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GLOBAL ANALYTIC HYPOELLIPTICITY OF (0, ON
CIRCULAR DOMAINS

So-CHIN CHEN

Let D be a smoothly bounded pseudoconvex domain in
C™, n > 2, with real analytic boundary. In this paper we show
that 0, is globally analytic hypoelliptic if D is either circular

satisfying Zz]a (z) # 0 near the boundary bD, where r(z) is
J=1
a defining functlon for D, or Reinhardt.

I. Introduction.

Let D be a smoothly bounded pseudoconvex domain in C*, n > 2, with
real analytic boundary, and let C* be equipped with the standard Euclidean
metric. We consider the real analytic regularity problem of the [J;- equation
on the boundary. Namely, given any f € Cy (bD),0 < p < n —1 and
1<g<n-—1letu=NfeL, (bD)be the solution to the following
equation,

(1.1) Oyu = (8,9, +0,8,) Nof = f.

Then we ask: isu = Nyf € C; (bD)? For the definitions of these notations
the reader is referred to Sectxon II.

The existence of the solution v = N,f is an immediate consequence of
the closedness of the range of 0, which was proved by M.C.Shaw [17] and
Boas and M.C.Shaw [1], and independently by Kohn [15]. Since u = N, f
is the canonical solution to the equation (1.1), it is unique. It also follows
from Proposition 2.7. Next the real analyticity of the boundary bD implies
that u = N, f is smooth, i.e., u € C;5, (bD). For instance see Kohn [14][16].
Therefore, the main concern here is about the real analytic regularity of the
solution u. The only result we know so far is that the answer is affirmative
when D is of strict pseudoconvexity which is due to Tartakoff [18][19][20]
and Treves [21] for n > 3 and to Geller [13] for n = 2.

The purpose of this article is to prove the following main results which
presumably yield the first positive result to this problem on weakly pseudo-
convex domains.
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Theorem 1.2. Let D be a smoothly bounded pseudoconver domain with
real analytic boundary bD in C*, n > 2. Suppose that D is circular and that
0

sz—é (z) # 0 near bD, where r(z) is the defining function for D. Then
i=1 i

for any f € C2 (bD),0 < p<n-1and 1 < q < n~—1, the solution
u = Nyf to the O,-equation is also in C (bD).

Here a domain D is called circular if z € D implies
e z=(e"z,...,e"2,) € D

for any 0 € R. D is called Reinhardt if 2 € D implies (e*'z,,...,e""2,) € D
for any 6,,...,0, € R, and D is called complete Reinhardt if z € D implies
(M2z1y...3An2,) € D for any X\; € C with [A\;| < 1,7 =1,...,n. Then we
also prove

Theorem 1.3. Let D be a smoothly bounded Reinhardt pseudoconvezr do-
main in C*, n > 2, with real analytic boundary. Then the same assertion as
in the Theorem 1.2 holds.

Hence, in particular, (J, is globally analytically hypoelliptic on any com-
plete Reinhardt domains with real analytic boundary whuch provides a large
class of examples. Next we have the following immediate corollary.

Corollary 1.4. Let D be a smoothly bounded pseudoconvex domain with
real analytic boundary in C*, n > 2. Suppose that either D is Reinhardt

0
or D is circular with E zjb%(z) # 0 near bD, where r(2) is the defining
i=1 7

function for D. Then we have

(i) The Szego projection S defined on bD preserves the real analyticity
globally, and

(ii) The canonical solution w to the 0,-equation, i.e., Ow = a, is in
Cy 1 (bD) if the given a is in Cy, (bD) and satisfies Oy = 0.

Pq—1

Here the Szego projection S is defined to be the orthogonal projection from
L? (bD) onto the closed subspace, denoted by H? (bD), of square-integrable
CR- functions defined on the boundary, and by canonical solution w we
mean the solution with minimum L?- norm. We remark that statement (i)
has been proved by the author before in [5] via a more direct argument, and
a special case of (ii), i.e., n = 2, is verified by Derridj and Tartakoff in [11].

Now if we combine the above theorems and the main result, i.e., the
Theorem B, obtained by the author in Chen [6], then we can conclude the
following theorem.
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Theorem 1.5. Let D C C*, n > 3, be a smoothly bounded pseudoconvex
domain with real analytic boundary. Then the Szego projection S associated
with D preserves the real analyticity globally whenever D 1is defined by

(i) D ={(z1,,2) € C|If ()P + H (12, ..., [2a]?) < 1}, where f(z)
is holomorphic in z; and H(z,,...,T,) is a polynomial with positive coeffi-
cient and H(0,...,0) =0, or

(i) D = ¢ (21,--.,2,) € C"

lf(z1)|2 +1g(=)* + Xn:hj (12%) < 1}, where

i=3
f(z1) and g(z;) are holomorphic in one variable z; or z, respectively, and
h;(z) is a polynomial with positive coefficients satisfying h;(0) = 0, h’;(0) > 0
for 3 <j<n.

The real analytic regularity of the Bergman projection P, which is defined
to be the orthogonal projection from L?(D) onto the closed subspace H?(D)
of square- integrable holomorphic functions defined on D, on the domains
(1) and (ii) defined in Theorem 1.5 has been established in Chen [6].

