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ESTIMATION OF THE NUMBER OF PERIODIC ORBITS

BOJU JIANG

The main theme of this paper is to estimate, for self-maps
/ : X -> X of compact polyhedra, the asymptotic Nielsen
number 7V°° (/) which is defined to be the growth rate of the
sequence {N(fn)} of the Nielsen numbers of the iterates of/.
The asymptotic Nielsen number provides a homotopy invari-
ant lower bound to the topological entropy h(f). To intro-
duce our main tool, the Lefschetz zeta function, we develop
the Nielsen theory of periodic orbits. Compared to the ex-
isting Nielsen theory of periodic points, it features the map-
ping torus approach, thus brings deeper geometric insight and
simpler algebraic formulation. The important cases of home-
omorphisms of surfaces and punctured surfaces are analysed.
Examples show that the computation involved is straightfor-
ward and feasible. Applications to dynamics, including im-
provements of several results in the recent literature, demon-
strate the usefulness of the asymptotic Nielsen number.

Introduction.

Motivated by dynamical problems, Nielsen theory of fixed points of self-maps
/ : X —> X of compact polyhedra was generalized to study periodic points,
i.e. solutions to fn(x) = x, where fn is the n-th iterate. See e.g. [J l , §111.4].
As the Nielsen number N(f) is a homotopy invariant lower bound to the
number of fixed points of / , the Nielsen number N(fn) is certainly a lower
bound to the number of n-points (i.e. fixed points of the n-th iterate) for
any map g homotopic to / .

However, generally speaking, the Nielsen numbers are notoriously difficult
to compute. We will demonstrate that the asymptotic growth rate of the
sequence {N(fn)} (when n —>• oc), which we denote by N°°(f), is a more
computationally accessible invariant than the sequence itself, yet one that is
still useful for dynamics. Although the exact evaluation of N°° (f) would be
desirable, its estimation is a more realistic goal and, as we shall show, one
that is sufficient for many applications.

For an asymptotic study, the first challenge is to develop a unified algebraic
formulation for the Nielsen theory of all iterates of / so that we can easily
relate the fixed point class data of various fn. This is why we propose the
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Nielsen theory for periodic orbits. The key idea is to work on the mapping
torus Tf of / and to count periodic orbits rather than periodic points, then
Nielsen equivalent /-orbits on X correspond to freely homotopic closed orbit
curves on Tf. (This observation of [J2] can actually be traced back to the
pioneering work of Fuller [Fu] in a different context.) The fixed point data of
fn are organized into the generalized Lefschetz number LΓ(/ n), a homotopy
invariant living in the free abelian group generated by the set of conjugacy
classes in Γ = π1(Tf).

For the sake of practical computation, we assume that a matrix represen-
tation p of Γ is given. The traces of the p-images of the generalized Lef-
schetz numbers constitute a sequence of complex numbers. The Lefschetz
zeta function ζf is a generating function for this sequence which turns out
to be a rational function easily computable for cellular maps. Our Lefschetz
zeta function is the same as that of Fried [F4] using matrix representations
of πι(Tf), rather than the earlier version in [Fl] using abelian representa-
tions, so that non-abelian information can be better retained. This makes a
difference in applications, as shown in §4.3.

Now every zero or pole of ζf supplies a convenient lower bound for the
asymptotic Lefschetz number L°° (/) of /, defined to be the growth rate
of the sequence {||£Γ(/n)||} of norms of the generalized Lefschetz numbers.
On the other hand, the asymptotic Lefschetz number is identified with the
asymptotic Nielsen number for some important classes of maps.

The sketch above, of the approach to the estimation of N°° (/) that we
will present in this paper, is given a more detailed exposition in [J3].

The structure of the paper is as follows. §1 establishes the basic Nielsen
theory of periodic orbits and introduces the Nielsen numbers, the Lefschetz
numbers and the Lefschetz zeta function. §2 defines the asymptotic invari-
ants, discusses the conditions for their equality and their relation to the
topological entropy, and provides methods for their estimation. §3 analyses
the case of homeomorphisms of compact aspherical surfaces and proposes a
theory for homeomorphisms of punctured surfaces which often arise in re-
cent 2-dimensional dynamical systems theory. The examples in §4 serve to
illustrate our theory. Some open problems are given in §5.

1. Nielsen theory for periodic orbits.

We first give a brief account of the invariants of Nielsen fixed point theory in
§1.1. To simplify the algebra involved, we shall work with the natural semi-
flow on the mapping torus described in §1.2. The notion of periodic orbit
classes is introduced in §1.3. The Lefschetz numbers and Nielsen numbers
are then defined in §1.4, and their invariance shown in §1.5. When a matrix
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representation of the fundamental group of the mapping torus is given, we
introduce in §1.6 the associated Lefschetz zeta function. Since this will be
our main tool for asymptotic estimates, an analysis of our requirement on
the representation is given in §1.7. Finally, in §1.8 we introduce the relative
invariants.

1.1. Nielsen theory for fixed points. The basis of Nielsen fixed point
theory is the notion of a fixed point class.

Let X be a compact connected polyhedron, / : X -> X be a map. The
fixed point set Fix / :— {x G X | x = f{x)} splits into a disjoint union of
fixed point classes. Two fixed points are in the same class if and only if they
can be joined by a path which is homotopic (relative to end-points) to its
own /-image. Each fixed point class F is an isolated subset of Fix / hence
its index ind(F, /) G Z is defined. A fixed point class with non-zero index
is called essential. The number of essential fixed point classes is called the
Nielsen number N(f) of /. It is a homotopy invariant of /, so that every
map homotopic to / must have at least N(f) fixed points. (Cf. [Jl, p. 19].)

Pick a base point v (Ξ X and a path w from υ to f(v). Let G := πι(X,v)
and let fG : G —> G be the composition

Two elements g,gf E G are said to be fG-conjugate if there is an h G G
such that g' = fG{h)gh~ι. (There are two definitions of /G-conjugacy in the
literature, related by an inversion. The one we use here is the original one
of [R] and [We] which turns out to be more convenient than the other one
used in [Jl, p. 26].) Thus G splits into /G-conjugacy classes. Let Gf denote
the set of /G-conjugacy classes, and ZGf denote the abelian group freely
generated by Gf. We use the bracket notation a *-» [a] for both projections
G —» Gf and 7LG —> ZG/, where ZG is the integral group ring of G.

For every x G Fix /, its G-coordinate cdG(:r, /) G Gf is defined as follows:
Pick a path c from v to x. The /G-conjugacy class in G of the loop w(foc)c~1,
which is evidently independent of the choice of c, is called the G-coordinate
of x. (This also differs from the definition in [Jl, p. 26] by an inversion.)
Two fixed points are in the same fixed point class if and only if they have
the same G-coordinates. The G-coordinate cd G (F,/) of a fixed point class
F is then defined to be the common G-coordinate of its members.

The generalized Lefschetz number is defined ([R], [We], cf. [FH]) as

(1.1) LG (/) := £ ind(F, /) • cdG (F, /) G ZG,,
F

the summation being over all (essential) fixed point classes F of /. When
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all fixed points of / are isolated, we also have

(1.1') La(f)= Σ ™d(x,f)-cda(x,f)

The Nielsen number N(f) is the number of non-zero terms in LG(f): and
the indices of the essential fixed point classes appear as the coefficients in

LG(f)
The invariant LG(f) used to be called the Reidemeister trace because it

can be computed as an alternating sum of traces on the chain level ([R],

[We]).

Let p : X:ϋ -> X,v be the universal covering. The deck transformation

group is identified with G. Let / : X —> X be the lift of / such that the

reference path w lifts to a path from ϋ to f(v). Then for every g £ G we

have fog = fG(g) o f (cf. [Jl, pp. 24-25]).

Assume that X is a finite cell complex and / : X —>> X is a cellular map.

Pick a cellular decomposition {e^} of X, the base point v being a 0-cell. It

lifts to a G-invariant cellular structure on the universal covering X. Choose

an arbitrary lift ed

3 for each ed. They constitute a free ZG-basis for the

cellular chain complex of X. The lift / of / is also a cellular map. In every

dimension d, the cellular chain map / gives rise to a ZG-matrix Fd with

respect to the above basis, i.e. Fd — (α^ ) if /(ef) = ΣjaijCj> aιj

Then we have the Reidemeister trace formula

(1.2) LG(f) = Σ(-l)d[tτFd] GZGf.
d

Remark. The base point υ and the path w serve as a reference frame for
the G-coordinate. (When υ is a fixed point and w is the constant path, the
G-coordinate of v is [1] £ ZG/.) A change of the reference path w would
affect the homomorphism /G, hence also the /G-conjugacy relation in G and
the set Gf where the G-coordinates live. This develops into a considerable
mess when we apply the above theory to all the iterates fn of /, as we
are then forced to deal with infinitely many different sets G^ at the same
time. In order to simplify the algebra, we propose the following alternative
approach to the coordinates of fixed points.

