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SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS
WITH FULLY NONLINEAR TWO POINT BOUNDARY

CONDITIONS

H.B. THOMPSON

We establish existence results for two point boundary value
problems for second order ordinary differential equations of
the form y" = f(x,y,y'), x E [0,1], where / is continuous and
there exist lower and upper solutions. First we consider bound-
ary conditions of the form G((y(0),y(l)); (y'(0), y''(1))) = 0, where
G is continuous and fully nonlinear. We introduce compati-
bility conditions between G and the lower and upper solu-
tions. Assuming these compatibility conditions hold and, in
addition, / satisfies assumptions guarenteeing a'priori bounds
on the derivatives of solutions we show that solutions exist.
In the case the lower and upper solutions are constants one
of our results is closely related to a result of Gaines and
Mawhin. Secondly we consider boundary conditions of the
form (y(i),y'(i)) G J(i), i — 0,1 where the J(i) are closed con-
nected subsets of the plane. We introduce various compatibil-
ity type conditions relating the J{ϊ) and the lower and upper
solutions and show each is sufficient to construct a compat-
ible G which defines these boundary conditions. Thus our
existence results apply. Almost all the standard boundary
conditions considered in the literature assuming upper and
lower solutions are, or can be, defined by compatible G and
their associated existence results follow from ours; in many
cases we can improve these results by deleting some of their
assumptions.

1. Introduction.

In this paper we consider two point boundary value problems for second
order ordinary differential equations of the form

(l.i) y" = f{χ,y,y'), foraiise [0,1],

where / : [0,1] x R2 -> R continuous. By a solution of (1.1) we mean a twice
continuously differentiable function y satisfying (1.1) everywhere. The first
class of boundary conditions we will consider are of the form

(1-2) 0 =G((y(0),y(l));(y'(0),y'(l))),
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where G — ((Λg1),*?* : K2 x IR2 -> R, i = 1,2 are continuous and fully
nonlinear. We will refer to boundary conditions of the form (1.2) as fully
nonlinear boundary conditions. The second class of boundary conditions we
will consider are of the form

(1.3) (y(i),y'(i))Gj(i)ΐori = 0,l,

where J{i) are continuua. We will refer to boundary conditions of the form
(1.3) as boundary set conditions.

We always assume that lower and upper solutions a < β, respectively,
exist for (1.1) (see Definition 1 below).

In paragraph 2 we introduce some notation and definitions.
In paragraph 3 we introduce the central notion of compatibility of the

boundary conditions G with the lower and upper solutions. In the litera-
ture when lower and upper solutions are assumed to exist and the Picard,
Neumann or Periodic boundary conditions are considered the assumptions
usually made are equivalent to compatibility. We show by simple examples
that if the boundary conditions are not compatible with the lower and upper
solutions, then solutions need not exist.

In paragraph 4, we present our main existence results. If the boundary
conditions G are compatible with a and β and / satisfies additional assump-
tions guarenteeing a'priori bounds for y1 for solutions y of (1.1), then there
exist solutions y of (1.1) and (1.2) satisfying a < y < β on [0,1].

In paragraph 5 we briefly describe the results of Gaines and Mawhin [16]
and show their relationship to ours.

In paragraph 6 we consider problem (1.1) and (1.3). We introduce two
types of compatibility of the boundary sets J{i\ i = 0,1 with the lower and
upper solutions. These are satisfied by the usual boundary sets conditions
considered in the literature. Given compatible boundary sets J(i), 1 = 0,1
we show that there exists compatible G such that (1.2) implies (1.3). Thus
our existence results apply to such boundary set conditions.

Lower and upper solutions exist for (1.1) if/ satisfies suitable monotonic-
ity and or growth conditions (see Ako [2, 3], Baxley [6], Gaines [15], Gaines
and Mawhin [16], Palamides [30], and Jackson and Palamides [22]).

A'priori bounds on y' follow if, for example, / satisfies either the Bernstein-
Nagumo growth condition with respect to y' (see Bernstein [12], Nagumo
[27]) or it's one sided generalisations (see Baxley [6]) or the Scorza Dragoni-
Zwirner growth condition with respect to (x, y, y') or the Nagumo-Knobloch-
Ako-Schmitt condition (see Ako [2], Nagumo [28, 29], Knobloch [23, 24],
Schmitt [31]) or a Lyapunov condition (see George and Sutton [18]).

To prove existence of solutions we modify the differential equation and
turn the modified equation into an integral equation, couple it with the two



SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS 257

equations defining the boundary conditions and regard the resultant as an
operator equation defined on (^([O,1]) x M2, where the boundary values
are regarded as independent variables with values in R2. We use Schauder
degree theory employing homotopies and the reduction theorem to show
that the Schauder degree of the operator is the Brouwer degree of a suitable
mapping associated with the compatible G on the domain which contains
the boundary values.

Methods used in the literature to establish existence results include shoot-
ing with initial values, shooting with boundary values, the Schauder fixed
point theorem, and Schauder degree theory. Often these methods are ap-
plied to a modified problem whose solutions are solutions of the unmodified
problem. Some variants of shooting with initial values use the Kneser-
Hukuhara continuum theorem and/or Wazewski's retract method and their
refinements. Initial value shooting has been commonly used to prove exis-
tence for fully nonlinear boundary conditions of the form (1.2) and has been
the only method used for boundary set conditions of the form (1.3).

