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EXPLICIT SOLUTIONS FOR THE CORONA PROBLEM
WITH LIPSCHITZ DATA IN THE POLYDISC

STEVEN G. KRANTZ AND SONG-YING LI

This paper contains considerations of various versions of the
classical corona problem on domains in complex n-dimensio-
nal space. Although we do not solve the H°° corona problem,
we do obtain positive results in other topologies. We also
provide explicit constructions for solutions.

1. Introduction.

Let Δ be the unit disc in the complex plane, and let Δ n be the unit polydisc
in Cn. We let Ή(Δn) denote the space of all holomorphic functions on the
polydisc, and %p(Δn) the holomorphic Hardy space on Δ n (see [Rud]).For
each 0 < a < oo, we let Λα(Δn) denote the holomorphic Zygmund spaces
over Δ n (see [KR2]). Suppose that fu . . . , fm G H°°(An) are such that

(1.1) 0<ί2<Σ|/ i(z)|2<l, zeAn.
3=1

In case n = 1, L. Carleson [C] solved the Corona problem and proved that
there exist g$ G Ή°°(Δ) such that

z)Φ) = 1, Ilftlk-(Δ) < C(m,δ).
3=1

The question of whether the Corona problem can be solved in several
complex variables has attracted much attention (for example, see [Am],
[An], [AC], [Ch], [FS1, 2], [HS], jKL], [Li], [Lin], [S], and [VI, V2], etc.).
On a strongly pseudoconvex domain, there have been attempts to generalize
the method of Hόrmander [H] and of Wolff [KO] to higher dimensions. This
entails solving a problem of the form du — μ, with μ a Carleson measure.
One seeks a bounded solution u. Such a bounded solution does not always
exist when the dimension exceeds 1 (see [VI]). However it should be noted
that the result of [VI] does not imply that the Corona problem fails in
several variables—only that the d technique with that particular definition
of Carleson measure fails.
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The point of the present paper is to obtain favorable results for Lipschitz
solutions of the Corona problem with the corona data being Lipschitz —
using iteration of one variable techniques. We shall construct a Aa solution
of the Corona problem in one variable that allows us to treat a vector-valued
problem, thus allowing induction on the number of variables. We carry out
this plan by constructing an explicit formula for an Λα(Δn) solution of the
Corona problem with Corona data fj G Λα(Δn).

We now give a formal statement of our theorem. The construction of our
solution will be given in Section 2. The proof of the theorem is completed
in Section 3.

Theorem 1.1. Let / x , . . . , / m G Λα(Δn) (0 < a < oo) satisfy inequality
(1.1) and

(1.2)

Then there are functions # i , . . . ,gm G Λα(Δn) such that

m m

(1.3) Σf,{z)Φ) = 1, and Σ l | f t ||Λβ(Δ») < C

The last estimate, in terms of α 1 - 2 n and a negative power of 5, gives an
indication of how the problem blows up as a —ϊ 0+.

We refer the reader to [KR2] for careful definitions and discussion of the
Lipschitz spaces Aa.

The first author thanks Peter W. Jones for a helpful communication.

2. Construction of the Solution.

In this section we shall construct an explicit solution of the Corona prob-
lem in Δ n without yet proving any regularity properties. Let / i , . . . , / m G
Ή°°(Δn) satisfy (1.1). Without loss of generality, we may use a normal
families argument and reduce the proof of Theorem 1.1 to the case of fj G
n°°(A^). We define

For A,?? G Δ, we let

(2.1.1) K[g)(λ)= ί K(X,η)g(η)dA(η),
JΔ
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where

1 1 — lr?l2

(2.1.2) J Γ ( A , , , _
,

Notice that K is essentially the Poisson-Szegό kernel for the disc. It is known
that d\K[g] — g in the sense of distributions. In fact

(l-η\)(η-\) η-X 1 - λη

The first kernel on the right is well known (see [KR1]) to be a solution
operator for <9, up to a constant factor; and the second one is holomorphic
in λ G Δ. By standard arguments (integration by parts), one can show that
this integral operator K maps C°°(Δ) to C°°(Δ).