1.2. The mapping torus. The mapping torus Tf of / : X —> X is the
space obtained from X x M^ by identifying (x,s 4- 1) with (f(x),s) for all
x £ X, s e K+, where IR+ stands for the real interval [0, oo). On Tf there is
a natural semi-flow ("sliding along the rays")

φ : Tf x R+ -> Tf, φt{x, s) = (x, s + t) for all t > 0.
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A point x G X and a positive number τ > 0 determine the time-τ orbit
curve (p(x,r) -"= {<Pt(x)}o<t<r in Tf. We may identify X with the cross-
section X x 0 C T/, then the map / : X —> X is just the return map of the
semi-flow (/?.

Take the base point v of X as the base point of Tf. Let Γ := 7Γχ(Tf, v). By
the van Kampen Theorem, Γ is obtained from G by adding a new generator
z represented by the loop φ(Viι)W~ι, and adding the relations z~ιgz = fG(g)
for all g G G:

(1.3) Γ = (G,z\gz = zfG(g) for all g G G).

Remark. Note that the homomorphism G —> Γ induced by the inclusion
X C Tf is not necessarily injective. Its kernel equals Um>oker(/™), the
union of the kernels of all iterates of fG : G —> G. This fact can be proved
by a topological argument similar to that of [J2, §3].

Notation. Let Γc denote the set of conjugacy classes in Γ. Theoretically,
it is better to regard Γc as the set of free homotopy classes of closed curves
in T/, so that it is independent of the base point. Let ZΓ be the integral
group ring of Γ, and let ZΓC be the free abelian group with basis Γc. We use
the bracket notation a \-ϊ [a] for both projections Γ -» Γc and ZΓ —» ZΓC.

1.3. Periodic orbit classes. We intend to study the periodic points of /,

i.e. the fixed points of the iterates of /.
We shall call PP / := { (rr, n) G X x N | x = fn(x) } the periodic point set

of /, where N denotes the set of natural numbers. A fixed point x of fn is
called an n-point of /, and its /-orbit {x, f(x), . •, fn~λ{x)} an n-orbit of /.
The latter is called a primary n-orbit if it consists of n distinct points, i.e.
if n is the least period of the periodic point x.

A fixed point class F n of fn will be called an n-point class of /. Re-
call from [Jl, Proposition III.3.3] that /(F n ) is also an n-point class, and
ind(/(F n ),/ n ) = ind(F n ,/ n ) . Thus / acts as an index-preserving permu-
tation among its n-point classes. We define an n-orbit class of / to be the
union of an orbit of this action. In other words, two points x,x' G Fix/ n

are said to be in the same n-orbit class of / if and only if some fι(x) and
some fj(x') are in the same n-point class of /. The set Fix/ n splits into a
disjoint union of n-orbit classes.

On the mapping torus Tf, observe that (#,n) E P P / if and only if
the time-n orbit curve φ(Xin) is a closed curve. The free homotopy class
of the closed curve φ(x,n) will be called the T-coordinate of (x,n), written
cdΓ(rc,n) = [φ(rE,n)] G Γc.

It follows from [J2, §3] that periodic points (x,n), (x',n') G P P / have
the same Γ-coordinate if and only if n = n! and x,x' belong to the same
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n-orbit class of /. Thus we can equivalently define x,x' E Fix fn to be in
the same n-orbit class if and only if they have the same Γ-coordinate, and
define the Γ-coordinate of an n-orbit class O n as the common Γ-coordinate
of its members, written cdΓ(On).

Remark. The notion of Γ-coordinate has great algebraic advantage over
that of G-coordinate (cf. Remark in §1.1). Ordinary conjugacy classes have
replaced the awkward skew-conjugacy classes. The Γ-coordinates cdΓ(On)
are independent of the choice of the base point, and for any n they all live
in the same set Γc.

An important notion in the Nielsen theory for periodic orbits is that of
reducibility. Suppose m is a factor of n and m < n. When the n-orbit
class O n contains an m-orbit class O m then cdΓ(On) is the (n/m)-th power
of cdΓ(Om), because for x E O m the closed curve φ(x,n) is the closed curve
Ψ{χ,m) traced n/m times. This motivates the definition that the n-orbit class
O n is reducible to period m if cdΓ(On) has an (n/m)-th root, and that O n is
irreducible if cdΓ(On) is primary in the sense that it has no nontrivial root.

This notion of reducibility is consistent with that introduced in [Jl]. An
n-orbit class On is reducible to period m if and only if every n-point class
F n C O n is reducible to period m in the sense of [Jl, Definition III.4.2].

1.4. Lefschetz numbers and n-orbit Nielsen numbers. Every n-orbit
class O n is an isolated subset of Fix fn. Its index is ind(On,/n), the index
of O n with respect to fn. An n-orbit class O n is called essential if its index
is non-zero.

For each natural number n, we define the (generalized) Lefschetz number
(with respect to Γ)

(1.4) LΓ(F) := X>d(O",/") c dr(θ") e zrc,

the summation being over all n-orbit classes O n of /. When every fixed
point of fn is isolated, we also have

(1.4') LΓ(fn) = Σ i n d ( * , Γ ) [*>(**)] e zr c.
(i.n)GPP/

Let NΓ(fn) be the number of non-zero terms in LΓ(fn). It is the number
of essential n-orbit classes, and will be called the Nielsen number of n-orbits.
Clearly it is a lower bound for the number of n-orbits of /.

Let NIΓ(fn) be the number of non-zero primary terms in LΓ(/ n). It is
the number of irreducible essential n-orbit classes, and will be called the
Nielsen number of irreducible n-orbits. It is a lower bound for the number
of primary n-orbits.
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The indices of the essential n-orbit classes appear as the coefficients in
LΓ(fn). Another numerical invariant derived from L Γ (/ n ) is its norm. We
give a general definition here:

Notation. For any set S let ZS denote the free abelian group with the

specified basis S. The norm in ZS is defined by

= Ύ^ \ki\ £ Z when the s^s in S are all different.(1.5)

The norm | | L Γ ( / n ) | | is the sum of absolute values of the indices of all the
(essential) n-orbit classes. It equals | |L G (/ n ) | | , the sum of absolute values
of the indices of all the (essential) n-point classes, because any two n-point
classes contained in the same n-orbit class must have the same index. Hence

Corresponding to the trace formula (1.2), we have the following trace
formula:

Theorem 1.1. Let Fd be the ZG'-matrices defined before (1.2). Then

(1.6) LΓ(Γ) =
d

where zFd is regarded as a ZΓ-matrix.

Proof. Applying the theory of §1.1 to the iterates fn of /, n > 1, we get

(1.7) LG (Γ) := Σ i n d ( p n ' Γ) ' c d . (pn> n e ZGr,

the summation being over all fixed point classes F n of fn. (The reference

path for fn is taken to be the path w^ := w(f ow) (fn~1 o w) from υ to

By definition, for (x,n) 6 P P / and for any path c in X from v to x, the
Γ-coordinate of (x,n) is the conjugacy class in Γ of the loop c</?(x>n)C

-1 ~

ψ(v,n)Un ° C)C~1 ~ ZnW{n){fnOc)c-1. SO

(1.8) cdΓ(a;,n) = 2 r n cd o (a;,/ n ) .

Now from (1.4) and (1.7) we see

(1.9) LΓ(r) = znLGUn)-

On the other hand, the trace formula (1.2) gives
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where F^ is the matrix of fn. Since fog — fG(g)o f for all g £ G, we have

(1.11) F™ = rG~
lFd • rG~

2Fd • • • fGFd • Fd.

Hence by (1.9-11) we obtain

= £ ( - ! ) " [tv(zFd)
n] G ZΓC.

d

D

Remark. Occasionally in applications we may use a homomorphism from Γ
to a more convenient group Γ", which determines an obvious homomorphism
ZΓC -> ZΓ;. Let Lτ,(fn) be the image of LΓ(fn). Let Nr,(fn) be the
number of non-zero terms in LΓ, (/ n ), and let NIr,(fn) be the number of
non-zero primary terms. Then Nr,(fn) etc. are lower bounds for NΓ(fn)
etc. respectively. This technique is similar to that for fixed points developed
in [Jl, §ΠL2].

1.5. Invariance properties. The following basic invariance properties are
similar (with similar proofs) to that for fixed points (cf. [Jl, §§1.4-5]).

Homotopy invariance. Suppose f ~ f : X -ϊ X via a homotopy

{ft}o<t<i The homotopy gives rise to a homotopy equivalence Tf,v ~Tf>,υ

in a standard way. If we identify Γ' = πi(T//,υ) with Γ = πι(Tf,υ) via

this homotopy equivalence, then LΓ(f/n) — LΓ(fn) for all n, hence also

NΓ(Γ) = NΓ(fn) and NIΓ(f'n) = NIΓ{fn).