Gaines and Mawhin [16] and Guenther Granas and Lee [19] give very
general existence theorems via coincidence degree, respectively topological
transversality, provided associated one parameter families of boundary value
problems have no solutions on the boundary of a suitable domain in a suit-
able function space. These one parameter families are used to construct
homotopies. Gaines and Mawhin and Granas Guenther and Lee go on to
show that a substantial number of the earlier existence results follow from
their general theorems. Also they go on to give many and substantial new
results and a coherent framework for viewing old and new results. Gaines
and Mawhin [16], Theorem V.34 establish an existence result for systems of
equations which, in the special case of a single equation, is closely related
to the special case of our result above of constant a and β. They apply
their result [16], Theorem V.37 to a single equation with non constant α
and β and a restricted class of G using a modification argument, modifying
G. The interdependence required between the boundary conditions and the
lower and upper solutions to guarentee existence of solutions is not clear
from their work.

In a forth coming paper we extend our result to systems including [16],
Theorem V.34 as a special case. Also, Gaines and Mawhin [16] discuss
a'priori bounding of solutions from a geometric perspective giving a new
insight into the role of many of these conditions.

Ako was one of the first authors to obtain existence results for nonlin-
ear boundary conditions. He used shooting with the boundary values of
minimal solutions as he did not assume uniqueness for the Picard problem;
(y'(0), y'{l)) is a continuous function of (y(0), y(l)) if solutions of the Picard
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problem are unique.
Existence results for boundary set conditions assuming lower and upper

solutions have been obtained by a number of authors (see, for example,
Jackson and Klassen [21] and Bebernes and Fraker [9], and their references).

The literature on problem (1.1) and (1.2) is vast and for further informa-
tion we refer the interested reader to the excellent monographs by Bailey,
Waltman and Shampine [4], Bernfeld and Lakshmikantham [11], Gaines and
Mawhin [16], Guenther, Granas and Lee [19], Hartman [20], and Mawhin
[26] and their references.

The contributions this work makes are twofold. First we introduce the
compatibility conditions. These conditions are concrete conditions involv-
ing the given data which can be easily checked and are satisfied by just
about every concrete existence result in the literature. They permit the con-
struction of the one parameter families of boundary value problems used to
construct the homotopies in an appropiate function space; both the homo-
topies and the function space are unusual and clearly demonstrate the role
of the compatibility conditions.

Second, we show that the boundary set conditions of the form (1.3) usually
considered in the literature are special cases of fully nonlinear boundary
conditions.

Most existence results in the literature for (1.1) together with (1.2) or
(1.3) which assume lower and upper solutions exist follow as a corollary to
our results. In many cases our results can be used to significantly improve
upon these results. This is especially true for results concerning fully non-
linear boundary conditions. Some results in the literature concerned both
with linear and with nonlinear boundary conditions which assume growth
conditions but do not assume explicitly the existence of lower and upper so-
lutions can be obtained from ours by constructing lower and upper solutions
compatible with the boundary conditions. In such cases the construction of
the lower and upper solutions and the verification of compatibility is usually
easier than the given direct proofs of existence. This is true, for example,
of some of the results in Baxley [6]. Also the central notion of compatibil-
ity extends to Caratheodory / with a and β having absolutely continuous
first derivatives, to systems with lower and upper solutions, to single equa-
tions and systems with lower and upper solutions replaced by other surfaces
a'priori bounding solutions. We will discuss these extensions of our ideas
and further applications of our results and their extensions in forthcoming
papers.
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2. Background Notation and Definitions.

In order to state our results we need some notation.
We denote the closure of a set T by T and its boundary by &T. As usual,

Cm(A\ B) denotes the space of m times continuously differentiate functions
from A to B endowed with the maximum norm. In the case of continuous
functions we abreviate this to C(A\ B). In the case β = Rwe omitt the B.
If A is a bounded open subset o f l n , p E i n , / G C(A] Rn) and p $ f(dA)
we denote the Brouwer degree of / on A at p by d(/, A,p). It is common
in the proofs of existence of solutions of two point boundary value problems
for (1.1) to modify /. We will do this making use of the following functions
(see [33]).

If c < d are given let π : R ->• [c, d\ be the retraction given by

(2.1) π(y, c, d) = max{min{d, y}, c}.

For each e > 0, let K G C(R x (0, oo); [-1,1]) satisfy

1. if( , e) is an odd function,

2. K(t, e) = 0 iff t = 0 and

3. K(t, e) = 1 for all t > e.

If c < d and e > 0 are given, let T G C(R) be given by

(2.2) Γ(y, c, d, e) = ΛΓ(y - π(y, c, rf),c).

Let

/(l-a?)t, forθ<t<z<l
\ ( 1 -t)x, foτO<x<t< 1,

and ty(yOJyi)(x) = yo(l - x) + 2/î  Let X = ^([0,1]) x R2 with the usual
product norm. Define C : C([0,1]) -> C^p, 1]) by

C(φ)(x) = - f Q(x,t)φ{t)dt,
Jo

for all φ e C([0,1]) and x E [0,1]. Clearly C is completely continuous.

Definition 1. We call a (β) a lower (upper) solution for (1.1) if a (β)

£C2([0,l]), and

α"(aθ > f(xM*),<*'{*)), for all x G [0,1]

(β"(x) < f(x,β(x),β'(x)), for all x G [0,1]).

If the inequality in (2.3) is strict then we call a (β) a strict lower (upper)
solution for (1.1). As mentioned earlier we assume that a < β and set
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βM = ma,x{β(x) : x G [0,1]} and am = min{α(x) : x G [0,1]}. We will call
the pair non-degenerate if Δ = (α(0),/?(0)) x (α(l),/3(l)) is nonempty. We
set

(2.4) ώ = {(*, y) G [0,1] x R : α(z) < y < β(x)}.

