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EXPLICIT SOLUTIONS FOR THE CORONA PROBLEM
WITH LIPSCHITZ DATA IN THE POLYDISC

STEVEN G. KRANTZ AND SONG-YING LI

This paper contains considerations of various versions of the
classical corona problem on domains in complex n-dimensio-
nal space. Although we do not solve the H* corona problem,
we do obtain positive results in other topologies. We also
provide explicit constructions for solutions.

1. Introduction.

Let A be the unit disc in the complex plane, and let A™ be the unit polydisc
in C". We let H(A™) denote the space of all holomorphic functions on the
polydisc, and H?(A"™) the holomorphic Hardy space on A" (see [Rud]).For
each 0 < a < oo, we let A,(A™) denote the holomorphic Zygmund spaces
over A" (see [KR2]). Suppose that fi,..., fr, € H*®°(A™) are such that

(1.1) 0<8< i If;(2)? <1, z € A™.

i=1

In case n = 1, L. Carleson [C] solved the Corona problem and proved that
there exist g; € #*°(A) such that

> 1i(2)g;(z) =1, lgjllu=ca) < C(m, ).

The question of whether the Corona problem can be solved in several
complex variables has attracted much attention (for example, see [Am)],
[An], [AC], [Ch], [FS1, 2], [HS], [KL], [Li], [Lin], [S], and [V1, V2], etc.).
On a strongly pseudoconvex domain, there have been attempts to generalize
the method of Hérmander [H] and of Wolff [KO)] to higher dimensions. This
entails solving a problem of the form du = yu, with p a Carleson measure.
One seeks a bounded solution u. Such a bounded solution does not always
exist when the dimension exceeds 1 (see [V1]). However it should be noted
that the result of [V1] does not imply that the Corona problem fails in
several variables—only that the 0 technique with that particular definition
of Carleson measure fails.
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The point of the present paper is to obtain favorable results for Lipschitz
solutions of the Corona problem with the corona data being Lipschitz —
using iteration of one variable techniques. We shall construct a A, solution
of the Corona problem in one variable that allows us to treat a vector-valued
problem, thus allowing induction on the number of variables. We carry out
this plan by constructing an explicit formula for an A,(A™) solution of the
Corona problem with Corona data f; € A,(A™).

We now give a formal statement of our theorem. The construction of our
solution will be given in Section 2. The proof of the theorem is completed
in Section 3.

Theorem 1.1. Let fi,...,fm € Au(A") (0 < a < o0) satisfy inequality
(1.1) and

(1.2) D fillawam < 1.
J=1
Then there are functions gy, ...,gm € Ay (A™) such that

(1.3) > f(2)g;(z) =1, and Y llgilla.an) < Cln,m)a’ 27675
Jj=1

Jj=1

The last estimate, in terms of o' 2" and a negative power of J, gives an
indication of how the problem blows up as a — 0*.

We refer the reader to [KR2] for careful definitions and discussion of the
Lipschitz spaces A,.

The first author thanks Peter W. Jones for a helpful communication.

2. Construction of the Solution.

In this section we shall construct an explicit solution of the Corona prob-
lem in A™ without yet proving any regularity properties. Let fi,..., fm €
H>(A™) satisfy (1.1). Without loss of generality, we may use a normal
families argument and reduce the proof of Theorem 1.1 to the case of f; €
H>*(A"). We define

¢j(z) :Tj(z) [Z ‘fk(z)|2:| ’ J=1...,m.
k=1
For \,n € A, we let

(2.1.1) Klg(\) = /A K (A n)g(n) dA(n),
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where
1 1—|nf
278 (1= A\ (n — A)’

Notice that K is essentially the Poisson-Szego kernel for the disc. It is known
that 0,K[g] = g in the sense of distributions. In fact

(2.1.2) K(\n) = dA(n) = dn A d7.

1—nf? 17

I=aNn-X n-Xx 1-Xj

The first kernel on the right is well known (see [KR1]) to be a solution
operator for 0, up to a constant factor; and the second one is holomorphic
in A € A. By standard arguments (integration by parts), one can show that
this integral operator K maps C*®(A) to C°(A).