For convenience, when 1 < j < n and g € L 2 ( Δ n ) , we let

(2.2) Kjlg^Zj) = K[g(zu-- , ^ _ l 7 , ^ + 1 , ,zn)){zό).

The integral acts only on the variable Zj. We set

(2.3) u1

jk(z)=K1[φkd1φj](z1),

j , k = 1,.. . ,n, where

Also set

771

(2.4) g° = φit g) =φi-γi fk{u)k - u^) 6 C°°(Δ^).
fc=l

It is obvious that dtfj(-,*'), g)(',z') E W(Δ) for each fixed z' G Δ n ~ x and
1 < i < n.

Suppose that g^ G C°°(Δn) is already defined so that g*f and dig*j are
holomorphic in Z i , . . . , z^ for all 1 < i < n. Inductively, we set

m

(2.5) g^(z) =g*(z)

where

(2.6)
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Then our definitions imply that gk+ι(z) G C°°(Δn). Moreover, since the
inductive hypothesis implies that gk(z) and g\ dk+\gk are holomorphic in
Zι, , zk then

a,(4 + 1 )-0, and 3 ^ = 0 , i = l,. .,fe.

Therefore

This implies that ^ + 1 (also <9i#*+1) are holomorphic in zu . . . ,2^+1 for all

1 < i < n. Finally, notice that

for all fc = 0,. . . , n — 1. Therefore the functions g™,..., g7^ form a solution
to the Corona problem with data / l 7 . . . , fm. In order to prove Theorem 1.1,
it suffices now to prove the following result:

T h e o r e m 2.1. Let fό, •• , / m G Λ α (Δ n ) satisfy (1.1) and (1.2). Then

(2.7) | |^Ί |A β ( Δ-)< C{n,m)aι-2"δ-*n

for all 0 < a < 00. Notice that the same solution set {g™} suffices for all a.

We shall consider the proof of Theorem 2.1 in the next section.

3. T h e Proof of T h e o r e m 2.1.

In this section, we shall complete the proof of Theorem 2.1. Let us start

with the following well-known simple lemma.

L e m m a 3.1. Let g e Ck(An),a > 0. Suppose that [a] + 1 < k, and

\Dkg(z)\ <Cdist{z,dAn)a-k.

Then g G Λ α (Δ n ) . Moreover,

(Δ») < Cna~ι.

Here Dk denotes any derivatives of g of order k, and [a] + 1 denotes the
least integer which is greater than a.

The proof of the above lemma and of more general results can be found in
[KR2].
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Corollary 3.2. Let 0 < α < oo, and let f e H{An). Then f e Λα(Δn) if
and only if

for all \β\=βι + "βn< [α], j = 1,..., n.

For simplicity, we shall prove Theorem 2.1 only for the case 0 < α < 1
and n = 2. For the case a > 1 and n > 2, the proof may be done similarly,
but it is much more tedious. For this special purpose, we shall prove the
following lemma:

Lemma 3.3. Let 0 < a < 1 and let /, g e C°°(Δn) satisfy

(3.1) \Dj9(z)\ + \Djf(z)\ < d ( l - h i 2 ) " " 1 , j - 1,2, •• ,n.

TΛen

(3.2) | ^ ^ [/^](^)|

// we also assume that

(3.3) \DkPj[9}(z)\ < d

(3.4) ' |£>*ϋ

where Dk — dk or dk7 k = 1, ,n ; and Pj denotes the Bergman projection
from L2(A) onto the Bergman space A2 (A) when we restrict attention to
functions of Zj.