We will discuss the degenerate case Δ empty later.
Lower solutions are used with maximum principle arguments to obtain

a'priori bounds on solutions. For a discussion of the relationship between
them and subfunctions and some indication of how the smoothness condi-
tions can be relaxed see Thompson [35]. As mentioned earlier our central
idea leads to existence results for those / for which there are a'priori bounds
on y' for solutions y satisfying a < y < β. There are two well known con-
ditions which we employ in our existence results either of which guarentee
a'priori bounds on yι for solutions. The first is the Bernstein-Nagumo con-
dition.

Definition 2. Let a < β be lower and upper solutions for (1.1) on
[0,1]. We say / satisfies the Bernstein-Nagumo condition if there exists h G
C([0, oo); (0, oo)) and TV > 0 such that

(2.5)

|/(x,y,p)| < /ι(|p|), for all (#,y) G [0,1] x [a(x),β(x)] and

(2.6) / ~ >βu-θirn

where σ = max{|/5(l) — α(0)|, \β(0)-a(l)\}. We say / satisfies the strength-
ened Bernstein-Nagumo condition if (2.6) is replaced by

The second condition for guarenteeing a'priori bounds on y' for solutions
we call the Nagumo-Knobloch-Schmitt condition.

Definition 3. Let a < β be lower and upper solutions for (1.1) on [0,1].

We say / satisfies the Nagumo-Knobloch-Schmitt condition relative to a

and β if there exists Φ < ΐ e C 1 ( [ 0 , l ] x l ) such that

f{χ,y,φ(χ,y)) > ®χ{χ,y) + ®y{χiy)Φ{χ,y) a n d

f(x,y,Ύ(x,y)) < Ύx{x,y) + Ύy(c

for all (#, y) G ώ.

See Gaines and Mawhin [16] for some discussion of the relationship be-
tween these conditions.
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3. Nonlinear Boundary Conditions and Compatibility.

Definition 4. We call the vector field Φ = (φ0^1) G C(Δ;R2) strongly
inwardly pointing on Δ if for all (C, D) G dA

(3.1) Φ°(a(0),D) > α'(0), φ°(β(0),D) < β'(0) and

We call Φ inwardly pointing if the strict inequalities are replaced by weak
inequalities.

Definition 5. Let G G C(Δ x f tf). We say G is strongly compatible
with a and β if for all strongly inwardly pointing Φ on Δ

(3.2) Q(C, D)φQ for all (C, I>) G dA and

(3.3)

where

(3.4) Q[C, D) = G((C, D); Φ(C, !>)) for all ((7, £>) G A.

We say G is compatible with a and /? if there is a sequence G* G C(Δ x R2 IR2)
strongly compatible with a and β and converging uniformly to G on compact
subsets o f Δ x E 2 .

In what follows where there is a strongly inwardly pointing vector field
clearly defined from the context Q will denote the vector field defined by
(3.4).

Remark 6. If G is (strongly) compatible with a and /?, then the Brouwer
degree (3.3) is independent of the strongly inwardly pointing vector field
Φ. To see this for strongly compatible G let Φ i7 i = 1,2 be two such
vector fields. Then setting Φ(C,D,0) = Θ^X(C,D) + (1 - 0)Φ2(C,D) and
H(C,D,Θ) = G((C,D);Ψ{C,D,Θ)) on A x [0,1], H is a homotopy for the
Brouwer degree (3.3).

It is not difficult to see that strongly inwardly pointing vector fields always
exist. Moreover, if (3.2) holds for all inwardly pointing vector fields we may
choose

when computing the Brouwer degree (3.3).
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For the Picard (also called Dirichlet) boundary conditions

, 5) g°((y(ΰ),y(l)y, (y'(0),y'(l))) = y(0) - A = 0 and

51((ί/(0),y(l));(ί/ l(0),ί//(l)))=ί/(l)-S = 0,

while for the Neumann boundary conditions

, , 5°((y(0),y(l)); (y'(0),y'(l))) = y'(0) - A = 0 and

&1((y(0),y(l));(y'(0),y'(l)))=y'(l)-S = 0,

and for the Periodic boundary conditions

, ? ) <7°((y(0),y(l)); (y'(0),y'(l))) = y(0) - y(l) = 0 and

51((2/(0),y(l));(y'(0),y'(l)))=y'(l)-y'(0) = 0.

For these boundary conditions the compatibility conditions become the fa-
miliar ones usually assumed in the presence of lower and upper solutions;
that is,

(3.8) α(0) < A < 0(0), α(l) < B < 0(1),

(3.9) α'(0) > A, 0'(O) < A, α(l) < 5, 0(1) > B,

and

(3.10) α(0) = α(l), /3(0) = /?(1), α'(0) > α'(l), ^(0) < ^(1),

respectively. We prove this in the case of periodic boundary conditions.

Lemma 8. The periodic boundary conditions are {strongly) compatible iff
(3.10) holds.

Proof. Let Φ be an strongly inwardly pointing vector field on A.
Assume that (3.10) is satisfied, let G = {g°,gι) be given by (3.7) and

(C,£>) Ed A. If C - D = α(0) then Qλ - ψι{C,D) - φ°(C,D) < α'(l) -
α'(0) < 0. If C = α(0) < D then °̂ = C - D < 0. Similar inequalities hold
for the other cases (C,D) e dΔ. Thus Q φ 0 for (C, D) G <9Δ. Let 7(2;) =
(a(x)+β(x))/2, U{C,D,Θ) = (l-2β)α(σ,Z?)+2β(α°(C,£>),i?-7(l)/2), for
θ G [0,1/2] and H{C, D, θ) = (2 - 20)(^°(C, /?),/?- 7(l)/2) 4- (20 - 1)(C -
7(0)/2,D - 7(l)/2), for θ G [1/2,1]. Since U is a homotopy for Brouwer
degree d(g(-),Δ,0) - d(7ΐ( ,0),Δ,0) = d(H(-,l),Δ,0) = 1^0. Thus G is
strongly compatible and hence compatible.