For convenience, when 1 < j < n and g € L?(A"), we let

(2'2) Kj[g](zj) = K[g(zla"' 1 Rj—1y "y Rj4+1y" " ’zn)](zj)'

The integral acts only on the variable z;. We set

(2.3) uj(2) = K1[#x019;](21),
Jj,k=1,...,n, where

%
0z;’

i

B9 gecHan).

Also set
(2.4) 9= 95=¢— ka —uy;) € C®(A™).

It is obvious that 9;g}(-,2'), gi(-,2") € H(A) for each fixed z' € A"~ and
1<i1<n. ~
Suppose that g;.“ € C*(An) is already defined so that g;? and 0,95 are

holomorphic in zy,..., 2 for all 1 <7 < n. Inductively, we set

(2.5) 95 (2) = g5 (2) - E o(2) (ufy ™ (2) — ugf (2))
£=1

where

(2.6) ui(2) = Kina [9[ 1)5k+19§°] (2k+41)-
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Then our definitions imply that ¢gt*'(z) € C*(A™). Moreover, since the
inductive hypothesis implies that g%(z) and gf - dx4+19% are holomorphic in
21, -, 2 then

J,(uff1) =0, and dgk=0, i=1,- k.

Therefore

8igf+1:07 Z:1a7k+1

This implies that g5*! (also 9;9)™") are holomorphic in zi,..., 24, for all
1 <4 < n. Finally, notice that

> figitt =1
=1

for all £ = 0,...,n — 1. Therefore the functions g7,..., g}, form a solution
to the Corona problem with data fi,..., f,,- In order to prove Theorem 1.1,
it suffices now to prove the following result:

Theorem 2.1. Let f;,- -, fm € Ao(A") satisfy (1.1) and (1.2). Then

(2.7) 197 a0 am) < Cln,m)a—2m575"

for all 0 < o < co. Notice that the same solution set {g)'} suffices for all .
We shall consider the proof of Theorem 2.1 in the next section.

3. The Proof of Theorem 2.1.

In this section, we shall complete the proof of Theorem 2.1. Let us start
with the following well-known simple lemma.

Lemma 3.1. Let g € C¥(A"),a > 0. Suppose that [a] + 1 < k, and
|D*g(2)| < Cdist(z, 0A™)**.
Then g € A,(A™). Moreover,
1

llglla.am) < Cna™t.

Here D* denotes any derivatives of g of order k, and [a] + 1 denotes the
least integer which is greater than a.

The proof of the above lemma and of more general results can be found in
[(KR2].
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Corollary 3.2. Let 0 < a < oo, and let f € H(A™). Then f € A, (A") if
and only if
10;0°f(2)] < C(1 — |*)*,

foradll|B|=0i+--Bun<la,j=1,...,n

For simplicity, we shall prove Theorem 2.1 only for the case 0 < a < 1
and n = 2. For the case @ > 1 and n > 2, the proof may be done similarly,
but it is much more tedious. For this special purpose, we shall prove the
following lemma:

Lemma 3.3. Let0 < a <1 andlet f, g € C°(A™) satisfy
(3.1) |Djg(2)l +|D;f (2)] < C1(1 = |z*)*7", §=1,2,--+ ,m.
Then

(3-2) |D;K;[f;9)(2)] < CCra™(1 — ]

If we also assume that

(3.3) IDiPylg)(2)] < Ci(1 =)™, Kk #4,

then

(3.4) CIDK[fB50)(2)] < CCia (1~ [z

where Dy, = 0y, or O, k=1,--- ,n, and P; denotes the Bergman projection

from L?>(A) onto the Bergman space A%(A) when we restrict attention to
functions of z;.