Commutativity. Suppose f : X —> y and g :Y -» X. Then Tgof and Tfog

are homotopy equivalent in a standard way. If we identify Γ = πι(TgOf) with

V = πι(Tfog) in this way, then LΓ((g o f)n) = LΓ((f o g)n) for all n, hence

al8θNΓ((gof)n)=NΓ((fog)n) and NIΓ((g o /)») = NIΓ((f o g)n).

Homotopy type invariance. Suppose h : X —> X' is a homotopy equiv-
alence. Suppose f : X —ϊ X and f : X' -» X' are maps such that the
diagram

X —£-» X

4 i
X' —^ X'

commutes up to homotopy. Then Tp is homotopy equivalent to Tf, and when

Γ = 7ri(7>) is suitably identified with Γ = TΓ^T)), we have LΓ(f'n) = LΓ(fn)

for all n, hence also NΓ(f'n) = NΓ(fn) and NIΓ[f'n) = NIΓ{fn).
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1.6. Twisted Lefschetz numbers and Lefschetz zeta function. Let R
be a commutative ring with unity. Let GL/(i?) be the group of invertible
/ x / matrices in i2, and Λ4ιxι(R) be the algebra of / x / matrices in R.

Suppose a representation p : Γ —>• GLι(R) is given. It extends to a repre-
sentation p : ZΓ —> Λ4ιxι(R). We define the p-twisted Lefschetz number

(1.12) Lp(Γ) := tr (LΓ ( Γ ) ) p = £ ind(On, fn) tr (cdΓ (On))p e R
Qn

for every n £ N, the summation being over all n-orbit classes O n of /. It

is well defined because matrices in a conjugacy class have the same trace.

When all fixed points of fn are isolated, we have

(1.120 LP(Γ) = Σ i n d ( ^ /") * t r (*>(*,»)) ^ R-
(i,n)6PP/

It has the trace formula

d

(1.13) =Σ(-l)dtτ((zFdy)n eR
d

where for a ZΓ-matrix A, its p-image Ap means the block matrix obtained
from A by replacing each element α^ with the / x / iϊ-matrix ap

i3.
We now define the (p-twisted) Lefschetz zeta function of / to be the formal

power series

(1-14)
Tb

It has constant term 1, so it is in the multiplicative subgroup 1 + £/?[[£]] of
the formal power series ring i?[[t]].

Clearly ζp(f) enjoys the same invariance properties as that of LΓ(fn). As
to its computation, we obtain from (1.13) the following determinant formula:

Theorem 1.2. ζp(f) is a rational function in R.

(1.15) ζp(f) = Πdet (/ - t{zFd)")(~l) ^ G R(t),
d

where I stands for suitable identity matrices.

Proof.
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D

By (1.12), (1.14) and the homotopy invariance, we have the

Twisted version of the Lefschetz fixed point theorem. Let f : X —> X
be a map and p : ττι(Tf) —> GL/(i2) be a representation. If f is homotopic
to a fixed point free map g, then Lp(f) = 0. If f is homotopic to a periodic
point free map g, then ζp(f) — 1.

Remark 1. When R = Q and p : Γ -> GLχ(Q) = Q is trivial (sending

everything to 1), then Lp(f) G Z is the ordinary Lefschetz number £ ( / ) ,

and ζp(f) is the classical Lefschetz zeta function ("(/) := e x p ^ n L(fn)tn/n

introduced by Weil (cf. [Bt]).

Remark 2. Our Lefschetz zeta function is essentially the same as the
twisted Lefschetz function of David Fried. He first introduced it in [Fl]
using /-invariant abelianizations of πi(X), and showed in [F2] that it is a
certain Reidemeister torsion of the mapping torus Tf. Then in the paper [F4]
he adopted the Reidemeister torsion approach, with respect to a flat vector
bundle (which is equivalent to a matrix representation of the fundamental
group).

Example. (Recipe for surfaces with boundary).

Let X be a surface with boundary, and / : X —> X be a map. Suppose
{αi, ,α r} is a free basis for G = π\(X). Then X has the homotopy type
of a bouquet X' of r circles which can be decomposed into one 0-cell and r
1-cells corresponding to the α '̂s, and / has the homotopy type of a cellular
map / ' : X' -> X1. By the homotopy type invariance of the invariants, we
can replace / with / ; in computations. The homomorphism fG : G —>> G
induced by / and / ' is determined by the images α' := /G(fli), i = 1, • , r.
By (1.3), the fundamental group Γ = τri(ϊ/) has a presentation

(1.16) Γ = ( α l 5 ,a r ,£ | aτz — zo!iΊ i — 1, ,r ).

As pointed out in [FH], the matrices of the lifted chain map / ' are

(1-17) Fo = (1),

where D is the Jacobian matrix in Fox calculus (see [Bi, §3.1] for an intro-
duction). Then, by (1.6), in ZΓC we have

(U8) ^ O - M -
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When a representation p : Γ -> GL/(iϊ) is given, by (1.13) and (1.15) we
have

(1.20) Lp(f) = tτzp - tv(zD)p G R,

2 1 det{I-t(zDY)
p det(/ — tzp)

1.7. A closer look at the representation p. A practical difficulty in the

use of Lp(fn) and ζp(f) is to find a useful p which was assumed to be a

group homomorphism Γ -> GLι(R). Can we weaken the assumption on pΊ

Observe from (1.8) that the Γ-coordinate of an n-orbit class can be writ-

ten as zng for some g G G, whereas a general element of Γ has the form

zkgz~ι with g G G and k,l > 0. The definition (1.12) only requires that

tr(cd Γ (O n )) p G R be well defined, so p need to behave well only on a subset

of Γ, not on the whole Γ. This motivates the following approach.

Definition. Let Γ + be the monoid defined by the presentation (1.3)

(1.22) Γ + := Monoid ( G , * | gz = zfG(g) for all g G G).

In other words, as a set,

(1.23) Γ+ = {zng\n>0,geG}.

The letter z is regarded as a symbol so that Γ + is in one-one correspondence

with Z + x G, where Z + is the monoid of non-negative integers. And the

multiplication in Γ + is defined by

(1.24) (zna)(zmb) := z«+m (fG(a)b) .

The obvious projection η : Γ + -» Γ, zng H-» zng is a monoid homomorphism
which will often be omitted in notations. Beware that η is not necessarily
monomorphic.

L e m m a 1.3. Suppose zna,znb G Γ + project to conjugate elements in F,
where n > 0. Then there exist 0 < r < n and h G G such that in Γ + we have

(1.25) znb = h~lzn~razrh.

Proof. Suppose znb = j~ιznaj for some 7 G Γ. This 7 can be written in the

form 7 = zkcz~ι with c G G and k,l > 0. So in Γ we have

JG\ ' — z \Z oz ) — z \z υ)z — z yy A
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= {c-ιz-k)zna(zkc) = (C-V)(z-*az*)c = z^^c^f^c,

hence/^(6) = /»(C- 1)/*(α)c.
By the Remark in §1.2, we can find some m > 0 such that

fo+m(b) = f^ic-^f^WZic) G G.

Increasing m if necessary, we may assume l + m = pm and k + m = gm + r,
where p,q > 0 and 0 < r < n.

Let Λ = /^(α- 1)/G"+' (α-1) / ^ - 1 ) " + ' (α-1)/™(C)/^-1)' ι(ί>) /c"(6)6 G
G. Then we have

= ftb-1) • • • fp

G

n(b-l)fc

+m(b)f{Γ1)n(b) • • • fW)b = b-

Thus, in Γ + we get

= h-ιzn-rzrfr

G{a)h = h-ιzn-razrh,

as required. D

Theorem 1.4. Suppose a monoid representation p : Γ + —>> Λ4/x/(i?) is
given. In other words, suppose we have a group representation p : G —>
GLι(R) and a matrix zp G Λ4ιxι(R) satisfying the condition

(1.26) gpzp = zp(fG{g))p for any g G G.

Extend p to a ring homomorphism p : ZΓ+ -» Λ4ιxι(R). Then the theory of
§1.6 works.

Proof. The basis of §1.6 is the definition (1.12) of Lp{fn). So it suffices to
show that for any zna, znb G Γ + that are conjugate in Γ, we have tτ(zna)p —
tτ(znb)p.

Let r and h be as in Lemma 1.3, and write ap,bp,hp as A,B,H respec-

tively. Then

tτ{znb)p = tτ(h-ιzn-razrh)p = tτ(H~ι Zn~r AZr H)
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= tτ{Zn-rAZr) = tτ(ZnA) = tτ(zna)p.

D

Remark. If zp is invertible, p will give a group representation Γ —> GLι(R).
The point of the theorem is that we do not require zp to be an invertible
matrix.