Assume now that G is given by (3.7) and that G is strongly compatible
with a and 0. We show that (3.10) is satisfied.
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We may assume that [α(0),/3(0)] Π [α(l),/3(l)] Φ 0 otherwise for any
strongly inwardly pointing vector field Φ setting Q — G((C, D)); Φ(C, Z}),
G(C, D) φ 0 for all (C, D) G Δ and d(£, Δ, 0) = 0, a contradiction. Assume
that α(0) ^ α(l) and in particular that α(0) < α(l) = D = C < /?(0).
Thus we may choose a strongly inwardly pointing vector field Φ as follows.
First choose ψ1 then define Ί/>0 such that Φ is strongly inwardly pointing and
ψ°(C,D) < mmiβ'iO)^1 (C,D)} for all C > τ(0)/2. Thus G(C,D) φ 0 for
all {C,D) G Δ and again cf(ί7,Δ,0) = 0, a contradiction. The other cases
that α(0) 7̂  α(l) and β(0) φ β(l) follow by similar arguments.

Assume now that α ;(l) > α'(0). Define a strongly inwardly pointing
vector field Φ as follows. Let α'(l) > ^ ( C X l ) ) > α'(0) for all C G
[α(0),/?(0)] and^ίC,/?^)) > βf(l) for all C G jα(0),/3(0)]. Using the Teitze
extension theorem (see Dugundji [13]) we may extend φ1 as a continuous
function to Δ. By continuity and compactness we may choose e > 0 such that
^ 1 (C,α( l))-e > α'(0) for all C G [α(0),/3(0)]. Let Ξ = {ξ°,ξλ) be a strongly
inwardly pointing vector field. Set ψ°(C, D) = min{^°(C, D), ψ1 (D, C) - e}.
Thus Φ is strongly inwardly pointing and Qι φ 0 on A, where Q is defined by
(3.4). Thus d((7(-),Δ,0) = 0, a contradiction. The other case β'(0) > β'(l)
leads similarly to a contradiction. Thus (3.10) holds. If G is compatible
then there exist strongly compatible Gι and the result follows. D

The proof that the Picard, respectively Neumann, boundary conditions
are compatible iff (3.8), respectively (3.9), is satisfied is simpler, follows
similar lines and hence is omitted.

Remark 8. In the following two examples G is not strongly compatible
since condition (3.3) fails. In the first there are solutions of (1.1) and (1.2)
lying between a and β and in the second there are no such solutions.

We choose R > 0 and

GeC{[-R,R}2 x f R2)

such that
G((C,D);(P,Q)) =G((C,D);(S,T))

for all

( ( C , D ) ; ( P , Q ) ) , ( ( C , D ) ; ( S , T ) ) €[-R,R}2 x R \ GφO

on d(—R,R)2 and d(Q, (—R,R)2,0) = 0; Q is independent of the choice of
strongly inwardly pointing vector field Φ. Let / be identically zero and
-a = R = β.

For the first example we choose G so that G((C, D)\ (P, Q)) — 0, for some
(C,D)e(-R,R)2.
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For the second example we choose G so that G φ 0 for any (C, D) G
{-R,Rf.

4. Existence of Solutions.

Theorem 1. Assume that there exist non-degenerate lower and upper
solutions a < β for (1.1), that f satisfies the Bernstein-Nagumo condition
and that G E C(Δ x M2;IR2) is compatible with a and β, then problem (1.1)
and (1.2) has a solution y lying between a and β.

Proof. Assume first that G is strongly compatible with a and β.
We modify the differential equation for y not between a and β to obtain a

second pair of lower and upper solutions. We reformulate the problem as a
coupled system of integral and boundary condition equations and show that
a solution of the modified problem lies in the region where / is unmodified
and hence is the required solution. We use Schauder degree theory to prove
existence for the modified problem and compute the degree using a homo-
topy; the modification is chosen to facilitate the construction of a suitable
homotopy.

Choose L, € > 0 such that

7 7 > β M a m + 2e
h(s) + e

where L > m&x{\a'(x)\, \β'(x)\ : x G [0,1]}. Let

j{x,y,p) = f{x,π(y,a{x),β(x)),π(p - L,L)), and
k(x,y,p) = (1 - \T(y,a(x),β(x),e)\)j(x,y,p)+

T(y,a{x),β(x),e)(\j(x,y,p)\ +e),

where π and T are given by (2.1) and (2.2), respectively. Thus A; is a bounded
continuous function on [0,1] x K2 and satisfies

\k(x,y,p)\<h(\p\)+e,

for all p with \p\ < L.
Consider

(4.2) y" = k(x,y,y'), for all x e [0,1]

together with (1.2). It suffices to show that problem (4.2) and (1.2) has a
solution y satisfying a <y < β and \y'\ < L on [0,1] since / and k coincide
in this region.
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Let
ae = am-e

Now
< = 0 > - ( I j ( a ? , α e , 0 ) | + e )

= k(x, α€ , α'€), for all x E [0,1]

so α e is a lower solution for (4.2). Similarly βe is an upper solution for (4.2).
Also, by (4.1),

(4.3)

Suppose that y is a solution of (4.2) and (y(0),y(l)) G A. We show that
y is a solution of (1.1). We show that a < y < β on [0,1]. Suppose for
example that y{t) < a(t) for some t G [0,1]. From the boundary conditions
and continuity we may assume that a — y attains its positive maximum at
t e (0,1). Thus a'{t) = y'(ί) so that \y'(t)\ < L and a"{t) < y"(t). Prom the
definition of k we have

y"(t) = k(t,y(t),y'(t))

a contradiction. Similarly y < β on [0,1]. Now \y'\ < L on [0,1] by the
standard argument and y is the required solution.