Proof. By symmetry, it suffices to treat the cases j = 1 and £ = 1, or 2. Let
us prove (3.2) first. Since 8,K:[f0,g] = f0.g, it suffices to prove (3.2) for
D! = 9,. For this case, without loss of generality, we may assume that f, g
are function only of z;, in other words, we assume n = 1. First of all,

1 (1 — Inl*)f (m)319(n)
2ma1 /A (m—2)(1 = z7)

1—|n|2 )(f(n) — £())Brg(n)
30 / (n—21)(1 — z17)

=0, [f(zl) IR N

dn A df

01K, [falg]( )=

dn A dn

27i n—2z)(1—27)
= Il(Z) +I2(Z)
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Now
_ 1-nf?  _ U _all=hP)
"m=—2)1-2zm) O-z2)1-27) @0-2z)(1- 2772
1
(3.5) = -——————-—(1 — 215)2.

Integrating by parts, we then have

L) = @)@+ 0 [ 1) g [ 2 0san Aan].

27

It is easy to see that |I5(2)| < C(1—|2|?)*! since the assumption (3.1) and

eI %;/rf?gif")rd b
<9 2m/n 1—217] )dn/\dﬁ'
<|lg(e)e + [ G172 Zl”_'ls 4A()

< CCa™ (1= |al)*”
Now we consider I;(z). It is clear that

: _ (1= [n*)(f (n) = F(21))19(n)
2mily (z) = 81/A - 2) 0 —am) dn A dn

_ oy [ L= nl)drg(n)
=~0l )/ (1—3177—)(77“21)dn/\dﬁ

(1- l77| )(f f(zl))—a—lg(n) —

1~‘77| )7(f(n) = f(21))819(n) _

+/ -anf—z) 7
= I11(2) + Lia(2) + Ii5(2).

Since B
(1 —1[n*)|01g] < C(1 = |n|*)",

we see that by assumption (3.1) and simple calculation
[h1(2)] < Ca™M[01f(2)] < Ca™'(1 = [a[*)*"
By assumption (3.1), we have

[f(n) = f(z)] < CCra | — 2|,
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we have
(L= W) () = £(2))Brg(n)
A T T S A
< CCia™ [ Buglin — =1 7ldA()
<ccta™ [ (1={nf") 7oL = a7+ ldA()
A
< CC2a (1 — |21
Therefore

[ha(2)] < Ca”*(1 = |2 )2

Similarly, we have |I;3(2)] < Ca™2(1 — |2]?)*"!. Hence |I;(z)] < Ca™%(1 —
|21]|2)@~1. Therefore, combining the above estimates, the proof of (3.2) is
complete.

Next we prove that (3.4) holds for D! = 9,. Notice that
0, K\[f019] = K1[0,(f019)] = Ki[0:f 919] + Ki[f010,9]

and

Kl[0,0:9] = o [ Tz dA) + 1) Bu9(2) — Ku[B1f ).

We shall estimate all these terms. First
|K1[51f 329](2”

<o -lapy [ S g0

< Cal(1 = |z?) 1.

Similarly ~
|K1[0190:f](2)] < C(1 — |z2l2)a-—1.

It is easy to see that
F@)oa9(2)] < OO~ [zaf?)

Moreover, we have

27r7,/ fl — 217 62gdA( )l

L 0 - 160t
= lomt L T e A ) + S (2)0uPi]

< /A Ci|1 — 27| ag||dA(n)| + Ci (1 — |2 [2)"
< Ca'Ci(1 - |z*) .
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Therefore (3.4) holds for Dy, = 8,. Similarly, we have (3.4) holds for D; = 0,.
Therefore, the proof of Lemma, 3.3 is complete. O

Combining Lemmas 3.1 and 3.3, to complete the proof of Theorem 2.1, it
suffices to prove the following lemma:
Lemma 3.4. If f; € A,(A") satisfies (1.1) and (1.2). Then
|D:P;lg¢](2)] < CC (1 = |zi*)* 7,
foralli,j=1,--- n, i#70<k<n-1,and 1 <£f<m.

For convenience, we shall prove Lemma 3.4 for n = 2. [The case n > 2 is
similar, but more tedious.] To achieve this special goal, we first prove:

Lemma 3.5. Suppose that f; € A,(A") satisfies (1.1) and (1.2). Then
Lemma 3.4 holds when k =0, i.e. when g7 = ¢;.