Proof. By symmetry, it suffices to treat the cases j' = 1 and k — 1, or 2. Let
us prove (3.2) first. Since d\Kι[fd\g\ = /#i#, it suffices to prove (3.2) for
D 1 = d\. For this case, without loss of generality, we may assume that /, g
are function only of zu in other words, we assume n ~ 1. First of all,

(77 —
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1 - \η\*

(η -

Now

(3.5)

Integrating by parts, we then have

(η

It is easy to see that 1/2(2)I < C(l — I-Zil2)1*"1 since the assumption (3.1) and

* l ^

Λ dη

ιι»ω
Δ

-1/- , i |2\α-l

t (1 — \Zι\ )

Now we consider h{z). It is clear that

(l-W2)(/(^)-/(^i))9iί7(τ7)2mlx(z) = dη Λ dη

JΛ (1 -z^iη-Zi

+

+

/
«/ Δ

(I - ziη){η - Zl)
2

Since

Δ (1 — ^!i7)2(77 — ^ i )

\η\2)\dl9\ <

Λ dτ7

« ™ ^ A (

we see that by assumption (3.1) and simple calculation

|iii(z)| < Ca-'ldJW < CcΓ\l - l^l2

By assumption (3.1), we have
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we have

(l-\η\2)(f(η)-f(z1))dl9(η)
dη Λdη

(1 - Z!η)(η - zj2

<CC,a-1 ί \dl9(v)\\ri ~ Zι\-2+a\dA(η)\
JA

< CϋlcΓ1 ί (1 - M T 1 + α | l - z,η\-2+»\dA{η)\
JA

Therefore

Similarly, we have |J1 3(z)| < Ca~2(l - l^iΓ)""1. Hence {1^)1 < Ca~2{l -
l̂ i I2)""1- Therefore, combining the above estimates, the proof of (3.2) is
complete.

Next we prove that (3.4) holds for D1 — d2. Notice that

d.K^fd.g] = K^Ud.g)) = K^fd.g] +

and

^ J ^ 4- f(z) d2g(z) - K1\81f d2g}.

We shall estimate all these terms. First

\K1[d1fd2g](z)\

-dA(η)

<Ca-1(l-\z2\
2)

2)-1+a

Similarly

It is easy to see that

\f{z)\\d2g{z)\<

Moreover, we have

2-κi JA (1 - Zl

1 f (f(η,z')-f(z))d2g(η,z')— I
2πi JA

< I C1\l-z1ηΓ2\d2g\\dA(η)\+C1(l
JA

+ f{z)d2P1[g]

\z2\
2y-1



450 STEVEN G. KRANTZ AND SONG-YING LI

Therefore (3.4) holds for Dk = d2. Similarly, we have (3.4) holds for Dk = d2.
Therefore, the proof of Lemma 3.3 is complete. D

Combining Lemmas 3.1 and 3.3, to complete the proof of Theorem 2.1, it
suffices to prove the following lemma:

Lemma 3.4. If fc E Λ α (Δ n ) satisfies (1.1) and (1.2). Then

for all i,j — 1, , n, i φ j 0 < k < n — 1, and 1 < ί < m.

For convenience, we shall prove Lemma 3.4 for n = 2. [The case n > 2 is
similar, but more tedious.] To achieve this special goal, we first prove:

Lemma 3.5. Suppose that fj £ Λ α (Δ n ) satisfies (1.1) and (1.2). Then
Lemma 3.4 holds when k — 0, i.e. when g® = φj.

Proof. By symmetry, it suffices to prove Lemma 3.5 with j — I and i = 2.

Moreover, we need only consider the case D2 — d2 since D2 = <92 is similar.

With the notation \f{z)\2 = EΓ=i l/fc(*)|2, w e h a v e

2π

_ J_
~ 2π

Now we let

Then

92 fj

<

h(z) = l/\f(z)\\ M*) = /;

(h(η,z')-h(z))dJJL dA(η)

-dA(η)

2πih(z)d2fj(0,z')

< C(m,n)α"1ό-3CΊ(1 - l^l2)""1,
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and

\u*)\ = t-dA(η)+2πhjk(z)d2fk(0,z')

-3a'1

This completes the proof of Lemma 3.5.

Corollary 3.6. Let fά E ka(Δn) satisfy (1.1) and (1.2). Then

\Di9)(z)\ < C(m,n)α-2<Γ3(1 - \ztfT~1

for all 0 < a < I, 1 < i < n and 1 < j < m.

