(0),—L) to i7(0). Similarly

we modify J{1) as above. Thus the modified J(ϊ) are of compatible type

and, by Theorem 3, there exists a solution for (1.1) and (1.3). This solution

satisfies \y'\ < L and hence is the required solution. D
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