Proof. By symmetry, it suffices to prove Lemma 3.5 with j = 1 and 7 = 2.
Moreover, we need only consider the case D, = 0, since D, = 0, is similar.
With the notation |f(2)|> = Y1, |fx(2)|?, we have

| D2 Pi[¢5](2)]

62¢](777Z)
= 27r/ (1__2177)2d ()I

1 [ &aflf(n,2) —F;(n,2") Xiey fu(n, 2')02f (n, 2")
E 27r/ If (1, 2")|*(1 — 217)? dA(n)‘
0,
< 1, dA(n)

27r a|f(n,2)2(1 = 27)?

/f 1,2 Ek lfk(naz)Gka('rh )
2r |f (n, 2)|*(1 = z17m)?

dA(n)'

—7;|J1(Z) + J2(2)] -

Now we let
h(z) = 1/1f (),  hi(z) = F;(2) fx(2) /1 (2)]*.
Then
") — h(2))0of ) —
[J1(2)] < / (h(n, 1)_ 2157)1) / + |27rzh(z)82fj(0,z')‘

< C(m,n)a'673C (1 — |2,)?)* 7t
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and

(hjr(n,2') — hji(2 ))02f4 b (DT T (0. 2
1~z177)2 dA(n) + 2mh;(2)02f (0, 2')

< C(m,n)6 a'C (1 — |z

|J2(2)| =

This completes the proof of Lemma 3.5. O
Corollary 3.6. Let f; € A (A™) satisfy (1.1) and (1.2). Then

|Dig} ()] < Clm,n)a~2073(1 = |z[2)>
forall0<a<1l,1<i<nandl1 <j<m.

Proof. This follows from Lemmas 3.1, 3.2, 3.3 and 3.5.

To prove Lemma, 3.4 for the case n = 2, we need only to prove:
(3.6) |DPilgel(2)| < Ca™67%(1 — |z[*)*"

forallk=1withj=2and 1 <2< m.
Notice that

|DiPa[g;](2)]

1 9} (ernaz”) ‘
—D = _dA
2 D%y 1= ey A0

— —I—Dk/ ¢l(z1a s Z") - Z;nzl fj (21, yp z”)(uﬁj B u’;’l)(zla ug Z”) dA('l])
27 (1 = 27)

j= lf] 2157, ”)(ul] l'l)(zlanvz”)

=) dAm)|-

< |DePae)(2) — -“Dk/ 25

By Lemma 3.5, we have
|DPy[¢e](2)] < Ca™674(1 — |z1)*)* "

Thus, combining this with f; € A,(A™), the estimation of Dy P[g;] can be
reduced to prove:

(3.7) DBl ()] < Cln,m)a=2674(1 — [z [)"

for k = 1. In order to prove (3.7) for k£ = 1, we need the following lemma.
Lemma 3.7. Let f; € A (A™) satisfy (1.1) and (1.2). Then

(3.8) (1 —l|=1])IBig;(21,22,2") — Oipj(21, w2, 2")| < C97|25 —
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Proof. Since

(1- |21|2)[31fk(21722» ") - alfk(zhw%z”)l

|(1—|Z| /fk n, 22,2 1)_n_ilcl(n,w2, )d ('r])

1
< - (1 — [
< ClZg ’LU2| (1 |z1! )/T |1 — 2177l2

do(n)

S CIZQ — UJQla.