Example. (Free abelian group).
Suppose G is a (multiplicative) free abelian group with basis {gλ, , ρ r},

and the homomorphism fG:G-*Gis given by the r x r integral matrix
A = (aij) such that fG(9i) = g?* #•>.

Every element g — g\x g*r G G corresponds to an integer row-vector
υ(^) := (υu • , v r). Clearly υ(fG(g)) = v(g) A for any 5 G G.

Then the assignments

(1.27)

define a monoid representation p : Γ + —> Λί(r+i)x(r+i)(Z). The verification
of the condition (1.26) is trivial.
1.8. Relative invariants mod a subpolyhedron. Let X be a compact
connected polyhedron as before, and A be a subpolyhedron. Let / : X, A ->
X, A be a self-map of the pair.

A fixed point x of / is related to A if there is a path c such that c c ^ / o c :
/, 0,1 -> X, or, A, where ~ means homotopic. A fixed point class F of / will
be called a fixed point class on X \ A if it is not related to A. The number
of essential fixed point classes of / on X \ A is called the Nielsen number of
the complement, denoted N(f\X \A). It is a lower bound for the number
of fixed points of / on X \ A, and it is invariant under homotopy of maps
X,A -> X, A ([Z], cf. [S, §2.3]). Obviously N(f;X\ A) < N{f).

Under the mapping torus point of view, a fixed point x of / is related to
A if and only if the corresponding closed orbit curve ψ(Xiι) in Tf is freely
homotopic to a closed curve in Γ/|Λ5 the mapping torus of the restriction
f\A : A —> A naturally regarded as a subspace of Tf.

The Nielsen theory of periodic orbits for X developed above has a natural
relative version for X \ A. A free homotopy class of closed curves in Tf
(i.e. an element of Γc) will be called related to A if it contains a closed
curve in Tf\A C Tf. An n-orbit class of f on X \ A is defined to be an
n-orbit class of / whose coordinate is not related to A. The Nielsen number
of the complement NΓ(fn;X \ A) is the number of essential n-orbit classes
of / on X \ A. The Lefschetz number of the complement LΓ(fn;X \ A) G
ZΓC is obtained from LΓ(fn) by deleting the terms related to A. Clearly
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2. Asymptotic Nielsen numbers and topological entropy.

The asymptotic behavior of the number of periodic orbits is more important
than that number for a specific period n. The former is also often easier to
estimate. In §2.1 several asymptotic invariants are defined as growth rates of
the Nielsen numbers and Lefschetz numbers. Sufficient conditions for these
invariants to be equal are given in §2.2. In §2.3 we propose our method of
lower estimation for the asymptotic absolute Lefschetz number via twisted
Lefschetz zeta functions. §2.4 provides a method of upper estimation. §2.5
is devoted to the relation between the asymptotic Nielsen number and the
topological entropy. The final section §2.6 is an aside discussing the growth
rates of some Nielsen type numbers.

2.1. Asymptotic invariants. The growth rate of a sequence {an} of com-
plex numbers is defined by

(2.1) Growtlv^oottn := max < 1, limsup|αn |1//n >
L n—>oo J

which could be infinity. Note that Growthαn > 1 even if all an = 0. When
Growthαn > 1, we say that the sequence grows exponentially.

We define the asymptotic Nielsen number of / to be the growth rate of
the Nielsen numbers

(2.2) N°°(f) := G r o w t h s W ( / n ) = G r o w t h ™ ^ (Γ),

where the second equality is due to the obvious inequality NΓ (/n) < N(fn) <
n - NΓ(fn). And we define the asymptotic irreducible Nielsen number of / to
be the growth rate of the irreducible Nielsen numbers

(2.3) NΓ(f) := GrowthsJVIΓ(Γ)

We also define the asymptotic absolute Lefschetz number

(2.4) L ~ ( / ) : = G r o w t l w | | L Γ ( Γ ) | | .

All these asymptotic numbers enjoy the invariance properties of §1.5.
The following proposition ensures that these asymptotic invariants are

finite positive numbers.

Proposition 2.1.

(2.5) iV7 0°(/)<iV 0 0(/)<L 0 0(/)<oo.

Proof. The first two inequalities are from the obvious fact

iV/Γ(Γ)<iVΓ(Γ)<||LΓ(Γ)||.
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The last one is by Proposition 2.6 below. D

Remark. These asymptotic invariants have obvious generalizations to the
relative setting of §1.8.

2.2. Conditions for the equalities NI°°{f) = N°° (f) = L°°(f). To com-
pare NI°° (/) with N°° (f), we need the following definition.

Definition. An n-orbit class On and all n-point classes contained in it will
be called essentially irreducible if it is essential and it does not contain any
essential m-orbit class for any m < n.

Clearly every irreducible essential n-orbit class is essentially irreducible,
but not vice versa.

Theorem 2.2. A sufficient condition for the equality NI°° (/) = N°° (/) is
that f has the following Property of Essential Irreducibility:

The number En of essentially irreducible n-point

(El) classes that are reducible is uniformly bounded in n.

Proof. The case N°° (f) = 1 is trivial. We assume N°° (f) = 1 + a > 1. Let
E be a bound for En.

Let Sn := Σm<nNΛfm) Then by [FLP, p. 185, Lemma 1],
Growthn_,oo5n = N°°(f) = 1 + α, hence Sn < (1 + \a)n for sufficiently
large n.

We have

NIΓ(F) > NΓ(F) ~ En - Σ NΛΓ) > NΛF) -E- Sn/2
m\n

m<n

> N (f)(l

Pick a subsequence {rij} such that lim^oo NΓ(fnj)ι/ri:) — JV°°(/), so that
N Γ (/ n 0 > (1 + | α ) n j for sufficiently large j . Then Snj/2/NΓ{fn^ < (1 +
|α)~ n j / 2 , so the quantity in the big parentheses approaches 1 when j -» oo.
Hence the conclusion. D

Theorem 2.3. A sufficient condition for the equality N°° (/) = L°° (/) is
that f has the following Property of Bounded Index:

The maximum absolute value Bn of the indices

(BI) of n-point classes F n is uniformly bounded in n.
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Proof. Suppose Bis a bound for Bn. Then | |L Γ (/ n ) | | = Σ F - || i n d ( F n , / n ) | | <
BN(fn). Hence L°°(/) < N°°{f). D

Note that both properties (El) and (BI) are invariant under homotopy.
Both are satisfied in many important cases, e.g. when X is a torus of any
dimension, or when / is a homeomorphism of a surface X with χ(X) < 0.

2.3. Lower estimation of L°°(f) via Cp(/)

Proposition 2.4. Let R = C and let p : Γ+ -> M.ixi(C) be a monoid

representation. Suppose {μn} is a sequence such that for every n E N,

(2.6) \tτ(zng)p\<μn forallgeG,

and μ := G r o w t l ^ ^ ^ ^ Le£ w be a zero or a pole of the rational function

CP(/)eC(ί).

(2-7)
μ\w\

Proof. Note that w φ 0 because Cp(/)(O) = l We know from complex
analysis and (1.14) that GrowthLp(/n) is the reciprocal of the radius of
convergence of the function logζp(/), hence GrowthLp(/n) > l/|w|.

On the other hand, according to §1.6, the Γ-coordinates of n-orbit classes
are in the form [zng] with g G G. So we can assume LΓ(fn) = Σiki[zng^
where the (V^J's are different conjugacy classes in Γ. Then Lp(fn) £ C are
bounded by |L,(/ n ) | = | Σ . *i t r ( ^ f t )

p l < Σ< N I tτ{zngty\ < μn Σ , M -
μ n | |L Γ (Γ) | | . Hence GrowthLp(/Λ) < μ L°°(f).

So we get the formula (2.7). D

Example 1. For homomorphisms of free abelian groups, the representation

p defined by (1.27) satisfies the assumption of Proposition 2.4 where μ equals

the spectral radius of the matrix A. More precisely,

(2.8) /i = max{l,|λ1 |, , |λ r | },

where λi, , λr are the eigenvalues of A.

Example 2. (Maps of the circle).
Let / : Sι -> S1 be a self-map of the circle and let d E Z be its degree.

The fundamental group G = ̂ i(Sλ) is the infinite cyclic group generated by
α, and the homomorphism induced by / is fG : G —> G, α ι-> ad. By (1.16),
the fundamental group Γ = τri(Γ/) has a presentation Γ = (a,z | az = zad).
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According to (1.27) with r = 1, a representation p of Γ+ into -M2χ2(Z) is
defined by specifying

An easy computation shows that for any d G Z, we have

(2.10)

j>, - f ^ V _ (dd(d-l)/2\ _ (dd(d- l)/2

Thus

(2 11)
(2.11)

CP(/) - ( 1 _ < ) ( 1 _ d ί )

Hence, by (2.7) and (2.8), we get

(2.12) L~(/)

Since the trace of a unitary matrix is bounded by its dimension, we get
the very useful

Corollary 2.5. Suppose p : Γ -> U(Z) is a unitary representation. Let w
be a zero or a pole of the rational function ζp(f). Then

(2.13, £-(/) > X

2.4. Upper estimation of L°° (/). In practice, the initial data of our lower
estimation in the last section is the knowledge of the ZG-matrices {Fd}
provided by a cellular map, which enables us to compute the Lefschetz zeta
function. There is also a simple way to derive an upper bound from the
same data.