Let Ωe = {y € ^([0,1]) : α e < y < /3£,|y'| < L, on [0,1]} and Γ£ =
Ω, x Δ.

Define K : C1^, 1]) -+ C([0,1]) at re e [0,1] by

K{φ)(x)=k(x,φ(x),φ'(x)).

Define « : f t x [0,1] -»• X by

,(7,D,^) = (</» + C/C(<̂>) - w(C,D),S(ψ, C, D,θ))

for § < 0 < 1,

W(^, C, £>, β) = (φ + C3{θ - l/Z)lC(φ) - w(C, D),G{C, D))

for I < 6> < | , and

H(φ, C, D,θ) = (φ- Ww(C,D) - (1 - 30)(α£ + βe)/2, G(C,D))

for 0 < θ < | , where

S(φ, C, D, θ) = G((C, D) (3(θ - 2β)(φ'(0), φ'(l)) + 3(1 - 0)Φ(C, D))).
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Clearly % is completely continuous. It is easy to see that y is a solution of
(4.2) and (1.2) with (y,y(0),y(l)) G f e iff «(y,y(0),y(l), 1) = 0. If there is a
solution with (y,y(0),y(l)) G dΓe then we are through. Suppose there is no
solution in dYe. We show that Ή is a homotopy for Schauder degree on Γ€ at
0. To see this assume there are solutions of Ή(y, C, J9, 0) = 0 with 0 G [0,1]
and (y,C,D) G <9Γe. We consider the cases 0 G [2/3,1] and [1/3,2/3); the
case 0 G [0,1/3) is trivial.

Consider the case 0 G [2/3,1]. By assumption there is no solution with
0 = 1. Assume there is a solution (y,C,D) with 0 G [2/3,1). As before
a(x) < y(x) < β(x) on [0, l],y(0) = C and y(l) = Zλ

Assume that (y(0),y(l)) G <9Δ. If y(0) = α(0), then y'(0) > α'(0). Thus
3(0 - 2/3)y'(0) + 3(1 - 0)</>°(y(O),y(l)) > α'(0) and <S(y,y(O),y(l),0) φ
0, a contradiction. Similarly the other cases (y(0),y(l)) G <9Δ lead to a
contradiction.

Assume that y G 9Ω€. Again, by a standard argument, \y'\ < L on [0,1].
Assume that y(t) = a€(t) for some t G [0,1]. Prom the boundary conditions
we see that t G (0,1) and thus y'(ί) = α'€(ί) = 0 while y"(<) > α;;(ί) = 0.
From the definition of k we have

y"(t) = k(t,y{t),y'(t))

a contradiction. Similarly the assumption y(ί) = βe(t) for some ί G [0,1]
leads to a contradiction. Thus there are no solutions of Ή(y, (7, D,0) = 0
with 0 G [2/3,1] and (y, C, Z>) G dΓe.

Assume that 0 G [1/3,2/3). Since Φ is strongly inwardly pointing and G is
strongly compatible, by (3.2) there are no solutions (y, C, D) with (C, D) G
dA. The proof that the case y G 3Ωe leads to a contradiction is similar to
that for0G [2/3,1).

Thus Ή is a homotopy for the Schauder degree and since Ή( , 0) = (/—c, Q)
where / is the identity on (^([0,1]) and c G Ω€ is a constant it follows that

, 0)7*0.

Suppose now that G is compatible with a and /?. Then there is a sequence
{GJgi strongly compatible with a and /? and converging uniformly to G
on compact subsets of R2 x M2 to G. Let y{ be the corresponding solutions.
By compactness there is a subsequence of the ŷ  converging in C2([0,1}) to
the desired solution. D

Remark 9. The Bernstein-Nagumo growth condition can be generalised
to: There exist h G C([0,oo); (0,oo)), h G C([am,βM]\ (0,oo)) and r G
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C([0,1]; (0, oo)) such that

\f(x,y,p)\ < h(\p\)h{y) +r{x), for all (x,y) € [0,1] x [a(x),β(x)} and

τ- Γ T > / h(s)ds + K r(x)dx,

where K = sup{s//ι(s) : s G [σ,L]}.
See Scorza Dragoni [32], Zwirner [36] and Thompson [34].

Remark 10. In the case Δ is degenerate we have to modify the result.
Suppose, for example, that α(0) = β(0). Then we set Δ = (α(l),/3(l)) and
change the other conditions as follows.

The vector field Φ E C(Δ) is said to be strongly inwardly pointing on Δ
if

Let G (Ξ C(Δ x M) and a < β be lower and upper solutions for (1.1),
respectively. We say G is strongly compatible with a and β if for all strongly
inwardly pointing Φ on Δ

Q(D) φ 0 for all D e dA and

where Q{D) = G(D, Φ(-D)). We define compatible as before. Theorem 1 and
its proof are modified in the obvious way.

Our results do not apply to the case α(0) = β(0) and α(l) = β(l) since
there are no solutions if our compatibility conditions are extended in the
natural way.

As mentioned earlier our central idea leads to existence results for those /
for which there are a'priori bounds on y' for solutions y satisfying a <y < β.
We now discuss the case where / satisfies the Nagumo-Knobloch-Schmitt
condition.

Theorem 2 Assume that there exist nondegenerate lower and upper so-
lutions a < β for (1.1), that f satisfies the Nagumo-Knobloch-Schmitt con-
dition, that G € C(Δ xR 2 ;R 2 ) is compatible with a and β, that a'{x) >
Φ(x,a(x)) and β'{x) < Ύ(x,β{x)) on [0,1] and that G{{C,D);{E,F)) = 0
only if E e [Φ(0,C),T(0,C)]. Then problem (1.1) and (1.2) has a solution
y lying between a and β.