Now
D15z (Z |fe(z |2> IVACERAC
Thus
(1 - |Zl|2)|61¢j(21,3272") - 51¢j(21,w272")|
<08 Z(l - lzl,Q)'alf(ZlaZ%z”) — O fr(z1,we, 2")]
k=1
(1- lz1| Zlalfk Z (f fk (Z'fk|2> ) (21,22, 2")
k=1 k=1
(f fk Z|fk|2 ) (21, w,2'
< Co 3z — w|™.
This completes the proof of Lemma 3.7. O

Now we are ready to prove (3.7) for k = 1. Since g; is holomorphic in zi,
it suffices to prove (3.7) for D; = ;. Observe that

‘Dle[u}l](z)‘

_ [P K #1112

< [0iP [Kq [(6e(n, 2') = $u(2)Bits (0, 2)] ]| + 01 P2 [#eKa B8] ] (2)]
= 13( )+I4( )
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We consider I3(z) first. Now

L(z) = |01 Ps [ [($e(n, ') — ¢e(2))D1
=P, [31K1 [(¢t(na ) — ¢e(2))0:¢
bl

(1 = n*)(¢e(n, 2') —
=B [/A (n—2)*(1

e [ [ L= P, ) et >>al¢j(n,z'>} »

(n—2)(1—z7n)?
[0 lnlz)al(@(z))?a‘lqu(n,z'>} "
A (n = 2)(1 — z17)
= I31 (Z) + I32(Z) + 133(2).

+ | P

With the notation B(z;,1) = (1—|n]?)(n—21)"2(1—2,%) ! and an application
of Lemma 3.7, we have

[ 731 (2)]

(1 — 2,))2

"), (ge(m, A 2") — ¢t(zu>\az"))51¢f("’)"z”)dA(/\)dA(ﬂ)’

< ‘ /A B(z1,n)

($e(m 7, 2") = dulz, 2, 2")) [Br5(m, X, 2) = Buhs(n, 2')]
/A (1- sz\)z

dA(N)dA(n)

+| [ B gy tn, ) [ LARAEIZ DTN g0y

< 05'4/ In — 2| 2|1 — zlﬁ]_l/ |1 — 2|72t *dA(X)dA(n)

| B [ COAEE SRR aaaac)

S Ca_zé (l — lZ | )01 ! + I311
Notice that:
(¢l(n7 )‘a Z”) - (}5[(21’ >‘7 Z”))
/A (1- 225\)2 440)

— / (d)l(n? sz’,) - ¢£(77, 22, z”) j— ¢€(z) — ¢g(21, Aa Z”))dA()\)
A (1 - ZQA)Z

+ 213 [pe(n, 2') — ¢e(2)] .-
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By using integration by parts and Lemmas 3.5 and 3.7, we have

[ 311 (2)]
n01¢;(n, 2') (Be(n, Ay 2") = @e(21, A, 2"))
IR =roIA 1= 2 i
(1 - '77' )8161¢] nz ”) (¢l 77,)\ Z" ¢€(Z1))‘7z”))
/A (n—21)(1 — z17) (1 — 2A)? 4
/ (1 = |n|*)01;(n, ") 01¢z(77,>\ 2")
a m—2)A—-2zm) Ja (1-2A)?

1*[’7' al I)\'Zz'
< 0o / 1 A(mdA(A
T=mif Ja i map A4t

(N)dA(n)

“+

(A)dA(n)

+

dA(N)dA(n)

N I e 19 S B 2 S/ i
+C6 / L dA(\)dA

(I —=1n)* | [ Ou;(n, A, 2")
+C5 / / i (7 A,
|1 - 217I|2 A (1 - Zz)\)2

<Ca 2671 — |z P)* +C8 / ,T_—W—)ilale (#i] (n,2')|dA(n)

m?

dAuwAmﬂ

2)\2a-1
< Ca~ 2(5 4(1 |le )a ! +Cé6™ / (1—1——IT77—,|2,’-);_!2_——dA(77)
< Ca 25741 — |z )

Since the estimation of I3,(z) is similar to and easier than that of I3;(z),
we therefore have

I31(2) + Isp(2) < Ca™2675(1 — |z |?)* .

Now we consider I33(z). By Lemmas 3.5 and 3.7 again, we have

I3 (2) < /A ( 1 —Inl*) 61¢e(91¢3(77,)\ 2")

n—z)1—zm) Ja  (1—2))?