Proof. This follows from Lemmas 3.1, 3.2, 3.3 and 3.5.

To prove Lemma 3.4 for the case n = 2, we need only to prove:

(3.6) \DkPA9\]{z)\

D

for all k = 1 with j = 2 and 1 < £ < m.
Notice that

(1 - z2η)

φe(z1,η,z") -
'-dA(η)

dA(η)DkP2[φe](z) - —Dk

By Lemma 3.5, we have

\DkP2[φe](z)\ <

Thus, combining this with fj G Λα(Δn), the estimation of DkP2[g\] can be
reduced to prove:

(3.7) \DkP2[u)e}(z)\ < C ( n , m ) α - 3 r 4 ( l - \Zl\
2)a-χ

for A; = 1. In order to prove (3.7) for k — 1, we need the following lemma.

Lemma 3.7. Let }ό € Λα(Δn) satisfy (1.1) and (1.2). Then

(3.8) (1 - WΫ^φAzuZ^z") -d^izuw^z")] < Cδ'3\z2 -w2\
a.
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Proof. Since

- \z1\
2)\Θ1fk(z1,z2,z") -

-_A^Ii^i±ldσ{η)

< C\z2 - w2\
a(l - \zλ\

2)

<C\z2-w2\
a.

-ηzx

\i — zλr\\
dσ(η)

Now
- 2

\h(z)\2) ΣAW^ΛW
/ fc=l

Thus

- \z1\
2)\d1φj(z1,z2,z") - d1φj(zuw2iz")\

- \z1\
2)\dιf{zuz2,z")-dιfk(zuw2,z")\

k=l

k=l

-2\

Σ /,-/* ΣlΛl
k=l

-2N

This completes the proof of Lemma 3.7. D

Now we are ready to prove (3.7) for k — 1. Since g] is holomorphic in z1 ?

it suffices to prove (3.7) for D\ = dι. Observe that

diPiildiφtdtφjttiz)

]] (z
= I3(z)+h(z).
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We consider I%(z) first. Now

h{z) = [Kx [(φe(η, z') - φiizVdrfjiη, z')] ] |

p2

P2

/
./ Λ

L

(1 -\η\η(φe(η,z>) -

(η-zγtX-ztf)

KΦt(ri,z') -φe(z)
(η- z)(l -zxl)γ

(1 ~ \η\2)η(φ((η,z')-φe(z))d1φj(η,z')]

(*)r Δ (η-z)(l-

I32(z) + I33(z).

With the notation B(zχ,η) — (1 — \η\2)(η—zλ)
 2(l—zλη) 2 and an application

of Lemma 3.7, we have

L

f β { z i η) ί (Φe(η, A, z") - φe(z1,X,_z"))d1φj(η, X, z")

ί B(zuη)
JA

(Φt(η,\,z")-φt(zί,λ,z"))pίφj(η,Xiz")-d1φj(η,z')\

dA(λ)dA(η)

dA(X)dA{η)

ί B(z1,η)d1φj(η,,z") ί
JA JA

(Φt(η,\,z")-Φt(zi>\z"))

\η -

(l-z2X)2

- z2X\-2+adA{X)dA(η)

dA{X)dA(η)

B(z1,η)d1φs(η,z') ί
JA

(φe(η,X,z")-φe(zuX,z"))
dA(X)dA(η)

Notice that:

(φe(η,X,z")-φe(Zl,X,z"))L
-ί

dA{X)

(φt(η,X,z") - φe(η,z2,z") + φt(z) - φt{zuλ,z"))
A (1 - z2XY
2πi[φe(η,z')-φ((z)].

dA{X)
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By using integration by parts and Lemmas 3.5 and 3.7, we have

(η

(φe(η,X,z")-φe(zί,X,z"))

(l-z2λ)2 dA(X)dA(η)

d1φe(η,X,z")
dA{X)dA(η)