We should point out that in general the analytic pseudolocality of the
Szego projection S is false. Counterexamples have been discovered by Christ
and Geller [7]. However, so far there is no counterexample to the globally real
analytic regularity of S. Meanwhile, a number of positive results of the local
analytic hypoellipticity for (J, have been established on some model pseudo-
convex hypersurface by Derridj and Tartakoff. For instance, see [8][9][10].

Finally the author would like to thank Professor Mei-chi Shaw for helpful
discussion during the preparation of this paper.

I1. Proofs of the Theorems 1.2 and 1.3.

Let D be a smoothly bounded pseudoconvex domain with real analytic
boundary in C*, n > 2, and let C* be equipped with the standard Euclidean
metric. Since we assume that the domain D is circular, we can choose a real
analytic defining function r(z) for D such that r(z) = r (e? - z) and that
|Vr(z)] =1 for z € bD. Let 2z, € bD be a boundary point. We may assume
that 3—'1': (2,) # 0. Hence a local basis for 7'° (bD) near z, can be chosen to
be

I - or 0 or 0

=9 T O fr1<j<n-—1.
7 02, 0z; 0z 0z, ori=i=n

Put X(2) =Y, &2 — 3"  2r .2 We see that

=1 3%, 3z; — 24j=1 Bz; Bz, "

Lla"'7Ln——1,—E1a"' aL'n—l
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and X (z) form a local basis for the complexified tangent space CT'(bD), and
X (z) is perpendicular to T"° (bD) & T°*(bD). Let wy,...,w,_; be (1,0)-
form dual to L,,...,L,_, respectively. Put n = 2 (87‘ — 51‘). Then it is
not hard to see that wi,...,w,_;,W;,...,W,_; and n form a local basis
for the complexified cotangent space CI'* (bD), and 7 is dual to X (z) and
perpendicular to T*"° (bD) & T*"" (bD).

Now for any 6 € R, define

Ag ﬁ-—)ﬁ
0

2 ez = (e¥2,...,e"%2,).

Put ¢ = e* - z, then we obtain by direct computation 2-(z) = e”’(% ),
Ag- (%) = ei"g‘Z: and A} (d¢i) = e?dz; for 1 < k < n. It follows that we
have

(2.1) Ap- (X(2)) = X (¢),
(2:2) A (L;(2)) = €2 L; (C), Ag- (L(2)) = e L;(¢), for1 <j<nm—1,

(2:3) A; (Br(0)) =Br(2), A;(9r(Q) = or(2).

This implies that Ajw; is again a (1,0)-form in CT™* (bD).

Next we recall the definition of 0, briefly here. let f € Cye, (bD), where
Cy. (bD) denotes the space of tangential (p, g)-forms defined on the bound-
ary with smooth coefficients. Namely, any f in C5% (bD) can be expressed
in the form

f= Z frowr ANy,

|=p

[J1=q
where I = (i,...,1,) and J = (j; ..., j,) are strictly increasing multiindices
of length p and q respectively, and w; = w,, A--- Aw;, and w; = w;, A
-+ Awj_, and the prime indicates that the summation is carried over only
the strictly increasing multiindices. Then consider f as a (p, ¢)-form in some
open neighbourhood U of the boundary, and apply 0 to f. We get

Of =F +7r(2)G+0r AH,

where F' is a (p,q + 1)-form involving only the w;’s and w;’s, and G is a
(p, g+ 1)-form, and H is a (p, ¢)-form. Then the tangential Cauchy-Riemann
operator 0, is defined to be

bl

bD

0of =My (3F) = F
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where 7, .4, maps 9f to the restriction of F on the boundary. For the details
the reader is referred to Folland and Kohn [12].

Now the above argument shows A} maps the tangential component to
the tangential component and maps the normal component to the normal
component. Therefore, if f € C55 (bD) with 1 < ¢ < n — 2 we obtain

F(AGf (Q)) = Mpqrr 000 Ayf
= Tpq1 0 A 0 Of
= Tpqr10A; (F+7(Q)G+0r A H)
= Tpair 0 (AJF +1(2)A;G + Br AN H)

= AJF

bD

= Ao mpgn (F+7(Q)G+3r AH)
= AZ ° 7rP3‘1+1 ° gf

= A; (Bf) -
Hence we have proved the following lemma.
Lemma 2.4. 90,A}f = A}0,f for any f € Cr, (D) with1 <g<n-—1

In general, 0, o h* # h* o 9, if h is just smooth CR- mapping. Denote by
L2 , (bD) the space of tangential (p, g)-forms with square-integrable coeffi-
cients. Then we have

Lemma 2.5. For any u in L2  (bD), we have (Aju,v) = (u, A*yv) for any
feR.