(1—n?)
<\ o
/ (81(]56(77’ )‘7 Z”) - 81925[(771 %’Zv zll))51¢j ("71 A, z”)
(1 —2zA)?

dA(N)dA(n)

dA(N)dA(n)

|7I|2) ! 81¢](777)‘ z )
[ S an) [ 285 aayaam)
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1
< -1 —4/ _nl2)a—1
<Ca™'é Il—zﬁl2(1 Inl*)*""dA(n)

vort [ I 0 pye-tang)
H—znP
< C6 a1 — |z )* .

Therefore
1I(2)] < Ca™2674(1 = |z |*)* "

Now we estimate I4(z). Observe that

Ii(z) = |0\ Ps [¢>zK1 [51@‘] ”

(1 —22)%

IA

< al/Afﬁz(zl,A,Z”)Kl [514%] (Zla A z")

(]. - 212/_\)2

/ Bl \,2") Ki [3195] (21,0, 2")
A

(1 — 2,0\)2

= I41(Z) + .[42(2).
By Lemmas 3.3 and 3.5, we have

‘81K1 [51¢k]‘ < 00_15_3(1 _ |21|2)a_1

de(z1, A, 2")01 K,y [51(/5‘] (21, A, 2")
+ /A ’

dA(N)

dA(N)

dA(N)

Thus
|¢g(21, )\,Z”) - d)f(z)l ‘8IK1 [51¢k] (2’1, A,Z”)
Iix(2) < / ND
A |]. - ZzA'
alKl [Elqbk] (Zl, )\, Z“)
#u(z) [ AR
< cia 11— [afet [ 222 0a00) 4 L)
- A |1 — 22)\|2
<C6Pa?(1— |z )7 + Lin(2).
Since

Lz (2 "911)2 [ ! [514”“] ”
= 0.k, [P, [3.64] ]
= |oiK: [B:P: [4] |-

[dA(N)]

455
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By Lemma 3.5, we have
[01Ps [1] (2)] < Ca™' (1 — |z,]?)* L.

Moreover, we have

|D2 P[] (2)] < |obw] + /A ¢k(zl’£’zn)_¢(z)dA(§)

(1 - 223)3
<C5 405 /A I—F_‘z—j?ls dAE)|

< C6 271 = |z)?) Mo

Thus (3.1) is satisfied for f =1 and g = P; [¢]. Now we apply Lemma 3.3,
we have

Ly < |0 K, [31P; [#4]] | < Ca2672(1 = [aa?) "
Therefore, we have
I42(Z) S Ca~26—5(1 - |Z1l2)a—1-

Next we estimate Iy;(z). By Lemma 3.5, we have

oo [ [0S55 + o nap] 40

k(0,2

Py [31¢j /A _””‘”‘((f_( zlﬁ;Q dA(’?)”
< Ca 2671 = |21 *)* 7! + C|P, (010, Py (]l
< Ca?674 (1~ |a*)*™! + C|Py [¢i] (2) P2 [01 93] |

+ C P [01¢; (Pr [¢r]) — Pr (@] (21,22, 2") ]|
<Ca 25741 — |z )?)* !

+Ca™ 1072 (1 — |z )*)* !

N /A |21 [r] (21, A, Tl )_;;11£¢k] (21,22,2")| |[dA(N)]
< Ca™ 2571 — |z |2)*!

I41 (Z) < IPZ [81¢l¢]]| +C

<Ca 31— |n)H)*'+C

Therefore, I;(2) < Ca™267*(1 — |2,]?)*~*. Combining all of these estimates,
the proof of (3.7) for the case k = 1 is complete. Therefore, the proof of
Lemma 3.4 for the case n = 2 is complete. O

As a consequence of Lemmas 3.1, 3.2, 3.3, 3.6 and (3.7) , we have that
the proof of Theorem 2.1 for the case n = 2 and 0 < & < 1 is complete. The
other cases can be done similarly, but the details are tedious.
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We note in closing that the solution to the Corona problem presented in
this paper is essentially linear in nature. It is well known that solutions to
the original H* Corona problem are perforce non-linear in nature.
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