Proof. Again we modify /. First choose

L>max{\Φ(x,y)l\Ύ(x,y)l\a'(x)l\β'(x)\:(x,y)eώ}1
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where ώ = {(x, y) 6 [0,1] x E : a(x) <y < β{x),x E [0,1]}. Let

fmax{/(z,y,Φ(a;,y)) + (Φ(z,y) - p ) , / ( z , y , p ) } , for p < Φ(rz,y)

<min{/(a;,y,T(a:,y)) + (T(rc,y) - p), /(rc,y,p)}, for p > T(rr,y)

[ / (# j 2Λ P) > otherwise

and

m(x, y,p) = /(re, y, π(p, - L , L)).

Thus a and /? are lower and upper solutions for

(4.4) y" - m(x, y, y') for all re G [0,1].

It is easy to see that m satisfies the conditions of Theorem 1 and thus there
is a solution y of problem (4.4) and (1.2) satisfying a < y < β. To show
that this is a solution of our problem it suffices to show that Φ(rr,y) <y'<
T(rr,y). From the boundary conditions there are no solutions for y'(0) ^
[Φ(0,y(0)),T(0,y(0))]. Suppose that y'(t) < Φ(ί,y(ί)) for some t G (0,lj.
By continuity and the definition of L we may choose t and u E (0, t) such
that — L < y'(x) < Φ(x,y(x)) for all x G (u,t] and y'(ύ) — Φ(u,y(u)). Now

{y'(x) - Φ(x,y(x)))' = m{x,y(x),y'{x))

- Φx(x,y(x)) - Φy(x,y(x))Φ(x,y(x))

> f(x,y(x),Φ(x,y(x)))

- Φx{x,y{x)) - Φy(x,y(x))Φ(x,y(x))

a contradiction. Thus Φ(rr, y) < y;. Similarly the y' < Ύ(x, y) and the result
follows. D

Remark 11. The conditions G((C, D)\ (JS, F)) - 0 only if

(2.8) guarentees the solution y satisfies Φ(rc,y(rτ)) < y;(rc) < T(rr,y(x)).
There are other ways to guarentee this as for example in the case of periodic
boundary conditions where we may replace the inequality signs in (2.8) by
not equals to signs (see for example Schmitt [31]).
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5. Comparison with Gaines and Mawhin.

Games and Mawhin consider problem (1.1) and (1.2), where / : [0, l ]xK 2 n ->
Mn, G : R2n x R2n -> R2n and y,y' G Mn, making the following definitions.

Definition [16, Definitions V.2 and V.18]. A set G C Rn is called au-

tonomous curvature bounded with respect to (1.1) if for each y0 G dG there

exists V{y) = V{yo;y) such that V G G2(Mn), G C { y e Γ : V{y) < 0},

V(y0) = 0 and

PtVyy(yo)p + Vy(yo)f(x,yo,p) > 0

for all peRn satisfying Vy(y0)p = 0 and x G (0,1).

Theorem [16, Theorem V.34]. Let G be a convex autonomous curvature
bounded set relative (1.1) such that 0 G G and for each y0 G dG, Vyy(yo) is
positive semi-definite. Assume that there exists nondecreasing

h G ^([OjOoJ ίOjOo)) έmcA that

\f(x,y,p)\ < h(\p\) for all (x,y) e Gu

where Gλ = [0,1] x G. Let T - sup{|y(x)| : x G [0,1]} αncί M > 8T be
t2

chosen such that -—r > 4T for all t > M. Assume that if y is a solution of
fι{t)

y" = λf(x,y,y') for all xG [0,1]

' 0

twίΛλe (0,1), y(x) eόforxe [0,1] and \y'(x)\ < M, theny{0),y(l) £ dG.
Moreover assume that

where G0(C,D) = G{{C,D + C)\(D,D)) for all (C,D) G Δ o and Δ o =
{(C,£>) G M2n : ( C , ΰ + C) G G}. TΛen ^Λere exists a solution y of (1.1)

(1.2) κ;i£/i (#,y) G Gi

The assumptions on h are standard for systems where it is well known that
the Bernstein-Nagumo condition is no longer sufficient to guarentee a'priori
bounds on the derivative of solutions. For some more recent variants see
Fabry [14], for example, and the references cited there.

The essential problems with this remarkable result are concerned with how
to extend it to the case Gi is not autonomous but varies with x. What is the
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appropriate replacement for Δo bearing in mind the requirements imposed
by the method of proof? In such an extension how would one check that (5.1)
is satisfied; this is not difficult in the autonomous case? Such an extension
is necessary if the result is to be applied to the range of problems currently
considered in the literature as we show in a paper forshaddowed above. In
the context of systems as opposed to single equations such an extension may
not have seemed so important since other technicalities involved in proving
such results have hitherto required the autonomous bounding set.

There is a close relationship between conditions (5.2) and the compatibil-
ity condition as the following theorem and example demonstrate.

Theorem 3. Let G be as in [16], Theorem V.34,

(5.3) Φ(C, D) = {D - C, D - C) for all (C, D) £ A

where A = G2 and let G(C,D) be given by (3.4). Then

Proof. This follows by the Leray Multiplication Theorem (see Lloyd [25,

Theorem 2.3.1]) letting the homeomorphism i : R2n -> Δ be given by

L{C,D) = (C,D-C). D

In the following examples compatibility fails however there exist strongly
inwardly pointing vector fields for which (3.2) holds. In the first example
there exists solutions and in the second there are no solutions. Moreover the
first example highlights a difference between our assumptions and those of
Gaines and Mawhin. Let

(5.4) y" = y,

β = 1 = — a. There is a solution y with

(y(0),y'(0)) = (- l ,o) , (ί/(l),y'(l)) = (1,6) and a,b > 2.