We first extend the notation (1.5).

Notation. For a matrix A = (αάj ) in Z5, its matrix of norms is defined to
be the matrix

(2-14) Mil := (KH)

which is a matrix of non-negative integers. (In what follows, the set S will
be G or Γ.)
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Proposition 2.6. Let Φd := | |F d | | for every dimension d. Then

(2.15) L°°(/) < maxjspectral radius of Φd}.
d

Proof. By (1.6) and the definitions,

\\LΛF)\\ < ΣHM^ΠH < £
d d

ll̂ ll" = Σ t r φ2
d

d d d

Hence

L~(/) = G r o w t h ^ | |L Γ (Γ) | |

d

= max{Growthn_^oo tr Φ^}
d

= max{spectral radius of Φ^}.
d

D

The use of this Proposition will be illustrated by the examples in §4.

2.5. Topological entropy. The most widely used measure for the com-
plexity of a dynamical system is the topological entropy. (See [Wa] for an
introduction.) For the convenience of the reader, we include its definition.

Let / : X -> X be a self-map of a compact metric space. For given e > 0
and n G N, a subset E C X is said to be (n, e)-separated under / if for each
pair x φ y in E there is 0 < i < n such that d(fi(x), fι(y)) > e. Let sn(e, /)
denote the largest cardinality of any (n, e)-separated subset E under /. Thus
sn(e,f) is the greatest number of orbit segments {x,f(x),... ,fn~ι(x)} of
length n that can be distinguished one from another provided we can only
distinguish between points of X that are at least e apart. Now let

(2.16) h(f,e) := limsup-logsn(e,/),

h(f):=limh(f,e).

The number 0 < h(f) < oo, which is easily seen to be independent of the
metric d used, is called the topological entropy of f.

If h(f,e) > 0 then, up to resolution e > 0, the number «sn(e,/) of distin-
guishable orbit segments of length n grows exponentially with n. So h(f)
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measures the growth rate in n of the number of orbit segments of length n
with arbitrarily fine resolution.

Λ basic relation between periodic points and topological entropy is proved
by Ivanov [I]. We present a different proof.

Theorem 2.7. Let f : X —» X be a self-map of a compact connected
polyhedron. Then

(2.17) /*(/)> logΛΓ(/).

Proof. Let δ > 0 be such that every loop in X of diameter < 2δ is con-
tractible. Let e > 0 be a smaller number such that d(f(x),f(y)) < δ when-
ever d(x,y) < 2e. Let En C X be a set consisting of one point from each
essential n-point class. Thus \En\ — N(fn). By the definition of h(f), it
suffices to show that En is (n, e)-separated.

Suppose it is not so. Then there would be two n-points x φ y E En such
that d{fι(x), fι(y)) < e for 0 < i < n hence for all i > 0. Pick a path c* from
fl{x) to fι(y) of diameter < 2e for 0 < i < n and let cn — c0. By the choice
of δ and e, / o cτ ~ cι+1 for all i, so fn o c0 — cn — co This means x, y in the
same n-point class, contradicting the construction of En. D

Theorem 2.7 is remarkable in that it does not require smoothness of the
map and it provides a common lower bound for the topological entropy of
all maps in a homotopy class.

Example 1. (Linear maps on tori).
Let Tk := Rk /Zk be the fc-dimensional torus. Let / be an automorphism

of Tk defined by an integer matrix A. Then

(2.18) Λ(/)=

where λi,.. ., λΛ are eigenvalues of A. (Cf. [Wa, p. 203] or [Bl, Corollary
16].) Note that Πμj>i M ιs ^ e spectral radius of the endomorphism /*
induces by / on the cohomology ring H* (Tk, R) which is the exterior algebra
of the linear space Hι(Tk, E). So, according to [MP], it is a lower bound for
the entropy of all continuous maps homotopic to /. Thus / has the minimal
entropy in its homotopy class.

On the other hand, N{fn) - |L(/n) | and L{fn) = det(J - An) = Π<(1 -
λ^), so that

(2.19) JV (/) = Growth n ^ 0 0 TT|l-λΠ =
V V ' ' ' *' ' " 'λ ' otherwise.
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Observe that / has both Properties (El) and (BI), so N°° {f) = NI°°(f) =
L~(f). Eence, ifL(f) ^ 0 then h(f) = log L°°(f)= log N°°(f) = log NΓ(f).
If L(f) = 0, then all L(fn) = N(fn) = 0 and log L°°(f) = log7V°°(/) =
log NI°°(f) — 0, but h(f) may be positive.
Example 2. (Pseudo-Anosov maps).

Let X be a compact surface with χ(X) < 0. Let / be a pseudo-Anosov
homeomorphism with stretching factor λ > 1. Then

(2.20)

is the minimal entropy in the homotopy class of / ([FLP, p. 194] and [I]).

2.6. Growth rate of Nielsen type numbers. In Nielsen theory for peri-
odic points, it is well known that N(fn) is often very poor as a lower bound
for the number of fixed points of fn. A good homotopy invariant lower
bound NFn(f), called the Nielsen type number for n-th iterate, is defined
in [Jl, Definition IΠ.4.8]. Consider any finite set of periodic orbit classes
{Okj} (of varied periods kj) such that every essential periodic m-orbit class,
m I n, contains at least one class in the set. Then NFn(f) is the minimal
sum Σj kj for all such finite sets.

The definition of NFn(f) is rather complicated, and if we count periodic
orbits instead of periodic points, a good lower bound can be defined in a
simpler way. The Nielsen type number for n-orbits NOn(f) is defined to be
the total number of essentially irreducible m-orbit classes for all m \ n.

When we count primary n-points, a good lower bound NPn(f), called the
Nielsen type number of least period n, is defined in [Jl] to be n times the
number of irreducible essential n-orbit classes. If we count primary n-orbits,
the good bound should be NIΓ(fn) defined in §1.4.

The following proposition says that as far as asymptotic growth rate is
concerned, these Nielsen type numbers are no better than the Nielsen num-
bers.

Proposition 2.8.' For any map f : X -> X,

(2.21) Growth^N Fn(f) = Growth^TVC^/) = N°° (/),

(2.22) Growthn_ooiVPn(/) - NΓ (/).

Proof. Let Sn be as in the proof of Theorem 2.2. By the definition of NFn(f)

we see NΓ(fn) < N(fn) < NFn(f) < Σ H n ^ ( / m ) < Σ m | n ™ • ^ r ( / m ) <
nSn. Similarly for NOn{f) we have NΓ{fn) < NOn(f) < Σm\nK{fm) <
Sn. Hence the formula (2.21). The second formula follows from the equality
NPn(f)=n-NIΓ(fn). D
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3. Periodic orbit classes of surface homeomorphisms.

The results of §§2.2-3 provide us with a method of asymptotic estimation for
maps / : X -> X that have both Properties (El) and (BI). In §3.1 we show
that self-homeomorphisms of aspherical surfaces have both these Properties
and the asymptotic Nielsen number coincides with the largest stretching
factor in the Thurston canonical form. §3.2 is devoted to the development
of a Nielsen theory for self-homeomorphisms of punctured surfaces which is
very useful in applications.

3.1. Compact aspherical surfaces. Let X be a compact connected as-
pherical surface and let / : X —> X be a homeomorphism. The main result
3.7 of this section is easy when X is the disc, the annulus, the Mόbius strip,
the torus or the Klein bottle. So we shall assume χ(X) < 0.
Thurston Theorem ([T]). Every homeomorphism f : X —>• X is isotopic
to a homeomorphism φ such that either

(1) φ is a periodic map, i.e. φm = id for some m; or

(2) φ is a pseudo-Anosoυ map, i.e. there is a number λ > 1 and a

pair of transverse measured foliations ( # s , μ s ) and (#M,μw) such that

φ(P,μa) = (if, \μs) and φ($u,μu) = GP,λμ") ; or

(3) φ is a reducible map, i.e. there is a system of disjoint simple closed
curves 7 = { jι, , 7^ } in int X such that 7 is invariant by φ (but the
7i 's may be permuted) and 7 has a φ-invariant tubular neighborhood U
such that each component of X\U has negative Euler characteristic and
on each (not necessarily connected) φ-component of X \U, ψ satisfies
(1) or (2).

The φ above is called the Thurston canonical form of / . In (3) it can be
chosen so that some iterate φm is a generalized Dehn twist on U. Such a
φ, as well as the φ in (1) or (2), will be called standard [JG, §3.1]. A key
observation is that if φ is standard, so are all iterates of φ.