η I \ n Z , >rt / eη' ' n X\T '* dAWdA(η)

f (1 — \η\2)dιdχφj(η,z") f

JA (η — Zχ)(l — Ziη) JA

f (1 — \η\2)dχφj(η,z") ί d

JA {η — Zι)(l — Ziη) JA (1 — z2λ)2

JA I-L Z\T]\ JA IJ- — 22AJ

7 Δ | 1 — Z\T]\ JA | 1 — 22A|

•δ~2 ί {^% I / ψ^P-dA(X)dA(η)
JA I-L — Z\Ϊ)\ \JA (1 ~ Z2Λ)

-2δ-\\-\zΛ2)a-χ Λ-Cδ'* ί ^—^^\d1P2[φj](η,z')\dA(η)
JA 1 — Z\rγr

L,-5 / (i - M 2 )
/Δ

2\2a-l

Since the estimation of 132(2) is similar to and easier than that of
we therefore have

hι(z) + I32(z) < Cα-2<Γ5(1 - Izxl2)*-1.

Now we consider 133(2). By Lemmas 3.5 and 3.7 again, we have

<
f (1 — |?7|2) ί dιφιdιφj(η)λ,z")

JA V.̂ 7 ^1 /I Z\fj) J A (J- — 22A)

(i - N2)
(ί/-2Tl)(l-«l^)

(diφtjη, Λ, z") - diφtjη, z2,z"))dιφj(η, A, z")

Δ (1 - ^ λ ) 2L d^(λ)d^(ί7)

ϋί5l^dA(λ)dΛ(»,)
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I 2 ) " " 1
)"" 1-

Therefore

Now we estimate

h{z) =

Observe that

L
L

d1φe(z1,X,z")K1[d1φJ}(zuλ,z")
dA{X)

φe(z1,X,z")d1K1[d1φj](z1,λ,z")

i A (l - z2xγ

= hι{z) + Ii2{z).

By Lemmas 3.3 and 3.5, we have

Thus

dA(X)

IA2\Z i :

+

\φt{Zl,\,z!') - {zu\,z")\

Φe(z) f
JΔ

\l-z2X\*

d.K^φ^izuX^z")

Δ (l - z2xγ

f Iλ — z \a

\dA(X)\

dA(X)

A |1 - Z2

Since

< dχφk

d1κ1[p2[d1φk

d1κ1[d1p2[φk
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By Lemma 3.5, we have

\dιP2 [φk] (z

Moreover, we have

\D2P2[φk](z)\<\φk\
φk{zui,z")-φ{z)L

JA |1 — z2ζ\:

2 α - χ ( l - \z2\
2)~1+a.

dA(ξ)

Thus (3.1) is satisfied for / = 1 and g = P2 [φk] Now we apply Lemma 3.3,
we have

/421 <

Therefore, we have

d1K1 -kil2)*-1-

Next we estimate hiiz). By Lemma 3.5, we have

:2φk(η,z>) , φk(η,z')
hΛz)<\pi[d1φtφj]\

(l - (1

\l - \Zl I
2)""1 + C ^j jf M2lί

\Pi[Φk](zu\z")-P1[φk](z1,z2,z")\

< C α - 2 r 4 ( l - l^l 2)"- 1 + C \P2 [dxφj Fx [φk]}\

[φk] (z)P2 [dyφ,] I

C\P2 [diφj (P1 [φk]) - Pi [φk] (z1,z2,z")}\

\dA{\)\

Therefore, I4(z) < Ca~2δ~4(l — l^il2)""1. Combining all of these estimates,
the proof of (3.7) for the case k = 1 is complete. Therefore, the proof of
Lemma 3.4 for the case n = 2 is complete. D

As a consequence of Lemmas 3.1, 3.2, 3.3, 3.6 and (3.7) , we have that
the proof of Theorem 2.1 for the case n — 2 and 0 < a < 1 is complete. The
other cases can be done similarly, but the details are tedious.

L
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We note in closing that the solution to the Corona problem presented in
this paper is essentially linear in nature. It is well known that solutions to
the original Ή°° Corona problem are perforce non-linear in nature.
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