Choose

i /
1 ((C,l);(P 1 Q)) = l i f Q < 1 + 6/2, ^ ( ( C , -1); (P, Q)) = - 1

and ^ ( ( - 1 , 1 ) ; (α, b))= 0, i = 0,1; G can be extended to all of A x E2 as
continuous functions using Teitze's Theorem. It is easy to see from Lemma
14 below that (3.2) holds. It is easy to see that Theorem V.34 applies
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and there are solutions. Moreover it is easy to see that there is a strongly
inwardly pointing vector field such that (3.2) holds but (3.3) does not hold
for all strongly inwardly pointing vector fields.

To produce an example with no solutions is easy. Just let

there is a solution of (5.4) with these values }.

Set go((C,D)',(P,Q)) = 1 on W. Let g°((-l,D) (P,Q)) = -1 for P < 6/2
and p°((l,£>);(P,Q)) = 1 for P > -6/2, where b = (coshl - l)/(sinhl).
Again G can be extended to all of A x K2 as continuous functions using
Teitze's Theorem. Again, by construction there is a strongly inwardly point-
ing vector field Φ such that (3.2) holds and (3.3) does not hold for all strongly
inwardly pointing vector fields.

It is easy to see from the above that our compatibility condition is a
strengthening of (5.2) and the trade off is that we do not require that (5.1)
holds. Apart from the fact that [16], Theorem V.34 applies to systems
whereas Theorem 1 applies to a single equation this is the essential difference
between these results.

For the convenience of the reader and to highlight the difficulty in applying
Theorem V.34 to nonconstant a and β we state [16], Theorem V.37 which
is the result in [16] closest to our Theorem 1.

Theorem [16, Theorem V.37]. Assume that there exist strict lower and
upper solutions a < β for (1.1), g° is independent of D,Q, nondecreasing in
P7 g1 is independent of C, P, nondecreasing in Q and G satisfies

<0 ,g°((a(0),D);(a'(0),Q)) >0
; (P,«'(1))) < 0.

Assume that f satisfies the strengthened Bernstein-Nagumo condition, where
h G C1([0,oc);(0,cx))). Then (1.1) and (1.2) has a solution.

The interested reader is referred to [16] and [19] for other results of a
similar nature.

6. Compatibility for Boundary Set Conditions.

In this section we consider problem (1.1) and (1.3) again assuming that there
exist lower and upper solutions a < β, respectively and look for solutions y
lying between a and β.

Problems of the form (1.1) together with (1.2) and with (1.3) have been
considered by many authors. Shooting methods have been used combined
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variously with the maximum principle, with the Jordan separation theorem,
the Kneser-Hukuhara continuum theorem and/or the Wazewski retraction
theorem. Often these have been refined in the process. See Baxley [6],
Baxley and Brown [5], Bebernes and Fraker [9], Bebernes and Wilhelmsen
[7], Bernfeld and Palamides [10], Jackson and Klassen [21], Jackson and
Palamides [22], Palamides [30] and their references.

We show that the results of Bebernes and Fraker [9] can be derived from
our results. In a forthcoming paper we systematically show how all these
results involving set valued boundary conditions can be obtained from our
results. At first sight this may seem suprising since our results are derived
from Schauder degree theory while the others are derived from variants of
shooting. The key idea in shooting is a generalised Jordan separation the-
orem while the key idea in the retract method is that the boundary of the
sphere is not a retract of the sphere. Both of these can be derived from
degree theory thus a connection of this nature is not suprising but to be
expected.

In order to state our results we need some notation (see Bebernes and
Fraker [9]). For x G [0,1] let C(x) = {{x,y,p) E ώ x l } , Sa{x) = {(z,y,p) G
C(x) : y = a(x)}, and Sβ(x) = {{x,y,p) G C{x) : y = β{x)}.
Definition 12. We say the pair of sets {J{O),J{1)} C R2 is strongly
compatible, respectively compatible, for (1.1), a and β if there exists G G
C(Δ x IR2;IR2) which is strongly compatible, respectively compatible, for
(1.1), a and β and such that G{{C,D);(E,F)) φ 0 for all {C,E,D,F) £
J{0) x

Definition 13. Let J(i) C IK2, i — 0 or 1 be a closed connected subset of
[α(i),/?(i)] x R We say it is of compatible type 1 if there is (a(i),u(i)) G
J(i), where (~lY(af{i) - u(i)) > 0, and there is (β(i),u(i)) G J{i), where
(— iγ(u(i) — β'(i)) > 0. We say it is of compatible type 2 if for every p G l

there is y G [a(i),β(ιj\ such that (?/,p) G J{%). If it is of compatible type 1

or 2 we say simply it is of compatible type.

Theorem 4. Let the sets J(i) CR 2 i — 0,1 be of compatible type, then
the pair {J(ΰ),J(ϊ)} is compatible for (1.1), ex. and β.

We will need the following Lemma in the proof of Theorem 4.

Lemma 14. Let M = {rn?,mι) G C(Δ;M2) satisfy m°{a(0),D) < 0,
m°{β{0),D) > 0 and ra^CXl)) < O ^ ^ C ^ l ) ) > 0 for all (C,D) G A
and M(C, D) φ 0 for all (C, D) G <9Δ; then d{M, Δ, 0) φ 0.

This follows since S — ΘM + (1 — Θ)(I —p) is a homotopy of M with I — p
where / is the identity on R2 and p G Δ is any point.
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Proof of Theorem 4. Let J{i) i = 0,1 be of compatible type. We define
G = (g0^1) as follows.