Proof. Put ¢ = €% - 2, and express u and v in terms of the Euclidean coor-
dinates, we get

u(C) = Z "y (¢)d¢; AdC,; and v(2) = ’v”(z)dz, AdZ; .

|I|=p |=p
=q

\T
|T1=q |J|=

Let do be the surface element defined on bD. We see that do is invariant
under rotation, i.e., Ajdo, = do,. For instance, see Chen [5]. Hence if we
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set z =e~% - (, we obtain
(Aju,v) = (Z Ury (ei" - 2) P94z, A dz,, Z'v”(z)dzl A dEJ)

= ury (€% - 2) P %, ;(z)do,
D

= Z,/ uyy () - e7iP=00y;; (e=% - ()do,
bD
= (u, A% 4v) .
This completes the proof of the lemma. il

Lemma 2.6. J,Aja = A;8,a for any a € C, (bD) with 1 < ¢ <n —1,
where B, is the L2-adjoint of .

Proof. Let 3 be any tangential (p, g —1)-form, i.e., 8 € C5,_; (bD). We have

This proves the lemma. O

Now denote by H, , = {u €L, (bD) i Oyu = 0} . We have the following
fact.

Proposition 2.7. (i) H,, =0 for1<q¢<n-2, and
(if) Hppr = {u € L2, (bD) |u € Dom (3;) and Gyu =0}

p,n—1

In general, H, ,_; # 0. Now let f € C55, (bD), f L Hp g, for1 <g<n-1
be given, and let u = N,f € C;; (bD) be the canonical solution to the [~
equation,

Oyu =0y Ny f = f,
where Ny is the so-called boundary Neumann operator. Let 7" be the vector
field generated by the rotation, namely, T is defined by
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where 7, is the mapping defined for any z € bD by
7, :St - D
el e 2= (e"2,...,e"2,).
By our hypotheses stated in the Theorem 1.2, T'(z) is tangential and pointing
in the bad direction for any z € bD.

From now on, we will assume that f has real analytic coefficients, namely,
feCy,(bD) with1 <q<n-1,and that f L H,,_, if ¢ =n — 1. Write

f as
f= Z;Jf”(z')wj AN@jy.
Define T' f by
Tf= ZILJTfIJ(Z)wI Nay.

It is not hard to see that T'f is still a tangential (p,q)-form, ie., Tf €
Cy, (bD). Then we have the following key lemma.

Lemma 2.8. T*u=TFN,f = N, T*f for any k € N.

Proof. Since, in general, H, ,_; # 0, we need to check that ifu L H,,_,, then
Aju L Hy—y. So, let w € Hp,,_;. By Lemma 2.6 we have Ajw € H,,,_;. It
follows that

(Aju,w) = (u,A* jw) = 0.

Hence Aju 1 H, ,_;. This proves our assertion.
Now by combining Lemma 2.4 and 2.6, we obtain

DbA;Nbf = A; 0O, Nbf
= A;f
= DbNbA;f
Therefore, by Proposition 2.7 and our assertion we conclude that
(2.9) AN, f = NyAyf for any 0 € R

So now one can argue as we did in Chen [2] to get TN, f = N,T'f. Inductively
we have T*N,f = N,T* f. This completes the proof of the lemma. I3

Lemma 2.8 enables us to estimate the derivatives of the solution u = N, f
in the bad direction as follows,

[T¥ull = [T*Nof ]| = [NT* £ < Go I fll, < CC*R1
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for some constant C' > 0 and any k € N, where || ||, is the Sobolev k-norm.

Therefore, what we need to estimate is the mixed derivatives of u, namely,
the differentiations involving L;’s, L;’s and T. For dealing with the 0-
Neumann problem we can avail ourselves of the so-called basic estimate
to achieve this goal. However, for the 0,- Neumann problem, in general,
the energy norm (), does not control the barred terms. But if we add the
differentiation in 7-direction to the right hand side, then we do have the
following estimate,

@10) [+ z gl + 32 [ < € ([Bun] + |50 + Iz,
i= =1

for any u € C;, (bD) with support in some open neighbourhood of z. The
estimate (2.10) is essentially proved in [12]. Since we know how to control
the T-derivatives of the solution u = N, f, then a standard argument can
be used to obtain the estimates of all the other mixed derivatives. For the
details the reader is referred to Chen [2][3][4]. This completes the proof of
Theorem 1.2.

A similar argument can be applied to prove the Theorem 1.3. Let D
be a smoothly bounded Reinhardt pseudoconvex domain with real analytic
boundary in C, n > 2. Let z, € bD be a boundary point. First one can
choose a direction, say z,, such that (an%';) (20) # 0, where r(z) is the
defining function for D. Next we simply consider the rotation in z,-direction,
namely, for each 6 € R, define

Ay 'ﬁ—)D—

0 _ i0
z el z=(21,...,20-1,€"2,) .

Then by following the proof we present here for circular domains we can
show without difficulty that OJ, is globally analytically hypoelliptic on any
smoothly bounded Reinhardt pseudoconvex domain with real analytic bound-
ary . Details can be found in Chen [3]. This also completes the proof of the
Theorem 1.3.

Finaly we make a concluding remark that the method we present here
can be used to obtain the Sobolev H*-regularity for (J, on any smoothly
bounded pseudoconvex domain which is either Reinhard or circular with

Z zj-aa?r # 0 near bD, where r(z) is a smooth defining function for D. For
Jj=1 J
instance, see Chen [4].
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