For the convenience of the reader, we list the following information about
the fixed point classes of a standard φ (cf. [JG, Lemmas 3.6 and 3.4]).
The superscripts '-{-' and c—' indicate that φ preserves or reverses the local
orientation at the fixed point class.

Lemma 3.1. Every fixed point class of a standard φ is connected. The

possible types of fixed point classes are listed below, with a description of

their local behavior.

(l)^1 Isolated fixed point x:

(a) + x G intM, φ is conjugate to a rotation in a neighborhood of x;

m.ά(x,φ) = 1.
(b) + x G int M is a fixed point of an annular flip-twist; ind(#, φ) = 1.
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(c)+ x G int M is a type (p, k)+ interior fixed point of a pseudo-Anosoυ
piece; ind(rc, φ) — 1 — p or 1.

(d)~ x G int M is a type (p, k)~ interior fixed point of a pseudo-Anosoυ
piece; ind(:r, ψ) — 1, — 1 or 0.

(e)~ x G dM and rr zs in a type {p,k)~ invariant boundary component
of some pseudo-Anosov piece; ind(a;, φ) — 1 or 0.

(2)± Fixed circle C:

(a) + C C Ίnt M is a fixed circle of an annular twist; ind(C, φ) = 0.
(b)~ C C intM and in a neighborhood of C, φ is conjugate to the

reflection (z, t) t-ϊ (z,l — t) on the annulus S1 x I or the Mδbius

bandS1 x 1/ ~; ind(C,φ) = 0 .
(c)+ C C int M; on one side C is a type (p, 0) + boundary component

of some pseudo-Anosov piece, on the other side C is a boundary
component of an annular twist; ind(C, ψ) = —p.

(d) + C C dM, and C is a type (p, 0) + boundary component of some
pseudo-Anosov piece; ind(<7, φ) — —p.

(3)~ Fixed arc A, contained in some subsurface B of M on which φ acts as

an involution. Every endpoint x of A is either

(a) x G i n t M ; on the outside of B, x is in a type (p,k)~ invariant

boundary component of a pseudo-Anosov piece, or

(b) x G dM.

The possible values ofind(A,φ) are 1,-1 or 0.

(4)+ Fixed subsurface B of M with χ(B) < 0. The possible forms for a

component C of ΘB:

(a) C C i n t M ; on the outside of B, C is a type ( p c , 0 ) + invariant
boundary component of some pseudo-Anosov piece;

(b) C C i n t M ; on the outside of B, C is a boundary component of
an annular twist;

(c) C C dM.

We have ind(jB,<p) = χ(B) — Σpc <0, where the summation is over
the components C of dB of type (a).

Moreover, a fixed point class F is related to a boundary component

C C dX if and only ifF intersects C.

When we talk about the type of an n-point class F n of a standard φ, we

mean the type of F n as a fixed point class of φn.

Definition. An n-point class F n is special if it is either of type ( lc) + with

p > 3 and k = 0, or of types (2c)+, (2d)+ or (4)+.

Corollary 3.2. Almost all essential n-point classes has index ±1. More
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precisely,
(i) If an n-point class F n is special then ind(Fn,<^n) < —1. Otherwise

-1 <ind(Fn,^n) < 1.

(ii) The number of special n-point classes is at most — 2χ(X), and

special F n

(iii) \\LΓ(ψn)\\+2χ(X) < N(φn) < \\LΓ(<pn)l

(iv) Suppose A C dX is a union of a > 0 boundary circles of X. Then

N(φn; X\A)> \\LΓ(φn)\\ + 2χ{X) - 2a.

(v) // X is orientable and φ preserves orientation, then

N{φn-X\A)>\\LΓ{ψn)\\+^x{X)-

Proof, (i) is clear, (ii) follows from the proof of [JG, Theorem 4.1]. (iii)
follows from (i) and (ii). (iv) uses the last statement of Lemma 3.1 and the
fact that each boundary circle can intersect at most 2 fixed point classes of
φn, so N{ψn\X \ A) > N(φn) — 2a. In the orientation preserving case (v),
observe that if F n intersects dX then F n is special. D

Corollary 3.3. Special n-point classes of φ are stable under iteration, and
are the only ones that can contain an inessential periodic point class of lower
period. More precisely:

Let F n be an n-point class of φ. Let n! be a multiple of n and F n ' be the
n!-point class containing F n . Then

(i) ind(Fn, ψn) > ind(Fn' ,φn').

(ii) // F n is special, then Fn and F n ' are equal as subsets of X and

(iii) If ind(Fn,φn) = 0 > ind(Fn ',^n ') then Fn> is special and φn reverses
the local orientation at F n .

Proof Clear from Lemma 3.1. D

Lemma 3.4. // an n-point class F n of φ is reducible to period m, then it
contains some m-point class F m .

Remark. The reducibility of F n to period m means it "contains" some
(possibly empty) ra-point class. The point of this Lemma is that it indeed
contains some non-empty m-point class.
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Proof. It clearly suffices to prove the case m ~ 1. We want to show F n

contains a fixed point of φ.
By [Jl, Lemma IΠ.4.6], the reducibility of F n to period 1 implies there is

a path c from some x G F n to φ(x) such that the loop c(φ o φ (ψ71'1 ° c)
is contractible. Now (φ o c) • (φn~ι o c)((^n o c) is also contractible, hence
c ~ (/?noc. Applying [JG, Lemma 3.4] to the standard map φn, we find a path
7 in F n homotopic to c. It follows that φ(Fn) = F n , and 7(^07) (φn~x 07)
is contractible in F n (because it is contractible in X and ^ ( F n ) injects into

According to Lemma 3.1, F n is either a point, or a circle, or an arc, or a
subsurface B of X with χ(B) < 0. In the first or the third case, φ certainly
has a fixed point on F n . In the second case φ is a rotation or a reflection
on the circle, no path 7 of the above type can exist unless φ\γn has a fixed
point.

It remains to consider the case that F n is a subsurface B and φ\B : B -> B
is a periodic map. Equip B with a hyperbolic (or Euclidean) metric such that
ψ is an isometry. Let 70 be a shortest path of the above type, i.e. from some
point to its φ-image and β0 := jo(φ o j0) {ψn~ι o 70) contractible. This
β0 must be a smooth closed geodesic because otherwise 70 can be shortened.
But a smooth closed geodesic cannot be contractible unless it degenerates
to a point. Hence 70 is a point, a fixed point of φ. D

Corollary 3.5. Every homeomorphism f : X —> X has Properties {El)
and (BI), hence NI°°(f) - N°°(f) = L°°(f).

Proof. Via isotopy we may replace / with a standard φ. By Lemma 3.4
and Corollary 3.3(iii) every reducible essential n-point class contains some
essential periodic point class of lower period, except possibly the special
ones. By Corollary 3.2(ii) we have Property (El) with E = -2χ(X). (When
X is orientable and φ preserves orientation, we can even take E — 0.)

On the other hand, by Corollary 3.2(i),(ii), / has Property (BI) with
B = l-2χ(X).

Then apply Theorems 2.2 and 2.3. D

Lemma 3.6. Suppose φ is standard and λ is the largest stretching factor of
the pseudo-Anosov pieces (λ := 1 if there is no pseudo-Anosov piece). Then

h(φ) = logλ and N°° (φ) = λ.

Proof. Let U be the open regular neighborhood of the k reducing curves in
the Thurston theorem, and {Mj} be the components of X\U. Let λ̂  be the
stretching factor of ψj if ψj is pseudo-Anosov and λ̂  = 1 otherwise. Thus
λ =
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The topological entropy of a periodic map is 0. By (2.20) we see h(ψj) =
log Xj for all j . Since the topological entropy of a Dehn twist is 0, h{φ\U) = 0.
So the first conclusion follows from the fact that h(φ) — max{ft(^), h(φ\U)}
(cf. [Wa, Theorem 7.5]).

To prove the second conclusion, we need an inequality

(3.1) N(φά) -2k< N(φ) < ΣN(<Pj) + 2k

j

Let F be a fixed point class of φ. Observe from Lemma 3.1 that if F C Mj:

then ind(F, φ) = ind(F, ψj). So if F is counted in N(φ) but not counted in
Σ3 N(ψj)) it must intersect U. But we see from Lemma 3.1 that a component
of U can intersect at most 2 essential fixed point classes of ψ. Hence the
second inequality.

Let Fj be a fixed point class of ψj and let F be the fixed point class of φ
containing F^ . If Fj makes a contribution to N(ψj) — N(φ), F must intersect
U. Via Lemma 3.1 we check that each component of U can contribute at
most 2 to N(ψj) — N(φ). Hence the first inequality. Thus (3.1) is proved.