Let O = [α(0),/?(0)] x R \ J(0). Then (9 is a relatively open subset of
[α(0), /?(0)] x R. Since ^7(0) is of compatible type, by the generalised Jordan
curve theorem, (see Lloyd [25]) O = U UV UW where U is the union of
all components of O which intersect Lo = {α(0)} x [α'(0),oo), V is the
union of all components of O which intersect L\ = {β(0)} x (—oo, β'{0)] and
W = O \ {U U V}. Now U + 0 φ V. Set

Q°((CD) (EF)) = l dist((C,E),J(0)), ΐoτ all (C,E)eVUW
U ' M ' j j \dist((C£)J(0)) forall(C,£)Ef/Uj(0).

It is easy to see that g° is continuous, g°((α(0),Z?); {E,F)) < 0 for all # >
α'(0) and that 0°((/3(O),I>);(JE,F)) > 0 for all F > β'(Q). Similarly we
define g1 using J(l). To see that G is compatible we set 9?((C, D); (£?, F)) =
p°((C, D)\ (E, F)) + (C - (α(0) + β(0))/2)/i) and similarly approximate 31.
Let Φ be a strongly inwardly pointing vector field on Δ. Thus Qi(C,D) =

0 and g\{C,β(ϊ)) > 0 for all (C,D) G Δ. The result follows by Lemma
14. D

The next result is an immediate consequence of Theorems 1 and 4.

Corollary 15 [9, Theorem 2]. Assume that there exist lower and upper
solutions, a < β, respectively, for (1.1), that f satisfies a Bernstein-Nagumo
condition and that the sets J(ϊ), z = 0,1 are of compatible type. Then there
is a solution of (1.1) and (1.3) lying between a and β.

We show now how the results of Bebernes and Fraker follow from ours.

Corollary 16 [9, Theorem 1]. Assume that there exist lower and upper
solutions a < β for (1.1) and that for any J52 > 0 and t0 E (0,1] there is
N(B2) > 0 such that any solution of (1.1) with \y'(0)\ < B2 and a(x) <
y{x) < β{x) for all x G [0,t0] satisfies \y'(x)\ < N(B2) for all x E [0,to] If
J{ϋ) is compact and of compatible type 1 and J(Ί) is of compatible type 2,
then problem (1.1) and (1.3) has a solution lying between a and β.

Proof By compactness there is B2 > 0 such that (y(0),y'(0)) E J(β)
implies that |y;(0)| < B2. By assumption we may choose N such that \y'\ <
N for all solutions y of (1.1) with {x,y) E ώ on [0,1] and L such that
L > max{\a'(x)l\β'{x)\,N : x E [0,1]}. Let j(x,y,p) = /(z,y,τr(p;-L,L))
for all (x,y,p) E [0, l j xK 2 . Consider

(6.1) y"=j{x,y,v') for all x E [0,1]
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together with (1.3). Now a and β are lower and upper solutions for (6.1)
so by Corollary 15 there is a solution y for this problem between a and β.
Assume that \y'\> L for some x E [0,1]. Set t = min{x E [0,1] : \y'(x)\ <
L}. By continuity and the choice of L, we have t > 0 and |y'(#)| < L for
all x E [0, t\. Thus y is a solution of (1.1) on [0,ί] lying between a and /?
but \y'(t)\ > N a contradiction. Thus |y'| < L o n [0,1] and y is the required
solution. •

In the above result Bebernes and Fraker assume that there exist strict
lower and upper solutions.

The above result can be sharpened as follows.

Definition 17. Set

(6.3)
SO = {(y, -N) : α(0) < y < β(0)} U {(α(0),p) : α'(0) > p > -N},

(6.4)
S2 = {(y,N) : α(0) < y < β(0)} U {(β(0),p) : β'(0) <p<N},

(6.5)
S, = {(y, -M) : α(l) < y < ,5(1)} U {(β(l),p) : ̂ (1) > p > -M} and

(6-6)
U {(α(l),p) : α'(l) < p < M}.

Corollary 18 [9, Theorem 3]. Assume that there exist lower and upper
solutions a < β for (1.1) and that f satisfies a Bernstein-Nagumo condition.
Further assume that J{ϊ) C C(i), i = 0,1 are closed connected sets satisfying
J(0) Π {So U S2} φ 0 and J ( l ) Π {Si U S3} 7̂  0, ^Λere the Sτ are given by
(6.3) to (6.6) and M — N is given by (2.5). T/ien ίΛere is a solution y lying
between a and β.

Proof. This follows since either {β{0),u) E J{0) for some u > βι(0) or
(y, iV) E v7(0) for some y E [a(0), /3(0)) and we add the straight line segment
joining (y,N) to (β(0),N) to ,7(0). Similarly, either (a(0),u) E ,7(0) for
some u < αr(0) or (y, -JV) E ,7(0) for some y E (α(0),/3(0)] and we add the
straight line segment joining (y,—N) to (θf(0),—iV) to i7(0). Similarly we
modify J(l) as above. Thus the modified J[i) are of compatible type and,
by Corollary 15, there exists a solution for (1.1) and (1.3). This solution
satisfies \y'\ < N and hence is the required solution. D

There is a typographical error in Bebernes and Fraker [9], Theorem 3
and a counterexample can be constructed to the result as they have stated
it. To explain the error we need the following notation. Let / satisfy the
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strengthened Bernstein-Nagumo condition, and λ = max{σ, |α'(z)|,
xe [0,1]}. Define N(t) by

N(t) s

——ds = max{/3(w) : u e[O,t]} — min{α(u) : u € [ 0 , t ] } ,

and N by

(6.7) N = min{N(t) : t E [0,1]}.

Bebernes and Praker take N from (6.7) and M = N(l). The min should
be max in (6.7).
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