Applying (3.1) to φn, we have

?) -2k< N(φn) < £ # ( < # ) + 2k.
j

Taking the growth rate in n, we get

(3.2) N°°(φ) =maxN°°(φj).
3

But according to (2.20), JV°° (ψj) = λ̂ . Hence the second conclusion. D

The above results are summarized in

Theorem 3.7. Let X be a compact connected surface with χ{X) < 07 and
let f : X —ϊ X be a homeomorphism. Let A C dX be a union of boundary
circles such that f(A) = A. Then

NΓ(f) = NΓ(f;X\ A) = ΛΓ(/) = N"(f;X\ A) = L°°(f) = λ,

where λ is the largest stretching factor of the pseudo-Anosov pieces in the
Thurston canonical form of f (λ := 1 if there is no pseudo-Anosov piece).

3.2. Punctured surfaces. Let X be a connected compact surface and let
P be a nonempty finite set of points (punctures) in the interior of X. Assume
that χ(X) - \P\ < 0 where |P | denotes the cardinality of P. Let / : X,P ->
X, P be a homeomorphism.
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Let Y be the compactification of X \ P by blowing up each point of P into
its circle of unit tangent vectors. Then Y is a compact surface with χ(Y) —
χ(X) - \P\ < 0. The added circles form a set Q C dY and Y \ Q = X \ P.

There always exists a homeomorphism /' : X, P —> X, P that is piece-
wise linear near P and isotopic to / rel P. We can even require that the
connecting isotopy is supported in any given small neighborhood of P. See
[E, Appendix]. We shall call such an /' a local rectification of /. (Indeed /'
can be further made smooth near P if one prefers.)

Let g : Y, Q —> Y, Q be the blow-up of /' \ P, i.e. the homeomorphism
extending f : Y \ Q -> Y \ Q to Q according to the piecewise differential
of /' at P (cf. [B2, §2]). Then the homotopy class of #, hence the isotopy
class of g also (see [E]), is independent of the local rectification /'. Since
G := τri(Y) = τri(Y \ Q) = 7ΓX(X \ P), we can identify the automorphism
gG : ffl(y) -> iπ(Y) with /G :πι(X\P)-+ πx(X \ P).

The relative Nielsen number N(g] Y \ Q) is thus independent of the local
rectification /'. We define the punctured Nielsen number of / to be N(f \
P) := N(g; Y\Q). It is a lower bound for the number of fixed points of / \ P
because if g is the blow up of a rectification /' of / in a sufficiently small
neighborhood of P, then every fixed point of /' that is not a fixed point of
/ must be a fixed point of g related to Q.

There is a direct definition of the punctured Nielsen number N(f \ P)
without using rectifications. Two fixed points £, x' of / on X \ P are said
to be in the same punctured fixed point class of / if there is a path c in
X \ P such that c ~ / o c : /,0,1 -» X \ P,x,x'. A fixed point x of /
on X \ P is said to be related to P if there is a path c in X such that
c ~ / o c : I , J \ { l } , 0 , 1 -> X, X \ P, x, P. The punctured Nielsen number
N(f \ P) is defined to be the number of essential punctured fixed point
classes of / that are unrelated to P.

The equivalence of the two definitions is not difficult to see. Let U be
a regular neighborhood of P in X and let V be a smaller one such that
f{V) C U. Then every fixed point of / on V \ P is related to P. Let / ; be
a rectification of / on V and let g be its blow-up. This iV(g; Y \ Q) is easily
identified with the second definition.

The definition using rectifications is more convenient in computations be-
cause it explicitly involves the ordinary Nielsen theory on Y.

But the direct definition sometimes gives us more insight. For example,
we can see N(f \ P) > N(f) — |P | . In fact, consider an essential fixed point
class of/ that does not intersect P. It must be a disjoint union of punctured
fixed point classes of / that are unrelated to P, so at least one of these latter
classes must be essential, hence the inequality. Similarly, we can see that if
P C P' and / : X,P ; ,P -> X,P ; ,P, then N(f\P) + \P\ < N{f\P')+ \P'\.
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Remark. N(f \ P) is not the same as iV(/; X \ P). The former is often a
much better lower bound for the number of fixed points of / on X \ P. See
the examples in §4.2. Note that the coordinates of the fixed point classes of
/ \ P are not in TΓ^I)), but in Γ := ^{Tg) = -κλ{Tg \ TglQ) = m(Tf \ T / 1 P),
the fundamental group of the complement of the link Tf\P in Tf.

We now turn to the punctured invariants for periodic orbits of /.

Definition. NΓ(fn \ P) := NΓ{gn] Y \ Q), a lower bound for the number
of n-orbits of / on X \ P.

NIΓ(fn \ P) := NIΓ(gn; Y \ Q), a lower bound for the number of primary
n-orbits of / on X \ P.

N(fn \ P) := N(gn', Y \ ζ)), a lower bound for the number of n-points of
fonX\P.

LΓ(fn \ P) ~ LΓ(gn] Y \ Q), the sum of absolute values of the indices of
n-orbits of / on X \ P.

The asymptotic invariant is also defined.

Definition. N°° (/ \ P) := Growth^^JV^/71 \ P).

Theorem 3.8. N°° (f\P) is the common growth rate of various punctured
Nielsen numbers:

N~(f \ P) = Growthn^N(fn \ P) =

= Growthn_K X ) | |LΓ(/n\P)| | = λ,

where λ is the largest stretching factor of the pseudo-Anosov pieces in the
Thurston canonical form of the punctured homeomorphism f : X\P -> X\P
(λ := 1 if there is no pseudo-Anosov piece).

Proof Easy from Theorem 3.7 and the definitions. D

To compare N°° (/ \ P) with the topological entropy h(f), we need a
lemma.

Lemma 3.9. There exists a finite regular branched cover X,P -> X, P
with branching set P such that every homeomorphism f : X, P -> X, P lifts
to a homeomorphism f : X , P —> X,P.

Proof. We need the following fact from group theory: Suppose G is a free
group of finite rank and gu ,gk 6 G are all φ 1. Then there exists a
normal subgroup K C G with finite index in £?, which is invariant under any
automorphism of G, and such that all <ji, 5#& $• K. (See [LS, pp. 143,
195-196].)
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Let Y, Q be the blow-up of X, P as before. Then X, P is obtained from
Y, Q by shrinking every component of Q to a point. Let G — πχ(X \ P) =
π1(Y). Let k — \P\ and gλ, ,gk G G be elements represented by the circles
in ζ). Since χ(Y) = χ{X) — | P | < 0, no boundary curve of Y is contractible
in Y, hence every gτφ\. Now take a normal subgroup K guaranteed by the
above algebraic fact.

Let q : Y —> Y be the regular covering of Y such that q^π1(Y) — K, and
let Q = g-^Q). Let p : X, P -> X, P be obtained from q : Y, Q -> Y, Q by
shrinking every component of Q and Q to a point. Then p : X , P —>> X, P
is a finite regular branched cover. Every point of P is a branching point
because a small circle around it cannot be lifted to a circle in X. On X \ P,
the covering p:X\P-+X\P also has p*πi (X \ P) = K.

A homeomorphism / : X, P -> X, P restricts to f\P:X\P->X\P
which induces an automorphism of G. By the invariance property of K C G,
the homeomorphism / \ P lifts to a homeomorphism f\P:X\P—> X\P.
Then compactify to get the required lifting / : X —> X. D

The following is the analogue of Theorem 2.1 for punctured surfaces.

T h e o r e m 3.10. For any homeomorphism f : X, P -> X, P,

M/)>iogiv
σo(/\p).

Proo/. Let / ' : X, P ->• X, P and g : Y, Q -^ Y, Q be as before. Let ψ :
Y, Q —>- Y, Q be the standard form of g, and let 99 : X, P —>• X, P be the
blow-down of rφ1 i.e. shrinking every component of Q back again to a point.

First consider the simpler case that no component C of Q is a 1-prong
boundary component of a pseudo-Anosov piece of φ. Then </? itself is a
standard map isotopic to /. So by Theorems 2.1 and 3.7,

> log iV~ ( / ) = log λφ = log λψ

= log TV" (g) = log N°°(g;Y \ Q) = logΛH/ \ P).

For the general case, let X , P —> X, P be the finite branched cover in

Lemma 3.9, and lift / to a homeomorphism / : X, P —ϊ X, P. When blown

up, Y, Q -* Y, Q is an honest regular cover. Let g, φ : Y, Q —> Y, Q be the

lifts of p,^. Now -0 is a standard map. If a component C of Q projects to

a boundary component C of a pseudo-Anosov piece of φ, then C has more

prongs than C does because every point of P is a branching point. Thus φ

belongs to the simpler case already proved, so h(f) > logλ^. But we know

h(f) = h(f) by [Bl, Theorem 17], and λ^ = λ^ by construction. Hence by
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Theorem 3.7,

h(f) > logλ^ = logN~(g) = logΛT (/ \ P).

D

4. Examples of asymptotic estimates.

To illustrate our method of estimation, we study some surface homeomor-
phisms arising in the recent literature of dynamical systems theory. §4.1
improves a well known result of Handel. §4.2 uses an abelian representation
to estimate the growth rate of periodic orbits. §4.3 displays the power of
non-abelian representations when abelianization does not work. For more
applications to dynamics, see [J3].

4.1. Orientation reversing homeomorphisms of surfaces. The follow-
ing theorem strengthens a result of Handel [H]:

Theorem 4.1. // / : X —» X is an orientation reversing homeomorphism
of a compact oriented surface of genus g, and iff has orbits with g+2 distinct
odd periods, then the number of primary n-orbits grows exponentially in n,
hence h(f) > 0.

Proof. It is shown in [H] that the punctured homeomorphism / : X \ P —>
X \ P, where P is the union of the known orbits, has at least one pseudo-
Anosov piece in its Thurston canonical form. According to Theorem 3.8,
this guarantees JV°° (f\P)> 1, hence h(f) > 0 by Theorem 2.7. D

In [H] periodic points are discussed under the assumption that / is dif-
ferentiable at the periodic points in question, which is now deleted, and the
conclusion is that / has orbits with infinitely many distinct periods.

4.2. Orientation preserving embeddings of the disk. Let X — D2 be
a disk in the plane R2, and let / : X -» X be an orientation preserving
embedding. Suppose P — {xλ, • ,rrr} is a finite set in the interior of D2

such that f(P) — P. Then N°° (f \ P) can be estimated once we know the
induced automorphism fG : G -> G where G := nx(X \ P). (That / is
an embedding rather than a homeomorphism is only a technical problem.
By slightly enlarging the disk, we can extend the embedding to a homeo-
morphism of D2 so that all the additional periodic points arising from this
extension are related (on D2 \ P) to the boundary of D 2, hence do not affect
the asymptotic Nielsen number by Theorem 3.7.)

Consider the map / : X, P -> X, P studied in [GST], where r = 3 and G
is the free group on 3 standard generators 0,1,0,2,0,3. We do not quote the
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description of the map / given there in terms of a braid, but only point out
that fG:G-^Gis easily seen to be

(
a'2:=fG(a2)=au

af

3 := fG(a3) = a3

λ

In [GST] it is shown that there exist primary periodic orbits of every period
n. We shall give a lower bound to the growth rate of the number of such
orbits.

The Jacobian matrix D in Fox calculus is readily calculated.

According to (1.16), we have Γ — (aua2,a3,z \ a{z — za\, i = 1,2,3). An
obvious way to get a representation of Γ is to abelianize. Thus we obtain
a U(l) representation p by letting all α* π-» a and z ι-> 1, where a is a
unimodular complex number.

Thus

(4.3)

so that by (1.21), for the blow-up g : Y, Q —> Y, Q of a local rectification of

Take a = — 1, then we get the zeta function ζp(g) = 1 — 3t + t2 and its
smallest root is r = (3 - \/5)/2. Hence, by Corollary 2.5, Theorem 3.8 and
Theorem 3.10, we get the estimates

(4-5) i o g .

To obtain an upper bound by Proposition 2.6, note from (1.17) that

( 4 . 6 ) ll^oll = ( i ) , 11^11 = 1 1 ^ 1 1 = I l o o I .
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The characteristic polynomial of | |D| | is (λ - l)(λ2 - 3λ + 1), so (2.14) gives

(4.7) L°° (/ \ P) < spectral radius of ||£>|| = (3 + λ/δ)/2.

Now that the lower and upper estimates coincide, we have

(4.8) NΓ (f\P) = N~ (/ \ P) = L~ (/ \ P) = (3

Since X is the disk, all N(fn) — 1 and N°° (f) — 1, so the punctured
Nielsen numbers do give better estimates.

Another example on the disk is Smale's horseshoe. In [F3] it was shown
that for the horseshoe embedding / : D2 -» D2 there is a 5-orbit P —
{PiΓ" >Pδ} Using this orbit as punctures, the argument of [F3, §4] can
be adapted to show that, for some representation p : Γ -* U(l), ζp(f) —
1 + t - t2 + t3 + t4. Thus by Corollary 2.5 we get N°° (f \ P) > 1.72 and
h(f)> log 1.72.

4.3. A homeomorphism of the torus. The following example is taken
from [LM, Example 2] where it was shown that h(f) > 0.

Let X be the torus T2 represented as M2/Z2, and let the three points
Qx = (0,0), Q2 = (|, | ) and Q3 — (|, | ) constitute the puncture set P. Let
Dχ,D2 : X, P -> X, P be diίfeomorphisms of the form

(4.9)

where x,y are in the unit interval /, and BUB2 are smooth functions on
/ with Bx (|) — 1, Bχ(x) — 0 for x outside of the open interval (|, | ) ,
B2 (|) — 1, B2(y) — 0 for y outside of the open interval (|, | ) . Let / =
D2oDλ : X , P - + X , P .

Choose the point (|, ~) to be the base point in X. The fundamental group
G = πx(X \ P) is a free group of rank 4 with generators a2,a3,bub2, where
&i is represented by the loop {( | + ί, | ) } ί G / ; 2̂ by the loop {(|, | + *)} ί e /;
α2 is represented by the square loop with sides on the lines y — | , x = | ,
y — \ and x = | ; α3 represented by the square loop with sides on the lines

It is clear that Dχ,D2 act on G by

2 »-> &2 α 2

(4.10) A : < _ 2 Γ>2
6i H-> a 3 b\

b2 H^ 6 2 j
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So t h e a u t o m o r p h i s m fG:G-^G i n d u c e d by / is

(4.11) So-

α 2 »-)• a'2 —

α 3 ι-> a'3 —

b2 b'2 —

It is routine to compute the Fox calculus Jacobian matrix D.

(4.12) D =

6i

4)
0

0 1 - a'2 0 \
V2 (1 - a'3) b2 ( 1 - a'2) 1 - a 2

— 1 — 1 r\

-α 3 α 3 u
0 bo — bo 1 /

Now

(4.13) Γ = a2z — za'2,a3z = — zb'2).

The abelianization does not work here, because the nature of (4.11) would
force both a2:a3 to become 1, so that any U(l) representation can only
give the trivial estimate N°° (f \ P) > 1. Thus we have to look for non-
abelian representations of Γ. Fortunately a simple representation of Γ into
the multiplicative group of unimodular quaternions works.

(4.14)

p : Γ -» Sp(l); 2 I-M, α2 •—>- —1, a3 t-> —1, bx H> j , 62 ^ ^

Under this representation, the matrix zD becomes

(4.15)

\

θ 2t 0\
2 j -4j 2*
Oi -i 0
i 0 -2j i

But quaternions form a skew-field, not a field. We have to identify Sp(l)

with SU(2) via the correspondence

(4.16) 1
10 N

0 1 , 1 ,0-i
jfe I—»-

Όi

Thus (zD)p becomes an 8 x 8 complex matrix. One then calculates that

(4.17) det(l - t(zDY) = (1 + ί)2(l + *2)[(1 - t + t2)2 + 3t%
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from which follow the estimates

(4.19) N°°(f\P) >2.29, h(f) > log 2.29

by Corollary 2.5.

For the upper bound, we have

/I 0 2 0\

(4.20) ||Fo|| = (l), | |^\| | = ||Z>|| = 2

Q\\\

κ102: ,

The characteristic polynomial of \\D\\ is (λ2 + l)(λ2 - 4λ + 1). Then (2.14)
gives

(4.21) L°° (/ \ P) < spectral radius of | |D| | = 2 + Λ/3 < 3.74.

So the estimate we get is

(4.22) 2.29 <N°°(f\P)< 3.74.

5. Questions.

It is clear from our discussion that among the asymptotic invariants, NI°° (/)
is most interesting geometrically, and L°° (/) is most manageable algebraically.
So, the conditions for the equalities NI°°(f) — N°° (f) = L°° (/) and the ex-
tent to which they can fail are worth further study. (In fact, the author
knows of no counter-example to the equality NI°° (f) = N°° (/).) For exam-
ple,

Question 5.1. Is it true that a self-homeomorphism (or self-map) / of an

aspherical compact polyhedron X always has Properties (El) and (BI), or

at least NΓ(f) = N°° (f) = L°°(/)?

A question related to the Entropy Conjecture of Shub is the following:

Question 5.2. For smooth maps of compact manifolds, is it always true

that

Another natural question is
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Question 5.3. Give conditions for log7V°° (/) to be the best lower bound
for h(f) of all maps homotopic to /. In other words, in the inequality

mί{h(g) I g ^ f : X -> X} > log N°°(f)

when does the equality hold? (The example of torus maps in §2.5 shows
that the equality may fail even for very nice maps.)
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